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1 Introduction

Entanglement entropy has been extensively studied during the last decade and its important

role in quantum gravity, quantum field theory and condensed matter physics is widely

recognized.

Given a quantum system in its ground state |ψ〉 and assuming that its Hilbert space can

be decomposed as H = HA⊗HB, one can introduce the reduced density matrix ρA ≡ TrBρ

by tracing over HB the density matrix ρ = |ψ〉〈ψ| of the whole system. Here we focus on

a bipartition of the Hilbert space associated with a separation of a spatial slice into two

complementary regions. The entanglement entropy is the Von Neumann entropy associated
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with ρA, namely SA ≡ −TrA(ρA log ρA), and it measures the entanglement between A and

B. In the same way, one can introduce ρB ≡ TrAρ and SB. Since ρ is a pure state, we

have that SB = SA. Understanding the dependence of SA on the geometry of the region

A is an important task.

Let us consider a conformal field theory in D + 1 dimensions at zero temperature in

its ground state. The entanglement entropy SA between a D dimensional spatial region

A and its complement B can be written as an expansion in the ultraviolet cutoff ε, where

the leading divergence is SA ∝ Area(∂A)/εD−1 + . . . [1, 2]. This behaviour is known as

the area law for the entanglement entropy and ∂A is sometimes called entangling surface.

When D = 1 and the domain A is an interval, ∂A is made by its two endpoints and the

area law is violated because the leading divergence is logarithmic. In particular, SA =

(c/3) log(`/ε) + const, where c is the central charge of the model [3, 4].

By virtue of the holographic correspondence [5–7] (see [8] for a review), the entangle-

ment entropy SA of a conformal field theory in a D + 1 dimensional Minkowski spacetime

can be also calculated from its dual gravitational model defined in a D + 2 dimensional

asymptotically anti-De Sitter (AdS) spacetime whose boundary is the spacetime of the

original conformal field theory. In the regime where it is enough to consider only classical

gravity, the holographic prescription to compute the entanglement entropy is [9, 10]

SA =
AA

4GN
, (1.1)

where GN is the D+2 dimensional Newton constant and AA is the area of the codimension

two minimal area spacelike surface γ̃A at some fixed time slice such that ∂γ̃A = ∂A. Since

γ̃A reaches the boundary of the asymptotically AdSD+2 spacetime, its area AA is divergent

and therefore it must be regularized through the introduction of a cutoff ε in the holographic

direction, which corresponds to the ultraviolet cutoff of the dual conformal field theory.

The leading divergence of (1.1) as ε→ 0 provides the area law of the entanglement entropy.

The covariant generalization of (1.1) has been proposed in [11] and it has been extensively

employed to study holographic models of thermalization. Recent reviews on entanglement

entropy in quantum field theory and holography are [12–14].

The minimal area surfaces anchored on a given curve defined on the boundary of

AdSD+2 occur also in the holographic dual of the expectation values of the Wilson loops [15,

16]. Nevertheless, while the bulk surfaces for the Wilson loops are always two dimensional,

for the holographic entanglement entropy they have codimension two. Thus, when D = 2

the minimal surfaces to compute for the holographic entanglement entropy (1.1) are the

same ones occurring in the gravitational counterpart of the correlators of spacelike Wilson

loops.

As for the dependence of AA on the geometry of ∂A, analytic results have been found

for the infinite strip and for the sphere when D is generic [9, 10]. Spherical domains

play a particular role because their reduced density matrix can be related to a thermal

one [17]. When D = 2, the O(1) term in the expansion of SA as ε→ 0 for circular domains

provides the quantity F , which decreases along any renormalization group flow [18–20].
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Some interesting results have been found about AA for an entangling surface ∂A with a

generic shape [21–28], but a complete understanding is still lacking.

When A = A1 ∪ A2 is made by two disjoint spatial regions, an important quantity to

study is the mutual information

IA1,A2 ≡ SA1 + SA2 − SA1∪A2 . (1.2)

It is worth remarking that SA1∪A2 provides the entanglement between A1 ∪ A2 and the

remaining part of the spatial slice. In particular, it does not quantify the entanglement

between A1 and A2, which is measured by other quantities, such as the logarithmic nega-

tivity [29–32]. In the combination (1.2), the area law divergent terms cancel and the sub-

additivity of the entanglement entropy guarantees that IA1,A2 > 0. For two dimensional

conformal field theories, the mutual information depends on the full operator content of

the model [33–39]. When D > 2, the computation of (1.2) is more difficult because non

local operators must be introduced along ∂A [40–44].

The holographic mutual information is (1.2) with SA given by (1.1). The crucial term

to evaluate is SA1∪A2 , which depends on the geometric features of the entangling sur-

face ∂A = ∂A1 ∪ ∂A2, including also the distance between A1 and A2 and their relative

orientation, being ∂A made by two disjoint components. It is well known that, keeping

the geometry of A1 and A2 fixed while their distance increases, the holographic mutual

information has a kind of phase transition with discontinuous first derivative, such that

IA1,A2 = 0 when the two regions are distant enough. This is due to the competition between

two minima corresponding to a connected configuration and to a disconnected one. While

the former is minimal at small distances, the latter is favoured for large distances, where

the holographic mutual information therefore vanishes [45–47]. This phenomenon has been

also studied much earlier in the context of the gravitational counterpart of the expectation

values of circular spacelike Wilson loops [48–51]. The transition of the holographic mutual

information is a peculiar prediction of (1.1) and it does not occur if the quantum correc-

tions are taken into account [52]. A similar transition due to the competition of two local

minima of the area functional occurs also for the holographic entanglement entropy of a

single region at finite temperature [53–55].

In this paper we focus on D = 2 and we study the shape dependence of the holographic

entanglement entropy and of the holographic mutual information (1.1) in AdS4, which is

dual to the zero temperature vacuum state of the three dimensional conformal field theory

on the boundary. This reduces to finding the minimal area surface γ̃A spanning a given

boundary curve ∂A (the entangling curve) defined in some spatial slice of the boundary of

AdS4. The entangling curve ∂A could be made by many disconnected components. When

∂A consists of one or two circles, the problem is analytically tractable [9, 10, 15, 56–60].

However, for an entangling curve having a generic shape (and possibly many components),

finding analytic solutions becomes a formidable task. In order to make some progress, we

tackle the problem numerically with the help of Surface Evolver [61, 62], a widely used open

source software for the modelling of liquid surfaces shaped by various forces and constraints.

A section at constant time of AdS4 gives the Euclidean hyperbolic space H3. Once the curve

embedded in H3 is chosen, this software constructs a triangular mesh which approximates
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the surface spanning such curve which is a local minimum of the area functional, computing

also the corresponding finite area. The number of vertices V , edges E and faces E of the

mesh are related via the Euler formula, namely V − E + F = χ, being χ = 2− 2g − b the

Euler characteristic of the surface, where g is its genus and b the number of its boundaries.

In this paper we deal with surfaces of genus g = 0 with one or more boundaries.

The paper is organized as follows. In section 2 we state the problem, introduce the

basic notation and review some properties of the minimal surfaces occurring in our com-

putations. In section 3 we address the case of surfaces spanning simply connected curves.

First we review two analytically tractable examples, the circle and the infinite strip; then

we address the case of some elongated curves (i.e. ellipse, superellipse and the boundary

of the two dimensional spherocylinder) and polygons. Star shaped and non convex do-

mains are also briefly discussed. In section 4 we consider ∂A made by two disjoint curves.

The minimal surface spanning such disconnected curve can be either connected or dis-

connected, depending on the geometrical features of the boundary, including the distance

between them and their relative orientation. The cases of surfaces spanning two disjoint

circles, ellipses, superellipses and the boundaries of two dimensional spherocylinders are

quantitatively investigated for a particular relative orientation. Further discussions and

technical details are reported in the appendices.

2 Minimal surfaces in AdS4

Finding the minimal area surface spanning a curve is a classic problem in geometry and

physics. In R3 this is known as Plateau’s problem. A physical realization of the problem

is obtained by dipping a stiff wire frame of some given shape in soapy water and then

removing it: as the energy of the film is proportional to the area of the water/air interface,

the lowest energy configuration consists of a surface of minimal area. In this mundane

setting, the requirement of minimal area results into a well known equation

H = 0 , (2.1)

where H = kii/2 is the mean-curvature given by the trace of the extrinsic curvature tensor

kij = ei,j ·N , with N the surface normal vector, ei a generic tangent vector, such that the

surface metric tensor is hij = ei · ej , and ( · ),i = ∂i( · ).
The metric of AdS4 in Poincaré coordinates reads

ds2 =
−dt2 + dx2 + dy2 + dz2

z2
, (2.2)

where the AdS radius has been set to one for simplicity. The spatial slice t = const

provides the Euclidean hyperbolic space H3 and the region A is defined in the z = 0 plane.

According to the prescription of [9, 10], to compute the holographic entanglement entropy,

first we have to restrict ourselves to a t = const slice and then we have to find, among all

the surfaces γA spanning the curve ∂A, the one minimizing the area functional

A[γA] =

∫

γA

dA =

∫

UA

√
h du1du2

z2
, (2.3)
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where UA is a coordinate patch associated with the coordinates (u1, u2) and h = det(hij).

We denote by γ̃A the area minimizing surface, so that A[γ̃A] ≡ AA provides the holographic

entanglement entropy through the Ryu-Takayanagi formula (1.1). Since all the surfaces γA
reach the boundary of AdS4, their area is divergent and therefore one needs to introduce

a cutoff in the holographic direction to regularize it, namely z > ε > 0, where ε is an

infinitesimal parameter. The holographic dictionary tells us that this cutoff corresponds

to the ultraviolet cutoff in the dual three dimensional conformal field theory. Considering

z > ε > 0, the area A[γA] and therefore AA as well become ε dependent quantities which

diverge when ε → 0. Important insights can be found by writing AA as an expansion for

ε→ 0. When ∂A is a smooth curve, this expansion reads

AA =
PA
ε
− FA + o(1) , (2.4)

where PA = length(∂A) is the perimeter of the entangling curve and o(1) indicates vanishing

terms when ε → 0. When the entangling curve curve ∂A contains a finite number of

vertices, also a logarithmic divergence occurs, namely

AA =
PA
ε
−BA log(PA/ε)−WA + o(1) . (2.5)

The functions FA, BA and WA are defined through (2.4) and (2.5). They depend on the

geometry of ∂A in a very non trivial way. We remark that the section of γ̃A at z = ε provides

a curve which does not coincide with ∂A because of the non trivial profile of γ̃A in the bulk.

As the area element in AdS4 is factorized in the form dA = du1du2
√
h/z2, a surface in

AdS4 is equivalent to a surface in R3 endowed with a potential energy density of the form

1/z2. By using the standard machinery of surface geometry (see section A), one can find

an analog of (2.1) in the form

H +
ẑ ·N
z

= 0 , (2.6)

where ẑ is a unit vector in the z direction. The relation (2.6) implies that, in order for the

mean curvature to be finite, the surface must be orthogonal to the (x, y) plane at z = 0:

i.e. ẑ ·N = 0 at z = 0. As a consequence of the latter property, the boundary is also a

geodesic of γ̃A (see section A).

3 Simply connected regions

In this section we consider cases in which the region A is a simply connected domain.

We first review the simple examples of the disk and of the infinite strip, which can be

solved analytically [9, 10]. In section 3.1 we numerically analyze the case in which A is

an elongated region delimited by either an ellipse, a superellipse or the boundary of a

two dimensional spherocylinder, while in section 3.2 we address the case in which ∂A is a

regular polygon. In section 3.3, star shaped and non convex domains are briefly discussed.

If A is a disk of radius R, the minimal area surface γ̃A is a hemisphere, as it can be

easily proved from a direct substitution in (2.6). Taking N = r/|r|, with r = (x, y, z)

and |r| = R, one finds ẑ ·N = z/R, hence H = −1/R, which is the mean curvature of
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a sphere whose normal is outward directed. The area of the part of the hemisphere such

that ε 6 z 6 R is

AA =
2πR

ε
− 2π . (3.1)

Comparing this expression with (2.4), one finds that FA = 2π in this case. It is worth

remarking , as peculiar feature of the disk, that in (3.1) o(1) terms do not occur.

A special case of (2.6) is obtained when the surface is fully described by a function

z = z(x, y) representing the height of the surface above the (x, y) plane at z = 0. In this case

A[γA] =

∫

γA

1

z2

√
1 + z2,x + z2,y dxdy , (3.2)

and (2.6) becomes the following second order non linear partial differential equation for z

(see section A for some details on this derivation)

z,xx(1 + z2,y) + z,yy(1 + z2,x)− 2z,xyz,xz,y +
2

z
(1 + z2,x + z2,y) = 0 , (3.3)

with the boundary condition that z = 0 when (x, y) ∈ ∂A. The partial differential equa-

tion (3.3) is very difficult to solve analytically for a generic curve ∂A; but for some domains

A it reduces to an ordinary differential equation. Apart from the simple hemispherical case

previously discussed, this happens also for an infinite strip A = {(x, y) ∈ R2, |y| 6 R2},
whose width is 2R2. The corresponding minimal surface is invariant along the x axis and

therefore it is fully characterized by the profile z = z(y) for |y| 6 R2. Taking z,x = 0

in (3.3) yields

z,yy +
2

z
(1 + z2,y) = 0 . (3.4)

Equivalently, the infinite strip case can be studied by considering the one dimensional prob-

lem obtained substituting z = z(y) directly in (3.2) [8–10]. Since the resulting effective

Lagrangian does not depend on y explicitly, one easily finds that z2
√

1 + z2,y is independent

of y. Taking the derivative with respect to y of this conservation law, (3.4) is recovered,

as expected. The constant value can be found by considering y = 0, where z(0) ≡ z∗
and z,y(0) = 0. Notice that z∗ is the maximal height attained by the curve along the z

direction. Integrating the conservation law, one gets

y(z) =

√
π Γ(3/4)

Γ(1/4)
z∗ −

z3

3z2∗
2F1

(
1

2
,
3

4
;
7

4
;
z4

z4∗

)
, z∗ =

Γ(1/4)√
π Γ(3/4)

R2 , (3.5)

where Γ is the Euler gamma and 2F1 is the hypergeometric function. Thus, the minimal

surface γ̃A consists of a tunnel of infinite length along the x direction, finite width R2 along

the y direction and whose shape in the (y, z) plane is described by (3.5). Considering a

finite piece of this surface which extends for R1 � R2 in the x direction, whose projection

on the (x, y) plane is delimited by the dashed lines in the bottom panel of figure 1, its area

is given by [9, 10, 15, 16]

AA =
4R1

ε
− R1s∞

R2
+ o(1) , s∞ ≡

8π3

Γ(1/4)4
, (3.6)

– 6 –



J
H
E
P
0
2
(
2
0
1
5
)
0
0
5

where ε 6 z 6 z∗. Comparing (2.4) with PA = 4R1 and (3.6), one concludes that

FA = s∞R1/R2.

In order to compare (3.6) with our numerical results, we find it useful to construct

an auxiliary surface by closing this long tunnel segment with two planar “caps” placed at

x = ±R1, whose profile is described in the (y, z) plane by (3.5), with a cutoff at z = ε.

These regions are identical by construction and their area (see section D.1) is given by

Acap = 2R2/ε− π/2 + o(1). Thus, the total area of the auxiliary surface reads

AA + 2Acap =
4(R1 +R2)

ε
− R1s∞

R2
− π + o(1) , (3.7)

where the coefficient of the leading divergence is the perimeter of the rectangle in the

boundary (dashed curve in figure 1). It is worth remarking that this surface is not the

minimal area surface anchored on the dashed rectangle in figure 1. Indeed, in this case an

additional logarithmic divergence occurs (see section 3.2).

Since in the following we will compute numerically AA for various domains keeping ε

fixed, let us introduce

F̃A ≡ −
(
AA −

PA
ε

)
. (3.8)

From (2.4) one easily observes that F̃A = FA + o(1) when ε→ 0. Notice that for the disk

we have F̃A = FA.

In figure 2 the values of F̃A for the surfaces discussed above are represented together

with other ones coming from different curves that will be introduced in section 3.1: the black

dot corresponds to the disk (see (3.1)), the dotted horizontal line is obtained from (3.6) for

the infinite strip, while the dashed line is found from the area (3.7) of the auxiliary surface.

3.1 Superellipse and two dimensional spherocylinder

The first examples of entangling curves ∂A we consider for which analytic expressions of

the corresponding minimal surfaces are not known are the superellipse and the boundary

of the two dimensional spherocylinder, whose geometries depend on two parameters. The

two dimensional spherocylinder nicely interpolates between the circle and the infinite strip.

In Cartesian coordinates, a superellipse centered in the origin with axes parallel to the

coordinate axes is described by the equation

|x|n
Rn1

+
|y|n
Rn2

= 1 , R1 > R2 > 0 , n > 2 , (3.9)

where R1, R2 and n are real and positive parameters. The curve (3.9) is also known as

Lamé curve and here we consider only integers n > 2 for simplicity. The special case n = 2

in (3.9) is the ellipse with semi-major and semi-minor axes given by R1 and R2 respectively.

As the positive integer n increases, the superellipse approximates the rectangle with sides

2R1 and 2R2. When R1 = R2, the curves (3.9) for various n are known as squircles

because they have intermediate properties between the ones of a circle (n = 2) and the

ones of a square (n → ∞). In the bottom panel of figure 1, we show some superellipses

– 7 –
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x

y

z

x

y

R1

R2

Figure 1. Top panel: minimal surfaces constructed by using Surface Evolver where the entangling

curve ∂A is a circle with radius R = 1 (red), an ellipse (orange), a superellipse (3.9) with n = 8

(purple) and the boundary of a spherocylinder (green) with R1 = 3R2. The cutoff is ε = 0.03 and

only the y > 0 part of the minimal surfaces has been depicted to highlight the curves provided by

the section y = 0. Bottom panel: in the (x, y) plane, we show the superellipses with R1 = 3R2

with n = 2 (orange), n = 4 (blue), n = 6 (magenta) and n = 8 (purple), the circle with radius R1

(red curve) and the rectangle circumscribing the superellipses (dashed lines). The green curve is

the boundary of the two dimensional spherocylinder with R2 = 3R1.

with R1 = 3R2, the circle with radius R1 included in all the superellipses and the rectangle

circumscribing them.

In order to study the interpolation between the circle and the infinite strip, a useful

domain to consider is the two dimensional spherocylinder. The spherocylinder (also called

capsule) is a three dimensional volume consisting of a cylinder with hemispherical ends.

Here we are interested in its two dimensional version, which is a rectangle with semicircular

caps. In particular, the two dimensional spherocylinder circumscribed by the rectangle with

sides 2R1 and 2R2 is defined as the set S ≡ D ∪ C+ ∪ C−, where the rectangle D and the

– 8 –
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ellipse

spherocylinder

superellipse n = 4

superellipse n = 6

superellipse n = 8

superellipse n = 3

R2

R1

�FA

R1/R2

R2 = 2 R2 = 1

circle

Figure 2. Numerical data for F̃A, defined in (3.8), corresponding to domains A which are two

dimensional spherocylinders or delimited by superellipses. Here ε = 0.03. In the main plot R2 = 1,

while in the inset, which shows a zoom of the initial part of the main plot in logarithmic scale on

both the axes, we have also reported data with R2 = 2. The horizontal dotted black line corresponds

to the infinite strip (3.6) and the dashed one to the auxiliary surface where the sections at x = ±R1

have been added (see (3.7)). The red and blue dotted horizontal lines come from the asymptotic

result (C.10) evaluated for n = 2 and n = 3 respectively.

disks C± are

D ≡
{

(x, y) , |y| 6 R2 , |x| 6 R1 −R2

}
, C± ≡

{
(x, y) ,

[
x± (R1 −R2)

]2
+ y2 6 R2

}
.

(3.10)

The perimeter of this domain is PA = 2πR2 + 4(R1 − R2) and an explicit example of ∂S
with R2 = 3R1 is given by the green curve in the bottom panel of figure 1. When R1 = R2,

the curve ∂S becomes a circle, while for R1 � R2 it provides a kind of regularization of

the infinite strip. Indeed, when R1 →∞ at fixed R2 the two dimensional spherocylinder S
becomes the infinite strip with width 2R2. Let us remark that the curvature of ∂S is discon-

tinuous while the curvature of the superellipse (3.9) is continuous. Moreover, the choice to

regularize the infinite strip through the circles C± in (3.10) is arbitrary; other domains can

be chosen (e.g. regions bounded by superellipses) without introducing vertices in the en-

tangling curve. A straightforward numerical analysis allows to observe that a superellipses

with n > 2 intersects once the curve ∂S in the first quadrant outside the Cartesian axes.

In figure 2 we show the numerical data for F̃A, defined in (3.8), when A is given by

the domains discussed above: disk, infinite strip, two dimensional spherocylinder and two

dimensional regions delimited by superellipses. In particular, referring to the bottom panel

– 9 –
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of figure 1, we fixed R2 and increased R1. For the two dimensional spherocylinder, this

provides an interpolation between the circle and the infinite strip. Surface Evolver has

been employed to compute the area AA and for the cutoff in the holographic direction we

choose ε = 0.03. Below this value, the convergence of the local minimization algorithm

employed by Surface Evolver becomes problematic, as well as for too large domains A, as

discussed in section B.

When R1 = R2, we observe that F̃A for the squircles with different n > 2 increases

with n. For large R1/R2, the limits of F̃A/(R1/R2) for the domains we address are finite

and positive. The values of these limits associated with the superellipses are ordered in the

opposite way in n with respect to the starting point at R1 = R2 and therefore they cross

each other as R1/R2 increases. We remark that the curve corresponding to the two dimen-

sional spherocylinder stays below the ones associated with the superellipses for the whole

range of R1/R2 that we considered. In figure 2 the horizontal black dotted line corresponds

to the infinite strip (see (3.6)) while the dashed curve is obtained from the auxiliary surface

described above (see (3.7)). The latter one is our best analytic approximation of the data

corresponding to the two dimensional spherocylinder.

Focussing on the regime of large R1/R2, from figure 2 we observe that the asymptotic

value of F̃A/(R1/R2) for the two dimensional spherocylinder is very close to the one of

the auxiliary surface obtained from (3.7) and therefore it is our best approximation of the

result corresponding to the infinite strip. This is reasonable because the two dimensional

spherocylinder is a way to regularize the infinite strip without introducing vertices in the

entangling curve, as already remarked above. As for the minimal surfaces spanning a

superellipse with a given n > 2, in section C an asymptotic lower bound is obtained

(see (C.10)), generalizing the construction of [28]. In figure 2 this bound is shown explicitly

for n = 2 and n = 3 (red and blue dotted horizontal lines respectively). Since this value

is strictly larger than the corresponding one associated with the infinite strip (see (3.6)),

we can conclude that F̃A/(R1/R2) for the superellipse at fixed n does not converge to the

value s∞ associated with the infinite strip.

3.2 Polygons

In this section we consider the minimal area surfaces associated with simply connected

regions A whose boundary is a convex polygon with N sides. These are prototypical

examples of minimal surfaces spanning entangling curves with geometric singularities. For

quantum field theory results about the entanglement entropy of domains delimited by such

curves, see e.g. [63–65].

The main feature to observe about the area AA of the minimal surface is the occurrence

of a logarithmic divergence, besides the leading one associated with the area law, in its

expansion as ε→ 0. We find it convenient to introduce

B̃A ≡
1

log(ε/PA)

(
AA −

PA
ε

)
. (3.11)

Since (2.5) holds in this case, we have that B̃A = BA + o(1).
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Figure 3. Minimal area surfaces constructed with Surface Evolver whose ∂A is a polygon with three

(left), four (middle) and eight (right) sides. The red polygons ∂A lie in the plane at z = 0 and the

z axis points downward but, according to our regularization, the triangulated surfaces are anchored

to the same polygons at z = ε. The pair (V, F ) giving the number of vertices V and the number of

faces F for these surfaces is (1585, 3072) (left), (2113, 4096) (middle) and (4225, 8192) (right). The

number of edges can be found from the Euler formula with vanishing genus and one boundary.
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zz

square

triangle

octagon

Figure 4. Left: section of the minimal surfaces anchored to an equilateral triangle (red, magenta

and purple points), a square (blue points) or an octagon (green points) inscribed in a circle, as

indicated in the inset by the black line. The continuos lines are z = ρ/f0(αN ), where f0(α) is found

from (3.15) with N = 3 (red), N = 4 (blue) or N = 8 (green). The dashed black curve is the

hemisphere corresponding to the circle circumscribing the polygons at z = 0 (dashed in the inset),

while the dashed grey horizontal line corresponds to the cutoff ε = 0.03. Right: a zoom of the

left panel around the origin, placed in the common vertex of the polygons. For the triangle, three

different values of ε ∈ {0.03, 0.02, 0.01} has been considered to highlight how the agreement with

the analytic result improves as ε→ 0.

When ∂A is a convex polygon with N sides, denoting by αi < π its internal angle at

the i-th vertex, for the coefficient of the logarithmic term in (2.5) we can write

BA ≡ 2
N∑

i=1

b(αi) . (3.12)

The function b(α) has been first found in [66], where the holographic duals of the correlators

of Wilson loops with cusps have been studied, by considering the minimal surface near a

cusp whose opening angle is α. Notice that (3.12) does not depend on the lengths of the
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Figure 5. The quantity B̃A in (3.11) with AA evaluated with Surface Evolver when the entangling

curve ∂A is either an isosceles triangle whose basis has length ` (top panel) or a rhombus whose side

length is ` (bottom panel). Here ε = 0.03. The black continuous curves are obtained from (3.12)

and (3.16).

edges but only on the convex angles of the polygon. Further interesting results have been

obtained in the context of the holographic entanglement entropy [57, 67].

Introducing the polar coordinates (ρ, φ) in the z = 0 plane, one considers the domain

{|φ| 6 α/2 , ρ < L}, where L � 1. By employing scale invariance, one introduces the
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Figure 6. The quantity B̃A in (3.11) corresponding to ∂A given by polygons with N equal sides

circumscribed by a circle with radius R. The cutoff is ε = 0.03 and the values of N are indicated

above the corresponding series of data points. The black curve is given by (3.12) and (3.16).

following ansatz [66]

z =
ρ

f(φ)
, (3.13)

in terms of a positive function f(φ), which is even in the domain |φ| 6 α/2 and f → +∞ for

|φ| → α/2. Plugging (3.13) into the area functional, the problem becomes one dimensional,

similarly to the case of the infinite strip slightly discussed in section 3. Since the resulting

integrand does not depend explicitly on φ, the corresponding conservation law tells us that

(f4 + f2)/
√

(f ′)2 + f4 + f2 is independent of φ. Thus, the profile for 0 6 φ < α/2 (the

part of the surface with −α/2 < φ 6 0 is obtained by symmetry) is given by

φ =

∫ f

f0

1

ζ

[
(ζ2 + 1)

(
ζ2(ζ2 + 1)

f20 (f20 + 1)
− 1

)]− 1
2

dζ , (3.14)

being f0 ≡ f(0). When f → ∞, we require that the l.h.s. of (3.14) becomes α/2 and, by

inverting the resulting relation, one finds f0 = f0(α). In this limit the integral in (3.14)

can be evaluated analytically in terms of elliptic integrals Π and K (see section E for their

definitions) as follows

α(f0) = 2f̃0

√
1− 2f̃20
1− f̃20

[
Π
(
1− f̃20 , f̃20

)
−K

(
f̃20
)]
, f̃20 ≡

f20
1 + 2f20

∈ [0, 1/2] . (3.15)

Notice that when f0 → 0 we have α→ π, which means absence of the corner, while α→ 0

for f0 →∞.
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As for the area of the minimal surface given by (3.13), one finds that

b(α) ≡
∫ ∞

0

(
1−

√
ζ2 + f20 + 1

ζ2 + 2f20 + 1

)
dζ =

E
(
f̃20
)
−
(
1− f̃20

)
K
(
f̃20
)

√
1− 2f̃20

, (3.16)

where f0 = f0(α) can be found by inverting numerically (3.15). The function (3.16) has a

pole when α→ 0 (in particular, b(α) = Γ(34)4/(πα)+ . . . ) while b(π) = 0, which is expected

because α = π means no cusp and the logarithmic divergence does not occur for smooth

entangling curves.

An interesting family of curves to study is the one made by the convex regular polygons.

They are equilateral, equiangular and all vertices lie on a circle. For instance, a rhombus

does not belong to this family. Denoting by R the radius of the circumscribed circle and

by N the number of sides, the length of each side is ` = 2R sin(π/N) and all the internal

angles are αN ≡ N−2
N π. When N →∞ we have that αN → π and the polygon becomes a

circle. Thus, the area of the minimal surface spanning these regular polygons is (2.5) with

PA = N` and BA = 2Nb(αN ).

It is interesting to compare the analytic results presented above with the correspond-

ing numerical ones obtained with Surface Evolver. Some examples of minimal surfaces

anchored on curves ∂A given by a polygon are given in figure 3, where the triangulations

are explicitly shown. In figure 4 we take as ∂A an equilateral triangle, a square and an oc-

tagon which share a vertex and consider the section of the corresponding minimal surfaces

through a vertical plane which bisects the angles associated with the common vertex, as

shown in the inset of the left panel. Focussing on the part of the curves near the common

vertex, we find that the numerical results are in good agreement with the analytic expres-

sion z = ρ/f0, where f0 = f0(αN ) is obtained from (3.14). It would be interesting to find

analytic results for the profiles shown in the left panel of figure 4.

By employing Surface Evolver, we can also consider entangling curves given by poly-

gons which are not regular, as done in figure 5, where we have reported the data for B̃A
(defined in (3.11)) corresponding to the area of the minimal surfaces γ̃A when ∂A is either

an isosceles triangle (top panel) or a rhombus with side ` (bottom panel). These examples

allow us to consider also cusps with small opening angles. The size of the isosceles triangles

has been changed by varying the angles α adjacent to the basis. Thus, the limiting regimes

are the segment (α = 0) and the semi infinite strip (α = π). As for the rhombus, denoting

by α the angle indicated in the inset, its limiting regimes are the segment (α = 0) and the

square (α = π). The cutoff in the holographic direction has been fixed to ε = 0.03 (see

the discussion in section B). Increasing the size of the polygon improves the agreement

with the curve given by (3.12) and (3.16), as expected, because ε/PA gets closer to zero.

Moreover, the agreement between the numerical data and the analytic curve gets worse as

α becomes very small.

In figure 6 we report the data for B̃A found with Surface Evolver for regular polygons

with various number N of edges. The agreement with the curve given by (3.12) and (3.16)

is quite good and it improves for larger domains.
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It is worth emphasizing that, for entangling surfaces ∂A containing corners, the way we

have employed to construct the minimal surfaces with Surface Evolver (i.e. by defining ∂A

at z = ε) influences the term WA in the expansion (2.5) for the area, as already remarked

in [66].

It could be helpful to compute the length Pε of the curve defined as the section at

z = ε of the minimal surface anchored on the long segments of a large wedge with opening

angle α, which has been introduced above. From (3.13) we find that, in terms of polar

coordinates whose center is the projection of the vertex at z = ε, this curve is given by

ρ = εf(φ). Being L� 1, we find that Pε reads

Pε = 2

∫ αε/2

0

√
ρ2 + (∂φρ)2 dφ = 2ε

∫ αε/2

0

√
f2 + (∂φf)2 dφ

= 2ε

∫ L/ε

f0

√
1 + f2(∂fφ)2 df = 2L− 2f0ε+ . . . , (3.17)

where αε ' α is defined by the relation L = εf(αε/2) and in the last step a change of

variable has been performed. It is easy to observe that αε < α. Considering the integral

in the intermediate step of (3.17), one notices that it diverges because of its upper limit

of integration (see the text below (3.13)), while the lower limit of integration gives a finite

result, providing a contribution O(ε) to Pε. The expression of ∂fφ can be read from the

integrand of (3.14), finding that f2(∂fφ)2 = O(1/f6) when f → +∞. Since L/ε � 1,

by expanding the integrand in (3.17) for large f , we obtain that this integral diverges like

L/ε− f0 + . . . , where the finite term has been found numerically. As a cross check of the

finite term, we observe that f0 = 0 when α = π (see below (3.15)), as expected. Thus, we

can conclude that Pε = 2L+O(ε), being PA = 2L the length of the boundary of the wedge

at z = 0. Notice that, performing this computation for the minimal surface anchored on a

circle of radius R, which is a hemisphere, one finds that Pε = 2πR+O(ε2).

Let us remark that Pε is not related to the regularization we adopt in our numerical

analysis, as it can be realized from the right panel of figure 4. Indeed, in order to analytically

the profiles given by the numerical data in the right panel of figure 4 the ansatz (3.13)

cannot be employed and a partial differential equation must be solved.

3.3 Star shaped and non convex regions

The crucial assumption throughout the above discussions is that the minimal surface γ̃A
can be fully described by z = z(x, y), where (x, y) ∈ A. Nevertheless, there are many

domains A for which this parameterization cannot be employed because there are pairs of

different points belonging to the minimal surfaces γ̃A with the same projection (x, y) /∈ A
in the z = 0 plane. In these cases, being the analytic approach quite difficult in general, one

can employ our numerical method to find the minimal surfaces and to compute their area.

The numerical data obtained with Surface Evolver would be an important benchmark for

analytic results that could be found in the future.

An interesting class of two dimensional regions to consider is given by the star shaped

domains. A region A at z = 0 belongs to this set of domains if a point P0 ∈ A exists such
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Figure 7. Minimal surface constructed with Surface Evolver corresponding to a star convex domain

delimited by the red curve given by r(φ) = R0 + a0 cos(kφ) in polar coordinates in the z = 0 plane,

with R0 = 1, a0 = 0.7 and k = 4. Here the cutoff is ε = 0.03 and (V, F ) = (6145, 11776). Only half

of the minimal surface is shown in order to highlight the section given by the green curve.

that the segment connecting any other point of the region to P0 entirely belongs to A. As

for the minimal surface anchored on a star shaped domain A, by introducing a spherical

polar coordinates system (r, φ, θ) centered in P0 (the angular ranges are φ ∈ [0, 2π) and

θ ∈ [0, π/2]), one can parameterize the entire minimal surface. Thus, we have ρ = r sin θ

and z = r cos θ, being (ρ, φ) the polar coordinates of the z = 0 plane. Some interesting

analytic results about these domains have been already found. In particular, [22] considered

minimal surfaces obtained as smooth perturbations around the hemisphere and in [23] the

behaviour in the IR regime for gapped backgrounds [68] has been studied. Our numerical

method allows a more complete analysis because, within our approximations, we can find

(numerically) the area of the corresponding minimal surface without restrictions.

In figure 7 we show a star convex domain A delimited by the red curve at z = 0, which

does not contain vertices, and the corresponding minimal surface γ̃A anchored on it. Notice

that there are pairs of points belonging to γ̃A having the same projection (x, y) /∈ A on the

z = 0 plane. It is worth recalling that in our regularization the numerical construction of

the minimal surface with Surface Evolver has been done by defining the entangling curve

∂A at z = ε.

In order to give a further check of our numerical method, we find it useful to compare

our numerical results against the analytic ones obtained in [22], where the equation of

motion coming from (2.3) written in polar coordinates (r, φ, θ) has been linearized to second

order around the hemisphere solution with radius R, finding

r(θ, φ) = R+ a r1(θ, φ) + a2r2(θ, φ) +O(a3) , (3.18)
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Figure 8. Minimal surfaces corresponding to entangling curves ∂A at z = 0 given by (3.21) with

R = 3, k = 4, µ = 0 and for different values of the parameter a, which delimit star shaped domains

(red curves in the inset). In the inset, where the z direction points downward, we show the minimal

surfaces constructed through Surface Evolver with ε = 0.03. In the main plot, the solid curves are

their sections of the minimal surfaces of the inset at φ = π/4 (like the green curve in figure 7),

while the curves made by the empty small circles are obtained from the linearized solution of [22].

The colors in the main plot correspond to different values of a ∈ {0.2, 0.4, 0.6, 0.8} (red, green, blue

and black respectively), while in the inset a increases starting from the top left surface and going

to the top right, bottom left and bottom right ones.

where the r1(θ, φ) and r2(θ, φ) are given by [22]

r1(θ, φ) = [tan(θ/2)]k(1 + k cos θ) cos(kφ) , (3.19)

r2(θ, φ) =
[tan(θ/2)]2k

4R

{
(1+k cos θ)2+

[
µ (1+2k cos θ)+k2 cos2 θ

]
cos(2kφ)

}
, (3.20)

being k ∈ N and µ ∈ R two parameters of the linearized solution. The minimal surface

equation coming from (2.3) is satisfied by (3.18) at O(a2). Notice that r1(θ = 0, φ) =

r2(θ = 0, φ) = 0, which means that the maximum value reached by the linearized solution

along the z direction is R, like for the hemisphere. Neglecting the O(a3) terms in (3.18),

one has a surface spanning the curve r(π/2, φ) ≡ R2(φ) at z = 0, which reads

R2(φ) ≡ R+ a cos(kφ) +
a2

4R

[
1 + µ cos(2kφ)

]
. (3.21)

In figure 8 we construct the minimal surfaces providing the holographic entanglement

entropy of some examples of star shaped regions A delimited by (3.21) where R and µ are
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Figure 9. Minimal surfaces constructed with Surface Evolver corresponding to non convex domains

at z = 0 delimited by the red and blue curves, which are made by arcs of circle centered either in

the origin or in the points identified by the black dots. The green and magenta curves are sections

of the minimal surfaces anchored on the red and the blue curves respectively.

kept fixed while a takes different values, taking the φ = π/4 section of these surfaces (see

also the green curve in figure 7). Compare the resulting curves (the solid ones in the main

plot of figure 8) with the corresponding ones obtained from the second order linearized

solution (3.18) (made by the empty circles), we observe that the agreement is very good

for small values of a/R and it gets worse as a/R increases, as expected.

Our numerical method is interesting because it does not rely on any particular param-

eterization of the surface and this allows us to study the most generic non convex domain.

In figure 9 we show two examples of non convex domains A which are not star shaped:

one is delimited by the red curve and the other one by the blue curve. We could see these

domains as two two dimensional spherocylinders which have been bended in a particular

way. Constructing the minimal surfaces γ̃A anchored on their boundaries and considering

their sections given by the green and magenta curves, one can clearly observe that some

pair of points belonging to the minimal surfaces have the same projection (x, y) /∈ A on the

z = 0 plane, as already remarked above. An analytic description of these surfaces is more

difficult with respect to the minimal surfaces anchored on the boundary of star shaped

domains because it would require more patches.
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Figure 10. Minimal surface constructed with Surface Evolver for a domain A = A1∪A2 delimited

by two disjoint and equal ellipses at z = 0 (blue curves). Here ε = 0.03 and the minimal surface is

anchored on ∂A defined at z = ε, according to our regularization prescription. The minimal surface

has (V, F ) = (18936, 37616) (the number of edges E can be found from the Euler formula with

vanishing genus and two boundaries). Only half surface is shown in order to highlight the curves

given by the two sections suggested by the symmetry of the surface.

4 Two disjoint regions

In this section we discuss the main result of this paper, which is the numerical study of the

holographic mutual information of disjoint equal domains delimited by some of the smooth

curves introduced in section 3.1. For two equal disjoint ellipses, an explicit example of the

minimal surface whose area determines the corresponding holographic mutual information

is shown in figure 10.

Let us consider two dimensional domains A = A1∪A2 made by two disjoint components

A1 and A2, where each component is a simply connected domain delimited by a smooth

curve. The boundary is ∂A = ∂A1 ∪ ∂A2 and the shapes of ∂A1 and ∂A2 could be

arbitrary, but we will focus on the geometries discussed in section 3. Since the area law

holds also for SA1∪A2 and PA = PA1 + PA2 , the leading divergence O(1/ε) cancels in the

combination (1.2), which is therefore finite when ε→ 0.

Considering the mutual information (1.2) with the entanglement entropy computed

through the holographic formula (1.1), we find it convenient to introduce IA1,A2 as follows

IA1,A2 ≡
IA1,A2

4GN
, (4.1)

where GN is the four dimensional Newton constant. Since ∂A1 and ∂A2 are smooth curves,
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from (2.4) and (3.8) we have

IA1,A2 = F̃A1∪A2 − F̃A1 − F̃A2 = FA1∪A2 − FA1 − FA2 + o(1) . (4.2)

In the following we study IA1,A2 when ∂A is made either by two circles (section 4.1.2) or by

two superellipses or by the boundaries of two two dimensional spherocylinders. Once A1,

A2 and their relative orientation have been fixed, we can only move their relative distance.

A generic feature of the holographic mutual information is that it diverges when A1 and A2

become tangent, while it vanishes when the distance between A1 and A2 is large enough.

4.1 Circular boundaries

In this section we consider domains A whose boundary ∂A is made by two disjoint circles.

The corresponding disks can be either overlapping (in this case A is an annulus) [56–58]

or disjoint [59, 60].

4.1.1 Annular regions

Let us consider the annular region A bounded by two concentric circles with radii Rin <

Rout. The complementary domain B is made by two disjoint regions and, since we are in

the vacuum, SA = SB. The minimal surfaces associated with this case have been already

studied in [56, 58] as the gravitational counterpart of the correlators of spatial Wilson loops

and in [57] from the holographic entanglement entropy perspective.

In section D.2 we discuss the construction of the analytic solution in D dimensions for

completeness, but here we are interested in the D = 2 case. Because of the axial symmetry,

it is convenient to introduce polar coordinates (ρ, φ) at z = 0. Then, the profile of the

minimal surface is completely specified by a curve in the plane (ρ, z).

A configuration providing a local minimum of the area functional is made by the

disjoint hemispheres anchored on the circles with radii Rin and Rout. In the plane (ρ, z),

they are described by two arcs centered in the origin with an opening angle of π/2 (see

the dashed curve in figure 23). Another surface anchored on ∂A that could give a local

minimum of the area functional is the connected one having the same topology of a half

torus. This solution is fully specified by its profile curve in the plane (ρ, z), which connects

the points (Rin, 0) and (Rout, 0). Thus, we have two qualitatively different surfaces which are

local minima of the area functional and we have to establish which is the global minimum

in order to compute the holographic entanglement entropy. Changing the annulus A, a

transition occurs between these two types of surfaces, as we explain below. This is the first

case that we encounter of a competition between two saddle points of the area functional.

The existence of the connected solution depends on the ratio η ≡ Rin/Rout < 1. As

discussed in section D.2, a minimal value η∗ can be found such that for 0 < η < η∗ only

the disconnected configuration of two hemispheres exists, while for η∗ < η < 1, besides the

disconnected configuration, there are two connected configurations which are local minima

of the area functional (see figure 23). In the latter case, one has to find which of these

two connected surfaces has the lowest area and then compare it with the area of the two

disconnected hemispheres. This comparison provides a critical value ηc > η∗ such that
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Figure 11. Left panel: radial profiles of the connected surfaces anchored on the boundary of an

annulus A which are local minima of the area functional. Comparison between the section of the

surfaces constructed with Surface Evolver (black dots) and the analytic expressions reported in sec-

tion 4.1.1. While the external radius is kept fixed to Rout = 1, for the internal one the values Rin =

0.38 (red), 0.5 (green) and 0.7 (magenta) have been chosen. The cutoff is ε = 0.03 and, according to

our regularization prescription, ∂A has been defined at z = ε in the numerical construction. Right

panel: the sign of ∆A establishes the minimal area surface between the connected surface and the

two disjoint hemispheres. The black curve is obtained from (4.12) by varying K > 0 and it is made

by two branches joining at η = η∗, where the lower one corresponds to the connected solution which

is not the minimal one between the two connected ones. The data points have been found with Sur-

face Evolver for various annular domains. Notice that in the left panel η < ηc only for the red curve.

when η ∈ (ηc, 1) the minimal surface is given by the connected configuration, while for

η ∈ (0, ηc) the minimal area configuration is the one made by the two disjoint hemispheres.

Let us give explicit formulas about these surfaces by specifying to D = 2 the results

found in section D.2 (in order to simplify the notation adopted in section D.2, in the

following we report some formulas from that appendix omitting the index D). The profile

of the radial section of the connected minimal surface in the plane (ρ, z) is given by the

following two branches {
ρ = Rin e

−f−,K(z/ρ) ,

ρ = Rout e
−f+,K(z/ρ) ,

(4.3)

where, by introducing z̃ ≡ z/ρ, the functions f±,K(z̃) are defined as follows (from (D.11))

f±,K(z̃)≡
∫ z̃

0

λ

1+λ2

(
1± λ√

K (1+λ2)−λ4

)
dλ , 06 z̃6 z̃m , z̃2m=

K+
√
K(K+4)

2
.

(4.4)

The integral occurring in f±,K can be computed in terms of the incomplete elliptic integrals

of the first and third kind (see section E), finding

f±,K(z̃) =
1

2
log(1 + z̃2)± κ

√
1− 2κ2

κ2 − 1

[
F
(
ω(z̃)|κ2

)
−Π

(
1− κ2, ω(z̃)|κ2

)]
, (4.5)
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where we have introduced

ω(z̃) ≡ arcsin

(
z̃/z̃m√

1 + κ2(z̃/z̃m − 1)

)
, κ ≡

√
1 + z̃2m
2 + z̃2m

. (4.6)

The matching condition of the two branches (4.3) provides a relation between η > η∗ and

the constant K, namely (from (D.13))

log(η) = −
∫ z̃m

0

2λ2

(1 + λ2)
√
K(1 + λ2)− λ4

dλ = 2κ

√
1− 2κ2

κ2 − 1

(
K
(
κ2
)
−Π

(
1− κ2, κ2

))
,

(4.7)

where K(m) and Π(n,m) are the complete elliptic integrals of the first and third kind

respectively.

The relation (4.7) tells us η = η(K) and κ ∈ [1/
√

2, 1]. As discussed in section D.2,

where also related figures are given, plotting this function one gets a curve whose global

minimum tells us that η∗ = 0.367. From this curve it is straightforward to observe that, for

any given η ∈ (η∗, 1), there are two values of K fulfilling the matching condition (4.7). This

means that, correspondingly, there are two connected surfaces anchored on the same pair

of concentric circles on the boundary which are both local minima of the area functional.

We have to compute their area in order to establish which one has to be compared with

the configuration of disjoint hemispheres to find the global minimum.

Performing the following integral up to an additive constant (from (D.20) for D = 2)

∫
dz̃

z̃2
√

1 + z̃2 − z̃4/K
=

√
(z̃2m − z̃2)(z̃2m + z̃2z̃2m + z̃2)

z̃ z̃3m

+
E
(

arcsin(z̃/z̃m)|κ2
)

+ (κ2 − 1)F
(

arcsin(z̃/z̃m)|κ2
)

√
2κ2 − 1

, (4.8)

one obtains the area of the connected surface [58, 66]

Acon = 2π

(∫ z̃m

ε/Rout

dz̃

z̃2
√

1 + z̃2 − z̃4/K
+

∫ z̃m

ε/Rin

dz̃

z̃2
√

1 + z̃2 − z̃4/K

)
(4.9)

=
2π(Rin +Rout)

ε
− 4π√

2κ2 − 1

(
E
(
κ2
)
− (1− κ2)K

(
κ2
))

+O(ε) . (4.10)

Plotting the O(1) term of this expression in terms of K, it is straightforward to realize

that the minimal area surface between the two connected configurations corresponds to

the smallest value of K.

As for the area of the configuration made by two disconnected hemispheres, from (D.23)

one gets

Adis = 2π

(∫ ∞

ε/Rin

dz̃

z̃2
√

1 + z̃2
+

∫ ∞

ε/Rout

dz̃

z̃2
√

1 + z̃2

)
=

2π(Rin +Rout)

ε
−4π+O(ε) . (4.11)

We find it convenient to introduce ∆A ≡ Adis − Acon, which is finite when ε → 0. In

particular, ∆A → 2π∆R as ε → 0, where ∆R is (D.27) evaluated at D = 2. From (4.10)
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and (4.11), we have

lim
ε→0

∆A = 4π

(
E
(
κ2
)
− (1− κ2)K

(
κ2
)

√
2κ2 − 1

− 1

)
. (4.12)

Considering as the connected surface the one with minimal area, the sign of ∆A determines

the minimal surface between the disconnected configuration and the connected one and

therefore the global minimum of the area functional. The root ηc of ∆A can be found

numerically and one gets ηc = 0.419 [50, 56]. Thus, the connected configuration is minimal

for η ∈ (ηc, 1), while for η ∈ (0, ηc) the minimal area configuration is the one made by the

disjoint hemispheres.

By employing Surface Evolver, we can construct the surface anchored on the boundary

of the annulus at z = 0 which is a local minimum, compute its area and compare it with the

analytic results discussed above. This is another important benchmark of our numerical

method.

In the left panel of figure 11 we consider the profile of the connected configuration in the

plane (ρ, z). The black dots correspond to the radial section of the surface obtained with

Surface Evolver, while the solid line is obtained from the analytic expressions discussed

above. Let us recall that the triangulated surface is numerically constructed by requiring

that it is anchored to the two concentric circles with radii Rin < Rout at z = ε and not

at z = 0, as it should. Despite this regularization, the agreement between the analytic

results and the numerical ones is very good for our choices of the parameters. It is worth

remarking that, when η > η∗ and therefore two connected solutions exist for a given η,

Surface Evolver finds the minimal area one between them. Nevertheless, it is not able to

establish whether it is the global minimum. Indeed, for example, the red curve in the left

panel of figure 11 has η∗ < η < 1 and therefore the corresponding surface is minimal but it

is not the global minimum. Instead, considering an annulus with η < η∗, even if one begins

with a rough triangulation of a connected surface, Surface Evolver converges towards the

configuration made by the two disconnected hemispheres.

In the right panel of figure 11 we compare the values of ∆A obtained with Surface

Evolver with the analytic curve from (4.12), finding a very good agreement. Numerical

points having η∗ < η < ηc are also found, for the reason just explained.

4.1.2 Two disjoint disks

In this section we consider domains A made by two disjoint disks by employing the analytic

results for the annulus reviewed in section 4.1.1 and some isometries of H3. This method

has been used in [69] for the case of a circle, while the case of two disjoint circles has

been recently studied in [59, 60]. The analytic results found in this way provide another

important benchmark for the numerical data obtained with Surface Evolver.

Let us consider the following reparameterizations of H3, which correspond to the special

conformal transformations on the boundary [69]

x̃ =
x+ bx(|v|2 + z2)

1 + 2b · v + |b|2(|v|2 + z2)
, ỹ =

y + by(|v|2 + z2)

1 + 2b · v + |b|2(|v|2 + z2)
,
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Figure 12. The connected surface anchored on the boundary of an annulus at z = 0 (top left panel),

which is a local minimum of the area functional, can be mapped through (4.13) into one of the

connected surfaces anchored on the configurations of circles at z = 0 shown in the remaining panels,

depending on the value of the parameter of the transformation (4.13), as discussed in section 4.1.2.

The mapping preserves the color code. The green circle in the top left panel corresponds to the

matching of the two branches given by (4.3) and (4.7) (see the point Pm in figure 23) and it is

mapped into the vertical circle in the bottom right panel.

z̃ =
z

1 + 2b · v + |b|2(|v|2 + z2)
, (4.13)

being b ≡ (bx, by) a vector in R2 and v ≡ (x, y).

When z = 0 in (4.13), the maps (x, y) → (x̃, ỹ) are the special conformal transforma-

tions of the Euclidean conformal group in two dimensions. These transformations in the

z = 0 plane send a circle C with center c = (cx, cy) and radius R into another circle C̃ with

center c̃ = (c̃x, c̃y) and radius R̃ which are given by

c̃i =
ci + bi(|c|2 −R2)

1 + 2b · c + |b|2(|c|2 −R2)
i ∈ {x, y} , R̃ =

R∣∣1 + 2b · c + |b|2(|c|2 −R2)
∣∣ .

(4.14)

Notice that the center c̃ is not the image of the center c under (4.13) with z = 0. Moreover,

when c is such that the denominator in (4.14) vanishes, the circle is mapped into a straight

line [69].

Considering two concentric circles at z = 0 with radii Rin < Rout, their images are two

different circles at z = 0 which do not intersect. In order to deal with simpler expressions

for the mapping, let us place the center of the concentric circles in the origin, i.e. c = (0, 0).

By introducing η ≡ Rin/Rout < 1 for the initial configuration of concentric circles centered

in the origin and denoting by R̃1 ≡ Rin/|1− |b|2R2
in| and R̃2 ≡ Rout/|1− |b|2R2

out| the radii
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z

Figure 13. Two examples of minimal surfaces (constructed with Surface Evolver) corresponding

to A made by two disjoint and equal disks (∂A is given by the red and blue circles). Only half of

the surfaces is shown in order to highlight their section through a plane orthogonal to z = 0 and

to the segment connecting the centers. This section provides a circle whose radius and center are

given in (4.20). In this figure ε = 0.03, the red circles have radius R = 1 and the distance between

their centers is d = 2.16, while for the blue ones R = 0.75 and d = 1.68.

of the circles after the mapping, the distance between the two centers reads

d =
(1− η2)β

|(1− β2)(β2 − η2)| Rin =
(1− η2)β
|β2 − η2| R̃1 , (4.15)

where β2 ≡ |b|2R2
in. Thus, η and β fix the value of the ratio δ̃ ≡ d/R̃1. The final disks

are either disjoint or fully overlapping, depending on the sign of the expression within the

absolute value in the denominator of (4.15). In particular, when β2 ∈ (η2, 1) the two disks

are disjoint, while when β2 ∈ (0, η2)∪ (1,+∞) they overlap. As for their ratio η̃ ≡ R̃1/R̃2,

we find

η̃ =





β2 − η2
η(β2 − 1)

β2 ∈ (0, η2) ∪ (1,∞) overlapping disks ,

β2 − η2
η(1− β2) β2 ∈ (η2, 1) disjoint disks .

(4.16)

Notice that η̃ → 1/η > 1 for β2 →∞. Thus, given η and β, the equations (4.15) and (4.16)

provide δ̃ and η̃. By inverting them, one can write η and β in terms of δ̃ and η̃. The system
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Figure 14. Left: sections of minimal surfaces when A is made by two equal disjoint domains with

smooth boundaries, like the red curves in figure 10. The coloured solid lines are the numerical

results found with Surface Evolver for the shapes indicated in the common legend in the right

panel. Here R2 = 1 and ε = 0.03. The black dots (notice that they reach z = 0) correspond to

the minimal surface for two disjoint circles and they have been found by mapping the connected

minimal surface for the annulus through the transformations (4.13) (see section 4.1.2 and figure 12).

The dashed curve corresponds to two infinite strips. Right: zoom of the part of the left panel

enclosed by the black rectangle.

is made by two quadratic equations and some care is required to distinguish the various

regimes.

When the disks after the mapping are disjoint, i.e. η2 < β2 < 1, an interesting special

case to discuss is R̃1 = R̃2, namely when the disjoint disks have the same radius R̃ =

Rin/(1 − η) = Rout/(η
−1 − 1), being Rin < Rout the radii of the two concentric circles

at z = 0 centered in the origin. Setting η̃ = 1 in (4.16), one finds that it happens for

β2 = η, i.e. |b|2 = 1/(RinRout). The distance corresponding to this value of β can be

found from (4.15) and it is given by d/Rin = (1 + η)/
[√
η(1 − η)

]
or, equivalently, by

δ̃ = (1 +η)/
√
η. By inverting this relation, one finds η(δ̃) =

{
δ̃2−2−

[
(δ̃2−2)2−4

]1/2}
/2,

where the root η(δ̃) < 1 has been selected and δ̃ > 2 must be imposed in order to avoid

the intersection of the two equal disks.

Once the vector b = (bx, by) = |b|(cosφb, sinφb) is chosen by fixing the initial and final

configurations of circles at z = 0, the transformations (4.13) for the points in the bulk are

fixed as well and they can be used to map the points belonging to the minimal surfaces

spanning the initial configuration of circles. In particular, let us consider a circle given by

(R? cosφ,R? sinφ, z?) for φ ∈ [0, 2π), lying in a plane at z = z? parallel to the boundary.

This circle is mapped through (4.13) into another circle Ĉ whose radius is given by

R̂ =
R?√

1 + 2|b|2(z2? −R2
?) + |b|4(z2? +R2

?)
2
, (4.17)
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and whose center ĉ ≡ (ĉx, ĉy, ĉz) has coordinates

ĉi =
|b|2(R2

? + z2?)2 + z2? −R2
?

1 + 2|b|2(z2? −R2
?) + |b|4(z2? +R2

?)
2
bi i ∈ {x, y} ,

ĉz =
[1 + |b|2(R2

? + z2?)] z?
1 + 2|b|2(z2? −R2

?) + |b|4(z2? +R2
?)

2
. (4.18)

Setting z? = 0, R? = R and R̂ = R̃ in (4.17) and (4.18), the expressions in (4.14) with

c = (0, 0) are recovered. The circle Ĉ lies in a plane orthogonal to the following unit vector

v⊥ = (− cosφb sin θ⊥,− sinφb sin θ⊥, cos θ⊥) , θ⊥ ≡ arcsin(2z?|b|R̂/R?) , (4.19)

where 2z?|b|R̂/R? < 1, as can be easily observed from (4.17).

In the top left panel of figure 12 we consider as initial configuration the annulus at

z = 0 for some given value of η and the corresponding connected minimal surface in the

bulk anchored on its boundary, which has been discussed in section 4.1.1. The transfor-

mation (4.13) with β =
√
η maps this surface into the connected surface anchored on two

equal and disjoint circles (bottom right panel in figure 12). It is interesting to follow the

evolution of the former surface into the latter one as β ∈ [0,
√
η] increases: in figure 12 we

show two intermediate steps where the surfaces are qualitatively different and they corre-

spond to different regimes of β separated by β = η. For 0 < β < η the disks at z = 0

are still overlapping but they are not concentric (top right panel of figure 12). Within this

range of β, the radius of the largest disk, which is Rout/|1 − β2/η2|, increases with β and

it diverges when as β → η. When η < β 6
√
η, instead, the disks at z = 0 are disjoint and

the images of the initial surface through (4.13) are shown in the bottom panels of figure 12,

where the surface on the left has η < β <
√
η, while the one on the right corresponds to the

final stage of disjoint equal disks (β =
√
η). In figure 12 the mapping preserves the color

code and we have highlighted the green circle because in the top left panel it corresponds

to the circle at z = zm along which the two branches given by (4.3) match, as imposed by

the condition (4.7). When β =
√
η, this matching circle is mapped into the vertical one

shown in the bottom right panel, whose radius R̃v and whose coordinate zv > R̃v of its

center along the holographic direction are given respectively by

R̃v =
1− η

2z̃m
√
η
R̃ , zv =

(1− η)
√

1 + z̃2m
2z̃m
√
η

R̃ , (4.20)

where R̃ is the radius of the two equal disjoint disks written above and z̃m is a function of

η (see (4.4) and (4.7)). In figure 13 we show two examples of minimal surfaces constructed

with Surface Evolver which provide the holographic mutual information of two equal dis-

joint disks. Considering the section of these surfaces through a vertical plane which is

orthogonal to the boundary and to the line passing through the centers of the disks, we

find a good agreement with (4.20).

As for the finite part of the area, once η and β have been written in terms of η̃ and δ̃ by

inverting (4.15) and (4.16), the limit ε→ 0 of either ∆A or IA1,A2 (depending on whether

the final disks are either overlapping or disjoint respectively) is given by the r.h.s. of (4.12),
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where κ = κ(η) is obtained through the numerical inversion of (4.7), being η = η(δ̃, η̃) found

above.

The special case of two equal disjoint disks corresponds to η̃ = 1 and δ̃ = (1 + η)/
√
η,

and therefore the limit ε→ 0 of IA1,A2 depends only on the parameter δ̃, as expected. The

relation δ̃ = (1 + η)/
√
η can be used to find the critical distance dc between the centers

beyond which the holographic mutual information vanishes and also the distance d∗ > dc
beyond which the connected surface does not exist anymore. They correspond to ηc and

η∗ respectively and, in particular, one gets δ̃c = 2.192 and δ̃∗ = 2.256.

In order to check that the surfaces obtained through (4.13) are local minima of the

area functional, one can compare the analytic results found as explained above against the

corresponding surfaces constructed by Surface Evolver. In figure 14 we have performed

this check for a section profile: the black dots come from the surface obtained as in the

bottom right panel of figure 12 (notice that the black dots reach z = 0), while the red

curve is the section of the corresponding surface constructed by Surface Evolver (see also

the red curves in figure 10 for a similar construction with different A). In figure 15 we

have performed another comparison between the analytic expressions and the numerical

data of Surface Evolver by computing the holographic mutual information of a domain A

made by two equal disjoint disks. The black triangles have been found by mapping the

black curve for the annulus in the right panel of figure 11 (which is given by the r.h.s.

of (4.12)) through η = η(δ̃) found above. The agreement with the corresponding data

obtained with Surface Evolver (red curve) is very good. Notice that, as already observed

for the annulus in section 4.1.1, also in this case Surface Evolver finds a surface which is a

local minimum of the area functional, even if it is not the global minimum. Let us conclude

by emphasizing that, while this numerical method is very efficient in finding surfaces which

are local minima for the area functional when they exist, it is not suitable for studying the

existence of a surface with a given topology.

4.2 Other shapes

In section 4.1.2 we have considered the holographic mutual information of two disjoint

circular domains, for which analytic results are available. When A = A1 ∪A2 is not made

by two disjoint disks, analytic results for the corresponding holographic mutual information

are not known and therefore a numerical approach could be very useful. Here we employ

Surface Evolver to study IA1,A2 (defined in (4.1)) of disjoint regions delimited by some of

the smooth curves introduced in section 3.1.

The holographic mutual information of non circular domains depends on the geometries

of their boundaries, on their distance and also on their relative orientation. Independently

of the shapes of ∂A1 and ∂A2, once the domains and their relative orientation have been

fixed, the holographic mutual information vanishes when the distance between A1 and

A2 is large enough. The critical distance dc beyond which IA1,A2 = 0 depends on the

configuration of the domains. This transition occurs because, for a generic distance d

between the centers of A1 and A2, the global minimal area surface comes from a competition

between a connected surface anchored on ∂A and a configuration made by two disconnected

surfaces spanning ∂A1 and ∂A2, which are both local minima. Beyond the critical distance
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Figure 15. Holographic mutual information of two disjoint and equal domains delimited by squir-

cles for various n. The coloured points are the numerical data obtained with Surface Evolver, while

the black triangles correspond to the solid black curve of figure 11 (right panel) mapped through

the transformation (4.16) with β2 = η. The transition between the connected surface and the

configuration of disconnected surfaces occurs at the zero of each curve. A point having IA1,A2
< 0

corresponds to a connected surface which is a local minimum of the area functional but it is not

the global minimum for the corresponding entangling curve.

between the centers, the disconnected configuration becomes the global minimum and

therefore IA1,A2 vanishes.

In figure 10 we show an example of a connected surface constructed with Surface

Evolver where ∂A is made by two equal and disjoint ellipses at z = 0. Let us recall that in

our numerical analysis we have regularized the area by defining ∂A at z = ε, as discussed

in section B. In the figure, we have highlighted two sections of the surface suggested by the

symmetry of this configuration of domains, which are given by the red curves and by the

green one.

We have constructed minimal area connected surfaces also for configurations of equal

disjoint domains with other shapes and in figure 14 we have reported the corresponding

curves obtained from the section giving the red curves in figure 10. The red curves in

figure 14 are associated with circular domains and they can be recovered analytically (black

dots), as explained in section 4.1.2. Instead, for the remaining curves analytic expressions

are not available and therefore they provide a useful benchmark for analytic results that

could be found in the future.
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Figure 16. Holographic mutual information of two equal and disjoint domains delimited by ellipses

(top panels) or superellipses with n = 4 (bottom panels), which are defined by R1 and R2 (see the

bottom panel of figure 1 and (3.9)), while d is the distance between their centers. The relative

orientation is like in figure 10. Left panels: density plots for IA1,A2
whose zero provides the

corresponding transition curve (solid black line) in the plane (d/R2, R1/R2). The straight vertical

line indicates the transition when A is made by two equal and disjoint infinite strips whose width

is 2R2 and the distance between their central lines is d. Right panels: IA1,A2 in terms of d/R2

for various fixed values of R1/R2 indicated by the horizontal dashed lines in the corresponding left

panel, with the same color code. The lower curves (orange) in the right panels correspond to the

squircles (R1 = R2) with n = 2 (top) and n = 4 (bottom) and therefore they reproduce the red

and orange curves in figure 15 respectively. The data reported here have been found with R2 = 1

and some checks have been done also with R2 = 2.
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IA1,A2
R1

R2

d/R2d/R2

Figure 17. Holographic mutual information of two equal and disjoint two dimensional sphero-

cylinders oriented like the two ellipses in figure 10. The parameters R1 and R2 specify the domains

(see the bottom panel of figure 1 and (3.10)) and d is the distance between their centers. The same

notation and color coding of figure 16 has been adopted.

Besides the profiles for various sections, Surface Evolver computes also the area of

the surfaces that it constructs. Considering a configuration of disjoint domains with given

shapes and relative orientation, we can compute IA1,A2 while the distance d between their

centers changes. In figure 15 we show the results of this analysis when ∂A1 and ∂A2 are

squircles (i.e. (3.9) with R1 = R2 ≡ R). As for their relative orientation, drawing the

squares that circumscribe ∂A1 and ∂A2, their edges are parallel. Since IA1,A2 > 0, the

critical distance dc corresponds to the zero of the various curves and IA1,A2 vanishes for

d > dc. Thus, IA1,A2 is continuos with a discontinuous first derivative at d = dc. The

points found numerically which have IA1,A2 < 0 correspond to connected surfaces that

Surface Evolver constructs but they are not the global minimum for the area functional

because the disconnected configuration is favoured for that distance.

Once the relative orientation has been chosen, a configuration of two equal and disjoint

squircles is completely determined by two parameters: the distance d between the centers

and the size R of the squircles. Instead, when A1 and A2 are two equal two dimensional

spherocylinders or equal domains delimited by two disjoint superellipses and the relative

orientation has been chosen, we have three parameters to play with: the distance d between

the centers and the parameters R1 and R2 which specify the two equal domains (see the

bottom panel of figure 1). In figure 16 we show IA1,A2 for two disjoint domains delimited

by ellipses and superellipses with n = 4, whose relative orientation is like in figure 10. In

the left panels, the black thick curve is the transition curve along which the holographic

mutual information vanishes, while the continuos straight line identifies the transition value

corresponding to two disjoint infinite strips [47]. Comparing the transition curve in the top

left panel with the one in the bottom left panel, it is evident that the one associated with
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z z

Figure 18. Minimal surfaces obtained with Surface Evolver for a domain A = A1 ∪ A2 made by

the interior of two disjoint and equal squares. All the squares have the same size but the relative

orientation of A1 and A2 is different in the two panels.

the superellipses having n = 4 is closer to the value corresponding to the infinite strips than

the one associated with the ellipses. In figure 17 we study IA1,A2 for a domain A made by

two equal and disjoint two dimensional spherocylinders. In this case the transition curve

is closer to the line corresponding to the transition for two infinite strips with respect to

the transition curves of figure 16. Nevertheless, from our data we cannot conclude that

the transition curve for the two dimensional spherocylinders approaches the value corre-

sponding to the infinite strips as R1/R2 →∞. It would be interesting to have further data

and some analytic argument to understand whether some bounds prevent the transition

curves to approach the value associated with the infinite strips for R1/R2 → ∞. Let us

remark that the lowest curves (orange) in the right panels of figures 16 and 17 correspond

to disjoint squircles with n = 2 (i.e. circles) or n = 4 and therefore they reproduce the red

and the orange curves of figure 15. Configurations of domains having smaller values of d

than the ones shown in the plots provide unstable numerical results.

By employing Surface Evolver, we could also study the holographic mutual information

of disjoint domains whose boundaries contain corners. In particular, one could take both A1

and A2 bounded by polygons, but also A1 bounded by a smooth curve and A2 by a polygon.

In figure 18 we show the minimal area surfaces corresponding to ∂A made by two equal and

disjoint squares having different relative orientation. As discussed in section 3.2, when ∂A

has vertices a further logarithmic divergence occurs after the area law term in the ε → 0

expansion (see (2.5)). If the coefficient of the logarithmic divergence in (2.5) is additive,

i.e. BA1∪A2 = BA1 +BA2 for two disjoint regions, then the holographic mutual information

is finite. An expression like (3.12) with the sum extended over the vertices of both the

components of ∂A is additive, leading to a finite IA1,A2 . Also for these cases we could find

plots similar to figures 16 and 17 but the curves would not be suitable for a comparison

with an analytic formula because of the regularization procedure that we have adopted.

Indeed, in our numerical computations ∂A is defined at z = ε and this regularization affects

the O(1) term in (2.5) [66], as already mentioned in the closing part of section 3.2.
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5 Conclusions

In this paper we have studied the area of the minimal surfaces in AdS4 occurring in the

computation of the holographic entanglement entropy and of the holographic mutual in-

formation, focussing on their dependence on the shape of the entangling curve ∂A in the

boundary of AdS4.

Our approach is numerical and the main tool we have employed is the program Surface

Evolver, which allows to construct triangulated surfaces approximating a surface anchored

on a given curve ∂A which is a local minimum of the area functional. We have computed

the holographic entanglement entropy and the holographic mutual information for entan-

gling curves given by (or made by the union of) ellipses, superellipses or the boundaries

of two dimensional spherocylinders, for which analytic expressions are not known. We

have also obtained the transition curves for the holographic mutual information of disjoint

domains delimited by some of these smooth curves (see figures 15, 16 and 17), providing a

solid numerical benchmark for analytic expressions that could be found in future studies.

We focused on these simple examples, but the method can be employed to address more

complicated domains.

Besides the fact that the surfaces constructed by Surface Evolver are triangulated, a

source of approximation in our numerical analysis is the way employed to define the curve

spanning the minimal surface. Indeed, once the cutoff ε > 0 in the holographic direction has

been introduced to regularize the area of the surfaces, the numerical data have been found

by defining ∂A at z = ε. It would be interesting to understand better this regularization

with respect to some other ones and also to decrease ε in a stable and automatically

controlled way in order to get numerical data which provide better approximations of the

analytic results.

There are many possibilities to extend our work. The most important ones concern

black hole geometries and higher dimensional generalizations. An interesting extension

involves domains A made by three or more regions (see [70] for some results in two di-

mensional conformal field theories and [71–73] for a holographic viewpoint). In figure 19

we show a minimal surface anchored to an entangling curve made by three disjoint circles.

The area of this surface provides the holographic entanglement entropy between the union

of the three disjoint disks and the rest of the plane, which is the most difficult term to

evaluate in the computation of the holographic tripartite information [71]. In the future

we would like to explore the possibility of using Surface Evolver to treat the case of time-

dependent backgrounds modelling the holographic thermalization [11, 74–79], which is a

highly non trivial task that, at present, we are unable to address.

Surface Evolver is a useful tool to get numerical results for the holographic entangle-

ment entropy, which can be used to test analytic formulas that could be found in the future.
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Figure 19. Minimal surface corresponding to three disjoint and equal red circles in the plane z = 0
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A Further details on minimal surfaces in H3

In this appendix we provide a derivation of (2.6) and describe some additional properties

of minimal surfaces in AdS4. Let us consider the area of a two dimensional surface γA
embedded in spatial slice t = const

A[γA] =

∫

γA

dA =

∫

UA

√
h du1du2

z2
, (A.1)

where UA is a coordinate patch. As mentioned in section 2, A can be interpreted as the

energy of a two dimensional interface immersed in R3 endowed with a potential energy of

density 1/z2. To find the surface γ̃A minimizing A we consider a small displacement along

the normal direction N , parametrized as: R→ R+wN , where R represents the position
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of a point on the surface and w is a small normal displacement. The linear area variation

can be straightforwardly calculated using classic differential geometry [80]

δA[γA] =

∫

UA

δ
(√
h du1du2

) 1

z2
+

∫

UA

δ

(
1

z2

)√
h du1du2

= − 2

∫

UA

1

z2

(
H +

ẑ ·N
z

)
w du1du2 , (A.2)

where H is the surface mean curvature. Setting δA[γA] to zero yields (2.6).

In a Monge patch (u1, u2) = (x, y) and the surface can be represented as the graph of

the function z = z(x, y) representing the height of the surface above the (x, y) plane. In

this case the mean curvature reads

H =
z,xx(1 + z2,y) + z,yy(1 + z2,x)− 2z,xyz,xz,y

2(1 + z2,x + z2,y)
3/2

, (A.3)

while the outward directed normal vector is given by

N = −z,xx̂ + z,yŷ − ẑ√
1 + z2,x + z2,y

. (A.4)

Using eqs. (A.3) and (A.4) in (2.6) yields the Cartesian equation (3.3).

In section 2 we argued that a surface described by (2.6) must be orthogonal to the

z = 0 plane. This orthogonality implies that the boundary curve ∂γ̃A is a geodesic of γ̃A.

To see this we can recall that the curvature κ of a curve that lies on a surface can be

decomposed as

κn = κnN + κg(N × t) , (A.5)

with t the tangent vector of ∂γ̃A, κn = t,s (with s the arc lenght) and κn and κg the normal

and geodesic curvature respectively. Since ∂γ̃A lies on the z = 0 plane and ẑ ·N = 0 at

z = 0, then N = ±n where the choice of the sign is conventional. By virtue of (A.5) this

implies that κg = 0. Thus ∂γ̃A is a geodesic over γ̃A.

An interesting consequence of the previous statement is that the total Gaussian cur-

vature of the surface is constant, regardless the shape of the boundary in the z = 0 plane.

The Gauss-Bonnet theorem tells us that
∫

γ̃A

KG

√
h du1du2 +

∮

∂γ̃A

κg ds = 2πχ , (A.6)

where KG is the Gaussian curvature and χ is the Euler characteristic. Since κg = 0 in our

case, we have ∫

γ̃A

KG

√
h du1du2 = 2πχ . (A.7)

Let us recall that the Euler characteristic is χ = 2 − 2g − b, where g is the genus of the

surface and b is the number of its boundaries.
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Figure 20. Example of a typical evolution obtained by Surface Evolver in the case of a circular

boundary. The initial configuration consists of an octagonal prism composed of 40 triangles (left).

The shape is then optimized and refined as described in section B, finding the final configuration

given by the rightmost surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas

FA = 2π is the exact value from the analytic result (3.1). In this example the radius of the circle

is R = 1 and ε = 0.03.

B Numerical method

The numerical results presented in section 3 and section 4 have been obtained with Surface

Evolver [61, 62]. This is a multipurpose shape optimization program created by Brakke [61]

in the context of minimal surfaces and capillarity and then expanded to address generic

problems on energy minimizing surfaces. A surface is implemented as a simplicial complex,

i.e. a union of triangles. Given an initial configuration of the surface, the program evolves

the surface toward a local energy minimum by a gradient descent method. The energy

used in our calculations is the H3 area function given in (2.3).

The initial configuration is preferably very simple and contains only the least number

of triangles necessary to achieve a given surface topology (figure 20). A typical evolution

consists in a sequence of optimization and mesh-adjustment steps. During an optimization

step, the coordinates of the vertices are updated by a local minimization algorithm (con-

jugate gradient in our case), resulting in a configuration of lower energy. The topology of

the mesh (i.e. the number of vertices, faces and edges) is not altered during minimization.

A mesh-adjustment step, on the other hand, consists of a set of operations whose purpose

is to render the discretized surface smooth and uniform. These operations can be broadly

divided in two class: mesh-refinements and mesh-repairs. In a mesh-refinement operation

a finer grid is overlaid on the coarse one. This is obtained, for instance, by splitting a

triangle in four smaller triangle obtained by joining the mid points of the original edges.

In a mesh-repair operation, the triangles that are too distorted compared to the average

are eliminated. This operation can change the topology of the mesh and possibly also the

topology of the surface which can then breakup into two or more connected parts. This

happens, for instance, in the case of the surfaces described in section 4. As explained, the

minimal surface spanning a disconnected boundary curve can be either connected or dis-

connected depending on the shape of the boundary. Evolving an initially connected surface

in the regime of geometric parameters where the only stable solution is disconnected causes

the surface to form narrow necks and eventually pinches off once the triangles around the

necks become too squeezed.

Due to the divergence of the area element dA =
√
h/z2 du1du2 at z = 0, the boundary

curves used in the numerical work have been defined on the plane z = ε. In order to

maximize the accuracy of the numerical solution, it is preferable to choose value of ε that

– 36 –



J
H
E
P
0
2
(
2
0
1
5
)
0
0
5

!"#$ %&'()*) ! +&,--%, .

/ /&/+ /&/( /&/% /&/* /&/, /&/0 /&/' /&/) /&/-

%&0/

%&0,

%&'/

!""#
!"""
!""$
!""#%

!"#$ %&'()*) ! +&,--%, .

/ /&/+ /&/( /&/% /&/* /&/, /&/0 /&/' /&/) /&/-

%&0/

%&0,

%&'/

!""#
!"""
!""$
!""#%

R2 = 1

R2 = 2

R2 = 5

R2 = 10

ε/R2

�FA

R1

Figure 21. The quantity F̃A (see (3.8)) computed with Surface Evolver for ellipses having R1 = 2R2

(see the bottom panel of figure 1), for various R2 and ε. When ε/R2 is too small, our numerical

data are not stable. The fitted value on the vertical axis is 3.728.

is much smaller than any other length scale in the problem and yet large enough to allow

the convergence of the optimization steps. With this goal in mind, we have adopted an

empirical selection criterion based on the following procedure. Let ∂γ̃A be an ellipse and

let R1 and R2 = R1/2 be the semi-major and semi-minor axes. Using Surface Evolver

we have calculated the finite part of the area F̃A for various choices of ε and R1. In the

limit of ε → 0 the ratio F̃A/R1 is expected to approach a finite value, but from the data

shown in figure 21 we see that for ε/R2 < 0.02, the accuracy of the numerical calculation

starts to drop. Based on this numerical evidence we have set in most of our numerical

calculations ε/R = 0.03, where R is the typical length scale of the boundary. It is worth

remarking that in our numerical computations it is easier (namely the evolution is more

stable) to deal with smaller values of ε/R by increasing R than by decreasing ε. Smaller

values of ε/R obtained by decreasing ε keeping R fixed can be achieved by setting up ad

hoc evolutions, tailored for a specific type of boundary shape. This has been done only

for the triangles in figure 4, while in the remaining figures we have increased R keeping

ε = 0.03 fixed. Nevertheless, for ε fixed, numerical instabilities are encountered when R

is too large as well. The values of ε/R adopted in our numerical calculations have been

chosen to guarantee both stable evolutions and a satisfactory precision to compare the data

with the analytic results, when they are available.

Other alternative methods are available to construct minimal surfaces. A popular one

by Chopp [81] consists of evolving the surface level sets under the surface mean curvature

flow. A variant of this method has been employed in [55] to study minimal surfaces in the

Schwarzschild-AdSD+2 background.
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C Superellipse: a lower bound for FA

In this appendix we provide a lower bound for the quantity FA (see (2.4)) associated

with the entangling curves ∂A given by the superellipses (3.9), that we have discussed in

section 3.1.

If A is a simply connected domain without corners in its boundary, let us consider a

surface γ∗A anchored on ∂A, but different from γ̃A, and such that A[γ∗A] = PA/ε−F ∗A+o(1)

as ε → 0. Being γ̃A the minimal area surface anchored on ∂A, it is immediate to realize

that F ∗A < FA. Here we consider the superellipses (3.9), whose perimeter is given by

PA = 4R1

∫ 1

0

√
1 + (R2/R1)

2 hn(x̃)2 dx̃ , hn(x̃) ≡ x̃n−1

(1− x̃n)1−1/n
, (C.1)

where the integration variable x̃ = x/R1 as been employed. Let us adapt to this case the

choice of the trial surface suggested in [28] for the ellipse, namely we consider γ∗A such that

any section along the x direction provides the profile of the infinite strip whose width is

given by y(x) obtained from (3.9), i.e.

y(x̃) = R2 (1− x̃n)1/n . (C.2)

Given the symmetries of the superellipse, we are allowed to restrict ourselves to x > 0 and

y > 0. From (D.2) for D = 2, we construct the trial surface γ∗A by requiring that we have

that any section at x = const is given by

y(z, x̃) = z∗(x̃)

∫ 1

z/z∗(x̃)

Z2

√
1− Z4

dZ , z∗(x̃) ≡ 2 y(x̃)√
s∞

, (C.3)

where the integration variable Z ≡ z/z∗ has been employed and z∗(x̃) has been introduced

by taking z∗ in (3.5) with s∞ defined in (3.6) and replacing R2 with y(x̃) defined in (C.2).

From (C.3), it is straightforward to show that y(0, x̃) = y(x̃) and this guarantees that the

trial surface is anchored on the superellipse (C.2).

The occurrence of the cutoff ε in the holographic direction influences the integration

domain along the x direction. In particular, by employing (C.2) and (C.3), the requirement

z∗(x̃) > ε becomes x̃ 6 x̃ε, where

x̃ε ≡
[
1−

(√
s∞

2R2
ε

)n ]1/n
. (C.4)

Plugging (C.3) inside the area functional, being y written in terms of x and z, we get

A[γ∗A] = 4

∫ x̃ε

0
dx̃

∫ z∗(x̃)

ε
dz

√
1 + (∂zy)2 + (∂xy)2

z2
=

2R1
√
s∞

R2

∫ x̃ε

0

Mε(x̃)

(1− x̃n)1/n
dx̃ ,

(C.5)

where

Mε(x̃) ≡
∫ 1

ε/z∗(x̃)

√
1 + (R2/R1)

2 hn(x̃)2C(Z)2

Z2
√

1− Z4
dZ ,
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C(Z) ≡ 2√
s∞

(∫ 1

Z

√
1− Z4

1− u4 u
2 du− Z3

)
. (C.6)

Computing (C.5) analytically is too hard, but one can check that the area law is satisfied.

When ε→ 0, from (C.4) we have that x̃ε = 1+O(εn). In this limit, the most divergent term

of Mε(x̃) comes from the limit of integration ε/z∗(x̃) and it can be found by considering

an integration on the interval [ε/z∗(x̃), a], where Z is infinitesimal if a� 1. The remaining

integral provides O(1) terms. For Z → 0 we have that C(0) = 1 and therefore the leading

term in (C.5) is given by

A[γ∗A] =
2R1
√
s∞

R2

∫ 1

0
dx̃

√
1 + (R2/R1)

2 hn(x̃)2

(1− x̃n)1/n

∫ a

ε/z∗(x̃)

dZ

Z2
+O(1) =

PA
ε

+O(1) , (C.7)

where PA given in (C.1) can be recognized after (C.3) and (C.2) have been employed.

We are not able to find F ∗A analytically but it can be obtained numerically as F ∗A =

limε→0(PA/ε−A[γ∗A]), with A[γ∗A] given by (C.5), getting a lower bound for FA associated

with the superellipse.

It is interesting to consider F ∗A in the limit of a very elongated superellipses, namely

when R1/R2 →∞. This means that (C.5) must be studied in the double expansion ε→ 0

and R2/R1 → 0. Assuming that the order of this two limits does not matter, let us set

R2/R1 = 0 in the expressions of Mε(x̃) in (C.6) and expand it for small ε, finding

Mε(x̃)
∣∣
R2/R1=0

=
z∗(x̃)

ε
−
√
s∞
2

+O(ε2) , (C.8)

where z∗(x̃) is given in (C.3). By plugging (C.8) into (C.5) and expanding the resulting

expression for ε→ 0, we have that

A[γ∗A] =
4R1

ε
− s∞

R1

R2

∫ x̃ε

0

dx̃

(1− x̃n)1/n
+ o(ε) =

4R1

ε
− πs∞
n sin(π/n)

R1

R2
+ o(ε) . (C.9)

Notice that, from (C.1), one can observe that PA = 4R1

[
1 + o(1)

]
when R1/R2 →∞. We

conclude that the leading term of F ∗A as R1/R2 →∞ reads

F ∗A =
πs∞

n sin(π/n)

R1

R2
+ . . . . (C.10)

When n = 2, the result of [28] is recovered, as expected. Moreover, the expression (C.10) in

the special cases of n = 2 and n = 3 has been checked in figure 2 against the data obtained

with Surface Evolver (see respectively the red and the blue dotted horizontal lines), finding

a good agreement. Notice that the expression in the r.h.s. of (C.10) is strictly larger than the

value of FA corresponding to the infinite strip (see (3.6)), which is approached as n→∞.

D Some generalizations to AdSD+2

D.1 Sections of the infinite strip

In this section we discuss the computation of the area of the domain identified by an

orthogonal section of the minimal surfaces associated with the infinite strip.
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The metric of AdSD+2 in the Poincaré coordinates reads

ds2 =
− dt2 + dz2 + dx21 + · · ·+ dx2D

z2
. (D.1)

Considering an infinite D-dimensional strip on the spatial slice t = const extended along

the x2, . . . , xD directions whose width is given by 2R2, i.e. |x1| 6 R2, the minimal area

surface associated with this domain is characterized by the profile z = z(x1). Because of

the symmetry of the problem, z(x1) is even and therefore we can restrict to 0 6 x1 6 R2.

The profile is obtained by solving the following differential equation [9, 10]

z′ = −
√
z2D∗ − z2D
zD

. (D.2)

where z∗ is the maximum value of z, which is reached at x1 = 0.

A way to get an orthogonal section of the infinite strip is defined by x2 = · · · = xD =

const. Then, one considers the two dimensional region enclosed by the profile z(x1) and

the cutoff z = ε in the plane (x1, z). The domain along the x1 axis is |x1| 6 R2 − a, where

a is defined by z(R2 − a) = ε. Its area reads

Â = 2

∫ R2−a

0
dx1

∫ z(x1)

ε

dz

z2
=

2(R2 − a)

ε
− 2

D

[
π

2
− arctan

(
εD√

z2D∗ − ε2D

)]

=
2R2

ε
− π

D
+ o(1) , (D.3)

where (D.2) has been employed.

Another section of the infinite strip to study is defined by xi = const for some 2 6 i 6 D

and |xj | 6 R1 for j 6= i. In this case we are interested in the volume of the D dimensional

region enclosed by the profile z(x1) and z = ε, whose projection on the z = 0 hyperplane

is included within the section of the infinite strip we are dealing with. It is given by

Â = 2(2R1)
D−2

∫ R2−a

0
dx1

∫ z(x1)

ε

dz

zD

= (2R1)
D−2(D − 1)

[
2R2

εD−1
−
√
π Γ(1 + 1/D)

zD−2∗ Γ(1/2 + 1/D)
+ o(1)

]
. (D.4)

Notice that for D = 2 the expressions (D.3) and (D.4) coincide, as expected, and the result

is employed in section 3 to study the auxiliary surface, which corresponds to the dashed

curve in figure 2.

D.2 Annular domains

In this appendix we consider the surfaces anchored on the boundaries of annular domains

which are local minima of the area functional because some analytic expressions can be

found for them.

The metric of AdSD+2 in Poincaré coordinates (2.2) written by employing spherical

coordinates for the spatial part RD of the boundary z = 0 is

ds2 =
dz2 − dt2 + dρ2 + ρ2dΩ2

D−1
z2

, (D.5)
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where ρ ∈ [0,∞) and the AdS radius has been set to one.

A spherically symmetric spatial region A in the AdS boundary is completely specified

by an interval in the radial direction. Because of the symmetry of A, the minimal surface

anchored on ∂A is given by z = z(ρ) and, for a generic profile z = z(ρ), the corresponding

area of the two dimensional surface γA reads

A[γA] = Vol(SD−1)RD , RD ≡
∫
ρD−1

zD

√
1 + (z′)2 dρ , (D.6)

where Vol(SD−1) is the volume of the (D − 1)-dimensional unit sphere and RD is the

integral in the radial direction. We remark that the integration domain in RD is not

necessarily the interval defining A in the radial direction, as it will be clear from the case

discussed in the following. In order to find the minimal surface γ̃A, one extremizes the area

functional (D.6), obtaining

zz′′ + (1 + z′2)

[
D + (D − 1)

zz′

ρ

]
= 0 . (D.7)

When A is a sphere of radius R, we have that 0 6 ρ 6 R and it is well known that the

corresponding minimal surface is a hemisphere [9, 10].

Here we consider the region A delimited by two concentric spheres, whose radii are

Rin and Rout, with 0 < Rin < Rout. In this case Rin 6 ρ 6 Rout and A is not simply

connected. For D = 2 and D = 3, the corresponding minimal surface extending in the

bulk and anchored on ∂A has been studied in [56–58]. In order to solve (D.7) for this

configuration, we find it convenient to introduce [56, 57]

z(ρ) ≡ ρ z̃(ρ) , u ≡ log ρ , z̃u ≡ ∂uz̃ . (D.8)

Notice that z̃ = tan θ is the angular coefficient of the line connecting the origin to a point

belonging to the surface. Given (D.8), the differential equation (D.7) becomes

z̃ z̃u
(
1 + ∂z̃ z̃u

)
+
[
1 + (z̃ + z̃u)2

][
D + (D − 1)z̃(z̃ + z̃u)

]
= 0 . (D.9)

Integrating this equation, we find two solutions, namely

z̃u,±(z̃) = −1 + z̃2

z̃

[
1± z̃D−1√

K(1 + z̃2)− z̃2D

]−1
, K > 0 , (D.10)

which correspond to two different parts of the profile. As for the integration constant K,

it must be strictly positive because z̃ = 0 corresponds to the boundary z = 0, which is

included in the range of z. The domain for z̃ is 0 6 z̃ 6 z̃m, where z̃m is the first positive

zero of the polynomial under the square root in (D.10). For D = 2 we are lead to solve a

biquadratic equation, which gives z̃2m =
(
K +

√
K(K + 4)

)
/2. Notice that z̃m → 0 when

K → 0.

The differential equation (D.10) can be solved through the separation of the variables.

In particular, from the r.h.s. of (D.10), we find it convenient to introduce

f
(D)
±,K(z̃) ≡

∫ z̃

0

λ

1 + λ2

[
1± λD−1√

K(1 + λ2)− λ2D

]
dλ . (D.11)
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Figure 22. Curves for η as function of K obtained from the matching condition (D.13) for various

dimensions 2 6 D 6 7. For any D, a minimal value η∗ > 1 occurs, which is shown in the inset.

Given a value η ∈ (η∗, 1), two values of K correspond to it, providing two different radial profiles

(see an example for D = 2 in figure 23).

Then, the profile of the radial section is given by the following two branches

{
ρ = Rin e

−f (D)
−,K(z̃) ,

ρ = Rout e
−f (D)

+,K(z̃) .
(D.12)

Imposing that these two branches match at the point Pm, whose (ρ, z) coordinates are

(ρm, zm ≡ z(ρm)), where zm has been found above, we get the following relation

− log(η) = f
(D)
+,K(z̃m)− f (D)

−,K(z̃m) =

∫ z̃m

0

2λD

(1 + λ2)
√
K(1 + λ2)− λ2D

dλ , η ≡ Rin

Rout

.

(D.13)

Since z̃m depends on K, from (D.13) we get a relation between η and K, which is rep-

resented in figure 22 for 2 6 D 6 7. The first feature to point out about (D.13) is the

existence of a minimal value for η that will be denoted by η∗ > 0. For instance, we find

η∗ = 0.367, η∗ = 0.542 and η∗ = 0.643 for D = 2, D = 3 and D = 4 respectively (see the

inset in figure 22 for other D’s). Then, for any η∗ < η < 1, there are two values of K giving

the same η, while for 0 < η < η∗ connected solutions do not exist. The two different K’s

associated with the same η∗ < η < 1 provide two different radial profiles and therefore two

connected surfaces having the same ∂A. In order to find the global minimum of the area
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Figure 23. Radial profiles in the (ρ, z) plane for the connected surfaces anchored on the boundary

of the same annulus A having Rin < Rout. They correspond to local minima of the area functional

and they are characterized by the two different values of K associated with the same η. These

connected surfaces are obtained through (D.12) and (D.13), where different colours are used for the

various branches. The dashed curves represent the two concentric hemispheres anchored on ∂A as

well. The continuous grey curves are the paths in the (ρ, z) plane of the points P0, Pm and P∗ as

K ∈ (0,∞). Here D = 2, Rin = 0.43, Rout = 1 and the values of K are K = 0.81 (global minimum)

and K = 2.05 (local minimum). Comparing the area of the two connected surfaces, we find that

the one having minimal area has P∗ closer to the boundary.

functional, we have to evaluate their area. Through a numerical analysis, one observes that

zm is an increasing function of K.

Beside Pm, another interesting point of the profile is P0 = (ρ0, z0 ≡ z(ρ0)), where

|z(ρ0)′| diverges. From (D.10), this divergence occurs when

√
K(1 + z̃20)− z̃2D0 ± z̃D−10 = 0 =⇒ K = z̃2D−20 ≡ (tan θ0)

2D−2 . (D.14)

This tells us that K has a geometric meaning because it provides z̃0.

Let us also introduce the point P∗, with coordinates (ρ∗, z∗ ≡ z(ρ∗)) as the point

having the maximum value of z, which corresponds to the maximal penetration of the

minimal surface into the bulk. The coordinate z∗ can be found by considering the branch
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z(ρ) characterized by f
(D)
+,K in (D.12) and then computing its derivative w.r.t. ρ, which is

given by

dz

dρ
=
d(z̃ρ)

dz̃

(
dρ

dz̃

)−1
= z̃ −


df

(D)
+,K(z̃)

dz̃



−1

, (D.15)

where in the last step (D.12) has been used. When D = 2 the root of (D.15) can be found

and it reads

z̃∗ = K1/4 . (D.16)

An explicit example in D = 2 is given in figure 23, where we have shown the two

connected radial profiles having the same η > η∗ but different values of K. The two

different branches in (D.12) at fixed K, supported by the matching condition (D.13), have

been denoted with different colours: the red and cyan curves are obtained through f
(2)
+,K

while the blue and the green ones through f
(2)
−,K . In figure 23 the grey curves denote the

paths described by the three points Pm, P0 and P∗ introduced above as K assumes all the

positive real values.

We find it instructive to consider the limit K → +∞. From (D.11), in this limit one

finds f
(D)
+,∞ = f

(D)
−,∞ for any D, which reads

lim
K→∞

f
(D)
±,K(z̃) =

∫ z̃

0

λ

1 + λ2
dλ =

1

2
log(1 + z̃2) , (D.17)

and therefore η → 1 from (D.13), i.e. Rin = Rout ≡ R (see also figure 22). From (D.17),

both the branches in (D.12) become

ρ =
R√

1 + z̃2
, (D.18)

which is the well known spherical solution z2 = R2 − ρ2. As for the points Pm, P0 and P∗,

they tend to the same point when η → 1, as can be seen from figure 23, where the gray

lines show the paths of these points in the (ρ, z) plane as K varies in (0,∞).

Given the radial profile (D.12), we can compute the area of the corresponding surface

obtained by exploiting the rotational symmetry. From (D.8), the radial integral in (D.6)

can be written as

Rcon
D =

∫ ε̃+

z̃m

√
1+(z̃+z̃u,+)2

z̃D z̃u,+
dz̃ +

∫ ε̃−

z̃m

√
1+(z̃+z̃u,−)2

z̃D z̃u,−
dz̃ , ε̃+≡

ε

Rout

, ε̃−≡
ε

Rin

,

(D.19)

where z̃u,± have been defined in (D.10) and 0 < ε � 1 is the ultraviolet cutoff of the

boundary theory. Notice that the domains of integration are different for the two branches

of the profile. Plugging (D.10) into (D.19), the integrands become the same and, by

splitting the first integral, (D.19) becomes

Rcon
D =

∫ z̃m

ε/Rout

√
K dz̃

z̃D
√
K(1 + z̃2)− z̃2D

+

∫ z̃m

ε/Rin

√
K dz̃

z̃D
√
K(1 + z̃2)− z̃2D

(D.20)
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= 2

∫ z̃m

ε/Rin

√
K dz̃

z̃D
√
K(1 + z̃2)− z̃2D

+

∫ ε/Rin

ε/Rout

√
K dz̃

z̃D
√
K(1 + z̃2)− z̃2D

. (D.21)

In the second integral of (D.21), we can employ the expansion of the integrand for z̃ ∼ 0,

which reads

1

z̃D
√

1 + z̃2 − z̃2D/K
=

1

z̃D
+
γD,D−1
z̃D−2

+
γD,D−3
z̃D−4

+ · · ·+





γD,log
z̃

+O(z̃) odd D,

γD,−1 +O(z̃2) even D,

(D.22)

finding that it provides a non trivial contribution γD,log log(Rout/Rin) to the finite term for

odd D.

Given Rin and Rout, besides the two connected surfaces having the same η but different

K, we have also another surface γA which is a local minimum for the area functional (D.6)

such that ∂γA = ∂A: it is made by two disjoint concentric hemispheres in the bulk with

radii Rin and Rout which are anchored on the boundaries of the concentric spheres in the

boundary (see the dashed curves in figure 23). The area of a hemisphere of radius R in the

bulk anchored on the boundary of a sphere with the same radius at z = 0 can be found by

integrating (D.6) for 0 6 ρ 6 R− a, where z(ε) ≡ a, finding

Rsph

D (R) =

∫ ε/R

∞

√
1 + (z̃ + z̃u)2

z̃Dz̃u
dz̃ =

∫ ∞

ε/R

dz̃

z̃D
√

1 + z̃2
, ε =

√
R2 − (R− a)2 � 1 ,

(D.23)

where z̃u is (D.10) in the limit K → +∞, namely z̃u = −(1 + z̃2)/z̃.

Thus, the factor coming from the radial integration in (D.6) for this configuration of

two disjoint hemispheres is Rdis
D = Rsph

D (Rout) +Rsph

D (Rin).

Having found three surfaces anchored on ∂A for any given Rin < Rout such that η∗ <

η < 1 which are local minima of the area functional, the holographic entanglement entropy

can be found by selecting the global minimum among them.

Considering a connected surface and the configuration made by the two disjoint hemi-

spheres, we find it useful to introduce the following finite quantity

∆RD ≡ lim
ε→0

(Rdis
D −Rcon

D ) . (D.24)

From (D.20) and (D.23), it can be written as

∆RD = J (in)
D + J (out)

D , (D.25)

where we have introduced

J (j)
D = lim

ε→0

(∫ ∞

ε/Rj

dz̃

z̃D
√

1 + z̃2
−
∫ z̃m

ε/Rj

dz̃

z̃D
√

1 + z̃2 − z̃2D/K

)
. (D.26)

Splitting the second integral, we can take the limit, finding that J (in)
D = J (out)

D and then

∆RD = 2

[∫ ∞

z̃m

dz̃

z̃D
√

1 + z̃2
−
∫ z̃m

0

1

z̃D
√

1 + z̃2

(
1√

1− z̃2D/[K(1 + z̃2)]
− 1

)
dz̃

]
.

(D.27)
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Since zm = zm(K) and K depends on the ratio η only, also ∆RD is a function of η.

Nevertheless, as discussed above, there are two values of K associated with the same

η and, by computing ∆RD for both of them, we can easily find which surface has the

minimal area between the two connected ones. It turns out that it is the one associated

with the lowest value of K. Since zm is an increasing function of K, the minimal area

surface between the two connected ones has the lowest zm. In the example in figure 23 for

D = 2, both the radial profiles of the two connected surfaces which are local minima of the

area functional and which have the same η are shown. The one described by the red and

the blue curves characterizes the minimal area surface between the two connected ones.

Once the connected surface having minimal area has been found, the sign of the cor-

responding ∆RD determines the configuration with minimal area, providing therefore the

global minimum of the area functional, and its root (which can be found numerically) gives

the value of η = ηc which characterizes the transition. For D = 2, D = 3 and D = 4 we get

respectively ηc = 0.419 [50, 56], ηc = 0.562 [57] and ηc = 0.652. Thus, for any η ∈ (η∗, 1),

we have ηc > η∗ and ∆RD > 0 when η ∈ (ηc, 1). This tells us that for η < ηc the config-

uration occurring in the holographic entanglement entropy for the annular domains is the

one made by two disjoint hemispheres.

E Elliptic integrals

When D = 2, the integrals encountered in section 3.2 and in section D.2 can be computed

analytically in terms of elliptic integrals. Here we report their definitions for completeness,

following [82] (notice that Mathematica adopts the same notation).

The incomplete elliptic integrals of the first, second and third kind are defined respec-

tively as follows

F(x|m) ≡
∫ x

0

dθ√
1−m sin2 θ

, (E.1)

E(x|m) ≡
∫ x

0

√
1−m sin2 θ dθ , (E.2)

Π(n, x|m) ≡
∫ x

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ
. (E.3)

Setting x = π/2 in these expressions, we have

K(m) ≡ F(π/2|m) , E(m) ≡ E(π/2|m) , Π(n,m) ≡ Π(n, π/2|m) , (E.4)

which are the complete elliptic integrals of the first, second and third kind respectively.
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[42] H.J. Schnitzer, Mutual Rényi information for two disjoint compound systems,

arXiv:1406.1161 [INSPIRE].

– 48 –

http://dx.doi.org/10.1007/JHEP07(2012)001
http://arxiv.org/abs/1204.4160
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4160
http://dx.doi.org/10.1007/JHEP06(2013)013
http://dx.doi.org/10.1007/JHEP06(2013)013
http://arxiv.org/abs/1304.2030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2030
http://dx.doi.org/10.1007/JHEP11(2010)014
http://dx.doi.org/10.1007/JHEP11(2010)014
http://arxiv.org/abs/1007.4592
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4592
http://dx.doi.org/10.1007/JHEP08(2011)039
http://arxiv.org/abs/1105.6055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.6055
http://dx.doi.org/10.1103/PhysRevD.90.085021
http://arxiv.org/abs/1407.4719
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4719
http://arxiv.org/abs/1407.7249
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7249
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://arxiv.org/abs/quant-ph/0102117
http://dx.doi.org/10.1103/PhysRevLett.109.130502
http://dx.doi.org/10.1103/PhysRevLett.109.130502
http://arxiv.org/abs/1206.3092
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3092
http://dx.doi.org/10.1088/1742-5468/2013/02/P02008
http://arxiv.org/abs/1210.5359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5359
http://dx.doi.org/10.1088/1751-8113/48/1/015006
http://arxiv.org/abs/1408.3043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3043
http://dx.doi.org/10.1088/1126-6708/2008/11/076
http://arxiv.org/abs/0808.4094
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.4094
http://dx.doi.org/10.1103/PhysRevLett.102.170602
http://arxiv.org/abs/0809.5113
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.5113
http://dx.doi.org/10.1088/1742-5468/2009/11/P11001
http://arxiv.org/abs/0905.2069
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2069
http://dx.doi.org/10.1088/1742-5468/2011/01/P01021
http://arxiv.org/abs/1011.5482
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5482
http://dx.doi.org/10.1103/PhysRevB.81.060411
http://arxiv.org/abs/0910.0706
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0706
http://dx.doi.org/10.1088/1742-5468/2010/04/P04016
http://dx.doi.org/10.1088/1742-5468/2010/04/P04016
http://arxiv.org/abs/1003.1110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1110
http://dx.doi.org/10.1088/1742-5468/2011/06/P06012
http://arxiv.org/abs/1103.3166
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3166
http://dx.doi.org/10.1088/1751-8113/46/28/285402
http://dx.doi.org/10.1088/1751-8113/46/28/285402
http://arxiv.org/abs/1304.7985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7985
http://dx.doi.org/10.1088/1126-6708/2009/03/048
http://arxiv.org/abs/0812.1773
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1773
http://arxiv.org/abs/1406.1161
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1161


J
H
E
P
0
2
(
2
0
1
5
)
0
0
5

[43] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10

(2014) 178 [arXiv:1407.6429] [INSPIRE].

[44] N. Shiba, Entanglement entropy of two spheres, JHEP 07 (2012) 100 [arXiv:1201.4865]

[INSPIRE].

[45] V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions,

JHEP 03 (2008) 006 [arXiv:0711.4118] [INSPIRE].
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