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1 Introduction

The primary motivation for this work is to better understand the 3d-3d correspondence

via five-dimensional maximally supersymmetric Yang-Mills (5d MSYM) theory. In trying

to do so, we are naturally led to study Ω-deformation of B-twisted gauge theories in two

dimensions, which is another theme of the present paper.

The 3d-3d correspondence associates to every three-manifold M an N = 2 supercon-

formal field theory T [M ] in three dimensions. (Early works on the subject are [1–7].) A key

fact about T [M ] is that it is closely related to Chern-Simons theory on M with complex

gauge group. For instance, the partition functions of T [M ] on S1 × S2 and the squashed

three-sphere S3
b are equal to those of complex Chern-Simons theory at level k = 0 [8, 9]

and k = 1 [10], respectively. More generally, it has been proposed recently [11] that the

partition function of T [M ] on the squashed lens space L(k, 1)b equals that of complex

Chern-Simons theory at level k.

We are interested in a variant of these relations where T [M ] on S1 ×ε D is equated

to analytically continued Chern-Simons theory [12–14], which is the holomorphic part of

complex Chern-Simons theory. Here S1 ×ε D is a twisted product of S1 and a disk D,

with parameter ε. This version is actually more powerful, in the sense that the partition

functions on S1 ×ε D with various boundary conditions give holomorphic blocks of the

theory [15, 16], and the partition function on L(k, 1)b factorizes into these blocks and their
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complex conjugates.1 A derivation of this version was provided by Beem et al. [16], whose

argument built on earlier work of Witten [20, 21].

One of the main results of this paper is an alternative derivation of this last relation.

More precisely, we establish the equivalence between the Q-invariant sector of T [M ] on

S1 ×ε D and analytically continued Chern-Simons theory on M , where Q is a certain

supercharge.

The said equivalence is an example of various correspondences between theories in d

and 6−d dimensions that originate from theN = (2, 0) superconformal theory in six dimen-

sions. The best-known among these is probably the AGT correspondence [22, 23] relating

4d N = 2 theories and Toda theory, which one obtains by considering the (2, 0) theory com-

pactified and topologically twisted on Riemann surfaces. In our case, the correspondence

originates from the (2, 0) theory formulated on S1×εD×M , with topological twisting along

the three-manifold M . The general idea is the following. When M is very small, this theory

reduces to T [M ] on S1×εD. On the other hand, if one somehow integrates out the degrees of

freedom propagating along S1×εD, one should get a theory onM . TheQ-invariant sector of

the latter is, presumably, analytically continued Chern-Simons theory. The correspondence

in question then follows by identifying the two theories coming from the same 6d theory.

Although the idea may be clear, showing that we indeed get analytically continued

Chern-Simons theory is difficult if we stay within six dimensions, since the (2, 0) theory

has no known Lagrangian description. To avoid this difficulty, we consider the limit where

the radius R of the S1 is very small. This allows us to describe the 6d theory as 5d MSYM

theory onD×M , and write down the Lagrangian explicitly. Then we can apply localization

techniques to simplify the path integral for correlation functions of Q-invariant operators.

We will show that the path integral for the 5d theory is equivalent to that for analytically

continued Chern-Simons theory, and explain how this result can be used to establish the

claimed equivalence for finite R. The logic of our argument is essentially the same as those

employed in [8, 9] for the S1×S2 case or [10] for the S3
b case. (A similar approach was taken

in [24, 25] to establish the equivalence between a twisted 5d MSYM theory compactified

on S3 and q-deformed Yang-Mills theory in two dimensions.)

The construction of the 5d theory is, however, nontrivial and interesting on its own,

and this takes us to the second theme of the present work. That is the Ω-deformation of

B-twisted gauge theories.

The nontriviality comes from the fact that we are reducing the 6d theory on the

nontrivial D-fibration S1 ×ε D over S1, constructed by gluing the fiber with a rotation

by angle 2πRε. This rotation induces a deformation of the resulting 5d MSYM theory

on D × M . To understand what kind of deformation is induced, suppose we further

dimensionally reduce the 5d theory on M ; thus, in total, we are reducing the 6d theory on

S1 and then on M . If we interchange the order of reduction, then we would be reducing a

3d N = 2 theory on the S1 factor of S1 ×ε D. This would give an Ω-deformed N = (2, 2)

theory on D [1, 26]. So going back to the original order, we find that the 5d MSYM theory

1This factorization was studied in [15–17] for k = 0, 1 and proved in [18] for k = 1. The case of general

k is discussed in [19]. A similar factorization is expected to hold for the partition functions on L(k, p)b [11].
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we obtain is deformed in such a way that it becomes an Ω-deformedN = (2, 2) gauge theory

on D upon dimensional reduction on M . We call this deformation the Ω-deformation of

5d MSYM theory on D ×M .

For the construction of the Ω-deformed 5d MSYM theory, it is actually more convenient

to generalize S1 ×ε D to S1 ×V Σ, where Σ is any Riemann surface, and ×V means that

the product is twisted with the isometry exp(2πRV ) of Σ generated by a Killing vector

field V . In this more general setup, we must topologically twist the 6d theory along Σ as

well in order to preserve some supersymmetry; then Q will be a supercharge of the twisted

theory that is a scalar on Σ and M . As a result, the Ω-deformed 5d MSYM theory on

Σ×M describing the 6d theory also undergoes topological twisting along Σ (on top of the

one along M), and we are interested in the Q-invariant sector of this twisted 5d theory.

In general, N = (2, 2) gauge theories admit two kinds of topological twist. One is

the A-twist which uses the vector R-symmetry U(1)V , and the other is the B-twist which

uses the axial R-symmetry U(1)A. We can see which twist is induced on the 5d theory by

considering the case Σ = R
2. It has been observed that 5d MSYM theory on R

2×M without

the Ω-deformation, viewed as an N = (2, 2) gauge theory on R
2, has a superpotential given

by the Chern-Simons functional for a complex gauge field A onM [8]. For nonabelian gauge

group, the superpotential is not homogeneous in A, and this leads to breaking of U(1)V .

So the twisting must be done with U(1)A. To summarize, the dimensional reduction of

the Ω-deformed twisted 5d MSYM theory on M is an Ω-deformed B-twisted gauge theory.

Conversely, we can construct this 5d theory by “lifting” an Ω-deformed B-twisted gauge

theory from two to five dimensions.

Unlike its A-twisted counterpart [1, 26], the Ω-deformation of B-twisted gauge theories

has been little studied in the literature. To achieve our goal, we should therefore under-

stand it first in a general setup, and this is what we try to do in section 2. In [27], the

Ω-deformation of B-twisted Landau-Ginzburg models was formulated, and used to provide

a unified approach to understanding quantization of the integrable system [28] and the al-

gebra of supersymmetric loop operators [29, 30] associated with an N = 2 gauge theory in

four dimensions. We follow the same strategy as the one employed there, and formulate the

Ω-deformation of general B-twisted gauge theories. The construction is relatively straight-

forward if the worldsheet Σ has no boundary. In the situation that Σ has a boundary,

the supersymmetric action requires an interesting boundary term which turns out to carry

much of the information on the dynamics of the theory. We then discuss boundary condi-

tions, and derive a localization formula for correlation functions of Q-invariant operators,

taking Σ = D.

In section 3, we turn to the twisted 5d MSYM theory on Σ×M . Due to the topological

twisting, the theory may be regarded as a B-twisted gauge theory on Σ. Hence, we can

obtain its Ω-deformation by adapting the construction developed in the previous section.

For Σ = D, we show that the twisted theory is equivalent to analytically continued Chern-

Simons theory on M by localization of the path integral, following essentially the same

steps as in the derivation of the 2d localization formula.

We conclude our discussion in section 4 by placing the above results in the context of

the 3d-3d correspondence. We establish the correspondence between T [M ] and analytically
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continued Chern-Simons theory described above, and moreover discuss a mirror symmetry

between Ω-deformed N = (2, 2) theories in two dimensions.

2 Ω-deformation of B-twisted gauge theories

In this section we formulate the Ω-deformation of B-twisted gauge theories in two dimen-

sions, and study general properties of the deformed theories. In particular, we derive a

localization formula for correlation functions on a disk. The construction developed in this

section will be crucial for our discussion in the next section.

2.1 Supersymmetry transformation laws

First of all, let us explain what we mean by an Ω-deformation of a B-twisted theory. The

notion of Ω-deformation was introduced originally in the context of N = 2 gauge theories

on R
4 [31–35]. The following definition is an analog in the case of B-twisted gauge theories

of a more general formulation of Ω-deformation [36], which works for topologically twisted

N = 2 gauge theories on arbitrary four-manifolds admitting isometries.

After the B-twisting, an N = (2, 2) theory has two supercharges Q± that are scalars

on the worldsheet Σ. The linear combination Q = Q++Q− satisfies Q2 = 0 up to a central

charge, and is used as the BRST operator of the B-twisted theory. Given a Killing vector

field V on Σ, an Ω-deformation with respect to V is a deformation such that the deformed

theory has a BRST operator, which we will still denote by Q, satisfying the deformed

relation

Q2 = LV . (2.1)

Here LV is the conserved charge acting on fields as the gauge-covariant Lie derivative LV

by V .

In order to formulate such a deformation, one can start with a supergravity theory and

try to find a background that realizes the deformation. For A-twisted theories on S2, such

a supergravity background was found in [37]. In principle, one can apply a mirror map to

this background and obtain the corresponding deformation for B-twisted theories on S2.

Here we instead follow the strategy employed in [27] for the formulation of Ω-deformed

B-twisted Landau-Ginzburg models. So let us first review this strategy.

As we have said above, two of the four supercharges of N = (2, 2) supersymmetry

algebra become scalars after the B-twist. The remaining two, on the other hand, become

components of a one-form supercharge G = Gzdz + Gz̄dz̄. Suppose Σ = C. Then, these

supercharges are all unbroken, and satisfy the commutation relations {Q−, Gz} = Pz and

{Q+, Gz̄} = Pz̄, where P = Pzdz + Pz̄dz̄ is the generator for translations. The other

commutators vanish, up to central charges.

Now we pick a Killing vector field V = V z∂z+V z̄∂z̄ and set Q = Q++Q−+ιV G, where

ιV is the interior product with V . This operator satisfies Q2 = ιV P , and this is nothing but

the Ω-deformed relation (2.1) on C. Hence, Q generates an Ω-deformed supersymmetry

transformation on the flat worldsheet.

What we have to do is to generalize this construction to an arbitrary choice of Σ which

is not necessarily flat. To this end, we should write down the transformations of fields
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generated by Q in the flat case (see e.g. [38] for the standard formulas for N = (2, 2)

supersymmetry transformations), and rewrite them in a way that makes sense even when

Σ is curved. This is actually not very hard.

A vector multiplet of the B-twisted supersymmetry consists of a gauge field A, a one-

form σ, and an auxiliary scalar D, as well as fermionic fields which are two scalars λ̄± and

a one-form λ. These are all valued in the Lie algebra g of the gauge group G, except that

the gauge field is a connection on a G-bundle over Σ. To avoid introducing dependence

on the metric on Σ to the supersymmetry transformation laws, in our formulation of the

B-twisted gauge theory, we replace D with a two-form (still called D), and λ̄± by two

two-forms α and ζ; these are related to the original fields by the Hodge duality, once a

metric is chosen.2 Thus, our vector multiplet consists of a gauge field A and

σ ∈ Ω1(Σ; g), D ∈ Ω2(Σ; g); λ ∈ Ω1(Σ; g), α, ζ ∈ Ω2(Σ; g). (2.2)

By Ωp(Σ; g) we mean the space of p-forms in the adjoint representation.

After some rescaling and shifting of fields, we arrive at the following Ω-deformed trans-

formation laws for the vector multiplet:

δA = iλ,

δσ = λ+ ιV ζ,

δλ = −iιV FA + dAιV σ,

δζ = iFA + dAσ − σ ∧ σ,

δα = dAσ +D,

δD = dAιV α− [ιV σ, α]− dAλ− λ ∧ σ − σ ∧ λ− dAιV ζ.

(2.3)

Here dA = d− iA is the gauge-covariant exterior differential, and FA is the curvature of A.

A chiral multiplet consists of fields valued in a unitary representation R of G, as well

as those valued in the complex conjugate representation R which is isomorphic to the dual

representation. Those valued in R are a complex scalar φ, a fermionic one-form ρ and an

auxiliary two-form F, while those valued in R are fermionic scalars η̄ and θ̄. For the metric

independence of supersymmetry transformations, we will use a two-form µ̄ instead of θ̄.

Thus, the fields in our chiral multiplet are

φ ∈ Ω0(Σ;R), F ∈ Ω2(Σ;R); η̄ ∈ Ω0(Σ;R), ρ ∈ Ω1(Σ;R), µ̄ ∈ Ω2(Σ;R). (2.4)

The Ω-deformed supersymmetry transformation laws for a chiral multiplet were written

down in [27] in the case without coupling to a vector multiplet. It is straightforward to

2This replacement is necessary for the metric independence even when the Ω-deformation is not present,

as can be seen from the transformation laws for α and ζ.
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generalize the formula to the gauged case:

δφ = ιV ρ,

δφ̄ = η̄,

δρ = dAφ− σφ+ ιV F,

δη̄ = ιV dAφ̄+ φ̄ιV σ,

δµ̄ = F,

δF = dAρ− σ ∧ ρ+ ζφ,

δF = dAιV µ̄+ µ̄ιV σ.

(2.5)

We let Q denote the generator for the supersymmetry transformations. From the

above formulas, one can check that Q squares to LV = ιV dA + dAιV , modulo the gauge

transformation generated by iιV σ.
3 Observables are gauge- and Q-invariant operators that

are not Q-exact. From the supersymmetry transformation laws, we see that gauge-invariant

functions of φ, inserted at zeros of V , are local observables.

2.2 Supersymmetric action

Let us construct an action that is invariant under the Ω-deformed supersymmetry trans-

formations. It takes the form

S = SV + SC + SW . (2.6)

The first two pieces SV and SC contain kinetic terms for the vector and chiral multiplets,

respectively, and the last piece SW contains terms constructed from a superpotential W , a

gauge-invariant holomorphic function of the chiral multiplet scalar φ.

To construct SV and SC , we need to pick a complex structure and a Kähler metric on

Σ. We denote the Kähler metric by h. Then, the vector multiplet action is

SV = δ

∫

Σ
Tr

(
α ∧ ⋆(−dAσ +D+ 4∂̄Aσ) + ζ ∧ ⋆(−iFA + dAσ + σ ∧ σ)

)

=

∫

Σ
Tr

(
FA ∧ ⋆FA + σ ∧ ⋆∆σ +

κ

2
σ ∧ ⋆σ − (σ ∧ σ) ∧ ⋆(σ ∧ σ)

+D′ ∧ ⋆D′ + 2∂A(σ ⋆ ∂̄Aσ) + 2∂̄A(σ ⋆ ∂Aσ)

− 2α ∧ ⋆dA−iσ(λ
1,0 − λ0,1)− 2ζ ∧ ⋆dA+iσλ

− α ∧ ⋆dA−iσιV α− ζ ∧ ⋆dA+iσιV ζ − 2α ∧ ⋆dA
(
(ιV ζ)

1,0 − (ιV ζ)
0,1

))
,

(2.7)

3More precisely, the supersymmetry transformation laws only show that Q obeys Q2 = LV if its action is

restricted to fields. Actually, on the right-hand side of this relation, an extra operator may be present that

commutes with any fields. Such an operator corresponds to a central charge in theN = (2, 2) supersymmetry

algebra. We will not consider this possibility since our discussion only concerns the action of Q on fields.
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and the chiral multiplet action is

SC = δ

∫

Σ

(
ρ ∧ ⋆(dAφ̄− φ̄σ + ιV F)− iφφ̄α+ F ∧ ⋆µ̄+ 2σφ ∧ ⋆ιV µ̄

)

=

∫

Σ

(
(dAφ+ ιV F) ∧ ⋆(dAφ̄+ ιV F) + σφ ∧ ⋆(φ̄σ)− iφφ̄D′ + F ∧ ⋆F

− ιV F ∧ ⋆(φ̄σ) + σφ ∧ ⋆ιV F− i∂(φφ̄σ) + i∂̄(φφ̄σ)

− ρ ∧ ⋆dA−iση̄ + dA−iσρ ⋆ µ̄+ 2ρφ̄ ∧ ⋆λ− iφη̄α+ ζφ ⋆ µ̄

+ ρ ∧ ⋆(φ̄ιV ζ − ιV dAιV µ̄− ιV µ̄ιV σ) + 2(λφ+ ιV ζφ+ σιV ρ) ∧ ⋆ιV µ̄
)
.

(2.8)

Here ∆ = D∗D is the Laplacian associated to the covariant derivative D coupled to the

gauge field and the Levi-Civita connection, κ is the scalar curvature, and D′ = D+ 2∂̄Aσ

is a redefined auxiliary field.

Both SV and SC are Q-invariant, provided that V is a Killing vector field. This follows

from the fact that LV commutes with the Hodge star operator ⋆ for such V ; thanks to this

property, we have

δ2
∫

Σ
V =

∫

Σ
LV V =

∫

∂Σ
ιV V (2.9)

for any gauge-invariant two-form V on Σ constructed from fields using ⋆, and the last

expression vanishes since ιV V restricts to zero on ∂Σ, with V being tangent to ∂Σ.

The construction of the superpotential term is a little tricky if Σ has a boundary. For

simplicity, we will assume that Σ has only a single connected boundary component.4 The

boundary is topologically a circle, and we can choose a periodic coordinate ϕ (with period

2π) on the boundary such that

V |∂Σ = ε∂ϕ (2.10)

for some real ε. Furthermore, we assume that V generates nontrivial isometries on the

boundary, that is, ε 6= 0. Then

SW = i

∫

Σ

(
F
∂W

∂φ
+

1

2
ρ ∧ ρ

∂2W

∂φ∂φ
+ F

∂W

∂φ̄
+ η̄µ̄

∂2W

∂φ̄∂φ̄

)
− i

ε

∫

∂Σ
W dϕ, (2.11)

where contraction of gauge indices is implicit. The boundary term is needed for Q-

invariance.

We impose the reality condition such that σ and D′ are hermitian, while φ† = φ̄ and

F† = F, so that the real part of the action is nonnegative in the absence of boundary.5 If

Σ has a boundary, we should impose a suitable boundary condition on φ in order to ensure

the convergence of the path integral.

One of the most important features of the action constructed above is that although

it depends on the complex structure and the metric of Σ, the dependence is Q-exact. Still,

the Ω-deformed B-twisted theory is not quite topological. Rather, it is quasi-topological,

4If Σ has multiple boundary components, then for each component one has a boundary term similar to

the one in the formula (2.11).
5This is true even when κ < 0 since the bosonic part of SV can be written as the integral of Tr((FA +

iσ ∧ σ) ∧ ⋆(FA + iσ ∧ σ) + 4∂Aσ ∧ ⋆∂̄Aσ +D
′ ∧ ⋆D′), which is manifestly nonnegative.

– 7 –



J
H
E
P
0
2
(
2
0
1
5
)
0
4
7

in the sense that it is invariant under deformations of the complex structure and the metric

as long as V remains as a Killing vector field.

So far V has been assumed to be a real vector field. We can relax this condition and

multiply V by a phase factor, since the action remains Q-invariant and nonnegative if we

simply replace the appearance of V by its complex conjugate V in the first line of the

formula (2.8) for SC . A phase rotation of V is actually equivalent to the opposite phase

rotation of W , for the former has the same effect as the latter combined with the action

of an element in the vector R-symmetry group U(1)V (with the chiral multiplet assigned

charge 0 under it), but the U(1)V -action can be undone by a field redefinition (which does

not modify the path integral measure, as there is no quantum anomaly for U(1)V ).

2.3 Boundary condition

We have constructed the Ω-deformed B-twisted theory on a general worldsheet Σ. In

particular, we allowed the possibility that Σ has a boundary. We now discuss boundary

conditions.

The boundary of Σ is topologically a circle, and the Killing vector field V generates

its rotations. The neighborhood of the boundary looks like a short cylinder. We equip this

cylinder with a flat metric ds2 = dn2 + dϕ2, with n being a coordinate in the direction

normal to the boundary. After the boundary condition is fixed, one can deform the metric of

Σ to anything that is allowed by the quasi-topological property of the theory. However, the

boundary condition will depend on the initial choice of the flat metric in the neighborhood

of the boundary.

Our boundary conditions must meet two requirements. One is that they should lead to

a good variational problem in a semiclassical, or weak coupling, limit. In our case there is

a natural weak coupling limit, which is obtained by rescaling the Q-exact part of the action

by a large factor; correlation functions of Q-invariant operators are left unchanged under

such a Q-exact deformation. So we require that boundary terms be absent in the variation

of the action when we vary the fields in this limit. The other requirement is that boundary

conditions must be Q-invariant so that Q preserves the space of allowed field configurations.

We first analyze boundary conditions for the vector multiplet fields. The gauge field

has the standard kinetic term, so its boundary condition is a standard one, namely either

the Dirichlet or Neumann boundary condition. Since a gauge-invariant expression for the

former condition does not exist in two dimensions, we choose the latter, Fnϕ = 0. Gauging

An away, we can write this condition as ∂nAϕ = 0. The requirement of Q-invariance then

leads to ∂nσϕ = λn = ∂nλϕ = 0. If we now look at the kinetic term for σ in the vector

multiplet action (2.7), we notice that it differs from the standard one by total derivative

terms. A natural way to kill these unwanted terms is to set σn = 0 on the boundary; the

total derivative terms in the chiral multiplet action (2.8) also drop out then. Taking the

Q-variation of this condition, we get ζnϕ = 0.

In fact, the set of boundary conditions we have found so far is part of the conditions

imposed by a B-brane in N = (2, 2) gauge theory [39, 40]. This suggests that we should

– 8 –
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choose our boundary condition for the vector multiplet to be the B-brane condition:

An = ∂nAϕ = σn = ∂nσϕ = λn = ∂nλϕ = ζnϕ = ∂nαnϕ = ∂nD
′
nϕ = 0. (2.12)

This set of boundary conditions is not Q-invariant by itself. In order to achieve Q-

invariance, we further impose an infinite series of conditions, generated from the above

conditions by the action of even powers of ∂n [39].

We stress that the gauge An = 0 has been chosen on the boundary above. For com-

patibility, we must restrict gauge transformations to be such that their parameters have

vanishing normal derivatives on the boundary. In addition, we can impose a restriction

on the boundary values of gauge transformations. To do so, we pick a subgroup H of G

and require gauge transformations to be valued in H on the boundary. Then, those gauge

transformations that do not satisfy this condition form a physical symmetry of the theory,

provided that they leave invariant the boundary condition for the chiral multiplet, to which

we now turn.

Thanks to the condition An = 0, the boundary terms arising from variation of the chi-

ral multiplet action (2.8) are all independent of the vector multiplet fields. Furthermore,

the supersymmetry variations for φ and φ̄ do not depend on vector multiplet fields either.

In this situation, the analysis of the boundary condition for the chiral multiplet reduces

to the case of Landau-Ginzburg models [27]. Hence, we can impose the same boundary

condition as in that case.

We refer the reader to [27] for the details of the analysis, and here simply state the

result. The boundary condition for the chiral multiplet depends on a choice of a submani-

fold γ in the target space, which may be considered as the support of a brane of a certain

type. Then the scalars obey the usual D-brane boundary condition:

φ ∈ γ, ∂nφ ∈ NRγ (2.13)

at each point on ∂Σ, where NRγ is the normal bundle of γ. The fermions obey

(ερϕ, η̄) ∈ TCγ, (ερn, µ̄nϕ) ∈ NCγ. (2.14)

Again, there are further conditions obtained by repeated action of Q on the above condi-

tions, which guarantee that the boundary condition is Q-invariant.

The target space for the chiral multiplet is the representation space VR of R, equipped

with the G-invariant Kähler form

ω = idφ ∧ dφ̄. (2.15)

Note that here φ = (φ1, . . . , φdimVR) is considered as a set of complex coordinates on VR;

thus dφ is a set of (1, 0)-forms on VR. We require γ to be a Lagrangian submanifold of the

symplectic manifold (VR, ω). As we will see, this has the effect of eliminating fermion zero

modes.

Moreover, γ must be H-invariant for gauge invariance to be unbroken. This require-

ment has the following consequence. Let {Ta} be a set of generators of G, and Xa denote
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the vector fields on VR generated by the action of Ta. The moment map µ : VR → g∨ for

the G-action on the symplectic manifold (VR, ω) is given by

(µ, Ta) = iφφ̄Ta. (2.16)

Let µH : VR → h∨ be the moment map for the H-action; by definition, (dµH , Ta) = ιXaω

for Ta ∈ h. Since γ is H-invariant and a Lagrangian submanifold by assumption, Xa are

tangent to γ and ιXaω vanishes on Tγ. It follows that µH is constant on the boundary, as

any variation of φ is tangent to γ due to the boundary condition φ ∈ γ.

2.4 Localization

Finally, we derive a formula for correlation functions of Q-invariant operators via localiza-

tion of the path integral. We take our worldsheet Σ to be a disk D, and equip it with a

rotationally invariant metric h. The Killing vector field V generates rotations and can be

written as V = ε∂ϕ for some ε 6= 0. By the quasi-topological property of the theory, we can

always deform h into a metric with scalar curvature κ > 0, such as one for a hemisphere.

We choose the subgroup H to be trivial, that is, we choose to divide the field space by

gauge transformations that equal the identity on the boundary.

In order to localize the path integral, one usually rescales the Q-exact part of the action

by a large factor t, which in our case means rescaling SV +SC → t(SV +SC). On the other

hand, we expect that the theory simplifies considerably when D is very small, since in such

a situation most degrees of freedom are very massive and decouple from the dynamics. So

we may also want to rescale the metric as h → t−2h. If we combine these two ways to

simplify the path integral, the net effect is that SV is rescaled by a factor of t3, while SC is

rescaled by a factor of t, except the term coming from F∧⋆µ̄ in the Q-exact expression (2.8)

which is rescaled by t3. Motivated by this consideration, we deform the action as follows:

S → t3
(
SV − δ

∫

D
Trα ⋆D′

)
+ t

(
SC + sδ

∫

D
F ⋆ µ̄

)
+ SW . (2.17)

Here s is a real parameter.

First, we rescale µ̄ → s−1µ̄ and take the limit s → ∞. In this limit, integrating out

the auxiliary field F is equivalent to simply setting

F = 0. (2.18)

The term containing D′ is included in the deformation so that integrating D′ out produces

delta functions imposing the constraint

µ = −t2 ⋆ (∂Aσ − ∂̄Aσ), (2.19)

where the moment map µ is given by the formula (2.16), and σ is regarded as valued in g∨

by (σ,X) = Tr(σX) for X ∈ g.

Next, we take t to be large (but still finite). Looking at the bosonic parts of SV and

SC , we find that the path integral then localizes, under the boundary condition (2.12), to

the locus given by

FA = σ = dAφ = 0. (2.20)
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As D is simply connected, the equation FA = 0 means that we can set

A = 0 (2.21)

everywhere by a gauge transformation. Together with the boundary condition (2.13) and

the constraint (2.19), the equations σ = dAφ = 0 then imply that the path integral localizes

to the configurations where φ is a constant map to the subspace γ ∩ µ−1(0) of the target

space VR.

Since the path integral localizes for large t, we can evaluate it by perturbation theory

(in 1/
√
t) around background configurations on the localization locus. We will denote

backgrounds with subscript 0 and fluctuations around them with a tilde; thus A = Ã,

σ = σ̃, and φ = φ0 + φ̃.

For the computation we need to fix the gauge. We choose the standard gauge-fixing

condition ∇µA
µ = 0 and add to the action the gauge-fixing term

SG = t3
∫

D

√
hd2xTr

(
c̄∇µDµc+ (∇µAµ)

2
)
, (2.22)

where ∇ is the Levi-Civita connection and c, c̄ are ghosts. After rescaling the fluctuations

and the fermions as

(Ã, σ̃, λ, ζ, α) → (t−3/2Ã, t−3/2σ̃, t−1λ, t−2ζ, t−2α),

(φ̃, ρ, η̄, µ̄) → (t−1/2φ̃, t−1ρ, η̄, µ̄),

(c, c̄) → (t−3/2c, t−3/2c̄),

(2.23)

the terms in the action containing them become

∫

D

(
Tr(Ã ∧ ⋆∆dÃ+ σ̃ ∧ ⋆∆dσ̃ + α ∧ ⋆(∂λ− ∂̄λ)− 2ζ ∧ ⋆dλ+ c̄ ∧ ⋆∆dc)

+ dφ̃ ∧ ⋆d ˜̄φ− ρ ∧ ⋆dη̄ + dρ ∧ ⋆µ̄+ · · ·
)
. (2.24)

Here ∆d = (d + d∗)2 is the Hodge-de Rham laplacian, and the ellipsis refers to terms

multiplied by negative powers of t. To obtain this expression we have used the relation

∆d = ∇∗∇+ κ/2 in the space of one-forms on a surface.

We have to integrate over the fluctuations and the fermions. To do this, we deform D

into the shape of a two-sphere S2 with a small disk Dǫ of radius ǫ removed. Since fields

on S2 \ Dǫ can be obtained from fields on S2 by restriction, we can expand them in the

eigenmodes of ∆d on S2.6 The integral (2.24), when expressed in terms of the expansion

coefficients, differs from the case with Σ = S2 by ǫ-dependent terms. However, at the

end of the localization computation, we can take the limit ǫ → 0 (which is a Q-exact

operation), whereby the difference simply vanishes. Thus, we can perform the integration

6On S2, the fermionic part of the leading terms in the integral (2.24) can be written as

− 〈ρ, (d + d∗)(η̄ + µ̄)〉+ 〈α− 2ζ, (d + d∗)λ0,1〉 − 〈α+ 2ζ, (d + d∗)λ1,0〉+ 〈c̄,∆dc〉, (2.25)

using an appropriate inner product 〈 , 〉. It is thus natural to expand the fermions in the eigenmodes of ∆d.
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over the fluctuations and the fermions in a way similar to the S2 case. The computation

is not quite like that case, however, since the boundary condition imposes relations among

the expansion coefficients.

To understand the result of the integration, we note the following three points. First,

the leading terms in the integral (2.24) are completely independent of the background.

Second, the boundary condition does not depend on the background either. This is because

the support γ of the brane is a Lagrangian submanifold of VR, and the tangent bundles

at different points on γ are all isomorphic up to unitary rotations which are symmetries

of the action. Finally, there are no fermion zero modes, as we will see shortly; they are

all eliminated by the boundary condition. Hence, to leading order, the integration over

the fluctuations and the fermions just produces a constant independent of the background,

though it may depend on the choice of γ and the representation R.

Once the perturbative computation is carried out, we integrate over the localization

locus. On this locus, the only surviving piece of the action is the boundary term in the

superpotential term (2.11):

− i

ε

∫

∂D
W dϕ = −2πi

ε
W. (2.26)

Finally, taking the limit t → ∞ whereby the subleading terms vanish, we conclude that

the correlation function on the disk of any Q-invariant operator O is given by the formula

〈O〉 =
∫

γ∩µ−1(0)
dφ0 exp

(
2πi

ε
W

)
O. (2.27)

From this formula we see that the nontrivial information on the dynamics on D is encoded

in the boundary term.

In the above derivation, we have asserted that there are no fermion zero modes. Let

us show this now. Recall that we have expanded the fermions in the eigenmodes of the

Laplacian on S2. There are no harmonic one-forms on S2, so there are no zero modes

for λ and ρ. Furthermore, harmonic two-forms are Hodge duals of constants, and neither

constant ⋆α nor ⋆ζ is compatible with the boundary condition ∂nαnϕ = ζnϕ = 0. (To

see this for α, suppose that we equip D with the metric (dn2 + n2dϕ2)/(1 + n2)2 of the

Riemann sphere parametrized by z = neiϕ, where (n, ϕ) are the cylindrical coordinates

used in describing the boundary condition, with the boundary located at n = 0. Then,

the zero mode of α behaves as αnϕ ∼ n/(1 + n2)2 near the boundary.) The boundary

condition (2.14), on the other hand, implies that the zero mode parts η̄0, µ̄0 of η̄, µ̄, obey

(0, η̄0) ∈ TCγ and (0, ⋆µ̄0) ∈ NCγ on the boundary.7 Since γ is a Lagrangian submanifold

of a Kähler manifold for which the complex structure exchanges the tangent and normal

bundles, it follows that η̄0 = µ̄0 = 0 on the boundary and hence everywhere. So there are

no zero modes for η̄ and µ̄, either. Lastly, the zero modes for the ghosts c, c̄ are constant,

but there are no such modes to begin with. This is a consequence of our choice to divide

7To be precise, the boundary condition is imposed on the fermionic fields themselves and not just on

their zero modes. However, if we take the limit such that the radius of the S2 goes to zero, all nonzero

modes become infinitely massive and decouple. Then the fermions may be replaced by their zero mode

parts, and the boundary condition is written entirely in terms of the zero modes.
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the field space by gauge transformations that equal the identity on the boundary; gauge

transformation parameters must vanish on the boundary, therefore so do the ghosts.

3 Chern-Simons theory from 5d MSYM theory

As an application of the formulation developed above, in this section we construct an Ω-

deformation of 5d MSYM theory, placed and topologically twisted on Σ×M , where M is a

three-manifold. This is achieved by “lifting” the supersymmetry transformation laws and

the supersymmetric action constructed in the previous section from two to five dimensions.

Then, we show that when Σ is a disk D, the Ω-deformed twisted 5d MSYM theory is

equivalent to analytically continued Chern-Simons theory on M , with integration contour

specified by the boundary condition of the 5d theory. These results will be the bases for

our derivations of various correspondences presented in the next section.

3.1 Ω-deformed twisted 5d MSYM theory on Σ × M

To begin, we formulate the Ω-deformation of the twisted 5d MSYM theory on Σ×M . The

gauge group is a compact Lie group G. We equip the Riemann surface Σ with a metric hΣ
and M with a metric hM , and choose a Killing vector field V generating isometries of Σ.

The metric on Σ×M is h = hΣ⊕hM . We write (xM ) = (xµ, xm) for coordinates on Σ×M .

The theory is topologically twisted as follows. The structure group of the spinor

bundle of Σ × M is Spin(2)Σ × Spin(3)M ∼= U(1)Σ × SU(2)M . Correspondingly, we split

the R-symmetry group Spin(5)R as Spin(2)R × Spin(3)R ∼= U(1)R × SU(2)R. The field

content of the untwisted theory consists of a gauge field A, five scalars X, and fermions Ψ,

transforming under SU(2)M × SU(2)R ×U(1)Σ ×U(1)R as

A : (1,1)(±2,0) ⊕ (3,1)(0,0),

X : (1,1)(0,±2) ⊕ (1,3)(0,0),

Ψ: (2,2)(±1,±1).

(3.1)

First, we replace SU(2)M with the diagonal subgroup SU(2)′M of SU(2)M ×SU(2)R. Under

SU(2)′M ×U(1)Σ ×U(1)R, the fields transform as

A : 1(±2,0) ⊕ 3(0,0),

X : 1(0,±2) ⊕ 3(0,0),

Ψ: 1(±1,±1) ⊕ 3(±1,±1).

(3.2)

From the transformation property of Ψ, we see that the theory now has N = (2, 2) super-

symmetry on Σ. Next, we identify U(1)R with the axial R-symmetry group U(1)A, and

perform the B-twist on Σ, replacing U(1)Σ with the diagonal subgroup of U(1)Σ ×U(1)R.

In the language of N = (2, 2) supersymmetry on Σ, the fields of the twisted 5d MSYM

theory are grouped into a vector multiplet that is a scalar on M , and three adjoint-valued

chiral multiplets that combine into a one-form on M . (Recall, however, that some of the
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fermions are redefined in our construction.) The scalars of the chiral multiplets are complex

combinations of the components Am of A along M and three scalars Xm:

Am = Am + iXm, Am = Am − iXm (3.3)

These can be regarded as components of a complex gauge field A = Amdxm on M and its

hermitian conjugate A.

Being a B-twisted gauge theory, the Ω-deformation of the twisted 5d MSYM theory

can be formulated in a way similar to the construction discussed in the previous section.

To adapt, or “lift,” that construction to the present 5d setup, we just need to replace every

appearance of −iAm in our formulas with the covariant derivative Dm = ∇m − iAm with

respect to Am and the Levi-Civita connection on M ; the replacement makes the formulas

invariant under 5d gauge transformations, and provides derivatives alongM . Actually, only

the combinations −iAm and −iAm appear, and these are replaced with Dm = Dm +Xm

and Dm = Dm −Xm, respectively.

For those fields that are in the vector multiplet on Σ, the lifted supersymmetry trans-

formation laws take the same form (2.3) as before, the only difference being that the fields

can now depend on the position on M . In components, the formula reads

δAµ = iλµ,

δσµ = λµ + V νζνµ,

δλµ = −iV νFνµ +Dµ(V
νσν),

δζµν = iFµν +Dµσν −Dνσµ − [σµ, σν ],

δαµν = Dµσν −Dνσµ +Dµν ,

δDµν = Dµ(V
ραρν)−Dν(V

ραρµ)− [V ρσρ, αµν ]

−Dµλν +Dνλµ − [λµ, σν ]− [σµ, λν ]−Dµ(V
ρζρν) +Dν(V

ρζρµ).

(3.4)

The supersymmetry transformation laws for the chiral multiplets are lifted to

δAm = V µρµm,

δAm = η̄m,

δρµm = Fµm + iDµXm + iDmσµ + V νFνµm,

δη̄m = V µ(Fµm − iDµXm) + iV µDmσµ,

δµ̄µνm = Fµνm,

δFµνm = Dµρνm −Dνρµm − [σµ, ρνm] + [σν , ρµm]− iDmζµν ,

δFµνm = Dµ(V
ρµ̄ρνm)−Dν(V

ρµ̄ρµm) + µ̄µνmV ρσρ.

(3.5)

Typical observables are gauge-invariant operators constructed from A, such as Wilson lines,

inserted at zeros of V on Σ.

Likewise, we can lift the supersymmetric action from two dimensions. The result is

SV =

∫

Σ×M

√
hd5xTr

(
1

2
FµνF

µν +DµσνD
µσν +

κ

2
σµσµ

− 1

2
[σµ, σν ][σ

µ, σν ] +
1

2
D′

µνD
′µν + · · ·

)
(3.6)
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for the vector multiplet, and

SC =

∫

Σ×M

√
hd5xTr

(
(Fµm + iDµXm + V νFνµm)(Fµm − iDµXm + V νFν

µm)

+DmσµDm
σµ − iDmXmD′µνǫµν +

1

2
FµνmF

µνm

− iV νFνµmDm
σµ − iV νFνµmDmσµ + · · ·

)
(3.7)

for the chiral multiplet. Here ǫµν are components of the volume form
√
hΣ d2x on Σ, and we

have abbreviated boundary terms and fermionic terms. For the superpotential term, the

form of SW is the same as in the 2d case, with W now being a gauge-invariant holomorphic

functional of the complex gauge field A on M .

The action for the Ω-deformed twisted 5d MSYM theory is the sum

S =
1

2e2
(SV + SC + SW ), (3.8)

where e2 is the coupling constant of the theory. The question is what superpotential is the

right one to use.

Note that neither SV nor SC described above contains kinetic terms for Am and Xm

along M . So these terms should be generated by the superpotential. Since the potential

associated with F is proportional to |∂W/∂A|2 and the kinetic terms for Am and Xm are

of second order in derivatives, W must be of first order. A natural candidate is then the

Chern-Simons functional for A. It turns out that the right choice is [8]

W =
1

2

∫

M
Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
. (3.9)

For this choice of W , the superpotential term (2.11) is given by

SW =
i

2

∫

Σ×M

√
hd5xTr

(
1

2
FµνlFmn + ρµlDmρνn +

1

2
FµνlFmn + η̄lDmµ̄µνn

)
ǫµνlmn

− i

ε

∫

∂Σ
W dϕ. (3.10)

To see that the above choice of W is indeed the right one, set V = 0 and integrate out

the auxiliary fields. Integrating out D′ gives the potential Tr(DmXm)2, while integrating

out F produces 1
2 TrFmnFmn

, where Fmn are components of the curvature of A. Up to a

total derivative on M (which, for M = R
3, vanishes upon integration under usual boundary

conditions), the two contributions combine to give

Tr

(
1

2
FmnF

mn +DmXnD
mXn − 1

2
[Xm, Xn][X

m, Xn]

)
. (3.11)

After this is done, the bosonic part of the action can be written as

1

2e2

∫

R5

d5xTr

(
1

2
FMNFMN +DMXNDMXN − 1

2
[XM , XN ][XM , XN ]

)
(3.12)
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for flat spacetime R
5, with (XM ) = (σµ, Xm). This is precisely the bosonic part of the

standard 5d MSYM action.8

Although the Chern-Simons superpotential (3.9) correctly reproduces the 5d MSYM

action, it also causes a problem in the case that Σ has a boundary. The real part of the

Chern-Simons functional forA shifts by integer multiples of 2π under gauge transformations

that are not connected to the identity. Since the Chern-Simons functional enters the

boundary term in SW , this would mean that the action is gauge invariant modulo 2πi if

and only if 1/ε obeys a certain quantization condition, and otherwise the path integral

would not be well-defined. However, we do not want to restrict the possible values of ε. So

we instead restrict the gauge symmetry — on the boundary, we only allow topologically

trivial gauge transformations.

The lifted formulas for SV and SC are Q-exact. Hence, the quasi-topological property

of the Ω-deformed theory discussed in the 2d context still holds for the theory constructed

here. In addition, the theory is topological on M , since the metric on M enters the action

only through SV and SC .

The reader might worry that our twisted 5d MSYM theory may not be well-defined.

Indeed, 5d gauge theories are in general not perturbatively renormalizable by the standard

argument. Despite its highly supersymmetric nature, 5d MSYM theory also suffers from ul-

traviolet divergences starting at the six-loop level [41] (though there are arguments suggest-

ing that the theory might be rendered finite by some nonperturbative mechanism [42–44]).

However, the twisted theory is an exception as one restricts attention to the Q-invariant

sector: one can make use of the metric independence of the theory to shrink Σ or M to

a point, thereby reducing the theory to a lower-dimensional one which is renormalizable.

Since this process involves a Q-exact deformation of the action, it may be thought of as

introduction of Q-exact regulator terms. In fact, the localization of the path integral we

are about to perform is one instance of such a reduction to a lower-dimensional theory by a

Q-exact deformation. In this case, the twisted theory is reduced to analytically continued

Chern-Simons theory.

3.2 Localization to analytically continued Chern-Simons theory

We now establish the equivalence between the Ω-deformed twisted 5d MSYM theory for

Σ = D and analytically continued Chern-Simons theory. To this end, we view the 5d

theory on Σ × M as a B-twisted gauge theory on Σ, regarding M as an internal space

whose coordinates are continuous “flavor indices,” and interpreting the integration over M

in the formula (3.6) etc. as summation over these indices. Then we can localize the path

integral for correlation functions just as we did in section 2.4.

Recall from our discussion in section 2.3 that the boundary condition for our theory is

specified by a brane, whose support γ is a Lagrangian submanifold of the target space of

the chiral multiplet scalar. In the present context, the scalar is the complex gauge field A,

and the target space is the space of complex connections on M . (If M has a boundary, then

8The bosonic part of the undeformed action is invariant under phase rotations of W . To fix the phase,

we need to look at the fermionic part. Alternatively, one can fix it by comparing the Chern-Simons level in

our localization formula (3.25) with the identification obtained in [16] from a 6d point of view.
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the target space is the space of complex connections obeying a chosen boundary condition.)

There is a natural Kähler form on this space, given by

ω =

∫

M
Tr δA ∧ ⋆δX. (3.13)

The associated Kähler metric

ds2 =

∫

M
Tr δA ∧ ⋆δA (3.14)

is the metric used in the construction of our chiral multiplet action (3.7). So we have

equipped the target space with this Kähler form, and γ is a Lagrangian submanifold with

respect to it. On the boundary, A is required to be valued in γ.

We also need to choose the subgroup H which specifies the allowed boundary values

of gauge transformations. Previously we chose it to be trivial, that is, we demanded gauge

transformations to be trivial on the boundary. This time, we allow all possible gauge

transformations that preserve the boundary condition An = 0. For the reason explained

already, they must be moreover topologically trivial along M on the boundary. Thus, H in

the present case is the group of topologically trivial G-gauge transformations on M , which

we denote by G; the corresponding moment map is

µ = DmXm. (3.15)

Accordingly, γ is required to be invariant under the action of G.
In fact, for the purpose of connecting our 5d theory to analytically continued Chern-

Simons theory, we need a stronger condition on γ: we require

γ = Γ ∩ µ−1(0) (3.16)

for some GC-invariant submanifold Γ of the space of complex connections on M , where GC

is the complexification of G. (As it will become clear, Γ is identified with an integration

contour for the path integral in the Chern-Simons theory; since this theory has invariance

under complex gauge transformations, Γ should be invariant under GC, not just G.) Due to

the Kähler form (3.13) being only invariant under G and not GC, generically Γ itself cannot

be a Lagrangian submanifold. However, its restriction γ to the G-invariant submanifold

µ−1(0) can be so, and used as the support of our brane. The above form of γ is compatible

with our localization condition, which actually enforces the restriction µ = 0.

The localization procedure is essentially the same as before. We deform the action as

S → t3SV + tSC + SW − 1

2
δ

∫

D×M

√
hd5xTr(t3αµνD′

µν + tsFµνmµ̄µνm), (3.17)

rescale µ̄ as µ̄ → s−1µ̄, and send s → ∞. Then we integrate out the auxiliary fields,

whereby we get F = 0 and the constraint (2.19) on µ. After that, we equip D with a

metric with positive curvature and take t to be very large to find that the path integral

localizes to the locus given by the equations

Fµν = σµ = Fµm = DµXm = 0. (3.18)
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With Aµ totally gauged away, the equations become

Aµ = σµ = ∂µAm = ∂µXm = 0. (3.19)

These equations say that the nontrivial part of a localization configuration is specified by

the complex gauge field A which must be constant on D. The brane boundary condition

requires A ∈ Γ ∩ µ−1(0), and the constraint coming from D′ demands µ = 0, which is

compatible with the boundary condition. The localization locus is therefore Γ ∩ µ−1(0).

Having identified the localization configurations, we integrate over fluctuations around

these configurations and over the fermions. For the gauge-fixing condition, we again use

the standard one ĥMN∇MAN = 0, where ĥ can be any metric on D × M . For us, it is

convenient to use ĥ = hD ⊕ t3/2hM , for which the corresponding gauge-fixing term is

SG = t3
∫

D×M

√
hd5xTr

(
c̄∇µDµc+ t−3/2c̄∇mDmc+ (∇µAµ + t−3/2∇mAm)2

)
. (3.20)

After adding this term to the action, we rescale the fluctuations and the fermions appropri-

ately. The way we do this is slightly different from the rescaling (2.23) considered before,

since this time the ghosts have zero modes; the zero-mode parts c0, c̄0 of c, c̄ are simply

constants on D, and may be regarded as adjoint-valued scalar fields on M . (Recall that we

are allowing all gauge transformations that are compatible with the boundary condition

An = 0.) Writing c = c0 + c̃, c̄ = c̄0 + ˜̄c, we rescale the ghosts as

(c0, c̃, c̄0, ˜̄c) → (t−3/4c0, t
−3/2c̃, t−3/4c̄0, t

−3/2˜̄c). (3.21)

The remaining fields are rescaled as before. Noting that c satisfies the boundary condition

∂nc = 0 just as gauge transformation parameters do, we then find that to leading order,

the fluctuations and the fermion nonzero modes enter the action only through terms that

do not depend on the background. Hence, integration over them just produces a constant

independent of the background.

The final expression of the localized path integral is similar to the formula (2.27). Un-

like the previous case, however, it involves integration over the zero modes c0, c̄0. Another

difference is that SG contains terms that depend on the background and c0, c̄0:

SG0 =

∫

D

√
hD d2x

∫

M

√
hM d3x

(
c̄0∇mDmc0 + (∇mAm0)

2
)
. (3.22)

Taking these differences into account, we obtain the localization formula

〈O〉 =
∫

Γ∩µ−1(0)
DA0Dc0Dc̄0 exp(S0 − SG0)O, (3.23)

with

S0 =
πi

2e2ε

∫

M
Tr

(
A0 ∧ dA0 −

2i

3
A0 ∧ A0 ∧ A0

)
. (3.24)

The piece SG0 in the action that appears in the above formula may be interpreted as

a gauge-fixing term for the 3d gauge symmetry. So we can drop this piece if we perform

the path integral over (Γ ∩ µ−1(0))/G.
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On the other hand, the restriction of the path integral to the subspace µ−1(0) amounts

to gauge fixing of the noncompact part of the complexified gauge symmetry. The reason is

that the equation µ = DmXm = 0 is invariant under G but not under GC, and using GC, a

generic complex connection can be transformed to one that fixes µ = 0. This is actually a

familiar fact about the moduli space of vacua in supersymmetric gauge theory: the moduli

space is the zero locus of the D- and F-term potentials modulo gauge transformations,

but the same space can also be obtained by dropping the D-term equation and taking the

quotient with respect to the action of the complexified gauge group. Thus, we can drop the

constraint µ = 0 and complexify the gauge symmetry, replacing the integration contour

with the submanfiold Γ/GC of the moduli space M of complex connections on M . This

mechanism of complexification of the gauge symmetry has been observed previously for 5d

MSYM theory on S2 ×M [8, 10].

The above formula can then be rewritten as

〈O〉 =
∫

Γ/GC

DA exp(ikSCS)O, (3.25)

where

SCS =
1

4π

∫

M
Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
, k =

2π2

e2ε
. (3.26)

This is the path integral for Chern-Simons theory at level k, with the gauge field analytically

continued to a complex connection. Therefore, we have reduced the path integral for the

Ω-deformed twisted 5d MSYM theory on D×M to that for analytically continued Chern-

Simons theory on M , establishing the equivalence between the two theories.

In the Chern-Simons theory, one must specify a convergent middle-dimensional integra-

tion cycle in M. In our localization formula, the integration contour Γ/GC is a Lagrangian

submanifold of M.9 A basic example of such a contour is the real contour, represented

by the space of complex connections that are GC-equivalent to real connections, which is a

good contour when the Chern-Simons level is real.

4 3d-3d correspondence

To conclude our discussion, in the final section we interpret the results we obtained about

the Ω-deformed twisted 5d MSYM theory from the point of view of the 3d-3d correspon-

dence. This allows us to establish the correspondence between the 3dN = 2 superconformal

theory T [M ] and analytically continued Chern-Simons theory on M . Furthermore, we will

see that our construction of the 5d theory, together with the 3d-3d correspondence, implies

a mirror symmetry between Ω-deformed 2d theories.

9The Kähler form on M is inherited from the space of complex connections: under the identification

M ≃ µ−1(0)/G, it is represented by the restriction of the G-invariant two-form (3.13) to µ−1(0). It vanishes

on Γ/GC ≃ (Γ ∩ µ−1(0))/G since γ = Γ ∩ µ−1(0) is a Lagrangian submanifold by assumption. Being an

integration cycle of the Chern-Simons theory, Γ/GC is moreover middle-dimensional in M.
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4.1 T [M ] and analytically continued Chern-Simons theory

Consider the (2, 0) theory on S1 ×V Σ ×M , with S1 a circle of radius R and V a Killing

vector field on Σ. Here, the space S1 ×V Σ is a nontrivial Σ-fibration over S1, constructed

from the trivial fibration [0, 2πR]×Σ, by gluing the two ends of the interval [0, 2πR] with

an action of the isometry exp(2πRV ) on the fiber Σ. The structure group of the spinor

bundle of this space is reduced to Spin(2)Σ × Spin(3)M , and the R-symmetry group of the

theory is Spin(5)R. This is just like the case of 5d MSYM theory on Σ×M . Thus, we can

consider topological twisting analogous to the one applied to that theory.

It is well known that for flat spacetime, the (2, 0) theory compactified on S1 is equiv-

alent, at low energies, to 5d MSYM theory with gauge coupling e2 = 4π2R. In view of

this relation, we propose that at energies much smaller than 1/R, the above twisted (2, 0)

theory on S1×V Σ×M is equivalent to the Ω-deformed twisted 5d MSYM theory on Σ×M

constructed in the previous section, with the same gauge coupling and the Ω-deformation

given by a Killing vector field proportional to V .

Another regime that is relevant to us is the one in which energies are much smaller

than 1/L, where L is the length scale of M . In this regime, the (2, 0) theory compactified

on M gives T [M ] by definition. Hence, the twisted (2, 0) theory reduces to a topologically

twisted version of T [M ] on S1 ×V Σ.

Based on our proposal and this observation, we can show that the Ω-deformed twisted

5d MSYM theory is equivalent to the twisted T [M ]. The argument goes as follows.

We fix an energy scale E, and consider the twisted (2, 0) theory on S1 ×V Σ×M with

R, L ≪ 1/E. This theory can be described either as the Ω-deformed twisted 5d MSYM

theory on Σ×M , with e2 and M small, or as the twisted T [M ] on S1 ×V Σ, with the S1

small. The 5d theory is topological on M , so we can scale up M if we wish. Likewise, the

3d theory is independent of R and we can set it to any value as long as we keep unchanged

the isometry exp(2πRV ) (and other possible fugacity parameters associated to boundaries

in M), for correlation functions on S1 ×V Σ are supersymmetric indices. (See e.g. [16] for

more discussions on this point.)

The last statement suggets that the 5d theory depends on e2 only through the com-

bination e2V , and this is indeed true. To see this, we consider a Q-exact deformation of

the action similar to the one used in the derivation of the localization formula for Σ = D

in section 3.2. After such a Q-exact deformation, only SV , SC and the boundary term in

SW are relevant for the computation of the path integral. The claim then follows from the

fact that the dependence on e2 coming from the first two is Q-exact, while the boundary

term of the action depends on e2 through the factor 1/e2ε. Thus, we can rescale e2 to any

value, if we simultaneously rescale V to keep e2V fixed.

Since the 5d and 3d theories are different descriptions of the same 6d theory, they are

equivalent, and this is valid at any energy scale E, for any values of e2 and R, and for any

metric on M . Therefore, we conclude that the Ω-deformed twisted 5d MSYM theory on

Σ×M is equivalent to the twisted T [M ] on S1×V Σ. Our argument is depicted in figure 1.

Now we take Σ = D. In this case we have shown that the Ω-deformed twisted 5d

MSYM theory is equivalent to analytically continued Chern-Simons theory. Combined
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(2, 0) theory on S1 ×V Σ×M

Ω-def’d 5d MSYM on Σ×M T [M ] on S1 ×V Σ

Figure 1. Equivalence between the Ω-deformed twisted 5d MSYM theory and the twisted T [M ].

Ω-def’d 5d MSYM on D ×M

analytically cont’d CS on M T [M ] on S1 ×V D

Figure 2. Correspondence between T [M ] and analytically continued Chern-Simons theory.

with the equivalence just discussed, this establishes the correspondence between T [M ] and

the latter theory (figure 2).

Let us briefly comment on an alternative explanation for this correspondence, proposed

by Beem et al. [16]. Their approach starts with the same 6d setup as ours, namely the

(2, 0) theory on S1 ×V D × M . The main difference is that in their case, in addition to

reduction on the S1, one considers deforming D to a cigar shape and reducing the theory

on the circle fibers of D. After doing so, one has a twisted N = 4 super Yang-Mills theory

on the product of an interval and M . Then one can invoke an argument given in [20, 21]

and show that the system is equivalent to the Chern-Simons theory. Our derivation has the

advantage that it avoids questions concerning the singular point of the geometry, that is the

tip of the cigar, where the circle fiber shrinks to a point and the analysis becomes difficult.

In deriving the correspondence between T [M ] and analytically continued Chern-Simons

theory, we set Σ = D and impose boundary conditions of a specific type. Similar localiza-

tion computations may be carried out for other choices of Σ and boundary conditions, and

may lead to yet unknown correspondences.

4.2 Ω-deformed mirror symmetry

The equivalence between the Ω-deformed twisted 5d MSYM theory and the twisted T [M ]

implies more than just the correspondence discussed above. We can use it to find another

interesting correspondence which relates two Ω-deformed 2d theories.

Consider 5d MSYM theory, compactified and topologically twisted on M . In the limit

where M is very small, it becomes an N = (2, 2) theory T̃ [M ] in two dimensions. An

analysis along the lines of [45] shows that T̃ [M ] is a Landau-Ginzburg model whose target

space is the moduli space Mflat of complex flat connections on M , assuming that the flat

connections are irreducible.10

10In general, the Landau-Ginzburg model description breaks down at reducible flat connections due to

appearance of extra massless modes on M coming from Aµ, σµ and their superpartners. This echoes the
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Ω-def’d 5d MSYM on Σ×M T [M ] on S1 ×V Σ

Ω-def’d T̃ [M ] on Σ Ω-def’d T̂ [M ] on Σ

Figure 3. Ω-deformed mirror symmetry.

If we instead start from the Ω-deformed twisted 5d MSYM theory on Σ × M , then

we obtain an Ω-deformed, twisted version of T̃ [M ] on Σ. The model is more precisely

B-twisted, as our construction of the 5d theory is based on a B-twisted gauge theory, and

the chiral multiplets of the model simply come from their counterparts in the 5d theory,

containing Am. Alternatively, one may note that generically U(1)V would be broken by the

superpotential, so the twisting should be done with U(1)A. (If the model happens to have a

quasi-homogeneous superpotential, one can deform the 5d theory so that nonhomogenous

terms are generated; then one knows that the 2d theory is B-twisted, as the twisting does

not change under such a deformation.)

On the other hand, T [M ] compactified on S1 reduces to an N = (2, 2) theory T̂ [M ]

in the limit R → 0. So if we instead start with the twisted version of T [M ] formulated on

S1 ×V Σ, then we get an Ω-deformed twisted T̂ [M ] on Σ.

Now, combining the facts that (1) the Ω-deformed twisted 5d MYSM theory is topo-

logical on M ; (2) the twisted T [M ] on S1 ×V Σ is independent of R (as long as RV and

other fugacities are fixed); and (3) these two theories are equivalent, we deduce that the

Ω-deformed twisted T̃ [M ] is equivalent to the Ω-deformed twisted T̂ [M ] (figure 3).

This equivalence may be thought of as a mirror symmetry. The reason is that while the

twisted 5d MSYM theory reduced on M gives rise to a B-twisted Landau-Ginzburg model,

reduction of the twisted T [M ] on the S1 produces an A-twisted gauge theory, if T [M ] is real-

ized as gauge theory as in [1, 6]; in particular, it can flow to an A-twisted sigma model in the

infrared. This may be seen from the fact that a scalar in the vector multiplet of the 2d the-

ory comes from a component of the 3d gauge field, which is neutral under the R-symmetry

U(1)R used in the topological twist of the 3d theory. Since the scalar is charged under the

axial R-symmetry U(1)A, it follows that U(1)R becomes the vector R-symmetry U(1)V .

Specializing to the case Σ = D, we can place the correspondence between T [M ] and

analytically continued Chern-Simons theory (figure 2) and the one between T̃ [M ] and T̂ [M ]

(figure 3) in a single diagram (figure 4). The result is an intriguing triangle of correspon-

dences that connects analytically continued Chern-Simons theory, T̃ [M ] and T̂ [M ].

Using the relation between T̃ [M ] and analytically continued Chern-Simons theory, we

can extract information on the superpotential W̃ of T̃ [M ] as follows.

Integration cycles for the Chern-Simons theory are described by Morse theory, with

the real part of (i times) the Chern-Simons action ikSCS taken as the Morse function [14].

observation made in [11, 46] that the construction of T [M ] proposed in [6, 47] really captures only the

subsector of the full theory, obtained by truncation to the irreducible connections.
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analytically cont’d CS on M

Ω-def’d B-tw’d T̃ [M ] on D Ω-def’d A-tw’d T̂ [M ] on D

Figure 4. A triangle of correspondences.

To obtain a good integration cycle, one picks a middle-dimensional submanifold C̃ of Mflat,

and considers downward flow lines that start from some point on C̃; let CAflat
denote the

set of such lines starting from a flat connection Aflat. (If M has components of different

dimensions, C̃ is middle-dimensional in each component of fixed dimension.) Then, C =⋃
Aflat∈C̃

CAflat
represents a desired integration cycle: it is middle-dimensional in the moduli

spaceM of complex connections, and the path integral is convergent over it since Re(ikSCS)

decreases along the flow lines. Given an integration contour C constructed in this manner,

one can compute the partition function by performing the path integral first over CAflat
,

and then over all possible starting points Aflat. The first step defines a function f on C̃,
with which the partition function can be written as

Z =

∫

C̃

f dAflat, (4.1)

where dAflat is a holomorphic volume form on Mflat.

For the Chern-Simons theory obtained in our setup, the integration contour C is rep-

resented by the submanifold Γ/GC of M which determines the support of the brane in the

5d theory. This submanifold is Lagrangian, not only middle-dimensional. When C has this

property, C̃ is represented by a Lagrangian submanifold of Mflat. Then, C̃ naturally defines

the support of a brane for T̃ [M ] whose target space is Mflat, and the partition function of

T̃ [M ] on D in the presence of this brane is given by [27]

Z =

∫

C̃

dAflat exp

(
2πi

ε
W̃

)
. (4.2)

According to the correspondence we found above, this is to be identified with the partition

function (4.1) of the Chern-Simons theory. Comparing the two expressions, we see

f = exp

(
2πi

ε
W̃

)
. (4.3)

Hence, information on W̃ can be extracted by computing the partition function of the

Chern-Simons theory over appropriate integration cycles.
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