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aInstitute of Mathematics, Academy of Sciences of the Czech Republic,
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1 Introduction

Gravity in more than four spacetime dimensions has attracted a lot of interest in recent

years. In particular, several properties of higher dimensional black holes have been eluci-

dated (see, e.g., the reviews [1–3]). In addition to vacuum spacetimes, solutions of various

theories with gauge fields have also been investigated extensively (numerous references be-

ing given in [1–3]). The simplest such theory one can consider is probably n-dimensional

Einstein-Maxwell gravity in the presence of a single 2-form field Fµν . Among its solutions,

an analog of the Reissner-Nordström spacetime has been known for a long time [4], together

with its generalizations admitting an Einstein horizon [5] (in contrast, no n > 4 exact solu-

tion is known that would extend the Kerr-Newman metric, except in the vacuum limit [6],

or in other theories [1–3]). However, since extended objects naturally couple to higher-

rank forms, theories of gravity with p > 2 forms are also of interest, especially from the

standpoint of supergravity and string theory. A direct generalization of Einstein-Maxwell

gravity is thus the p-form theory defined by

S =
1

16π

∫

dnx
√
−g

(

R− 2Λ− κ0
p
F 2

)

, (1.1)

where F 2 = Fα1...αpF
α1...αp (and κ0 is a constant taking into account different possible nor-

malizations found in the literature, cf. also footnote 3), to which we shall restrict ourselves

in the paper.

Although the theory (1.1) is in some respects very similar to standard Einstein-Maxwell

gravity, the case p = 2 possesses some distinct features. For example, it has been shown

recently that asymptotically flat static black holes cannot couple to electric p-form fields

when (n+1)/2 ≤ p ≤ n−1 (and thus do not posses dipole hair) [7] and that, for any p > 2,

static perturbations of the vacuum Schwarzschild-Tangherlini metric do not exist [8, 9].

In addition, results of [10] indicate that electromagnetic radiation may have properties

different from those of standard n = 4, p = 2 electrovac general relativity (except possibly

for 2p = n), as confirmed in [11] in the case of test fields.
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A relatively simple and yet rich class of exact solutions in n = 4 general relativity is

given by the Robinson-Trautman family [12] (cf. the reviews [13, 14]), defined by the exis-

tence of a geodesic, shear-free, twist-free but expanding null vector field k. It includes static

black holes with an arbitrary cosmological constant, their accelerating counterpart (the C-

metric) and other spacetimes containing both gravitational and electromagnetic radiation,

as well as pure radiation solutions such as the Vaidya metric. Some of these solutions have

found useful applications also beyond general relativity, for example to describe 2+1 black

holes on a brane [15], or in the context of the AdS/CFT correspondence [16]. Electrovac

Robinson-Trautman spacetimes, in particular, have been investigated thoroughly in the

presence of a Maxwell field Fµν aligned with k (already starting in [12]) and can be of

Petrov type II, D and III (not N and O), while the Maxwell field can be both of type D

(“non-null”) and N (“null”), but it must be null if the Petrov type is III (see section 28.2

of [13] and section 19.6 of [14] for reviews and for a number of original references). Within

this class, solutions of Petrov type D with a null Maxwell field [12]1 are of special interest,

as they describe formation of black holes by gravitational collapse of purely electromagnetic

radiation [21] (see [22–24] for related earlier studies).

In [25] it was shown how the Robinson-Trautman line-element can be constructed in

arbitrary dimension n (see also [26–30] for additional results). In the context outlined

above, it is thus of interest to study Robinson-Trautman solutions of the theory (1.1) with

arbitrary n and p, which is the purpose of the present paper. We observe that the case

p = 2 has been already studied in detail in [27] (including a possible Chern-Simons term

in odd dimensions). Similarly as in the vacuum case [25], it turned out that the Robinson-

Trautman class is much more restricted when n > 4, and it essentially contains only static

black hole spacetimes of Weyl type D (plus a few special non-static solutions [25–28]).

However, the results of [10, 11] mentioned above suggest that it need not be so for the

theory (1.1). As we will work out, this expectation turns out to be correct. In more detail,

our results can be summarized as follows.

• In odd n dimensions, Robinson-Trautman spacetimes coupled to a p-form Maxwell

field with 2 ≤ p ≤ n − 2 reduce to static black holes specified by four independent

parameters related to mass, electric and magnetic field strengths, and cosmological

constant (section 4.1). These black holes have been already studied in [31], to which

we add a few comments. Except for the case p = 2 (p = n − 2) of [4], they cannot

be asymptotically flat (so there is no conflict with the results of [7–9]), but they can

be asymptotically locally (A)dS in some cases. The horizon is an Einstein space but

must also obey further constraints following from the field equations. The metric

is (4.1) with (4.2) and the Maxwell field is (4.3) (see the text for more details). Both

1It is interesting to observe that the “example” given in section 7 (ii) of [12] (eq. (28.43) of [13]) is in

fact (up to adding a cosmological constant) the unique [17] solution of the 4D Einstein-Maxwell equations

that is simultaneously both of Petrov type D and of Maxwell type N (in which case the Maxwell and Weyl

tensor necessarily share a multiple principal null direction by the Mariot-Robinson and the (generalized)

Goldberg-Sachs theorems [13], see also [18]) — cf. also [18–20] for various steps towards the complete

proof [17] of this statement.
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the Weyl and Maxwell tensors are of type D and share the same pair of doubly aligned

(geodesic) null directions.

• In even n dimensions (with 2 ≤ p ≤ n−2), static black holes as those described above

are also present (cf. also [31]) and, again, the horizon geometry is constrained by the

field equations (for example, for p = 2 it must be almost-Kähler if the magnetic field

is non-zero [27]). Moreover, in addition to static black holes, there are also some

exceptional solutions when 2p = n± 2 and n ≥ 6 (as first noticed in [27] for the case

n = 6, p = 2), cf. section 4.2 for details. Generically, these exceptional metrics are

non-static and of Weyl type II, while the Maxwell type is still D (but now possesses

also a non-geodesic aligned null direction).

• In even n dimensions, the unique rank p satisfying 2p = n (including, in particu-

lar, n = 4 with p = 2 [12–14]) gives rise to an additional (and more interesting)

new class of solutions (section 5), consisting of the metric (4.1) with (5.15) and the

Maxwell field (5.14). The Maxwell field is allowed to be of type II, D or N and

in all these cases it can have a radiative term (thus giving concrete examples to

the predictions of [10, 11]), while the Weyl tensor can be of type II or D (more

precisely, II(bd)/II(bcd) or D(bd)/D(bcd)) but with no radiative term for n > 4.

However, when the Maxwell type is N and n > 4 then the Weyl type can only be

D(bd)/D(bcd) (this is a significant difference w.r.t. the n = 4, p = 2 case, which

can be traced back to the absence of gravitational radiation in the vacuum higher

dimensional Robinson-Trautman class [25]). Similarly as in [21], some of these so-

lutions can be used to describe black hole formation (or white hole evaporation, by

time-reversal) by collapse (emission) of electromagnetic radiation. As in the static

case, these black holes can be asymptotically locally (A)dS for certain choices of the

parameters — again, the horizon is an Einstein space and can be flat, in particular.

For odd p, some of these solutions possess a self-dual p-form field, a property which

is of interest in supergravity and string theory [32].

• Both in odd and even dimensions, the rank p = 1 (or its dual p = n− 1) has special

features and needs to be studied separately (appendix C). This results again in a

family of static solutions of Weyl and Maxwell type D. In this case the transverse space

cannot be an Einstein space since it “feels” the backreaction of the electromagnetic

field (as opposed to the generic case 2 ≤ p ≤ n − 2), which also defines a preferred

direction here. Further, the transverse space cannot be a space with an everywhere

non-negative Ricci scalar. There exists no n = 4 counterpart of these solutions.

The rest of the paper is organized as follows. In section 2 we describe our assumptions

and set up the corresponding general form of the line-element (based on [25]) and of the

Maxwell field. Section 3 is devoted to a systematic integration of the resulting Einstein-

Maxwell equations — it can well be skipped by readers not interested in those technicalities.

Our results are summarized in section 4 for the generic case 2p 6= n, and in sections 5.2–5.4

for the special case 2p = n (section 5.1 contains integration of a subset of the Einstein-

Maxwell equations that are special when 2p = n). Appendix A, largely based on [25, 27,

– 3 –
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29, 30], summarizes certain general properties of Robinson-Trautman spacetimes useful in

the paper, but also contains a few new observations (sections A.3.1–A.3.4). Appendix B

discusses some geometrical properties of the transverse metric hij of (4.1) (in particular,

the black hole horizon) that follow from the Einstein equations (it partly overlaps with [27]

when p = 2 or p = n − 2, and also summarizes certain observations of [31]). Appendix C

studies the special ranks p = 1 and p = n− 1, also showing that these are forbidden in the

four dimensional Robinson-Trautman class.

Notation and conventions. Throughout the paper we focus on n > 4 dimensions, but

large part of the results applies also to the n = 4 case, on which we shall comment explicitly

when important differences arise. We consider a p-form field F = 1
p!Fα1...αpdx

α1∧ . . .∧dxαp

(with 1 ≤ p ≤ n− 1)2 that, in the theory (1.1), satisfies the source-free Maxwell equations

d∗F = 0, dF = 0 or, in components,

(
√
−g Fµα1...αp−1),µ = 0, F[α1...αp,µ] = 0. (1.2)

The Maxwell field F backreacts on the spacetime geometry via the energy-momentum

tensor

Tµν =
κ0
8π

(

Fµα1...αp−1Fν
α1...αp−1 − 1

2p
gµνF

2

)

, (1.3)

where F 2 = Fα1...αpF
α1...αp . Note that 8πT = κ0(2p− n)F 2/(2p). With (1.3), Einstein’s

equations with a cosmological constant Rµν− 1
2Rgµν+Λgµν = 8πTµν (following from (1.1))

take the form

Rµν =
2

n− 2
Λgµν + κ0

[

Fµα1...αp−1Fν
α1...αp−1 − p− 1

p(n− 2)
gµνF

2

]

. (1.4)

It may be useful to recall the well-known fact that for any solution of (1.2) and (1.4)

with a given p-form F , a “discrete” duality transformation F → ∗F gives rise to a dual

solution3 where the same metric is coupled to the (n− p)-form ∗F , defined by ∗Fb1...bn−p
≡

1
p!ǫ

a1...ap
b1...bn−p

Fa1...ap . In the special case 2p = n, (anti-)self-dual p-form solutions ∗F =

±F (for which necessarily F 2 = 0 = ∗F · F , where total contraction is understood) may

exist if p is odd (since F is real and the signature Lorentzian, see, e.g., [32]). Instead, for

2p = n with even p (anti-)self-dual p-forms do not exist — on the other hand, in that case

there is a continuous SO(2) duality symmetry (in addition to the discrete one mentioned

above) which maps solutions into solutions (cf., e.g., [34] and appendix A of [35]).

2The limiting value p = n could also be included but, as well-known (cf., e.g., [33]), this is trivial in the

sense that F is simply given by the spacetime volume element (up to a constant rescaling) and acts on the

geometry as an effective positive cosmological constant. Similarly, the dual case p = 0 reduces to a constant

scalar field.
3To be precise, in order for Tµν to be invariant under F → ∗

F , κ0 should be replaced by κ0/(p−1)! in (1.3)

and (1.4) (which also shows how the limiting case p = 0 can be formally incorporated in the discussion) —

this rescaling is not necessary in the case 2p = n. While bearing this in mind, for compactness throughout

the paper we will employ the simpler expressions (1.3) and (1.4).

– 4 –
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2 Robinson-Trautman geometry with aligned Maxwell fields

We consider a n-dimensional spacetime that admits a non-twisting, non-shearing, expand-

ing geodesic null vector field k. The associated Robinson-Trautman line-element was ob-

tained in adapted coordinates in [25]. The corresponding curvature has been fully computed

recently in [30], showing in particular that the spacetime is generically of aligned Weyl type

I(b).

It is the purpose of this paper to determine Robinson-Trautman spacetimes in the

presence of a Maxwell p-form field in the theory (1.1), i.e., such that the Einstein equa-

tions (1.4) are satisfied, along with the Maxwell equations (1.2). However, we shall restrict

to the case of Maxwell fields that are aligned with k (so that F is of type II or more

special).4 This means that the components of F of b.w. +1 vanish, which by (1.4) implies

that the Ricci tensor components of b.w. +2 and +1 must also vanish, i.e., the Ricci type is

II (or more special) aligned with k. With this condition, we can take advantage of previous

results of [25] (summarized in theorem 1 of appendix A) asserting that the spacetimes in

question can be represented by the line-element

ds2 = r2hij
(

dxi +W idu
) (

dxj +W jdu
)

−2 dudr − 2Hdu2,

hij = hij(u, x), W i = αi(u, x) + r1−nβi(u, x). (2.1)

Here the adapted coordinates (u, r, x1, . . . , xn−2) are used (Latin indices i, j, . . . or i1, i2, . . .

etc. range over 1, . . . , n − 2 and label the spatial coordinates xi, sometimes collectively

denoted simply as x) such that

k ≡ kµ∂µ = ∂r, kµdx
µ = −du, (2.2)

where r is an affine parameter along the generator k of the null hypersurfaces u = const.

In such coordinates, the assumed alignment condition on F takes the form

Fri1...ip−1 = 0, (2.3)

or, equivalently, F ui1...ip−1 = 0, while the alignment conditions on the Ricci tensor (au-

tomatically satisfied by (2.1)) read Rrr = 0 = Rri. By construction, the corresponding

components of the Einstein equation (1.4) are thus identically satisfied (note also that (2.3)

implies Trr = 0 = Tri, cf. (1.3)).

In the rest of the paper we thus need to study only the remaining Einstein equations for

Rij , Rur, Rui and Ruu. These will contain terms depending on the Maxwell field. Hence,

in order to proceed it will be convenient to first fix the r-dependence of F using Maxwell’s

equations (1.2).

For later calculations it is also useful to note that
√
−g = rn−2

√
h, (2.4)

where g ≡ det gµν and h(u, x) ≡ dethij .

4We refer to the boost weight (b.w.) classification of a general tensor [36] — cf., e.g., [37–40] for further

results in the particular case of 2-forms. Let us observe that since k is shearfree and expanding here, a result

of [10] implies that F cannot be doubly aligned with it (i.e., it cannot be of type N), except possibly when

2p = n in even dimensions. We will prove that type N fields do indeed exist in that special case (section 5).
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3 Integration of the Einstein-Maxwell field equations

3.1 Maxwell equations, step one

With (2.3), the “geometrical” equations F[α1...αp,µ] = 0 give

Fi1...ip,r = 0, (3.1)

F[i1...ip,j] = 0, (3.2)

Fuji1...ip−2,r = (p− 1)Fur[i1...ip−2,j], (3.3)

Fji1...ip−1,u = pFu[i1...ip−1,j]. (3.4)

Using relation (2.4), the “dynamical” equations (
√−g Fµuri1...ip−3),µ = 0 (not present for

p ≤ 2) and (
√−g Fµui1...ip−2),µ = 0 (not present for p ≤ 1) read, respectively,

(
√
hF urji1...ip−3),j = 0, (rn−2 F uri1...ip−2),r = 0. (3.5)

As it turns out, the remaining equations (
√−g Fµi1...ip−1),µ = 0 and (

√−g Fµri1...ip−2),µ = 0

become significantly simpler once some of the Einstein equations are enforced, and it is

thus convenient to postpone their discussion to section 3.3.

The r-dependence of the Maxwell field is thus completely determined by (3.1), the

second of (3.5) and (3.3), and can be summarized as

Fi1...ip = bi1...ip , (3.6)

Furi1...ip−2 = r2p−2−n ei1...ip−2 , (3.7)

Fuji1...ip−2 = r2p−1−n p− 1

2p− 1− n
e[i1...ip−2,j] + fji1...ip−2 (2p 6= n+ 1), (3.8)

where lowercase symbols b, e or f denote integration functions independent of r. Since we

are restricting to 1 ≤ p ≤ n − 1, bi1...ip = b[i1...ip] can be non-zero only for 1 ≤ p ≤ n − 2,

and ei1...ip−2 = e[i1...ip−2] for 2 ≤ p ≤ n − 1 (for p = 2 the term ei1...ip−2 obviously reduces

to a scalar function e). From now on we will use the convention that indices of b, e and f

are raised with the spatial metric hij so that, e.g.,

bi1...ip = hi1j1 . . . hipjp bj1...jp , ei1...ip−2 = hi1j1 . . . hip−2jp−2 ej1...jp−2 ,

f i1...ip−1 = hi1j1 . . . hip−1jp−1 fj1...jp−1 . (3.9)

In the special case with 2p = n+ 1 (n ≥ 5 odd, p ≥ 3), eq. (3.8) is replaced by5

Fuji1...ip−2 =
n− 1

2
e[i1...ip−2,j] ln r + fji1...ip−2 (2p = n+ 1). (3.10)

(However, we will see in section 3.3 that the above logarithmic term must in fact vanish.)

From (3.6) we observe, in particular, that the magnetic components Fi1...ip are always r-

independent, whereas the electric components Furi1...ip−2 become r-independent only in the

special case 2p = 2 + n (n even).

5Obviously, for dimensional reasons we should write ln(r/r0) instead of ln r, where r0 is an r-independent

coefficient with the dimension of length. However, r0 can be absorbed in the following term fji1...ip−2
and

thus for brevity we will omit it. Similar comments apply to further logarithmic terms that will appear in

other expressions in the following, and will not be repeated there.

– 6 –
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Using (3.7) and (3.6), the first of (3.5) and (3.2) can be rewritten simply as

(
√
h eji1...ip−3),j = 0 (p ≥ 3), b[i1...ip,j] = 0. (3.11)

For later purposes, it will be useful to define the following r-independent quantities

built out of the electric and magnetic parts of the Maxwell field (which will enter some of

the Einstein equations)

E2
ij ≡ eik1...kp−3 e

k1...kp−3

j , E2 ≡ hij E2
ij (p ≥ 3), (3.12)

B2
ij ≡ bik1...kp−1 b

k1...kp−1

j , B2 ≡ hij B2
ij (p ≤ n− 2). (3.13)

Clearly E2
ij = E2

(ij) and B2
ij = B2

(ij). In the case p = 2 the indices i, j disappear from ei1...ip−2

and E2
ij and we simply have E = e, while B2

ij is identically zero for p > n − 2. Obviously

E2 = 0 ⇔ ei1...ip−2 = 0 and B2 = 0 ⇔ bi1...ip = 0 since hij is positive definite.

In particular, the invariant F 2 (useful in the following) can be written as

F 2 = −r2(p−n)p(p− 1)E2 + r−2pB2. (3.14)

3.2 Einstein equations for Rij and Rur

Knowing the r-dependence of the Maxwell field, we can now consider the remaining Einstein

equations. It is convenient to start from the equations for the Ricci components Rij and Rur

(those of the highest remaining b.w., namely zero). From (1.4) with (2.1), (3.6), (3.7), (3.14)

(using the definitions (3.12), (3.13)), these read

Rij =
2

n− 2
Λr2hij + κ0

{

r2(p+1−n)(p− 1)

[

−(p− 2)E2
ij +

p− 1

n− 2
E2hij

]

+ r2(1−p)

[

B2
ij −

p− 1

p(n− 2)
B2hij

]}

, (3.15)

−Rur =
2

n− 2
Λ− κ0

p− 1

n− 2

[

r2(p−n)E2(n− p− 1) + r−2pB2p−1
]

. (3.16)

The component Rij of the metric (2.1) is reproduced in appendix A as eq. (A.4).

Comparing this with (3.15) immediately reveals that βi = 0 (this follows by comparing

various powers of r in (3.15) and (A.4), which implies that βiβj is either zero or proportional

to hij — the latter option is however impossible, cf. also [25]).6 One can further perform a

coordinate transformation (at least locally) to set αi = 0 [25]. From now on we shall thus

have in (2.1)

W i = 0, (3.17)

and therefore gri = 0 = gui, which will simplify several expressions. In particular, the Weyl

type will thus be II(d) or more special, aligned with k (cf. theorem 1).

6One might think that the (dual) cases p = 1 and p = n − 1 escape this conclusion since the r2(2−n)

term of (A.4) falls off in those cases as the term r2(p+1−n) or r2(1−p) of (3.15), respectively. However, for

p = 1 [p = n − 1] the r2(p+1−n) [r2(1−p)] term of (3.15) vanishes identically, cf. (3.12) and (3.13), so that

the conclusion βi = 0 remains true.
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Using (3.17), the component (A.4) now simplifies drastically (cf. (A.5)). By comparing

its various powers of r with those of (3.15), after r-integration (and contraction with hij

when necessary) one readily determines the r-dependence of the metric function H

2H =
R

(n− 2)(n− 3)
+
2(ln

√
h),u

n− 2
r − 2Λ

(n− 1)(n− 2)
r2 − µ

rn−3

+
κ0

n− 2

[

p− 1

n+ 1− 2p

E2

r2(n−p−1)
− 1

p(n− 1− 2p)

B2

r2(p−1)

]

(2p 6= n± 1), (3.18)

where µ is an arbitrary integration function independent of r, and R is the Ricci scalar

associated with the spatial metric hij .

In the special odd dimensional cases 2p = n± 1 the last two terms of (3.18) should be

replaced, respectively, by

+
κ0

n− 2

[

−n− 1

2
E2 ln r

rn−3
+

1

n+ 1

B2

rn−1

]

(2p = n+ 1), (3.19)

+
κ0

n− 2

[

n− 3

4

E2

rn−1
− 2

n− 1
B2 ln r

rn−3

]

(2p = n− 1). (3.20)

In addition, as a further consequence of the Einstein equation for Rij , the following

constraints (coming from terms of order r0, r, r2(p+1−n) and r2(1−p), respectively) must be

satisfied (also when 2p = n± 1)

Rij =
R

n− 2
hij (p 6= 1, n− 1), (3.21)

hij,u =
2(ln

√
h),u

n− 2
hij , (3.22)

E2
ij =

E2

n− 2
hij (3 ≤ p ≤ n− 2, 2p 6= n), (3.23)

B2
ij =

B2

n− 2
hij (2 ≤p ≤ n− 2, 2p 6= n), (3.24)

where Rij is the Ricci tensor associated with hij (so that R = hijRij), and the general

identity hijhij,u = 2(ln
√
h),u has been used. For p = 2 eq. (3.23) becomes an identity. For

2p = n eqs. (3.23) and (3.24) are replaced by the following single equation

1

4
(n− 2)(n− 4)

(

E2
ij −

E2

n− 2
hij

)

= B2
ij −

B2

n− 2
hij (2p = n). (3.25)

eq. (3.25) is satisfied identically in the case n = 4, p = 2. Note that (3.23), (3.24) and (3.25)

imply with (3.15) that in all cases Rij ∝ hij (as can also be seen from (A.5) with (3.21)).

As indicated above, equations (3.21), (3.23) and (3.24) do not hold in the limiting

dual cases p = 1 (or p = n − 1) — these are special since the B2
ij (or E2

ij) terms behave

as r0 in (3.15), (3.16) (and therefore in (3.18)), and thus effectively act as sources for the

transverse geometry. Since further differences will also arise in the remaining Einstein

equations, we present all the results for p = 1, n − 1 in appendix C and from now on we

assume p 6= 1, n− 1.
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As in [25], relation (3.21) means that, at any given u = u0 =const, the spatial metric

hij(x, u0) must describe a (n−2)-dimensional Riemannian Einstein space. It is well-known

(see, e.g., p.76 of [41]) that for n > 4 (i.e., n−2 > 2) this implies thatR,i = 0, so thatR can

depend only on the coordinate u (additionally, for n = 5 the metric hij must be of constant

curvature since it is 3-dimensional and Einstein). For n = 4 eq. (3.21) is instead an identity.

Equation (3.22) gives [25]

hij = h1/(n−2) γij(x) where det γij = 1, (3.26)

so that hij can depend on u only via the conformal factor h1/(n−2).

Eqs. (3.23) and (3.24) (or (3.25)) constrain both the Maxwell field and the metric hij ,

and the permitted relation between p and n — some comments are given in appendix B

(see also [31], and [27] for the case p = 2).

The component Rur of the metric (2.1) with (3.17) is reproduced in appendix A as

eq. (A.6). Substituting (3.18) into (A.6) and comparing with (3.16), one finds that the

corresponding Einstein equation is satisfied identically (including the cases 2p = n ± 1).

We finally observe that (3.21) (with (3.17)) further restricts the Weyl tensor to be of type

II(bd), aligned with k (see theorem 1).

3.3 Maxwell equations, step two (2p 6= n)

We can now turn to the remaining set of the Maxwell equations, namely

(
√−g Fµi1...ip−1),µ = 0 and (

√−g Fµri1...ip−2),µ = 0, which were not considered in sec-

tion 3.1. As it turns out, from now on it will be necessary to consider the case 2p = n

separately. Hereafter we thus restrict to the “generic” case 2p 6= n, while the corresponding

analysis for the special case 2p = n will be given later on in section 5.

Using (3.6), (3.8), and (3.17), (
√−g Fµi1...ip−1),µ = 0 contains three different powers

of r, i.e., rn−2p−2, rn−2p−1, r−2, generically leading, respectively, to

(
√
h bji1...ip−1),j = 0, fj1...jp−1 = 0, e[j2...jp−1,j1] = 0. (3.27)

Note that the last two equations mean (see (3.8))

Fuj1...jp−1 = 0. (3.28)

With (2.3) this implies that F is aligned also with the null vector l = −∂u +H∂r (and is

thus of type D), and will be important in the following (as a consequence, F cannot be of

type N, as found in [10]). Eq. (3.4) thus becomes

bi1...ip,u = 0. (3.29)

Next, from (
√−g Fµri1...ip−2),µ = 0 one gets (using (3.28))

(
√
h ei1...ip−2),u = 0, (3.30)

which with (3.26) simply gives

ei1...ip−2 = h
2p−n−2
2(n−2) ẽi1...ip−2(x). (3.31)
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Note that the above results apply also in the 2p = n+1 case (3.10) with a logarithmic

term, which thus in fact vanishes. For later purposes it is useful to observe that (3.31)

and (3.29) imply, respectively (recall (3.12) and (3.13)), E2
ij = h(p−n+1)/(n−2)Ẽ2

ij(x) and

B2
ij = h(1−p)/(n−2)B̃2

ij(x) (of course Ẽ2
ij (or B̃2

ij) can be expressed in terms of ẽi1...ip−2 (or

b̃i1...ip) and γij(x), if desired), and thus E2 = h(p−n)/(n−2)Ẽ2(x), B2 = h−p/(n−2)B̃2(x).

These in turn imply

(n− 2)(E2),u = −2(n− p)E2(ln
√
h),u, (n− 2)(B2),u = −2pB2(ln

√
h),u. (3.32)

which will be useful later on.

We observe that above we have not employed eqs. (3.21)–(3.24), so that the results of

the present section 3.3 apply also to the cases p = 1, n− 1.

3.4 Einstein equation for Rui (2p 6= n; p 6= 1, n − 1)

As remarked above, we now consider 2p 6= n. Recalling (3.17) we have gui = 0 = gri.

Using (2.3) and (3.28), we also obtain Fuα1...αp−1Fi
α1...αp−1 = 0 (and thus Tui = 0). The

corresponding Einstein equation (1.4) thus simplifies considerably to

Rui = 0, (3.33)

where the explicit Ricci component is given by (A.7). Employing (3.18) shows that this

equation contains distinct powers of r, namely r0, r−1, r2−n, r2p−2n+1, r1−2p. The term of

order r0 vanishes identically thanks to (3.22), while the remaining terms immediately give,

respectively, the following conditions

(n− 4)R,i = 0 (p 6= 1, n− 1), (3.34)

µ,i = 0, (3.35)

(2p− n− 2)(E2),i = 0 (p ≥ 2), (3.36)

(2p− n+ 2)(B2),i = 0. (3.37)

eq. (3.34) is an identity due to (3.21) (as mentioned in section 3.2). One arrives at (3.34)–

(3.37) also for 2p = n± 1 after replacing (3.18) by the corresponding form of H containing

the logarithmic terms (eqs. (3.19), (3.20)). Thus, generically, the Ricci curvature R of the

transverse (n− 2)-dimensional Riemannian space, the “mass” parameter µ, the electric

scalar E2 and the magnetic scalar B2 must all be independent of the spatial coordinates.

However, E2 and B2 can depend on x in the special cases 2p = n+ 2 and 2p = n− 2,

respectively (n necessarily even) — this will have some consequences in section 3.5. The

case n = 4 is also special in that R can depend on the coordinates x — however, since the

case n = 4, p = 2 is already well-known [12–14], only the cases n = 4, p = 1, 3 remain to

be studied. These are precisely the ones dealt with in appendix C, so that from now on we

can restrict in the main text to n > 4 with no loss of generality.
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3.5 Einstein equation for Ruu (2p 6= n; p 6= 1, n − 1; n > 4)

3.5.1 Case 2p 6= n, n ± 1, n ± 2

Using guu = −2H, in view of (3.28) we obtain Fuα1...αp−1Fu
α1...αp−1 = 2H(p− 1) r2(p−n)E2.

With (3.14), the last Einstein equation (1.4) can thus be written in the simple form

Ruu = 2HRur, where Rur is the “on-shell” Ricci component (3.16). Using (A.8) this means

−r2(r−2H),r(ln
√
h),u+(n−2)r−1H,u+r−2△H−(ln

√
h),uu−

1

4
hilhjk hij,uhkl,u = 0, (3.38)

where △ is the Laplace operator associated with hij (cf. appendix A.2). Substituting (3.18)

one easily sees that (for 2p 6= n± 1, n± 2) this equation contains terms proportional to r0,

r−1, r2−n, r2p−2n+1, r1−2p. Terms of order r0 and r−1 do not contain the Maxwell field

and, as shown in the vacuum case [25], vanish identically after using (3.22) and certain

identities (see also the appendix of [29]). Terms of order r2p−2n+1 and r1−2p vanish thanks

to (3.32). The only surviving r2−n term fixes the u-dependence of µ(u) (as in vacuum)

(n− 2)µ,u = −(n− 1)µ(ln
√
h),u (2p 6= n± 2, n± 1, n > 4). (3.39)

As in [27], taking the ∂i derivative of (3.39) (with (3.35)) and of (3.32) (with (3.36)

and (3.37)) gives immediately that (ln
√
h),ui = 0 (unless µ = E2 = B2 = 0, which yields

F = 0 and thus a vacuum spacetime [25]). This means h(u, x) = U(u)X(x), but one can

set U(u) = 1 by rescaling the coordinates u and r (which preserves the line element, see

section 4 of [25] and section 4.1 of [27] for details). Hence, without loss of generality, from

now on we can restrict to the case h,u = 0. With (3.39), (3.35), (3.34), (3.32), (3.36), (3.37)

this implies

hij = hij(x), R = const, µ = const, E2 = const, B2 = const (n > 4),

(3.40)

so that H is a function of r only (cf. (3.18)) and (3.39) is satisfied identically. Up to a

further (constant) coordinate rescaling, one can fix the normalization of R such that R =

0,±(n− 2)(n− 3) [25, 27]. We also observe that (3.31) now implies ei1...ip−2 = ei1...ip−2(x).

3.5.2 Case 2p = n ± 1

For 2p = n ± 1 (n odd) there are additional terms of order r2−n in (3.38) (due to the

logarithmic terms in H, cf. (3.19), (3.20)) and (3.39) is replaced by

µ,u = −n− 1

n− 2
(ln

√
h),u

[

µ− κ0
2(n− 2)

E2

]

(2p = n+ 1), (3.41)

µ,u = −n− 1

n− 2
(ln

√
h),u

[

µ− 2κ0
(n− 1)2(n− 2)

B2

]

(2p = n− 1). (3.42)

However, here we still have (E2),i = 0 = (B2),i (cf. (3.36), (3.37)), so that as in

section 3.5.1 we can choose coordinates such that (3.40) holds (so that (3.41) and (3.42)

are identically satisfied). In the end, the only difference in this case is thus the presence of

the logarithmic terms in H.
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3.5.3 Case 2p = n ± 2

Also for 2p = n ± 2 (n even) there are additional terms of order r2−n in (3.38) (now due

to (3.36), (3.37)) so that instead of (3.39) we obtain

µ,u = −n− 1

n− 2
µ(ln

√
h),u−

κ0n

(n− 2)2
△(E2) (n ≥ 6, 2p = n+ 2), (3.43)

µ,u = −n− 1

n− 2
µ(ln

√
h),u−

2κ0
(n− 2)3

△(B2) (n ≥ 6, 2p = n− 2). (3.44)

Recall that in the above two cases we generically have (eqs. (3.36) and (3.37)) (B2),i =

0 6= (E2),i (for 2p = n + 2) and (E2),i = 0 6= (B2),i (for 2p = n − 2). The argument of

section 3.5.1 leading to h(u, x) = U(u)X(x) (and then to hij = hij(x)) will thus still work

in both cases provided B2 6= 0 (for 2p = n + 2) or E2 6= 0 (for 2p = n − 2). When these

conditions are met, in suitable coordinates we thus arrive at (cf. a more detailed discussion

in section 4.3 of [27] for the particular case n = 6, p = 2)

hij = hij(x), R = const, µ,u = − κ0n

(n− 2)2
△(E2), B2 = const 6= 0 (2p = n+ 2),(3.45)

hij = hij(x), R = const, E2 = const 6= 0, µ,u = − 2κ0

(n− 2)3
△(B2) (2p = n− 2).(3.46)

In both cases we have µ,i = 0 and (E2),u = 0 = (B2),u (see (3.32)), so that ∂u is a Killing

vector (twisting iff H,i 6= 0). With the above equations this implies that µ,u and △(E2) (re-

spectively, △(B2)) are both constants. If the transverse space with metric hij is assumed to

be compact (as for black hole spacetimes), then it follows (see, e.g., [42–44]) that E2 (respec-

tively, B2) and thus µ are constant, and we thus again arrive at (3.40) (and thusH = H(r)).

However, in the special case 2p = n + 2 with B2 = 0( 6= E2) (or 2p = n − 2 with

E2 = 0( 6= B2)) one cannot in general conclude that h(u, x) = U(u)X(x), and one has

to consider the general equations (3.43), (3.44). If h(u, x) is indeed non-factorized, then

this metric describes an Einstein space that admits a conformal (non-homothetic) map on

Einstein spaces [26, 27] and it is thus further constrained [45] (in particular, it must be

of constant curvature when n = 6 and p = 4 or p = 2 in the electric and magnetic case,

respectively [27]). One can still normalize R = 0,±(n− 2)(n− 3).

4 Summary for the generic case 2p 6= n (n > 4): static black holes

4.1 Case 2p 6= n ± 2: static black holes

4.1.1 Metric and Maxwell field

Keeping in mind also the concluding observations of section 3.5.1, the line-element is given

by (cf. (2.1) with (3.17))

ds2 = r2hijdx
idxj−2 dudr − 2Hdu2, (4.1)
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where hij = hij(x) is the metric of a Riemannian Einstein space of dimension (n− 2) and

scalar curvature R = K(n− 2)(n− 3), and ((3.18) with (3.40))

2H = K − 2Λ

(n− 1)(n− 2)
r2 − µ

rn−3

+
κ0

n− 2

[

p− 1

n+ 1− 2p

E2

r2(n−p−1)
− 1

p(n− 1− 2p)

B2

r2(p−1)

]

(2p 6= n± 1), (4.2)

where Λ, µ, E2, B2 and K = 0,±1 are all constants. The metric thus always admits the

Killing vector field ∂u, and it is static in regions where H > 0, while roots of H(r) define

Killing horizons (see also [31]). Recall that when 2p = n ± 1 (n odd), the second line

of (4.2) should be replaced by (3.19) and (3.20), respectively.7

The “Coulombian” Maxwell field is given by (eqs. (2.3), (3.6), (3.7) and (3.28))

F =
1

(p− 2)!

1

rn+2−2p
ei1...ip−2(x) du∧ dr ∧ dxi1 ∧ . . .∧ dxip−2 +

1

p!
bi1...ip(x) dx

i1 ∧ . . .∧ dxip ,

(4.3)

where ei1...ip−2 and bi1...ip are harmonic forms (of respective rank (p − 2) and p) in the

transverse geometry hij , i.e., they obey the Euclidean source-free Maxwell equations in

(n− 2) dimensions (cf. (3.11) and the first and third of (3.27)). These forms are, however,

further constrained by the conditions (3.23), (3.24) on the (constant) “square” of the field

strengths, i.e.,

E2
ij =

E2

n− 2
hij (p ≥ 3), B2

ij =
B2

n− 2
hij (p ≤ n− 2). (4.4)

It is worth emphasizing again that conditions (4.4) do not only constrain the Maxwell field,

but also impose severe restrictions on the Einstein metric hij . For instance, when p = 2 it

must also be almost-Kähler if B2 6= 0 and n must be even [27]. See [31] and appendix B

for further comments.

The above solutions can be seen as an extension to arbitrary p of the p = 2 (n 6=
6) solutions studied in [27] (including, when B2 = 0, the higher-dimensional Reissner-

Nordström solution found by Tangherlini [4]) and possess similar qualitative features. In

particular, they represent static black holes (at least for certain values of the parameters

in (4.2)) dressed with electric and magnetic Maxwell fields. These solutions were previously

obtained (starting from a static ansatz) and analyzed (including their thermodynamics)

in [31], so that a detailed discussion is not necessary here. Recalling that in an (n − 2)-

dimensional compact Riemannian space of positive constant curvature there exist no non-

zero harmonic forms (except for a 0-form or a (n − 2)-form) [42, 43], we observe that the

metric hij in (4.1) cannot describe a round sphere, except when p = 2 and bi1i2 = 0 or,

dually, when p = n − 2 and ei1...in−4 = 0. Therefore, these static black holes cannot have

a spherical horizon and cannot be asymptotically flat (in agreement with [7–9]), except in

7However, it can be seen that for n = 5, p = 3 and n = 7, p = 4 necessarily E2 = 0, and for n = 5, p = 2

and n = 7, p = 3 necessarily B2 = 0 (see appendix B) so that the logarithmic terms in (3.19) and (3.20)

disappear in those cases. Therefore, effectively, logarithmic terms in both (3.19) and (3.20) can possibly

arise only for an odd n ≥ 9.
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the electric p = 2 (or magnetic p = n − 2) Reissner-Nordström solution of [4]. A flat and

compact horizon metric hij is instead permitted (giving K = 0 in (4.2)), in which case the

harmonic forms ei1...ip−2 and bi1...ip must be covariantly constant [42, 43]. This allows for,

e.g., asymptotically locally (A)dS black holes (see also [31]).

Similarly as for the case p = 2 [27], an additional “Vaidya-type” matter field represent-

ing pure radiation aligned with k (i.e., adding an extra term to the component Tuu only)

can easily be included by appropriately [27] modifying (3.39) and thus allowing for µ,u 6= 0

(see also a comment at the end of section 6 of [31]) — in the special case 2p = n this pure

radiation can be sourced by the Maxwell field itself, as we show below in section 5.

4.1.2 Weyl and Maxwell types

As discussed in [27], the warped product structure of the metric (4.1) with H = H(r)

implies [28, 40] (see also [46] for a compact summary of these results) that the corresponding

Weyl type is D(bd) and that

k = ∂r, l = −∂u +H∂r (4.5)

are the (unique) double WANDs (no other WANDs — not even single ones — exist since the

type is D(bd), cf. appendix A.3, in particular footnote 15; l also defines a second Robinson-

Trautman null direction, as follows by “time-reflection” symmetry [27, 28]). Since the type

is D(bd), all the Weyl components are uniquely determined from (eqs. (A.12)–(A.14) of

appendix (A) with (4.2))

Φ = −(n− 2)(n− 3)
µ

2rn−1
+ κ0

n− 3

(n− 1)(n− 2)

×
[

(n− p)(2n− 2p− 1)(p− 1)

n+ 1− 2p

E2

r2(n−p)
− 2p− 1

n− 1− 2p

B2

r2p

]

(2p 6= n± 1),

Φ̃îĵk̂l̂ = r−2Cīj̄k̄l̄, (4.6)

where Cīj̄k̄l̄ are the components of the Weyl tensor associated with hij in a frame of hij , and

the notation of [10, 46] is employed (with a hat denoting components in a frame of the full

spacetime metric gµν , cf. appendix A.3). Since hij must be Einstein, Cīj̄k̄l̄ = 0 iff hij is of

constant curvature (which is necessarily the case when n = 5), in which case the Weyl type

becomes D(bcd). The scalar invariant CµνρσC
µνρσ = 4Φ2(n−1)/(n−3)+ r−4Cīj̄k̄l̄Cīj̄k̄l̄ (cf.

eqs. (69) and (70) of [47]) also signals a curvature singularity at r = 0. When 2p = n± 1,

the equation replacing (4.6) can be obtained by recalling (3.19), (3.20) and using (A.12).

k and l are manifestly also aligned null directions of the Maxwell field (4.3) (k is such

by construction, recall (2.3), and l then due to (3.28)), which is thus also of type D. It

follows that also the Ricci tensor is of (aligned) type D (as can be explicitly verified thanks

to Rui = 0 and Ruu = 2HRur, cf. sections 3.4 and 3.5.1) — apart from (4.5), no other Ricci

aligned null directions exist, not even single ones, as can be seen recalling that Rij ∝ hij .

One can easily see that in a frame parallelly transported along k (and adapted to (4.5),

see appendix A.3) the electric and magnetic components of (4.3) fall off, respectively, with

the monopole rate 1/rn−p and 1/rp (as one could expect from a study of test fields [11]).
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Examples with p = 2 (or, dually, p = n − 2) are given, e.g., in [4, 27]. Several

other examples have been constructed in [31]. Using a construction described in [31] (see

appendix B for a brief summary) one can produce more solutions, as we now exemplify.

Example (n = 11, p = 3(8)). A magnetic solution with n = 11, p = 3 (or electric

with p = 8 after dualization) and a direct product transverse space is given by

hij = h
(1)
ij + h

(2)
ij + h

(3)
ij , 2H = K − Λ

45
r2 − µ

r8
− κ0

108

B2

r4
,

F123 = F456 = F789 =
B

3
√
2
, (4.7)

where h
(1)
ij , h

(2)
ij and h

(3)
ij are the metrics of three 3-dimensional spaces of constant curvature

parameterized, respectively, by the coordinates (x1, x2, x3), (x4, x5, x6) and (x7, x8, x9), and

all of them having (constant) sectional curvature 4K (with K = 0,±1). For a suitable

choice of the parameters this represents magnetic static black holes with a direct product

horizon. (Of course this solution can be dualized to an electric form with p = 8.)

4.2 Exceptional case 2p = n ± 2 (n ≥ 6, even)

These special ranks of F also fall into the discussion of section 4.1 if the additional as-

sumptions (E2),i = 0 (for 2p = n + 2) or (B2),i = 0 (for 2p = n − 2) are made (or if the

transverse space is assumed to be compact and the electric and magnetic fields are both

non-zero, cf. section 3.5.3), in which case they again describe static black holes, as in the

n = 6, p = 2 (or p = 4 after dualization) example given by eq. (66) of [27] (with D = 6),

or as in the following example.

Example (n = 8, p = 5(3)). A solution describing an electric field with n = 8, p = 5

(or a magnetic field with p = 3 after dualization) is

hij = δij , 2H = − Λ

21
r2 − µ

r5
− κ0

3r4
2E2,

Fur123 = Fur456 =
E

2
√
3
. (4.8)

Note that here the electric field is r-independent since 2p = 2 + n (first term of (4.3)).

These are locally AdS (for Λ < 0) electric static black holes with a flat horizon.

However, more general solutions are now permitted for 2p = n + 2 with B2 = 0,

E2 = E2(u, x) or for 2p = n−2 with E2 = 0, B2 = B2(u, x) (or for a non-compact transverse

space). The line-element is again given by (4.1), but H, given by (3.18), can generically

depend on all coordinates (and the metric is thus non-static, in general). The Einstein

metric hij = hij(u, x) is generically non-factorized, and thus further constrained by the

property of admitting conformal maps on Einstein spaces [45]. The Maxwell field is still

given by (4.3) and satisfies the source-free Maxwell equations in the transverse geometry

hij , but E2 (or B2) can now depend on x and u (eqs. (3.32)); the form ei1...ip−2 (or bi1...ip)

is still u-independent (eq. (3.31) with n = 2p+2, and (3.29)). The remaining equations to

be satisfied are (3.43), (3.44) (see section 3.5.3 for more comments). Because (4.3) holds
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also here, the Maxwell and Ricci tensors obviously possess the same algebraic properties

as discussed in section 4.1 and are thus still of type D, doubly aligned with both null

vectors (4.5). The Weyl type is generically II(bd) (see section 3.2 and appendix (A.3)) and

the Weyl components of b.w. 0 (where Φ is necessarily non-zero) are still given by (4.6).

We observe that H,i 6= 0 implies that the vector l is non-geodesic (appendix A.3) and

not a multiple WAND, as can be seen using the results of appendix A.3.3 with (3.18)

and (3.43), (3.44) (and vice versa, i.e., if H,i = 0 then l is a geodesic multiple WAND, as

observed in section 4.1.2 for the case 2p 6= n± 2).

It should also be observed that the ranks 2p = n±2 are special (even in the subcase of

static metrics) because contributions from the electric and magnetic terms to the energy-

momentum components Tij cancel out (thanks to (3.23), (3.24)) for 2p = n + 2 and for

2p = n − 2, respectively. Related to this, for even p there can exist forms ei1...ip−2 (for

2p = n+ 2) or bi1...ip (for 2p = n− 2) that are self-dual in the transverse geometry hij , cf.

also appendix B.

5 Special case 2p = n (n even): black holes with electromagnetic radia-

tion

As we observed, the rank satisfying 2p = n has special properties and needs to be studied

separately. This is not so surprising since this is the unique rank for which the Maxwell

equations are conformally invariant and admit self-dual solutions (for odd p) or a continuous

duality symmetry (for even p), cf., e.g., [32, 34, 35, 48].

The results of sections 3.1 and 3.2 are still valid also in the case 2p = n (but re-

call (3.25)). Instead, in sections 3.3, 3.4 and 3.5.1 we assumed 2p 6= n and those results

are modified as follows.

5.1 Remaining field equations for the case 2p = n

5.1.1 Maxwell equations, step two

Certain terms in the Maxwell equations studied in section 3.3 combine since they have the

same r-dependence, and the equations of section 3.3 are thus replaced by8

(
√
h bkj1...jp−1),k =

1

2
(n− 2)

√
hhi1j1 . . . hip−1jp−1e[i2...ip−1,i1], (5.1)

bi1...ip,u =
n

2
f[i2...ip,i1], (5.2)

(
√
h ei1...ip−2),u = (

√
h fki1...ip−2),k. (5.3)

One also obtains an additional equation (
√
hhklhi1j1 . . . hip−2jp−2e[i1...ip−2,k]),l = 0

(⇔ ⋆ d ⋆ de = 0), which is however identically satisfied by virtue of (5.1) and the

antisymmetry of bi1...ip .

8For later purposes it may be useful to observe that in an index-free notation the first of these equations

reads ⋆ d⋆b = −de, where ⋆ is the Hodge dual in the transverse space of hij (not to be confused with the

n-dimensional Hodge dual ∗ in the full spacetime geometry gµν , defined in section 1).
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Note that the r.h.s. of (5.1) acts as a “current” for the p-form bi1...ip so that bi1...ip and

e[i2...ip−1,i1] no longer satisfy the Euclidean source-free Maxwell equations in the transverse

space. A fundamental difference from the generic case 2p 6= n is that now the components

Fui1...ip−1 (eq. (3.8)) can be non-zero. Instead of (3.32) we now obtain from (5.3) and (5.2)

(with (3.26))

(n− 2)(E2),u = −nE2(ln
√
h),u+(n− 2)

2√
h
ei1...ip−2(

√
h fki1...ip−2),k, (5.4)

(n− 2)(B2),u = −nB2(ln
√
h),u + n(n− 2)bi1i2...ipf[i2...ip,i1]. (5.5)

5.1.2 Einstein equation for Rui

Since in general Fui1...ip−1 6= 0, also Fuα1...αp−1Fi
α1...αp−1 6= 0 and the Einstein equation (1.4)

for Rui thus becomes

Rui =
κ0
4

[

−(n− 2) δ k
i ej1...jp−2 − 2b

kj1...jp−2

i

] [

r1−n(n− 2)e[j1...jp−2,k] − 2r2−nfkj1...jp−2

]

.

(5.6)

Instead of (3.35)–(3.37) this now gives

µ,i = κ0

[

(n− 2) δ k
i ej1...jp−2+2b

kj1...jp−2

i

]

fkj1...jp−2 , (5.7)
(

E2 +
4

n(n− 2)
B2

)

,i

=
n− 2

2

[

(n− 2)δ k
i ej1...jp−2+2b

kj1...jp−2

i

]

e[j1...jp−2,k], (5.8)

while (n− 4)R,i = 0 still holds.

5.1.3 Einstein equation for Ruu

When 2p = n this equation is different for various reasons. First, since generically

Fui1...ip−1 6= 0, the r.h.s. of (3.38) is not zero but

κ0h
i1j1 . . . hip−1jp−1

[

r−n (n− 2)2

4
e[i2...ip−1,i1]e[j2...jp−1,j1]

+ r2−nfi1...ip−1fj1...jp−1 − r1−n(n− 2)e[i2...ip−1,i1]fj1...jp−1

]

. (5.9)

Further, we now generically have △E 6= 0, △B 6= 0, △µ 6= 0 (cf. section 5.1.2), and (3.32)

are not satisfied (section 5.1.1), giving rise to further terms of order r−n and r1−n in Ruu

(cf. the l.h.s. of (3.38)). Keeping (5.9) and all these terms in mind, instead of (3.39) one

obtains (at order r2−n, r−n, r1−n, respectively)

(n− 2)µ,u = −(n− 1)µ(ln
√
h),u−2κ0F2 (n > 4), (5.10)

△µ =
κ0
2

[

(n− 2)

(

E2 +
4

n(n− 2)
B2

)

,u

+ n

(

E2 +
4

n(n− 2)
B2

)

(ln
√
h),u

]

+ 2κ0(n− 2) e[i2...ip−1,i1] f
i1...ip−1 , (5.11)

△
(

E2 +
4

n(n− 2)
B2

)

= (n− 2)2 hi1j1 . . . hip−1jp−1e[i2...ip−1,i1] e[j2...jp−1,j1], (5.12)
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where we have defined the r-independent quantity

F2 ≡ hi1j1 . . . hip−1jp−1fi1...ip−1fj1...jp−1= f i1...ip−1fi1...ip−1 . (5.13)

We observe that (5.11) and (5.12) are identically satisfied by virtue of (5.7) and (5.8),

respectively (after using (5.1)–(5.5)) — this will be understood from now on. Note that if

F2 = 0 (⇔ fi1...ip−1 = 0) then (5.7) gives µ,i = 0 and thus µ(ln
√
h),ui = 0 by (5.10), which

implies (as explained in section (3.5.1)) that if µ 6= 0 one can rescale the coordinates so

as to have hij = hij(x), R = const, µ = const. Vice versa, F2 6= 0 clearly requires that

µ,u and (ln
√
h),u cannot both vanish simultaneously, so that ∂u cannot be a Killing vector

field (as opposed to the case of static black holes, cf. section 4.1.1). For n = 4 (p = 2) the

l.h.s. of (5.10) contains an additional term −1
2△R [12, 13] (cf. also appendix B of [27]9)

and this argument does not apply.

5.2 Summary and discussion

We first observe that static black hole solutions clearly exist also for the special rank 2p = n

(see section 5.3 below), to which a discussion similar to that of section 4.1 still applies.

However, there exists now also a new family of solutions in the case Fuj1...jp−1 6= 0. The

Maxwell field is given by

F =
1

(

n
2 − 2

)

!

1

r2
ei1...ip−2du ∧ dr ∧ dxi1 ∧ . . . ∧ dxip−2 +

1
(

n
2

)

!
bi1...ipdx

i1 ∧ . . . ∧ dxip

+
1

2
(

n
2 − 1

)

!

(

−n− 2

r
e[i2...ip−1,i1] + 2fi1...ip−1

)

du ∧ dxi1 ∧ . . . ∧ dxip−1 . (5.14)

The forms ei1...ip−2(u, x) and bi1...ip(u, x) are generally not harmonic in the transverse

space, but satisfy the “modified” Euclidean Maxwell equations in (n−2) dimensions (3.11)

and (5.1). In addition, they can depend on u, cf. eqs. (5.2), (5.3). The latter further tells

us that the (p − 1)-form fi1...ip−1(u, x) is also generically non-harmonic. Notice that the

Maxwell equations do not specify the u-dependence of fi1...ip−1 , which can be interpreted

as a freedom in the choice of a “wave profile”.

The line-element is given by (4.1) with

2H = K+
2(ln

√
h),u

n− 2
r− 2Λ

(n− 1)(n− 2)
r2 − µ

rn−3
+

κ0
2

(

E2 +
4

n(n− 2)
B2

)

1

rn−2
, (5.15)

where E2, B2 and µ are generically functions of u and x, cf. the corresponding equa-

tions (5.4), (5.5), (5.7), (5.8), (5.10). The metric hij(u, x) = h1/(n−2)(u, x) γij(x) is again

Einstein, with scalar curvature R = K(n− 2)(n− 3) (where K = 0,±1). One further has

the constraint (3.25).

If hij is taken to be the metric of a compact space, then by (5.12) necessarily [42–44]

e[i2...ip−1,i1] = 0 (since the r.h.s. of (5.12) is non-negative), so that
(

E2 + 4
n(n−2)B

2
)

,i
= 0

(cf. (5.8)), and ei1...ip−2 and bi1...ip must both be harmonic (eqs. (3.11), (5.1)). In particular,

9Eq. (B.13) of [27] contains a typo: its r.h.s. should read 8P 2(Q,1ξ1 +Q,2ξ2).
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it follows [42, 43] that hij cannot describe a round sphere, and no asymptotically flat

spacetimes are thus to be found in this class of solutions (note that if ei1...ip−2 = 0 = bi1...ip ,

as in section 5.4 below, the argument still applies since in that case it is fi1...ip−1 that must

be harmonic, cf. (5.2), (5.3)).

These solutions also include the standard electrovac Robinson-Trautman solu-

tions with 2p = n = 4, provided an extra term proportional to △R is incorporated

into (5.10) [12, 13, 27].

5.2.1 Maxwell type and self-duality

The Maxwell field (5.14) is in general of type II (aligned with k by construction) and, in a

parallely transported frame adapted to (4.5) (appendix A.3), it peels off as (in agreement

with test-field results [11])

F =
N

r
n
2
−1

+
II

r
n
2

, (5.16)

where the symbols II and N specify the algebraic type of the corresponding terms, with

the “radiative” N term proportional to fi1...ip−1 . The Maxwell type becomes D when there

exists a second null direction aligned with F , i.e. (using a null rotation (A.21)), iff the

following equation admits a solution10 for the null rotation parameter zīp ≡ r−1zîp

− n− 2

2
e[̄i2...̄ip−1 ,̄i1] + r fī1...̄ip−1

= −n− 2

2
r e[̄i2...̄ip−1

zī1]+r zīpbīp ī1...̄ip−1
, (5.17)

see solution (5.24) below for an example. As a special case, this occurs (with zī1 = 0) when

the frame vector l (4.5) is aligned with the Maxwell field, i.e., iff fi1...ip−1 = 0 = e[i2...ip−1,i1]

(which implies that the radiative term vanishes). On the other hand, the Maxwell type

is N iff k is doubly aligned, i.e., ei1...ip−2 = 0 = bi1...ip — these special cases are discussed

below in sections 5.3 and 5.4. We observe that for n = 6 (p = 3) only the Maxwell

type N is possible (cf. appendix B.3). Let us further notice that the b.w. -2 component

8πTµν l
µlν = Rµν l

µlν= Ruu−2HRur (with (4.5) and Rrr = 0) of the energy-momentum

tensor, representing the flux of electromagnetic energy along k, equals expression (5.9) and

is characterized by the leading term κ0r
2−nF2 – an invariant quantity taking the same value

in any frame parallely transported along k (i.e., it is invariant under a null rotation (A.21)

of the frame (A.11) with zî independent of r, and under spins).

When p is odd, straightforward calculations show that the field (5.14) is self-dual

(∗F = F ) iff e = ⋆b, ⋆de = −de and ⋆f = −f (recall the definition of ⋆ in footnote 8),

whereas self-duality is not possible for an even p [32] (in particular, the condition e = ⋆b

implies p(p − 1)E2 = B2, and that the l.h.s. and r.h.s. of (3.25) must vanish separately).

Examples satisfying these conditions (with E2 = 0 = B2) are given by (5.38) and (5.39)

(under the conditions described there).

10After contraction with zī1 eq. (5.17) gives for n > 4 (i.e., p > 2) the necessary condition fī1...̄ip−1
zī1 = 0,

which generically will not be satified, thus showing that the generic Maxwell type is indeed II here (while

for n = 4 (p = 2) the Maxwell types II and D are always equivalent, cf., e.g., [13]).
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5.2.2 Weyl type

In general, the Weyl tensor is of type II(bd), see section 3.2 and appendix A.3. The

nontrivial Weyl components read (cf. (A.12)–(A.14) with (5.15))

Φ = −1

2
(n− 2)(n− 3)µ r1−n +

1

4
n(n− 3)κ0

(

E2 +
4

n(n− 2)
B2

)

r−n, (5.18)

Φ̃îĵk̂l̂ = r−2Cīj̄k̄l̄, (5.19)

Ψ′
î
= mk

(̂i)

n− 3

n− 2

[

1

2
(n− 1)µ,k r

1−n − 1

4
nκ0

(

E2 +
4

n(n− 2)
B2

)

,k

r−n

]

, (5.20)

Ω′
îĵ

= mk
(̂i)
ml

(ĵ)

{

− 1

2

(

µ||kl −△µ
hkl

n− 2

)

r1−n (5.21)

+
1

4
κ0

[

(

E2 +
4

n(n− 2)
B2

)

||kl
−△

(

E2 +
4

n(n− 2)
B2

)

hkl
n− 2

]

r−n

}

,

where (5.21) holds only for n > 4 since the identity (A.10) has been employed (see [13]

for n = 4), and the terms appearing in (5.20) and (5.21) are determined by (5.7), (5.8)

(and (5.11), (5.12)). Eqs. (5.18) and (5.19) (which coincide with (4.6) for 2p = n)

imply that k can never be a triple (or quadruple) WAND, since this would require

µ = E2 = B2 = Cīj̄k̄l̄ = 0 (and thus fi1...ip−1 = 0 thanks to (5.10)), leading to a

vacuum spacetime of constant curvature — except for this trivial case, the Weyl types

III, N and O are thus forbidden. The Weyl type D(bd) (or D(bcd)) is possible in

special cases, for example for metrics (5.22) and (5.23) below, when l is aligned with

F (section 5.3), or when k is doubly aligned with F (section 5.4). As in section 4.1.2,

CµνρσC
µνρσ = 4Φ2(n− 1)/(n− 3) + r−4Cīj̄k̄l̄Cīj̄k̄l̄.

5.2.3 Examples

Some explicit examples of various Weyl and Maxwell types are provided below.

Example (n = 8, p = 4). It is easy to construct examples if the transverse space

is taken to be flat, the forms ei1...ip−2 , bi1...ip and fi1...ip−1 to be harmonic — in fact x-

independent — and µ = µ(u) (with (E2),u = 0 = (B2),u by (5.4), (5.5)). A simple example

with n = 8, p = 4 is given by (4.1) and (5.14) with (recall (5.13))

hij = δij , 2H = − Λ

21
r2 − µ(u)

r5
+

κ0
2r6

(

E2 +
B2

12

)

, µ(u) = µ0−
κ0
3

∫

F2du,

Fur12 = Fur34 = Fur56 =
E√
6

1

r2
, F1234 = F1256 = F3456 =

B
6
√
2
, (5.22)

Fuijk = fijk(u) with Fui12 = Fui34 = Fui56 = 0,

where E and B are constants. This spacetime generically represents a collapse to (or

evaporation of) black holes with a flat horizon in the presence of an electromagnetic field

which consists of both a static component and of u-dependent contracting (or expanding)
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radiation.11 Correspondingly, the mass parameter µ is u-dependent and monotonically in-

creases (or decreases) according to the time-orientation of k (thus corresponding to received

or emitted radiation, cf. [21]). These metrics are asymptotically locally (A)dS if Λ 6= 0.

When Λ = 0, in regions where µ=const> 0 they clearly possess a horizon, but they are

not asymptotically flat.12 The Weyl type is D(bcd) because here H = H(u, r) and hij is

flat [28, 40, 46] (as can also be seen explicitly from (5.18)–(5.21)). Generically, the Maxwell

field is of genuine type II. Here E and B are independent parameters and, in particular, can

vanish independently (in other words, (3.23) and (3.24) are satisfied separately). However,

since here 2p = n, solutions exist that satisfy only the weaker constraint (3.25) (i.e., the

electric and magnetic fields must both be non-zero), as illustrated by the following example.

Example (n = 8, p = 4). To obtain a different solution with n = 8, p = 4, one can

specify the metric functions and electromagnetic field by

hij = δij , 2H = − Λ

21
r2 − µ(u)

r5
+ κ0

3E2

4r6
, µ(u) = µ0−

κ0
3

∫

F2du,

Fur12 = Fur34 =
E
2

1

r2
, F1234 =

E
2
, (5.23)

Fuijk = fijk(u) with Fui12 = 0 = Fui34,

where E is a constant. Clearly (3.23) and (3.24) are not satisfied in this case. If E 6= 0 6= fijk
the Maxwell field is of genuine type II. Comments similar to those given for (5.22) apply

also here, in particular the Weyl type is again D(bcd).

Example (n = 8, p = 4). An example in which µ has also a non-trivial x-dependence

is given by

hij = δij , 2H = − Λ

21
r2 − µ(u, x1)

r5
+

κ0B2

24r6
, µ(u, x1) = µ0 − 2κ0f0(

√
2Bx1+2f0u),

F1234 = F1256 = F3456 =
B

6
√
2
, Fu234 = Fu256 = f0, (5.24)

where B and f0 are constants (for f0 = 0 this trivially reduces to a subcase of (5.22)). Here

Φ 6= 0 6= Ψ′
î
while Φ̃îĵk̂l̂ = 0 = Ω′

îĵ
(see (5.18)–(5.21)), so that the Weyl tensor is of genuine

type II(bcd) (by the argument in appendix A.3.4, since here (A.24) admits no solutions).

The vector field l is clearly not aligned with F , nevertheless the Maxwell type is D, a

second aligned null direction being given by a null rotation (A.21) with m(1̂) = r−1∂x1 and

the only non-zero parameter z1̂ = −6
√
2K0B−1r (cf. (5.17)).

11It should be observed that no direct four-dimensional analog of such solutions exists since in 4D the

presence of non-vanishing b.w. 0 components of the Maxwell field would imply (by (5.7)) that µ,i 6= 0

(cf. (28.37e) of [13], or (B.11) of [27]).
12The line-element corresponding to (5.22) is static when µ=const> 0 and H > 0, in which case the zeros

of H define Killing horizons. For the dynamical metrics with µ = µ(u), instead of giving a detailed analysis

of the parameters range which ensures the existence of marginally trapped tubes and dynamical horizons,

we refer to, e.g., [21, 24], where similar four-dimensional spacetimes have been discussed in more detail.
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5.3 l aligned with F : static black holes (n ≥ 8)

The null vector field l of (4.5) is uniquely defined by certain geometrical properties (ap-

pendix A.3). Furthermore, as noticed above, it is aligned with F iff

fi1...ip−1 = 0, e[i2...ip−1,i1] = 0, (5.25)

which implies that the Maxwell field is of type D and non-radiative (as mentioned above

and in appendix B.3, for n = 6 this would lead to F = 0, so we can restrict here to n ≥ 8)

— indeed here Tµν l
µlν = 0. Equations (5.1), (5.2), (5.3), (5.4), (5.5), (5.7) and (5.10) now

take exactly the same form as in the generic case 2p 6= n (in particular, (5.4), (5.5) reduce

to (3.32)). Instead of the conditions E2
,i = 0 = B2

,i found in the 2p 6= n case, one has the

weaker condition (from (5.8))

(

E2 +
4

n(n− 2)
B2

)

,i

= 0. (5.26)

However, together with (3.32) this suffices to show that, again, one can rescale away the

u-dependence of hij (and thus also of µ and ei1...ip−2), and the discussion of section 4.1

then applies (with the only difference that (4.4) are replaced by (3.25), and that (5.26)

replaces E2
,i = 0 = B2

,i). The metric is thus (4.1) with H(r) given by (5.15) but without

the 2
n−2(ln

√
h),u r term (all the coefficients of the powers of r appearing in H are indeed

constants) and represents static black holes. Again it follows that the Weyl type is D(bd)

(possibly, D(bcd)) and l is also a double WAND. The Maxwell field is given by (4.3) with

2p = n. Here (5.16) clearly reduces to F = D r−
n
2 . These 2p = n solutions with F of type

D were previously studied in [31]. Two examples with n = 8, p = 4 are given by (5.22)

and (5.23) with fijk(u) = 0 (and thus µ = const), see [31] for others.

5.4 Type N Maxwell field

The field (5.14) is of type N iff

ei1...ip−2 = 0, bi1...ip = 0, (5.27)

with k being the unique aligned null direction, so that

F =
1

(

n
2 − 1

)

!
fi1...ip−1du ∧ dxi1 ∧ . . . ∧ dxip−1 , (5.28)

and the peeling (5.16) becomes simply F = Nr1−
n
2 .

In this case eqs. (5.1)–(5.10) reduce to

f[i2...ip,i1] = 0, (
√
h fki1...ip−2),k = 0, (5.29)

µ,i = 0, (5.30)

(n− 2)µ,u = −(n− 1)µ(ln
√
h),u−2κ0F2 (n > 4). (5.31)

Eqs. (5.29) mean that fi1...ip−1(u, x) effectively defines a Maxwell
(

n
2 − 1

)

-form in the (n−
2)-dimensional transverse space (i.e., it is harmonic).
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The line-element is (4.1), where hij(u, x) = h1/(n−2)(u, x) γij(x) is Einstein and with

H(u, r, x) given by

2H = K+
2(ln

√
h),u

n− 2
r − 2Λ

(n− 1)(n− 2)
r2 − µ(u)

rn−3
. (5.32)

The term (ln
√
h),u can be reexpressed in terms of µ and F2 using (5.31), if desired. Note

that by (5.31) necessarily µ 6= 0.13 Since fi1...ip−1 is harmonic, the metric hij cannot be of

positive constant curvature [42, 43].

Here the energy-momentum tensor possesses only the (b.w. -2) component describing

a flux of radiation along k

8πTµν l
µlν = 8πTuu = κ0r

2−nF2, (5.33)

and thus the Maxwell form acts as an aligned pure radiation field. Therefore these special

Robinson-Trautman metrics are contained in the pure radiation family of solutions studied

in [25] (but the corresponding Maxwell equations were not considered there). In particular,

from appendix A of [25] it immediately follows that the Weyl type is D(bd) (D(bcd) if hij
is of constant curvature), with (4.5) being the two multiple WANDs and

Φ = −(n− 2)(n− 3)
µ(u)

2rn−1
6= 0, Φ̃îĵk̂l̂ = r−2Cīj̄k̄l̄, (5.34)

as can also be seen explicitly from (5.18)–(5.21) with E2 = 0 = B2.

5.4.1 A special subcase: solutions with a factorized h(u, x) = U(u)X(x)

In the special case of a factorized h(u, x) = U(u)X(x), one can set U(u) = 1 by a coordinate

transformation, and thus obtain a special subclass of solutions with metric (4.1) with

hij = hij(x) and H(u, r) given by

2H = K − 2Λ

(n− 1)(n− 2)
r2 − µ(u)

rn−3
, (5.35)

µ(u) = µ0−
2κ0
n− 2

∫

F2 du. (5.36)

Here necessarily µ,u 6= 0. The Maxwell field is given by (5.28), where fi1...ip−1 must

satisfy (5.29) and, by (5.31), also

(F2),i = 0. (5.37)

These solutions will in general describe formation of black holes in the presence of electro-

magnetic radiation with non-zero expansion, with a monotonically increasing (or decreas-

ing, according to the choice of time-orientation of k) mass parameter µ.

A simple solution can be obtained by taking the transverse metric to be flat, i.e.,

hij = δij and fi1...ip−1 = fi1...ip−1(u) (obviously with such a choice (5.29) and (5.37) are

identically satisfied). To be specific, we give the following explicit example for n = 6.

13It it worth observing that this is not true in 4D, due precisely to the additional term proportional to

△R entering (5.31) when n = 4. Thanks to this extra term, 4D solutions of Petrov type III (with µ = 0

and a null Maxwell field) are thus possible, see section 28.2.2 of [13] and references therein.
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Example (n = 6, p = 3). The metric and the Maxwell field are

hij = δij , 2H = − Λ

10
r2 − µ(u)

r3
, µ(u) = µ0−

κ0
2

∫

F2du,

Fuij = fij(u). (5.38)

For Λ < 0 this spacetime represents the formation of asymptotically locally AdS black holes

with electromagnetic radiation. By a rotation, one can always simplify the Maxwell field

so as to only have non-zero components Fu12 = f12(u), Fu34 = f34(u), in which case F is

self-dual when f34(u) = −f12(u) (or anti-self-dual when f34(u) = +f12(u)), cf. section 5.2.

Solution (5.38) is an extension of a solution given in 4D (for Λ = 0) in [12] (also reproduced

in eq. (28.43) of [13]) and recently discussed in [21] (see also footnote 1). It should be ob-

served that for n = 6 this example in fact comprises all the possible Robinson-Trautman

solutions with a Maxwell field of type N if the transverse space is assumed to be of con-

stant curvature (this follows from (5.29) and (5.37) after using coordinates adapted to the

constant curvature space, e.g., those employed in [25] — it also follows that the (constant)

curvature must necessarily be zero). A similar example with n = 8, p = 4 is given by (5.22)

with E = 0 = B. An n = 6 example where, instead, hij is not of constant curvature follows.

Example (n = 6, p = 3). As another example in 6D one can take hij to be a direct

product of two S2 or H2, namely

hijdx
idxj =

[

1− 3Kx21
]−1

dx21 +
[

1− 3Kx21
]

dx22 +
[

1− 3Kx23
]−1

dx23 +
[

1− 3Kx23
]

dx24,

2H = K − Λ

10
r2 − µ(u)

r3
, K = ±1, µ(u) = µ0−κ0

∫

(

f2
12(u) + f2

34(u)
)

du,

Fu12 = f12(u), Fu34 = f34(u). (5.39)

As above, (anti-)self-duality holds iff f34(u) = ∓f12(u). For K = 0 this solutions reduces

to (5.38) (up to a space rotation).

Acknowledgments
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GAČR P203/12/0118.

A Robinson-Trautman spacetimes with an aligned Ricci tensor of type II

For the purposes of the present paper and for possible future reference it is useful to

summarize some of the results of [25, 27, 29, 30] in the present appendix. Note that we

restrict here to the Robinson-Trautman spacetimes in which the Ricci tensor is of type

II aligned with the privileged vector field k. This includes vacuum solutions as well as

solutions with aligned matter content (as we assume in the main text).
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A.1 General metric

The line-element and its Weyl type are specified by the following theorem.

Theorem 1 If a n-dimensional spacetime (n ≥ 4) admits a non-twisting, non-shearing,

expanding geodesic null vector field k and the Ricci tensor is of aligned type II, adapted

coordinates (u, r, x1, . . . , xn−2) can be chosen such that [25]

ds2 = r2hij
(

dxi +W idu
) (

dxj +W jdu
)

−2 dudr − 2Hdu2, (A.1)

hij = hij(u, x), W i = αi(u, x) + r1−nβi(u, x), (A.2)

k = ∂r, θ = 1/r, (A.3)

where H is an arbitrary function of all coordinates. k is automatically a WAND, such that

the Weyl tensor is in general of aligned type I(b). It is a multiple WAND iff βi = 0 [30],

in which case the Weyl tensor is of aligned type II(d) (or more special). When βi = 0, one

can locally set W i = 0 (after a coordinate transformation giving αi = 0) [25]. The Weyl

type further specializes to II(bd) iff hij is an Einstein metric (with still W i = 0) [30].

The vector field k is the generator of null hypersurfaces u =const such that kµdx
µ =

−du, r is an affine parameter along k, θ is its expansion scalar, and x ≡ (xi) ≡
(x1, . . . , xn−2) are spatial coordinates on a “transverse” (n − 2)-dimensional Riemannian

manifold. We observe that the condition that the Ricci tensor is doubly aligned with k can

be expressed in a frame-independent form as as Rµνk
ν = αkµ, which in the coordinates

of (A.1) means Rrr = 0 = Rri. For certain calculations it may be useful to observe that

2H = grr = −guu and W i = gri (such that W i = 0 ⇔ gri = 0 ⇔ gui = 0).

The first part of the theorem was proven in sections 3.1 and 3.2 of [25]. The results

on Weyl alignment follow immediately from eqs. (13)–(15), (17) and (19) (with (24), (25))

of [30] together with (A.1).14 In vacuum or with aligned pure radiation (i.e., the only

non-zero energy-momentum tensor component being Tuu) necessarily βi = 0 and hij is

Einstein for any n ≥ 4, and the Weyl tensor further specializes to type D(bd) (possibly,

D(bcd) or D(acd)) if n > 4 [25] (the latter result was also rederived in [30] without the

coordinate choice αi = 0), the type O being possible only in the trivial case of constant

curvature spacetimes. In [29] it was shown that for any n ≥ 4 Robinson-Trautman

spacetimes cannot support aligned gyratonic matter (i.e., an energy-momentum tensor

with both Tuu and Tui — and no other components — being non-zero). Let us finally

observe that if one relaxes the assumptions of the theorem by requiring only the aligned

Ricci type I (i.e., Rrr = 0), one obtains the same form of the metric, except that the

W i(u, r, x) are arbitrary functions [25] (the Weyl type remains I(b) [30]).

A.2 Ricci tensor components

The Ricci tensor component Rij for the general metric (A.1), (A.2) was given explicitly in

eq. (A.1) of [27] and reads

Rij = Rij − r4−n
(

rn−32H
)

,r
hij − r2(2−n) (n− 1)2

2
hikhjlβ

kβl

14Recall that the Weyl type I(b) in fact characterizes all Robinson-Trautman geometries, independently

of any assumptions on the Ricci tensor [30]. This can also be seen from the Ricci identities (11g) and (11k)

(and their trace) of [49] using the fact that k is geodesic, shearfree and twistfree.

– 25 –



J
H
E
P
0
2
(
2
0
1
5
)
0
4
5

−r

[

n− 2

2

(

2hk(iα
k
,j) + αkhij,k−hij,u

)

+
(

αk
,k + αk(ln

√
h),k−(ln

√
h),u

)

hij

]

+r2−n

[

1

2

(

2hk(iβ
k
,j) + βkhij,k

)

−
(

βk
,k + βk(ln

√
h),k

)

hij

]

, (A.4)

where Rij is the Ricci tensor associated with the spatial metric hij (as defined in sec-

tion 3.2), and a partial derivative w.r.t. (e.g.) xj is simply denoted by a comma followed

by j. For the purposes of the present paper we need the remaining Ricci components

only in the special case W i = 0, which we now present (but see [29, 30] for the Ricci

tensor components of the most general Robinson-Trautman metric, i.e., without not even

enforcing Rrr = 0 = Rri).

A.2.1 Case W i = 0 (k is a multiple WAND — Weyl type II(bd))

If one further assumes W i = 0 in (A.1) (i.e., k is a multiple WAND, as we indeed find in

section 3.2), eq. (A.4) and the remaining Ricci components, given in eqs. (26), (27) and

(31) of [25], reduce to

Rij = Rij − r4−n
(

rn−32H
)

,r
hij+r

[

n− 2

2
hij,u + (ln

√
h),uhij

]

, (A.5)

Rur = r2−n
(

rn−2H,r

)

,r
− r−1(ln

√
h),u, (A.6)

Rui = r4−n
(

rn−4H,i

)

,r
+

1

2

(

hjkhik,u

)

,j

+
1

2
hjkhik,u(ln

√
h),j −

1

4
hjkhlmhkl,uhjm,i − (ln

√
h),ui, (A.7)

Ruu = 2HRur−r2(r−2H),r(ln
√
h),u+(n− 2)r−1H,u

+r−2△H − (ln
√
h),uu − 1

4
hilhjk hij,uhkl,u, (A.8)

where in the last expression the first quantity on the r.h.s. has been written in terms

of (A.6) for brevity and for convenience in the calculations of section 3.5.1, and △ ≡
1√
h
∂j(

√
hhij∂i) is the Laplace operator in the (n − 2)-dimensional space with metric hij .

Note that 2(n − 2)Rur = −r−1
(

hijRij

)

,r
. For general purposes it is useful to observe

that the component Rui can be rewritten more compactly as Rui = r4−n(rn−4H,i),r +
1
2h

kl(hki,u||l−hkl,u||i) [29], where the lower double bar || denotes a covariant derivative w.r.t.

hij — but in the computations of the present paper the form (A.7) can be used more readily.

A.3 Weyl tensor components in the case Rij ∝ hij (⇒ W i = 0)

For the purposes of the present paper, we further restrict here to the case when the condition

Rij ∝ hij holds for the metric (A.1) (this is also true in various other cases of physical

interest, e.g., in vacuum, or whenever the traceless Ricci tensor is of aligned type III or

more special), while we refer to [30] for the Weyl tensor components of the most general

Robinson-Trautman metric. Similarly as in section 3.2, together with (A.4) this restriction

gives βi = 0, and thus W i = 0 (theorem 1). By (A.5) we further have

Rij =
R

n− 2
hij , hij,u =

2(ln
√
h),u

n− 2
hij , (A.9)
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so that, in particular, hij is Einstein and therefore (n − 4)R,i = 0. (Note that, indeed,

these conditions are obtained in section 3.2 as a consequence of the Einstein equations —

except in the cases p = 1, n − 1, for which see appendix C.) Using (A.9) one can further

prove the identity (cf. eq. (144) of [30])

(n− 4)

[

[(ln
√
h),u]||ij −

△[(ln
√
h),u]

n− 2
hij

]

= 0, (A.10)

needed in the following.

We choose a frame

k = ∂r, l = −∂u +H∂r, m(̂i) =
1

r
mj

(̂i)
∂j , (A.11)

where the functionsmj

(̂i)
do not depend on r. The spacelike vectorsm(̂i) span the transverse

space of constant u and r, and obviously m̄(̃i) ≡ rm(̂i) = mj

(̂i)
∂j defines an orthonormal

frame for the metric hij . Before proceeding, it is useful to observe that since k and l span

the 2-space (u, r) we have the relation τi − τ ′i = 0 (in the notation of [10, 46] for the Ricci

rotation coefficients). Using (4.1), it immediately follows that l is parallely transported

along k, i.e., τ ′i = 0, so that also τi = 0. There cannot be other null directions l′ with
these properties (as follows from the transformation properties of τi and τ ′i under null

rotations [10, 49]). It is also easy to see that l is geodesic iff H,i = 0 [28]. In fact, not only

l but the full frame (A.11) is parallelly transported along k.

Recall that, thanks to W i = 0 and the first of (A.9), the Weyl type here is II(bd) or

more special (theorem 1). In the frame (A.11) one further finds Ψ̃′
îĵk̂

= 0, so that all the

non-zero components are determined by (using eqs. (16), (18), (20) and (22) of [30], or

eqs. (A.1) of [25])

Φ =
n− 3

2(n− 1)

{

r2
[

r−2

(

2H − R
(n− 2)(n− 3)

)]

,r

}

,r

, Φ̃îĵk̂l̂ = r−2Cīj̄k̄l̄, (A.12)

Ψ′
î
= rmk

(̂i)

n− 3

n− 2

[

r−2

(

H−(ln
√
h),u

n− 2
r

)]

,kr

, (A.13)

Ω′
îĵ

=
1

r2
mk

(̂i)
ml

(ĵ)

(

H||kl −
△H

n− 2
hkl

)

, (A.14)

where Cīj̄k̄l̄ are the frame components of the Weyl tensor associated with hij (in the cor-

responding frame m̄(̄i)). The above components are ordered by b.w. and expressed in the

notation of [10, 46] (cf. table 2 of [46]). We observe that the alternative notation of [30]

corresponds to Ψ2S = −Φ, Ψ̃2ijkl = Φ̃îĵk̂l̂, Ψ3T i = Ψ′
î
and Ψ4ij = Ω′

îĵ
.

A.3.1 Conditions for the Weyl types II(abd), II(bcd) and III(b)

As noticed above, here the Weyl type is generically II(bd). It becomes II(abd) iff Φ = 0,

i.e. (using the first of (A.12)), when

2H =
R

(n− 2)(n− 3)
+ c1(u, x)r + c2(u, x)r

2, (A.15)
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where c1 and c2 are integration functions independent of r (recall thatR is also independent

of r and (n− 4)R,i = 0, as noticed above).

On the other hand, the type becomes II(bcd) iff Φ̃îĵk̂l̂ = 0, namely (using the second

of (A.12)) for

Cīj̄k̄l̄ = 0, (A.16)

which (with the first of (A.9)) means that hij is a constant curvature metric.

The Weyl type further specializes to III(b) (recall that here we have Ψ̃′
îĵk̂

= 0 identi-

cally) iff (A.15) and (A.16) hold simultaneously.

A.3.2 Conditions for the Weyl type N

The Weyl type becomes N when Φ = 0, Φ̃îĵk̂l̂ = 0 and Ψ′
î
= 0 which gives (using (A.13)

and (A.15))

2H =
R

(n− 2)(n− 3)
+
2(ln

√
h),u

n− 2
r + c2(u, x)r

2, (A.17)

which must hold together with and (A.16). In this case, for n > 4 the only non-zero Weyl

components are (using also (A.10))

Ω′
îĵ
=

1

2
mk

(̂i)
ml

(ĵ)

(

c2||kl −
△c2
n− 2

hkl

)

(n > 4). (A.18)

See [13] for n = 4.

A.3.3 Conditions for l to be a multiple WAND (⇒ Weyl type D(bd))

It is clear from (A.13) and (A.14) that, in general, the vector field l of (A.11) is not a

WAND (not even a single one). The conditions for l being a multiple WAND read

2H = d1(u, r)+
2(ln

√
h),u

n− 2
r + c2(u, x)r

2, (A.19)

c2||ij =
△c2
n− 2

hij , [(ln
√
h),u]||ij =

△[(ln
√
h),u]

n− 2
hij . (A.20)

For n > 4 the latter of these is identically satisfied thanks to (A.10). When all these

conditions are met the Weyl type becomes D(bd). This happens, for example, in the

special case c2,i = 0.

A.3.4 Conditions for the Weyl type D(bd) when l is not a multiple WAND

Even when the vector field l of (A.11) is not a multiple WAND (i.e., (A.19), (A.20) are

not simultaneously satisfied) the Weyl type can still be D(bd) provided a second multiple

WAND (in addition to k, and different from l) exists. In order to find conditions for this

to happen, it is necessary to perform a null rotation about k, i.e.,

k 7→ k, l 7→ l+ zîmî −
1

2
zîz

îk, mî 7→ mî − zîk, (A.21)

such that, in the transformed frame, Ψ′
î
7→ 0, Ψ̃′

îĵk̂
7→ 0 and Ω′

îĵ
7→ 0. The transformation

laws under (A.21) for the negative b.w. Weyl components are given by eqs. (2.33)–(2.35)
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of [10] (while non-negative b.w. components are unchanged under (A.21) since k is a

multiple WAND). Using the fact that the Weyl type is II(bd), the condition Ψ′
î
7→ 0

uniquely fixes the parameters zî by

Φzî =
n− 2

n− 1
Ψ′

î
, (A.22)

except in the case Φ = 0 = Ψ′
î
, for which the zî remain arbitrary.

Next, requiring Ψ̃′
îĵk̂

7→ 0 and using (A.22) further gives (also in the case Φ = 0 = Ψ′
î
)

Ψ̃′
îĵk̂

= −Φ̃l̂̂iĵk̂zl̂. (A.23)

Finally, imposing Ω′
îĵ
7→ 0 gives

Ω′
îĵ
=

2(n− 2)

n− 3

(

z
(̂j
Ψ′

î)
−

(zk̂Ψ
′
k̂
)

n− 2
δîĵ

)

+ 2zk̂Ψ̃
′
(̂iĵ)k̂

− n− 1

n− 3
Φ

(

zîzĵ −
z2

n− 2
δîĵ

)

− zk̂zl̂Φ̃k̂îl̂ĵ ,

(A.24)

which after using (A.22), (A.23) (and multiplying by Φ) gives a constraint among the Weyl

tensor components15

ΦΩ′
îĵ
=

n− 2

n− 1

[

n− 2

n− 3

(

Ψ′
î
Ψ′

ĵ
−

(Ψ′
k̂
Ψ′

k̂
)

n− 2
δîĵ

)

+ Ψ̃′
(̂iĵ)k̂

Ψ′
k̂

]

. (A.25)

Recalling that for the metric (A.1) with W i = 0 and (A.9) one has Ψ̃′
îĵk̂

= 0, and

using (A.12), eq. (A.23) reduces to

Cl̄̄ij̄k̄zl̂ = 0. (A.26)

This is a restriction on the Weyl tensor of hij that will not be true for a generic Ein-

stein metric hij , therefore we can conclude that generically the metric (A.1) with W i = 0

and (A.9) is of genuine type II(bd). However, the “genericity” conditions may be violated

if a special choice of H (e.g., in vacuum [25]) or of hij is made in (A.1), in which case the

Weyl types D(bd), D(bcd), and D(abd) are all possible (see, e.g., [25, 27, 30, 46]). The

specific form of (A.25) for spacetimes (A.1) with W i = 0 and (A.9) can be obtained by

substituing (A.12)–(A.14) and Ψ̃′
îĵk̂

= 0 into (A.25).

15In passing, let us observe that (A.22), (A.23) and (A.25) give the necessary and sufficient conditions

under which any Weyl tensor of type II(bd) admits a second multiple WAND (so being in fact of type

D(bd)), since no special features of the Robinson-Trautman class have been used in their derivation. For

the same reason, (A.24) alone determines the conditions under which a Weyl tensor of type II(bd) admits

a single WAND (in addition to a multiple one). This implies that a Weyl tensor of proper type D(bd) or

D(bcd) admits precisely two WANDs (necessarily double) since (A.24) has no non-zero solution if Ω′

îĵ
=

Ψ′

îĵk̂
= Ψ′

î
= 0, Φ 6= 0 (as easily seen after contraction with zĵ). However, Weyl tensors of type D(abd) may

admit an infinity of multiple WANDs, and this occurs precisely when the equation Φ̃l̂̂iĵk̂zl̂ = 0 (cf. (A.23))

admits a solution (in this case (A.22) and (A.25) are satisfied trivially) — see, e.g., [46, 50] for examples

of such spacetimes. Similarly, an infinity of single WANDs exists for type D(abd) if the weaker condition

zk̂zl̂Φ̃k̂îl̂ĵ = 0 is satisfied. We observe that L. Wylleman has obtained more general results on the structure

of multiple WANDs for any Weyl type D (private communication), some of which are mentioned in [40, 46].
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B Comments on the (Einstein) constraints (3.23) and (3.24) (2 ≤ p ≤

n − 2)

The b.w. 0 components of F can be divided into an electric and a magnetic part described,

respectively, by ei1...ip−2 and bi1...ip (cf. (3.6), (3.7)). The latter live in the transverse

geometry of hij and must obey the constraints (3.23) and (3.24) (replaced by (3.25) if

2p = n). In this appendix we discuss some general consequences of those constraints.

Recall that the form ei1...ip−2 is defined for 2 ≤ p ≤ n while bi1...ip for 0 ≤ p ≤ n − 2.

The cases p = 0, n are trivial (footnote 2) while p = 1, n − 1 require a special discussion

(appendix C), so here we restrict for both ei1...ip−2 and bi1...ip to the ranks 2 ≤ p ≤ n− 2.

Let us also observe that the equations obeyed by ei1...ip−2 and bi1...ip ((3.23) and (3.24)) are

identical, so the algebraic constraints derived from them which apply to bi1...ip for a certain

p will also automatically apply to ei1...ip′−2
for p′ = p+2 (and vice versa). Additionally, by

duality constraints on bi1...ip for a certain p will also apply on ei1...ip′−2
for p′ = n− p (and

vice versa). In the magnetic and electric cases the following ranks p are worth mentioning.

B.1 Magnetic fields

• p = 2: this is the case studied in [27] and bij = 0 if n is odd, so that n must be

even (thus, in particular, the ln r term in 2H (eq. (3.20)) vanishes for n = 5 [27]). If

F is assumed to be regular (and non-zero) on the transverse space, then Maxwell’s

equations (3.11), (3.27) for bij further imply [27] that hij must be almost-Kähler

(almost-Hermitian if n = 6). See eq. (66) of [27] for an example.

• p = n−4: this is dual to the electric p = 4 case discussed in section B.2 so that again

n must be even and hij almost-Kähler (almost-Hermitian if n = 6).

• p = n − 3: it is easy to see that in this case eq. (3.24) is impossible (unless

bi1...in−3 = 0). Using also the previous observations one sees, e.g., that for n = 5

only p = 3 is permitted, for n = 6 only p = 2, 4, for n = 7 only p = 5, etc. This

implies, in particular, that the B2r3−n ln r term in 2H (eq. (3.20)) can occur only for

p = (n+ 1)/2 ≥ 4 with n ≥ 9 (n odd).

• p = n−2: Fi1...ip is proportional to the h-volume element. For example, this includes

the magnetic counterpart of the electrovac Schwarzschild-Tangherlini black hole [4].

• p = n
2 − 1 (n even): in this case if hij is a direct product of two (n2 − 1)-dimensional

spaces then a possible magnetic field can be written as a sum of their volume elements,

see also [31]; for even p it is h-self-dual. This case is also special in that the magnetic

field does not contribute to Tij . In particular, this includes the case n = 6, p = 2

(again eq. (66) of [27] — with D = 6 — gives an example). See (4.8) for an example

in 8D (after dualization).

• p = md, n− 2 = Nd: when p and n− 2 are both multiples of the same integer d ≥ 2

(m and N are also positive integers, with m ≤ N), eq. (3.18) of [31] gives a method

of constructing Fi1...ip that works when hij is a direct product of N = (n − 2)/d
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d-dimensional Einstein spaces (in particular they are all flat if R = 0). (For N = 2,

m = 1 this reduces to the case p = n
2 − 1 discussed above.) For example: n = 8,

p = 3, d = 3, N = 2, m = 1 (note that here p = n
2 − 1); n = 8, p = 4, d = 2, N = 3,

m = 2 (here p = n
2 ); n = 10, p = 4, d = 2, N = 4, m = 2 (here p = n

2 − 1); n = 11,

p = 6[3], d = 3, N = 3, m = 2[1] etc. Cf. (4.7) for an explicit example.

In particular, this always works when p = n
2 with p even, i.e., when n is a multiple

of 4 (in this case d = 2, N = p− 1), see example (5.22).

• p = n
2 −2 with p even: these solutions can be constructed as explained for the electric

forms with p = n
2 in section B.2.

B.2 Electric fields

• p = 2: this is the standard case studied in [27] (eq. (3.23) becomes an identity)

containing, e.g., Schwarzschild-Tangherlini black holes with electric charge [4].

• p = 3: here ei is a 1-form and this case is obviously forbidden by (3.23) (indeed dual

to a magnetic field with p = n− 3, also forbidden as already discussed), i.e., ei = 0.

• p = 4: here eij is a 2-form and (as for a magnetic field with p = 2 [27] — cf. also

section B.1) n must be even and hij almost-Kähler (almost-Hermitian if n = 6).

• p = n− 2: this is dual to a magnetic 2-form so again n must be even and hij almost-

Kähler (almost-Hermitian if n = 6). Using also the previous observations one sees,

e.g., that for n = 5 only p = 2 is permitted, for n = 6 only p = 2, 4, for n = 7 only

p = 2, etc. This implies, in particular, that the E2r3−n ln r term in 2H (eq. (3.19))

can occur only for p = (n+ 1)/2 ≥ 5 with n ≥ 9 (n odd).

• p = n
2 +1 (n even): in this case (dual to a magnetic field with p = n

2 − 1) the electric

field does not depend on r and if hij is a direct product of two (n2 − 1)-dimensional

spaces then a possible ei1...ip−2 can be written as (du ∧ dr)∧(a sum of the volume

elements of the two subspaces), cf. also [31]; for even p it is h-self-dual. The electric

field does not contribute to Tij . See example (4.8).

• p− 2 = m′d, n− 2 = Nd (d ≥ 2): this is dual to an already discussed magnetic field

with p = md (with m = N −m′), and one can similarly use eq. (3.25) of [31]. As in

the magnetic case, this always works when p = n
2 with p even (with d = 2, N = p−1),

see example (5.22). (For N = 2, m′ = 1 this reduces to the case p = n
2 + 1 discussed

above.) By combining the constructions for the electric and magnetic cases, for d = 2

(m = m′ + 1) one can also construct dyonic fields [31].

• p = n
2 + 2 with p even: these solutions can be constructed as explained for the

magnetic forms with p = n
2 in section B.1.
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B.3 Case 2p = n (n even)

It should be recalled that in the case p = n
2 , if both an electric and a magnetic field

are present then they generically obey the weaker constraint (3.25) (the corresponding

“Maxwell” equations are also generically modified, as discussed in section 5.2). The con-

struction with p = n
2 (with p even) mentioned above in sections B.1 and B.2 still pro-

vides examples in the special case when (3.23) and (3.24) are satisfied separately (and

not just (3.25)), but more general solutions also exist, see for example (5.23). Note, how-

ever, that in the case n = 6, p = 3, not only (3.23) and (3.24) (as discussed in sections B.1

and B.2) but also the weaker constraint (3.25) can be satisfied only trivially by E2 = 0 = B2,

as can be seen by directly substituting into (3.25) the most general possible form of a 1-

form e and a 3-form b (examples are given by (5.38), (5.39)). Therefore, solutions 2p = n

for which e and b are not both zero require n ≥ 8 (p ≥ 4) (see, e.g., (5.22), (5.23)).

C Cases p = 1 and p = n − 1

Here we analyze the special ranks p = 1 and p = n − 1. The results of section 3.1 apply

also here and need not be repeated. Just note that there is no electric term ei1...ip−2 for

p = 1 (while B2
ij = bibj), and no magnetic term bi1...ip for p = n− 1.

As observed in section 3.2, the first difference appears in the Einstein equation for Rij .

Instead of (3.21) and (3.24) [(3.23)] we now have the trace-free equations

Rij −
R

n− 2
hij = κ0

(

bibj −
B2

n− 2
hij

)

(p = 1), (C.1)

Rij −
R

n− 2
hij = −(n− 2)(n− 3)κ0

(

E2
ij −

E2

n− 2
hij

)

(p = n− 1), (C.2)

while (3.22) remains true, so that, again, hij = h1/(n−2) γij(x) (with det γij = 1).

As noticed, the results of section 3.3 are still valid also here. In particular, we have

Fu = 0 for p = 1 and Fui1...in−2 = 0 for p = n− 1, and (3.32) are still true.

As for section 3.4, we still obtain

µ,i = 0, (C.3)

but due to coincidence of certain powers of r, eqs. (3.34), (3.36) and (3.37) are replaced by

(n− 4)
[

R,i − κ0(B2),i
]

= 0 (p = 1), (C.4)

(n− 4)
[

R,i − κ0(n− 2)(E2),i
]

= 0 (p = n− 1). (C.5)

The above two equations in fact also follow from, respectively, (C.1) and (C.2) once the

contracted Bianchi identity and the Maxwell equations in the geometry of hij are employed.

Finally, the equation discussed in section 3.5.1 contains now an additional r−2

term that, however, vanishes identically thanks to (C.4), (C.5) (except for n = 4, see

section C.2 below). Hence one still obtains (n − 2)µ,u = −(n − 1)µ(ln
√
h),u (for n 6= 4).
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As in section 3.5.1, the latter equation together with (3.32) implies that we can choose

coordinates such as

hij = hij(x), µ = const, (B2),u = 0 (p = 1), (E2),u = 0 (p = n− 1) (n 6= 4),

(C.6)

which with (C.4), (C.5) for n > 4 give

R = κ0B2 +R0 (p = 1), R = κ0(n− 2)E2 +R0 (p = n− 1), (C.7)

where R0 is a constant (corresponding to the Ricci scalar of the transverse geometry in

the vacuum limit).

C.1 Case n > 4

To summarize, for n > 4 the metric is given by (4.1) with

2H =
R0

(n− 2)(n− 3)
− 2Λ

(n− 1)(n− 2)
r2 − µ

rn−3
, (C.8)

where R0, Λ and µ are constants, and hij is a Riemannian metric satisfying (C.1) or (C.2)

(and thus having a Ricci scalar given by (C.7)). The Maxwell field is given by

F = bi(x) dx
i (p = 1), (C.9)

F =
1

(n− 3)!
rn−4ei1...in−3(x) du ∧ dr ∧ dxi1 ∧ . . . ∧ dxin−3 (p = n− 1), (C.10)

where bi(x) and ei1...in−3(x) are harmonic forms in the geometry of hij . In contrast to the

case 2 ≤ p ≤ n−2, here the Maxwell field does not enter the metric function H, but instead

“back-reacts” on the transverse geometry hij , which thus cannot be Einstein. The Weyl

type is D(bd) (since H = H(r)), the Maxwell type is D, and (4.5) are doubly aligned null

directions for both the Weyl and Maxwell tensors. The metric is static (at least in regions

where H > 0). We further observe that (C.1) gives (n− 2)Rijb
ibj = B2[R+ κ0(n− 3)B2],

which is certainly non-negative if R ≥ 0. Since bi is harmonic, this implies (see [42, 51];

also theorem 2.9 of [43]) that hij cannot describe a compact space having R ≥ 0

everywhere (unless, trivially, R = 0 = B2).

Thanks to (C.1) and (C.2), it is easy to see that any (n − 2)-dimensional solution of

the Euclidean Einstein-Maxwell theory (i.e., a metric hij coupled to a 1-form bi(x) or a

(n − 3)-form ei1...in−3(x)) can be used to generate an n-dimensional Robinson-Trautman

spacetime coupled to a 1-form (or a (n − 1)-form). For example, by taking as a “seed”

the Euclidean version of the 3D charged BTZ metric (with “J = 0”) [52] we obtain the

following 5D example.

Example (n = 5, p = 1).

hijdx
idxj = −(λρ2 +m+ κ0b

2
x ln ρ)dτ

2 − dρ2

λρ2 +m+ κ0b2x ln ρ
+ ρ2dx2,

2H = λ− Λ

6
r2 − µ

r2
, F = bxdx, (C.11)
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where λ = R0
6 , m and bx are constants (respectively, the cosmological constant, mass

parameter and field strength of the 3D BTZ solution), and R = 6λ + κ0b
2
xρ

−2. Having a

Lorentzian signature requires (at least for a large ρ) that λ < 0. The dualization to p = 4

is obvious. We observe however that the ρ = 0 curvature singularity of the BTZ metric

extends to the full 5D solution, interestingly also beyond the horizon(s). Euclideanization

of this 5D solution can be used, in turn, to produce a 7D Robinson-Trautman solutions,

and so on to higher odd dimensions.

C.2 Case n = 4

We observe that for n = 4 the l.h.s. of both (C.1) (p = 1) and (C.2) (p = 3) is identically

zero (since hij is 2-dimensional), which implies, respectively, bi = 0 and ei = 0. Since

we also have Fu = 0 for p = 1 and Fui1...in−2 = 0 for p = n − 1, we conclude that

F vanishes identically and one is left only with vacuum Robinson-Trautman spacetimes,

obeying the standard equation −△R+4µ,u+6µ(ln
√
h),u = 0 (this contains, in particular,

the Schwarzschild metric, which has F = 0 and yet can describe a black hole with non-zero

axionic charge in the presence of a non-zero Kalb-Ramond field — in fact it is the only

such static and asymptotically flat solution [53]). Therefore, in 4D the only electrovac

spacetimes with F 6= 0 are obtained for p = 2, which is the well-known Einstein-Maxwell

case [12–14]. We observe that certain Robinson-Trautman 4D solutions with aligned p = 3

forms (axionic black holes) have been discussed in [31], but these involve multiple p-form

fields and thus do not contradict our result.
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