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1 Introduction

Since ’t Hooft [1] and Susskind [2] proposed the so-called holographic principle about twenty

years ago, the study of holographic dual of gravitational systems has become one of the

major subjects of study in the area of high energy theories. Holography is a property

which matches one system in the bulk involving gravity to another system on the bound-

ary without gravity. The most well understood realization of holographic duality is the

AdS/CFT correspondence [3–5], which establishes an equivalence between the superstring

theory on AdS5 × S5 and the four-dimensional N = 4 supersymmetric Yang-Mills gauge

theory on the boundary of the AdS5. However, there are accumulating evidences indicat-

ing that holography can be realized in situations which requires neither AdS in the bulk

nor CFT on the boundary. In this respect, the Gravity/Fluid correspondence plays a very

instructive example.

The relationship between gravity and fluid system was first known through the mem-

brane paradigm, see [6] and [7–9] for recent applications of this approach. Later on, such re-

lationship is rediscovered as the long wavelength limit of AdS/CFT correspondence [10–16].

In both approaches, the ratio of the viscosity to the entropy density of the dual fluid takes

a universal value 1
4π [17, 18]. Considerable efforts have been made to clarify that the results

from the membrane paradigm and from the long wavelength limit of AdS/CFT are related

by RG flow [18–21].

Renewed interests in Gravity/Fluid correspondence arise following the work [22], in

which a fluid dual on a finite cutoff in a Rindler background has been constructed. This

is the first successful attempt in constructing Gravity/Fluid correspondence beyond the

framework of AdS/CFT. Subsequent works revealed that similar construction also works
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in black hole backgrounds in Einstein gravity [23–26] as well as in higher curvature grav-

ity [27–29], and the viscosity of the dual fluid is calculated in [30, 31]. Numerous examples

of this correspondence was studied extensively [32–36].

Besides the membrane paradigm and the AdS/CFT approach, the Gravity/Fluid cor-

respondence can be realized either using a boost-rescaling technique [23–29, 31–36] or by

the introduction of Petrov I boundary conditions [37–46], which is mathematically much

simpler. In all known example cases, there are two remarkable features (or drawbacks) in

the Gravity/Fluid correspondence. Firstly, just like in any other realizations of holographic

duality, the boundary (or holographic screen) must be chosen such that it is an equipo-

tential hypersurface in the bulk spacetime. This requires, in particular, that if one starts

from a spherically symmetric solution of the gravitational field equations, the final fluid

dual must also live in a spacetime with spherical spatial sections. Thus, if one would like

to understand flat space fluid mechanics from a gravitational perspective, then the only

choice seems to be starting from an AdS bulk and choose a solution with flat horizon. Sec-

ondly, the dual fluid is always incompressible due to the fact that to the lowest nontrivial

order, the conservation of the Brown-York tensor on the boundary implies a divergence-free

condition of the velocity field of the dual fluid.

In this work, we are aimed to realize a duality relationship between gravity solutions

with spatially non-flat horizons and a compressible fluid system living in a flat, Newtonian

spacetime with one less dimensions. Evidently, a flat Newtonian spacetime cannot be

realized as an equipotential hypersurface in the bulk spacetime unless the gravity solution

is plane symmetric. In fact, the flat Newtonian space may not be a subspace of the bulk

spacetime at all. Therefore, the duality relationship as described above is highly nontrivial

not only because it evades the two drawbacks of general Gravity/Fluid correspondence,

but also because it provides a remarkable example of holographic duality which is beyond

the class of bulk/boundary dualities.

2 Static black holes in (d + 2)-dimensions

Let us start by introducing a particular class of static vacuum solutions to the Einstein

equation

Gµν = −Λgµν (2.1)

in (d+ 2)-dimensions, where Gµν = Rµν − 1
2gµνR is the bulk Einstein tensor, Λ denotes a

possible cosmological constant which may be positive, zero or negative.

Under the coordinates xµ = (t, r, xi) (i = 1, · · · , d), the static solution to the vacuum

Einstein equation can be described by the line element

ds2d+2 = −f(r)dt2 +
dr2

f(r)
+ r2eΦ(xi)δijdx

idxj , f(r) = κ− ω

rd−1
− 2Λr2

d(d+ 1)
, (2.2)

where κ = 1 if Λ ≥ 0 and κ = −1, 0, 1 if Λ < 0. To ensure that (2.2) is a solution to

the vacuum Einstein equation (2.1), the function Φ(xi) must obey a set of complicated
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differential equations,

δjk∂j∂kΦ+
d− 2

2

(

2∂2
i Φ+ δjk∂jΦ∂kΦ− (∂iΦ)

2
)

+ 2κ(d− 1)eΦ = 0,

(no summations over fixed i = 1, · · · , d) (2.3)

(d− 2)

(

∂i∂jΦ− 1

2
∂iΦ∂jΦ

)

= 0 (i 6= j). (2.4)

For generic d, explicit solution for the function Φ(xi) is guaranteed to exist because the

well-known Schwarzschild-Tangherlini-(A)dS solution to the vacuum Einstein equation can

be written in the form (2.2). In particular, when d = 2, the eqs. (2.3)–(2.4) degenerate

into the Euclideanized Liouville equation (or Laplacian equation if κ = 0) [47]

(∂ 2
1 + ∂ 2

2 )Φ + 2κeΦ = 0. (2.5)

It is evident that the line element (2.2) possesses a black hole event horizon provided

ω 6= 0. The event horizon is located at one of the zeros r = rh of the metric function f(r),

which is the largest (if Λ is non-positive) or the second largest (if Λ is positive) root of

f(r). The spatial section of the horizon surface has a conformally flat metric

ds2d = r2he
Φ(xi)δijdx

idxj ,

which contains the d-dimensional flat Euclidean space E
d with metric δij in its confor-

mal class.

In what follows, it is desirable to rewrite the line element (2.2) in the Eddington-

Finkelstein coordinates (u, r, xi) with the lightlike coordinate u defined by

u = t+

∫ r

0

dr′

f(r′)
. (2.6)

Doing so, the line element (2.2) can be rearranged into the following form

ds2d+2 = gµνdx
µdxν = −f(r)du2 + 2dudr + r2eΦ(xi)δijdx

idxj . (2.7)

3 Hypersurface and Brown-York tensor

Now consider a (d+1)-dimensional timelike hypersurface Σc located at r = rc. The geome-

try of this embedding hypersurface is best characterized by its first and second fundamental

forms. The first fundamental form is provided by the restriction of the bulk line element

on the hypersurface, i.e.

ds2d+1 = γabdx
adxb =− f(rc)du

2 + r2ce
Φδijdx

idxj

=− (dx0)2 + r2ce
Φδijdx

idxj

=− 1

λ2
dτ2 + r2ce

Φδijdx
idxj , (3.1)
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where xa = (u, xi), τ = λx0 = (λ
√
fc)u and the rescaling parameter λ is introduced to

facilitate the forthcoming analysis on the non-relativistic limit.1 Here and below we use

the notations fc = f(rc), f
′
c = f ′(r)|r=rc etc. The notations f ′

h, f
′′
h will also be used, which

are similar to f ′
c, f

′′
c but with rc replaced by rh.

One can easily promote the hypersurface tensor γab to a bulk tensor γµν by adding a

raw and a column in the r-direction which are both full of zeros. The second fundamental

form is the extrinsic curvature of the hypersurface, which is defined as

Kµν =
1

2
Lnγµν , (3.2)

where

nµ =

(

1√
f
,
√

f, 0, · · · , 0
)

is a unit vector field which is normal to Σc at r = rc and is written in the coordinate

(u, r, xi).

The projection of the bulk Einstein equation gives rise to the so-called momentum and

Hamiltonian constraints,

(Gµν + Λgµν)γ
µ
bn

ν |Σc
= 0,

(Gµν + Λgµν)n
µnν |Σc

= 0.

In terms of the two fundamental forms introduced above, these can be reformulated in

the form

Da(K
a
b − γabK) = 0, (3.3)

R̂+KabKab −K2 = 2Λ, (3.4)

where R̂ is the Ricci scalar of Σc, Da is the covariant derivative that is compatible with

γab. Using the definition [50]

tab = γabK −Kab (3.5)

for the Brown-York stress energy tensor tab on hypersurface, the momentum con-

straints (3.3) becomes that of the covariant divergence free condition

Dat
a
b = 0 (3.6)

for tab, and the Hamiltonian constraint becomes

R̂+ tabt
b
a −

t2

d
= 2Λ. (3.7)

All these are the standard material for the construction of Gravity/Fluid correspondence.

1One can think of 1/λ as the speed of light, hence λ → 0 corresponds to infinite light speed, i.e. the

non-relativistic limit.
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Before moving on to the construction of dual fluid, let us mention that the lightlike

coordinate u (and hence τ) in the bulk spacetime becomes naturally timelike on the hy-

persurface Σc. The time evolution of the dual fluid will be defined with respect to this

coordinate. However, the spacetime in which the dual fluid lives will not be Σc (which is

in general curved) but rather the product space R×E
d in which the first factor represents

the time direction and E
d is the d-dimensional Euclidean space which lies in the confor-

mal class of the spatial section of Σc. In other words, the dual fluid will be living in a

(d+ 1)-dimensional Newtonian spacetime.

4 Petrov I boundary condition

As usual in Gravity/Fluid correspondence, we introduce the Petrov I [48, 49] boundary

condition on Σc, i.e.

C(l)i(l)j = lµ(mi)
ν lρ(mj)

σCµνρσ = 0, (4.1)

where

l2 = k2 = 0, , (k, l) = 1, , (l,mi) = (k,mi) = 0, , (mi,mj) = δij (4.2)

are a set of Newman-Penrose basis vector fields, and Cµνρσ is the bulk Weyl tensor. We

choose the basis vector fields to be

lµ =
1√
2

(

1√
f
(∂u)

µ − nµ

)

=
1√
2

(

(∂0)
µ − nµ

)

,

kµ =
1√
2

(

1√
f
(∂u)

µ + nµ

)

=
1√
2

(

(∂0)
µ + nµ

)

,

(mi)
µ = r−1e−

1

2
Φ(∂i)

µ. (4.3)

then the boundary condition becomes

C0i0j + C0ij(n) + C0ji(n) + Ci(n)j(n) = 0, (4.4)

where Cabcd, Cabc(n), Ca(n)b(n) are projections of the bulk Weyl tensor

Cabcd = γµaγ
ν
bγ

σ
cγ

ρ
dCµνσρ,

Cabc(n) = γµaγ
ν
bγ

σ
cn

ρCµνσρ,

Ca(n)b(n) = γµan
νγσcn

ρCµνσρ,

and all these can be expressed in terms of the the fundamental forms of Σc:

Cabcd = R̂abcd +KadKbc −KacKbd −
4Λ

d(d+ 1)
γa[cγd]b,

Cabc(n) = DaKbc −DbKac,

Ca(n)b(n) = −R̂ab +KKab −KacK
c
b +

2Λ

(d+ 1)
γab. (4.5)

Here, of course, R̂abcd and R̂ab are the Riemann and Ricci tensors of Σc.
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Then we rewrite the Brown-York tensor (3.5) in components

Kτ
τ =

t

d
− tττ , Kτ

i = −tτi,

Ki
j =

t

d
δij − tij , K =

t

d
.

Inserting these relations as well as (4.5) into (4.4), the boundary conditions finally become

2

λ2
tτit

τ
j +

t2

d2
γij +

2Λ

d
γij − (tττ − 2λDτ )

(

t

d
γij − tij

)

− 2

λ
D(it

τ
j) − tikt

k
j − R̂ij = 0, (4.6)

where the explicit appearance of the parameter λ comes from the rescaling of the coordinate

x0 → τ/λ which is made in (3.1).

5 Near horizon and non-relativistic limit

Now let us place the hypersurface Σc very close to the black hole event horizon at r = rh.

This means that rc − rh is a small parameter, and we take this parameter to be rc − rh =

α2λ2, where λ is the same rescaling parameter appeared in (3.1) and α is a finite constant

which must be present to balance the dimensionality. Note that such an identification

implies that the near horizon limit λ → 0 is simultaneously the non-relativistic limit. The

near horizon nature of Σc allows us to expand fc in power series of λ,

f(rc) = f ′(rh)(rc − rh) +
1

2
f ′′(rh)(rc − rh)

2 + · · ·

= f ′
h · (α2λ2) +

1

2
f ′′
h · (α2λ2)2 + · · · , (5.1)

which is crucial in the following constructions.

To realize the fluid dual of the gravitational theory, it is insufficient to consider only

the background metric. Rather, it is necessary to consider small fluctuations around the

background solution. So, on the hypersurface Σc, the metric can be expanded in power

series in λ,

γab = γ
(B)
ab +

∞
∑

n=1

γ
(n)
ab λn, (5.2)

where γ
(B)
ab represents the background metric and γ

(n)
ab are the fluctuation modes. Conse-

quently, both the Ricci curvature R̂ab and the Brown-York tensor tab will also be subject

to fluctuations, i.e.

R̂ab = R̂
(B)
ab +

∞
∑

n=1

λnR̂
(n)
ab , (5.3)

tab = t
a(B)
b +

∞
∑

n=1

λnt
a(n)
b , (5.4)

where the superscripts (B) indicate contributions from the background geometry.
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In the near horizon limit, the background contributions will also depend on the pa-

rameter λ, thanks to the expansion (5.1). So, we need to evaluate the background values

of the Brown-York and the Ricci tensors on Σc and expand the results near the horizon

r = rh. By direct calculations, we can get

Kτ
τ =

f ′
c

2
√
fc

, Kτ
i = 0

Ki
j =

√
fc
rc

δij , K =
f ′
c

2
√
fc

+
d
√
fc

rc
. (5.5)

These in turn lead to the background Brown-York tensor

tτ(B)
τ =

d
√
fc

rc
,

t
τ(B)
i = 0,

t
i(B)
j =

(

f ′
c

2
√
fc

+
(d− 1)

√
fc

rc

)

δij ,

t(B) =
d

2

f ′
c√
fc

+ d2
√
fc
rc

, (5.6)

where t(B) is the trace of t
a(B)
b . Using (5.1), we have the following expansions for

√
fc
rc

and f ′

c√
fc
:

√
fc
rc

= (αλ)

√

f ′
h

rh
+

1

2
(αλ)3

√

f ′′
h

rh
+ · · · ,

f ′
c√
fc

=

√

f ′
h

αλ
+ αλ

f ′′
h

√

f ′
h

+ · · · . (5.7)

Inserting the expansions in (5.7) into (5.6) and then into (5.4), we get

tττ =
dαλ

√

f ′
h

rh
+ λtτ(1)τ + · · · ,

tτi = 0 + λt
τ(1)
i + · · · ,

tij =

(

1

2

√

f ′
h

αλ
+

αλf ′′
h

2
√

f ′
h

+
(d− 1)αλ

√

f ′
h

rh

)

δij + λt
i(1)
j + · · · ,

t = d

(

1

2

√

f ′
h

αλ
+

αλf ′′
h

2
√

f ′
h

+
dαλ

√

f ′
h

rh

)

+ λt(1) + · · · . (5.8)

We shall also make use of the ij components of the Ricci tensor R̂ab on Σc. By explicit

calculations, we find

Γ̂
τ(B)
ab = Γ̂

a(B)
τb = 0,

Γ̂
k(B)
ij =

1

2

(

δki∂jΦ+ δkj∂iΦ− δij∂
kΦ

)

,
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where Γ̂
c(B)
ab are components of the Christoffel connection under the background geometry

of Σc. It is remarkable that the components of Γ̂
c(B)
ab are independent of the position of Σc.

Consequently, the background Ricci tensor R̂
(B)
ab will also independent of rc. Explicitly,

we have

R̂(B)
τa = 0, R̂

(B)
ij = κ(d− 1)eΦδij , (5.9)

where use have been made of the equations (2.3) and (2.4). So, in the near horizon limit,

R̂
(B)
ij will not develop λ dependences. However, since the metric γab on Σc may fluctuate

due to (5.2), the fluctuation parts R̂
(n)
ab in (5.3) will in general be nonzero. Moreover, due

to the fluctuations of the metric, the covariant derivatives such as Djt
τ
k will also receive

fluctuating corrections which are at least O(λ1) because

Γ̂c
ab = Γ̂

c(B)
ab +O(λ1). (5.10)

Finally, substituting (5.8) and (5.3) (with (5.9) inserted) into (4.6), we get in the first

nontrivial order λ(0) the following identity,
√

f ′
h

α
t
i(1)
j = 2γik(0)t

τ(1)
k t

τ(1)
j − 2γik(0)ζkj +

√

f ′
h

dα
t(1)δij , (5.11)

where we have introduced the shorthand notations

γik(0) = r−2
h e−Φδik,

ζkj = ∂(kt
τ(1)
j) − ∂(kΦt

τ(1)
j) +

1

2
δkjδ

lm∂lΦt
τ(1)
m , (5.12)

which are, respectively, the inverse of the near horizon background metric on Σc and the

leading term in D(it
τ
j):

D(it
τ
j) = λζij +O(λ2).

Some terms which ought to appear in (5.11) cancels out because

2Λ

d
+

f ′
h

rh
− κ

d− 1

r2h
= 0.

Besides eq. (5.11), which is the lowest nontrivial order of the Petrov I boundary con-

dition (4.6), we also need to consider the fluctuation modes in the covariant conservation

condition (3.6) and the Hamiltonian constraint (3.7). Using (5.8) and (5.10), we can eval-

uate the τ component of (3.6), which reads

Dat
a
τ = ∂τ t

τ
τ + ∂it

i
τ + Γ̂i

ijt
j
τ

= − 1

λ

[

γij(0)
(

∂i +
d− 2

2
∂iΦ

)

t
τ(1)
j

]

+O(λ−1). (5.13)

Therefore, at order λ−1, we get

δij
(

∂i +
d− 2

2
∂iΦ

)

t
τ(1)
j = 0. (5.14)
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Similarly, we can also evaluate the spatial components of (3.6), which yields, at the first

nontrivial order O(λ1), the following equation,

∂τ t
τ(1)
i − 1

2
(t(1) − tτ(1)τ )∂iΦ+

(

∂j +
d

2
∂jΦ

)

t
j(1)
i = 0. (5.15)

The first non-vanishing order of the Hamiltonian constraint is at O(λ0):

tτ(1)τ = −2γij(0)t
τ(1)
i t

τ(1)
j . (5.16)

In the next section we will show that the equations (5.11), (5.14), (5.15) and (5.16) give

rise to the Navier-Stokes equation of a forced, stationary and compressible fluid system.

6 Dual fluid in flat space

In this section we study the dual fluid equations that arise from the fluctuation modes

described in the last section. For this purpose, we need to insert (5.11) into (5.15) and

simplify the result. The term ∂jt
j(1)
i can be evaluated as follows,

∂jt
j(1)
i =

α
√

f ′
h

∂j
(

2γjk(0)t
τ(1)
k t

τ(1)
i

)

− α
√

f ′
h

∂j
(

2γjk(0)ζki
)

+
1

d
∂it

(1), (6.1)

where

∂j
(

2γjk(0)t
τ(1)
k t

τ(1)
i

)

= −dγjk(0)∂jΦt
τ(1)
k t

τ(1)
i + 2γjk(0)t

τ(1)
j ∂kt

τ(1)
i , (6.2)

and

∂j
(

2γjk(0)ζki
)

= ∂i(γ
jk(0)∂jt

τ(1)
k ) + γjk(0)(∂j∂k − ∂j∂kΦ− 2∂jΦ∂k + ∂jΦ∂kΦ)t

τ(1)
i . (6.3)

Inserting (6.2) and (6.3) into (6.1), we get

∂jt
j(1)
i =

α
√

f ′
h

(

− dγjk(0)∂jΦt
τ(1)
k t

τ(1)
i + 2γjk(0)tτj∂kt

τ(1)
i − ∂i(γ

jk(0)∂jt
τ(1)
k )

− γjk(0)(∂j∂k − ∂j∂kΦ− 2∂jΦ∂k + ∂jΦ∂kΦ)t
τ(1)
i

)

+
1

d
∂it

(1). (6.4)

Substituting (6.4) as well as (5.11), (5.12) and (5.16) into (5.15), we get

∂τ t
τ(1)
i +

1

d
∂it

(1) + r−2
h e−Φδjk

[

2t
τ(1)
k ∂jt

τ(1)
i − ∂j∂kt

τ(1)
i − 2t

τ(1)
j t

τ(1)
k ∂iΦ

+

(

∂j∂kΦ− d− 4

2
∂jΦ∂k +

d− 2

2
∂jΦ∂kΦ

)

t
τ(1)
i

−∂jΦ∂it
τ(1)
k +

d− 2

2
(t

τ(1)
k ∂j − ∂jΦt

τ(1)
k )∂iΦ

]

= 0, (6.5)

where we have chosen α =
√

f ′
h to eliminate the constant factors such as α√

f ′

h

.

Unlike the usual construction of fluid dual, we would like to interpret eqs. (5.14)

and (6.5) as the continuity and the Navier-Stokes equations respectively in a flat Euclidean
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space with spatial coordinates xi. To achieve this, let us first rewrite (5.14) in the follow-

ing form:

∂j

(

e
d−2

2
Φt

τ(1)
j

)

= 0. (6.6)

Adopting the following “holographic dictionary”

ρ = r2he
d

2
Φ, µ = e

d−2

2
Φ, ν =

µ

ρ
= r−2

h e−Φ, (6.7)

and

t
τ(1)
i =

vi
2ν

,
t(1)

d
=

p

2µ
, (6.8)

where ρ, µ, vi, p are respectively the density, viscosity, velocity field and the pressure of the

dual fluid (ν is the kinematic viscosity), then eq. (6.6) becomes the continuity equation

∂j(ρvj) = 0, (6.9)

and eq. (6.5) becomes the standard Navier-Stokes equation

ρ(∂τvi + vj∂jvi) = −∂ip+ ∂jdij + fi (6.10)

for the velocity field of the fluid, where the symmetric traceless tensor

dij = µ

(

∂jvi + ∂ivj −
2

d
δij∂

kvk

)

(6.11)

represents the deviatoric stress, which depends only on the derivatives of the velocity field

and hence vanishes in the hydrostatic equilibrium limit, and

fi = ∂jΦ

(

dij +
d− 2

2
pδij

)

+
2

d
vjvj∂iρ−

2

d
(vj∂

jρ)vi (6.12)

represents a body force. It is easy to identify the last term in (6.12) as a linear resistance

force, which is proportional to the velocity field vi and to the directional gradient of the

density of the fluid. The first two terms in (6.12) look unusual, because the factor ∂jΦ

actually is proportional to the gradient of the logarithm of the density of the fluid. Despite

the unusual form of the body force, the equations (6.9) and (6.10) constitute the complete

system of equations governing the motion of a compressible, forced, stationary and viscous

fluid moving in the (d+ 1)-dimensional Newtonian spacetime R× E
d.

7 Concluding remarks

Unlike the ordinary Gravity/Fluid correspondence in which the dual fluid always lives

on an equipotential hypersurface (usually taken to be a near horizon hypersurface) and

is always incompressible, we have constructed fluid dual in a Newtonian spacetime with

one less dimension as compared to the gravity system. It looks striking to realize such

kind of a holographic dual, because the dual system does not even live on the boundary

of the gravitational system. Some of the distinguished features of our construction are

summarized below:
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• The holographic screen, if one prefers to speak so, is not (necessarily) a boundary of

the bulk spacetime. The dual system lines in a flat Newtonian spacetime even if the

black hole horizon in the bulk is curved;

• The dual fluid is compressible but stationary, i.e. the density distribution does not

change with time;

• The dual system possesses a non-constant viscosity;

• The dual fluid is subject to both the surface stress and a body force, even though

the gravity side is free of source.

Going through the construction process, it is clear that our result depends heavily on

the fact that the “angular part” of the black hole solution possesses a conformally flat

geometry. This is the case for all maximally symmetric solutions of Einstein equation in

any dimension as well as all solutions of Einstein equation in the case of d = 2 (i.e. four

dimensional spacetime) — in the latter case, the angular part is two dimensional and it

is known that any two dimensional manifold is conformally flat. To be more concrete, we

would like to present the explicit value of the conformal factor eΦ in the case of arbitrary

d ≥ 2 with κ = 1. In this case, we have

eΦ(x) =
1

(

1 + 1
4

∑

i x
2
i

)2 .

For the particular choice d = 2, eΦ is given by the solutions of the Liouville (or Laplacian)

equation (2.5), and there are infinitely many different solutions to such equations.

Clearly, much has been left to do following this work. The first question to be an-

swered is whether similar construction works in the case of other background geometries

or starting from other (extended) theories of gravity (ether with or without source fields).

Meanwhile, we have chosen to make a near horizon expansion in the intermediate steps of

the construction. Whether the near horizon condition is absolutely required is in question,

because there are already a number of examples in the ordinary Gravity/Fluid correspon-

dence in which the holographic screen is not taken as a near the horizon hypersurface but

rather as a finite cutoff surface [21, 24, 42]. If all these proves to be working, then a fur-

ther step will be asking whether holographic duality beyond the class of bulk/boundary

correspondence can be worked out in more general settings such as Gravity/Condensed

Matter Theory or Gravity/QCD correspondences etc. We hope we could have more to say

following these lines shortly.
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