
J
H
E
P
0
2
(
2
0
1
4
)
0
8
5

Published for SISSA by Springer

Received: July 1, 2013

Revised: January 28, 2014

Accepted: January 29, 2014

Published: February 20, 2014

Resolving Lifshitz horizons

Sarah Harrison, Shamit Kachru and Huajia Wang

Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,

Stanford, CA 94305, U.S.A.

Theory Group, SLAC National Accelerator Laboratory,

Menlo Park, CA 94309, U.S.A.

E-mail: sarharr@stanford.edu, skachru@stanford.edu,

huajiaw@stanford.edu

Abstract: Via the AdS/CFT correspondence, ground states of field theories at finite

charge density are mapped to extremal black brane solutions. Studies of simple gravity +

matter systems in this context have uncovered wide new classes of extremal geometries. The

Lifshitz metrics characterising field theories with non-trivial dynamical critical exponent

z 6= 1 emerge as one common endpoint in doped holographic toy models. However, the

Lifshitz horizon exhibits mildly singular behaviour - while curvature invariants are finite,

there are diverging tidal forces. Here we show that in some of the simplest contexts

where Lifshitz metrics emerge, Einstein-Maxwell-dilaton theories, toy models of generic

corrections can lead (presumably as one possibility among many) to a replacement of the

Lifshitz metric, in the deep infrared, by a re-emergent AdS2×R2 geometry. Thus, at least

in these cases, the Lifshitz scaling characterises the physics over a wide range of energy

scales, but the mild singularity is cured by quantum or stringy effects.

Keywords: AdS-CFT Correspondence, Holography and condensed matter physics

(AdS/CMT)

ArXiv ePrint: 1202.6635

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2014)085

mailto:sarharr@stanford.edu
mailto:skachru@stanford.edu
mailto:huajiaw@stanford.edu
http://arxiv.org/abs/1202.6635
http://dx.doi.org/10.1007/JHEP02(2014)085


J
H
E
P
0
2
(
2
0
1
4
)
0
8
5

Contents

1 Introduction 1

2 AdS2 × R2 solutions of the quantum corrected action 3

3 RG flows 5

3.1 Intuitive picture of flow 5

3.2 Corrections to the near horizon solution 6

3.3 Flows to Lifshitz and AdS4 7

4 Discussion 9

1 Introduction

There has been significant recent interest in applying the techniques of gauge/gravity du-

ality to learn about the phase structure of holographic toy models of condensed matter

physics (for reviews, see [1–4]). The gravitational theory “geometrizes” many questions of

physical interest, such as the behaviour of quantum field theory at a finite temperature

or charge density. In particular, ground states of field theory at finite charge density are

mapped to extremal black brane geometries, and the classification of the latter can provide

a holographic window into possible novel phases of doped matter.

Several new types of horizons have emerged in this holographic study of doped field

theories (with a coarse attempt at the classification of such horizons, in the homogeneous

case, appearing recently in [5]). One of the simplest features of critical points in con-

densed matter physics that would distinguish them from the theories usually studied by

particle/string theorists is the presence of “dynamical scaling.” This is a scale invariance

under which

t→ λzt, xi → λxi (1.1)

with z 6= 1. While the z 6= 1 theories are not Lorentz invariant, they emerge rather naturally

as fixed points in many condensed matter models, where Lorentz symmetry is broken.

The geometries dual to such field theories were described in [6], where they were found

as solutions of simple 4d gravity theories with reasonable matter content. String theory

and supergravity embeddings have been found in [7–13]. The dual metric takes the form

ds2 = −r2zdt2 + r2dx2i +
dr2

r2
. (1.2)

This metric has constant curvature, but the “Lifshitz horizon” at r=0 has diverging tidal

forces, as discussed in [6, 14, 15]. While a tiny temperature can regulate these forces,

and in many similar cases such singularities are known to be harmless and physically
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admissible [16], it is an open question in this case what the correct interpretation of the

singularities is.1 The results of this note will not apply to the solutions, like those of [6],

which have exact Lifshitz scaling symmetry.

More generally, these metrics also emerge naturally in relativistic systems which are

doped by finite charge density. For instance, asymptotically AdS extremal black branes

whose near-horizon geometry is of the Lifshitz form were found in [17, 18] by studying the

solutions of the theory with action

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (1.3)

In these theories, although the metric in the IR takes the Lifshitz form with z =
1+(α

2
)2

(α
2
)2

, the

scalar dilaton is logarithmically running. Both electrically and magnetically charged black

branes give rise to such geometries: in the former the dilaton runs towards weak coupling at

the horizon (in the sense that g ≡ e−αφ → 0), while in the latter, the dilaton runs towards

strong coupling. Related solutions with Lifshitz asymptotics were first discussed in [19], and

several other papers exploring closely related solutions have subsequently appeared [20–32].

It was noted already in [17, 18] that the running of the dilaton means that one cannot

trust the Lifshitz form of the solutions to the action (1.3) in the very deep IR. In the

case of the magnetically charged branes, this is because as g grows, quantum corrections

should be expected to grow in importance — see section 4.2 of [18]. For electrically charged

branes, on the other hand, it would be expected that in string theory α′ corrections (i.e.,

higher-derivative terms) would become important.

We have already seen cases in string theory where α′ corrections “resolve” a horizon

which is naively singular [33]. Here, we discuss an analogous phenomenon for black branes.

Instead of α′ corrections we will focus on the quantum corrections to the near-horizon

geometry of the magnetically charged black branes in quantum-corrected versions of the

theory (1.3). As a simplest toy model for these corrections in g, we will promote the gauge

kinetic term in (1.3)

e2αφF 2 → f(φ)F 2 (1.4)

with the “gauge coupling function” f(φ) taking the form

f(φ) = e2αφ + ξ1 + ξ2 e
−2αφ + ξ3 e

−4αφ + · · · = 1

g2
+ ξ1 + ξ2 g

2 + ξ3 g
4 + · · · (1.5)

The new terms ∼ ξi in the gauge coupling function are meant to mock up the quantum

corrections which become important as the coupling constant grows near the horizon.

We will mostly truncate to the case where only ξ1,2 appear. This is largely to make a

particularly tractable toy model, and we suspect (for reasons we describe in the discussion,

after analyzing the toy model) this is not qualitatively important for our results. We shall

see that for this form of f (and for more generic forms that include further terms, as long

1It is rather natural to think that because theories with dispersion relation ω = kz for z > 1 have

more “soft modes” than conventional relativistic theories, the tidal forces are a dual avatar of the more

complicated structure of IR singularities in such theories.
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as a suitable condition is satisfied), the geometry of the magnetic black brane is changed

in the very near-horizon limit.2

For the asymptotically AdS brane, the resulting structure is as follows. The UV fixed

point is a Lorentz-invariant CFT perturbed by a magnetic field (corresponding to the

magnetically charged brane). Along the renormalisation group trajectory, one flows very

close to a Lifshitz fixed point with z =
1+(α

2
)2

(α
2
)2

, and hovers in the vicinity of the fixed point

for decades in energy scale. (By tuning parameters, one can increase the number of decades

of energy over which the theory is controlled by this fixed point). Finally, in the deep IR, the

coupling g grows appreciable enough that the corrections in (1.5) become important. The

result is an emergent AdS2 ×R2 geometry, which smoothly ends the flow and resolves the

Lifshitz horizon which was present in the “uncorrected” theory. We discuss the analytical

form of the deep IR AdS2 × R2 solution in section 2, and we present numerical solutions

showing the three scaling regions in appropriate RG flows in section 3. We conclude with

a discussion in section 4.

2 AdS2 × R2 solutions of the quantum corrected action

We consider an Einstein-Maxwell-dilaton theory including simple loop corrections to the

gauge coupling function. The full action is:

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − f(φ)F 2 − 2Λ

)
, (2.1)

with f(φ) given by equation (1.5) and only ξ1,2 6= 0. The Einstein equations coming from

this action take the form

Rµν + (Λ− 1

2
R)gµν = Tµν (2.2)

where we have set 8πGN = 1. The stress-energy tensor is:

Tµν = 2f(φ)

(
FµρF

ρ
ν −

gµν
4
F ρσFρσ

)
+ 2

(
∂µφ∂νφ−

gµν
2
∂ρφ∂ρφ

)
(2.3)

When ξ1 = ξ2 = 0, the action reduces to that of equation (1.3), and the theory has

charged black holes with a near-horizon Lifshitz-like metric, as well as a logarithmically

running dilaton [17, 19]. Here, we exhibit exact AdS2×R2 magnetically-charged solutions

of the theory after including the corrections to the gauge-coupling function. As in [17], we

then modify the exact near-horizon solution to glue the system into an asymptotically AdS4
geometry. We will see that, unsurprisingly, one can easily arrange to (approximately) match

on to the Lifshitz-like solutions seen in the earlier works for large intermediate regions of

our holographic RG flows.

2It is reasonable to wonder what would happen on inclusion of a φ potential in (1.3). Such solutions

have also been explored, e.g. in [22]. Inclusion of potentials of the sort studied in [22] would not change

our conclusions qualitatively, though they do lead to a more general class of metrics (involving also a

hyperscaling exponent) along the RG flow; we comment in more detail on this point in section 4.
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Now, we demonstrate that this theory admits AdS2 × R2 solutions.3 To begin with,

assume that the effective attractor potential for the dilaton stabilizes it at some value φH .

The metric is given by

ds2 = L2

(
− r2dt2 +

dr2

r2
+ b2(dx2 + dy2)

)
, (2.4)

and the background gauge field strength by

F = Qmdx ∧ dy . (2.5)

Note that b and Qm can be changed by re-scaling the field theory spatial coordinates; we

set our conventions at the end of this section.

It is convenient to think of the metric gµν in terms of two sub-blocks, gαβ with α, β

running over x, y and gab with a, b running over r, t. Then with φ = φH and the metric

and gauge fields as above, we see that

Tαβ =
1

4

Q2
m

L4b4
f(φH)gαβ, Tab = −1

4

Q2
m

L4b4
f(φH)gab . (2.6)

The xx and yy Einstein equations yield

Λ− 1

2
R =

1

4

Q2
m

L4b4
f(φH) (2.7)

while the rr and tt Einstein equations become:

1

L2
−
(

Λ− 1

2
R

)
=

1

4

Q2
m

L4b4
f(φH) . (2.8)

Here, R is the scalar curvature − 2
L2 of AdS2 ×R2.

The value of φH can be found from the equation of motion for φ,

− 4

b2L2
∂r(b

2∂rφ) = ∂φ(−f(φ)F 2) (2.9)

=
αQ2

m

b4L4
(ξ2e

2αφ − e−2αφ), (2.10)

assuming φ constant. The solution we find for the effective coupling g = e−αφ, is simply

e−αφH = ξ
−1/4
2 . (2.11)

So we see that in the reasonably generic parameter range ξ2 > 0, quantum corrections to

the gauge-coupling function can produce an attractor potential which yields a non-trivial

minimum for the dilaton. This minimum is at weak coupling for large ξ2 and strong

coupling for ξ2 small. We discuss the robustness of these results (under incorporation of

e.g. further corrections) in section 4.

3After completing this work, we were informed that closely related magnetic AdS2 ×R2 solutions were

also found in rather general Einstein-Maxwell-dilaton systems in section 5 of [34].
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Plugging φH back into the r.h.s. of the Einstein equations, (2.7) and (2.8), we obtain

for, e.g., (2.7):

Λ− 1

2
R =

Q2
m

4L4b4
(2
√
ξ2 + ξ1). (2.12)

The Einstein equations can then be solved for the two remaining degrees of freedom, Qm
and L2, in terms of Λ, which gives us

1

L2
= −2Λ, Q2

m =
2L2b4

2
√
ξ2 + ξ1

. (2.13)

This solution is sensible in the parameter range Λ < 0, ξ2 > 0, and ξ1 > −2
√
ξ2.

Here we have kept b as a parameter, and determined Qm as a function of b. In fact in

the AdS2 solution we can choose a gauge where Qm ≡ 2. We shall use this to fix our initial

value of b when we “shoot” to AdS4 asymptotics in the next section. The full AdS4 flows

are then really characterised by two parameters: φ∞ and Qm. While this may seem to be

in tension with the fact that Qm is fixed in the near-horizon region by (2.13), the tension

is illusory. Qm sets the only scale in the UV theory, and theories with different values are

related by coordinate re-scalings, as in [17].

3 RG flows

Here, we find full solutions with AdS2 ×R2 in the deep IR, a large Lifshitz scaling region

along the flow to the UV, and asymptotically AdS4 boundary conditions. We do this

as follows. First, we find linearized solutions to the equations for fluctuations around

AdS2 × R2, which vanish faster than the leading order background fields as r → 0 - these

are irrelevant perturbations of the IR fixed point. We then add them with appropriate

coefficients to generate a flow as one goes to larger values of r, and solve the equations

using standard “shooting” techniques to hit AdS4. We will find that quite naturally, large

Lifshitz scaling regions (matching onto the solutions of [17, 18]) appear along the flow. We

begin by sketching the qualitative nature of the expected flow analytically.

3.1 Intuitive picture of flow

Here, we describe how we can design solutions which match those of [17, 18] over a wide

range of scales. Suppose we begin with a weak coupling g = e−φ∞ at the AdS4 boundary.

We choose the asymptotic coupling so that f(φ) is dominated by the classical term,

1

g2
� (ξ1 + ξ2g

2) . (3.1)

Then starting close to the boundary, we will match the (magnetic version of) the solutions

flowing from AdS4 to Lifshitz, studied in [17, 18].

The theory will depart from AdS4 scaling and approach the Lifshitz form when the

contribution from e−2αφF 2 in the action is comparable to the contribution from the cosmo-

logical term. This happens when gxxgyyF 2
xy ∼

g2

L2 , so given that the dilaton is approximately

– 5 –



J
H
E
P
0
2
(
2
0
1
4
)
0
8
5

constant in the AdS4 region, the crossover to the Lifshitz scaling happens when

r4 ∼ Q2
mL

2

b4∞e
−2αφ∞ . (3.2)

Here, the parameter b∞ is the coefficient of the linear term in the function b(r) in (3.5)

at infinity, b(r) ∼ b∞r. We are not free to re-scale this to one because we have chosen to

shoot starting from the value of b, bH , that yields Qm(bH) = 2 in the AdS2 ×R2 region.

In the magnetically charged brane solution of (1.3) (section 4 of [18]), once one is in

the near-horizon region, the dilaton grows as

g = e−αφ ∼
(

1

r

)αK
, K ≡

α
2

1 + (α2 )2
. (3.3)

For any fixed ξ1 and ξ2 in the range of parameters discussed in section 2, we will then

eventually violate the condition (3.1) as g grows, as soon as

ξ2g
4 + ξ1g

2 ' 1 . (3.4)

If ξ21 > ξ2, this crossover occurs before one hits the attractor value of the dilaton (2.11).

Since one is free to tune φ∞ at the AdS4 UV fixed point, for an open set of sufficiently

weak couplings, the crossover from AdS4 to Lifshitz occurs well before the crossover from

Lifshitz scaling to the AdS2 attractor. As one makes g∞ weaker, then, the number of

decades of the renormalisation group flow controlled by the approximate Lifshitz fixed

point grows.

3.2 Corrections to the near horizon solution

Now we consider the general metric,

ds2 = L2(−a(r)2dt2 +
1

a(r)2
dr2 + b(r)2(dx2 + dy2)) (3.5)

and allow for φ = φ(r). The Ricci tensor and scalar curvature are now more complicated

functions of r. The scalar curvature is

R =
2
(
b2a′2 + 4aba′b′ + a2b′2 + ab2a′′ + 2a2bb′′

)
L2b2

. (3.6)

The components of the Einstein equations, Rµν + (Λ− 1
2R)gµν = Tµν , are now

LHStt =
a2

2b2
(b2 − 2a2b′2 − 4ab(a′b′ + ab′′)) (3.7)

LHSrr = − 1

2a2
+

2a′b′

ab
+
b′2

b2
(3.8)

LHSab =
1

2
b(b(2a′2 + 2aa′′ − 1) + 2a(2a′b′ + ab′′)) (3.9)

– 6 –
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for the left hand side, and

Ttt =
1

4

Q2
m

L2

a2

b4
f(φ) + a4φ′2 (3.10)

Trr = −1

4

Q2
m

L2

1

a2b4
f(φ) + φ′2 (3.11)

Tab =
1

4

Q2
m

L2

1

b2
f(φ)− a2b2φ′2 (3.12)

for the stress-energy tensor.

We perturb around the AdS2 ×R2 solution:

a(r) = r(1 + d1r
ν), b(r) = bH(1 + d2r

ν), φ(r) = φH(1 + d3r
ν) , (3.13)

and keep the lowest order terms in d1, d2, and d3. The Einstein equations at lowest

order are

(ν2 − 1)d2 = 0 (3.14)

(ν − 1)d2 = 0 (3.15)

(ν + 1)(ν + 2)d1 + (ν2 + ν + 2)d2 = 0 (3.16)

for t, r, and x, y respectively. We get an additional constraint from expanding equa-

tion (2.9), the equation of motion for φ,[
2α2
√
ξ2

2
√
ξ2 + ξ1

− ν(ν + 1)

]
d3 = 0. (3.17)

Because we require that ν > 0 so that the perturbations die away at small r, we have two

modes which are irrelevant at small r:

ν = 1, d2 = −3

2
d1, d3 = 0 (3.18)

and

ν =
1

2

√1 +
8α2
√
ξ2

ξ1 + 2
√
ξ2
− 1

 , d1, d2 = 0. (3.19)

These are the modes that will control the RG evolution of the AdS2×R2 solution as r →∞.

3.3 Flows to Lifshitz and AdS4

In this section we show plots evincing the evolution of the near-horizon AdS2×R2 solution

as it approaches the UV. As predicted in section 3.1, the solution always asymptotically

reaches AdS4, independent of the coefficients of the irrelevant modes, while hitting an

intermediate Lifshitz regime over a range of energies, which can be tuned to be arbitrarily

large as a function of the coefficients d1, d2, d3.

The numerical shooting method was employed using parameter values α = 1, ξ1 =

1, ξ2 = 0.5,Λ = −0.5, and Qm = 2. In this case, the irrelevant modes at the horizon

scaled with exponents ν = 1 (where we have chosen d1 = −0.001 and d2 = 0.0015) and

– 7 –
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Figure 1. Metric functions in the intermediate Lifshitz regime. The numerical solution is plotted

in blue while the behavior of an exact Lifshitz solution (with α = 1) is shown in red. On the left is

a′(r), and on the right is b(r).

108 1010 1012 1014
r

0.45

0.5

0.55

0.6

0.65

0.7

0.75

a¢HrL

108 1010 1012 1014
r

10

100

1000

104

bHrL

Figure 2. Here we see a log-log plot of the crossover from Lifshitz scaling to AdS4 in the metric

functions a(r) and b(r). The crossover occurs around r = 1011. For r < 1011, the Lifshitz region

persists over several decades in r, while for r > 1011, the solution becomes AdS4. Left: a′(r); right:

b(r). The flow in a(r) just reflects the fact that the coefficient of the linear term in a(r) ∼ r is

different in the Lifshitz and AdS4 regions. The change in slope in the log-log plot for b(r) indicates

the difference between a solution with dynamical scaling (z = 5, for our choice of parameters) and

the z = 1 characteristic of AdS4.

ν ≈ 0.4 (where we have chosen d3 ≈ −0.17). The values of the coefficients of the irrelevant

perturbations to the AdS2 ×R2 solution were chosen in order to achieve a Lifshitz scaling

region which persisted over several decades in r.

In figure 1 we show the solution for the metric functions a′(r) and b(r) in the interme-

diate Lifshitz regime, as well as the exact Lifshitz solution of the uncorrected action given

our parameter values α and Qm. We see that the metric functions approach the Lifshitz

solution around r = 104 and remain there for several decades.

After remaining in the Lifshitz scaling region for several orders of magnitude in r,

the solution eventually crosses over to AdS4. We show this behavior in figure 2. The

value of r where the crossover occurs, r ∼ 1011, is in very good agreement with our rough

estimate (3.2). This indicates that our understanding of the basic physics of the flow

is correct.

In figure 3 we show the behavior of the solution for the dilaton. In the Lifshitz region,

the dilaton behaves as a log with slope given by K = α/2
1+(α/2)2

and it eventually crosses

over to AdS4, where it takes a constant value φ∞.
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Figure 3. Left: shown in blue is the numerical solution for φ(r) in the Lifshitz scaling regime,

with the exact Lifshitz solution shown in red. Right: log-log plot of φ(r) showing crossover from

Lifshitz scaling to AdS4. As in figure 2, the crossover occurs around r = 1011, where we see φ(r)

transition from a log-running function to a constant solution φ∞.

4 Discussion

One of the common ways of obtaining dynamical scaling in holographic theories has been

to study charged black brane solutions of Einstein-Maxwell-dilaton gravity. However, the

resulting Lifshitz solutions have a running dilaton, and therefore the deep IR behaviour is

not expected to maintain the scaling form of the metric [17]. Instead, it is expected that in

the magnetic (electric) black branes, quantum corrections (α′ corrections) should modify

the very near-horizon geometry. We have argued here that one generic consequence, in the

magnetic case, can be the re-emergence in the deep IR of an attractor fixed point with fixed

dilaton and an AdS2 ×R2 geometry (as occurs also in the Einstein-Maxwell system in the

absence of a dilaton). Then, the richest solutions exhibit three scaling regions: a UV AdS4
fixed point, an intermediate region (which can extend over many decades in energy scale)

with dynamical critical exponent governed by the detailed form of the dilaton coupling,

and a deep IR AdS2 ×R2 geometry.

We close with some comments/questions.

• We chose to incorporate a certain set of corrections in g in (1.5), just keeping ξ1,2.

Clearly, in general one would have there an infinite series. Our approximation in

truncating at the order we did could only be justified if for some reason ξ2 were large

enough to yield a weak-coupling value of φH , with further terms of higher order in g

being negligible. There is no reason to expect this to happen in general. However,

the important point is that once there are multiple orders in g appearing in the gauge

coupling function, there will generically be critical points in the attractor potential.

The Lifshitz solutions only obtain when one has a “runaway attractor” (as described

in [17]), and so the fact that generic corrections yield other non-runaway critical

points explains why we feel the results we’ve described here do capture one generic

possible fate for the near-horizon geometry of the magnetic branes.

Of course, in a system with multiple attractor minima, different minima will control

different basins of attraction and the so the IR geometry may depend sensitively

– 9 –
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on the value of the dilaton at the boundary. Different attractor minima could give

different geometries, not all AdS2-like, in a full system. It would be interesting to

study richer attractor potentials in this context, to explore how often the system

enjoys different fates.

• In the magnetically charged branes, g runs toward strong coupling at the hori-

zon,which explains why higher order corrections in g can become important and

change the very near horizon geometry. In the electric case, instead g flows towards

weak coupling. Then, one expects that in a theory like string theory which has a

UV scale Ms = gMP , α′ corrections will become important. It would be interesting

to show that generic higher-derivative corrections (with suitable g dependence) yield

a similar result for the electrically charged black-branes. This is technically slightly

more involved because of the need to deal with higher derivative equations of motion,

but it should be tractable. It is easy to see that higher derivative corrections with

suitable g dependence do yield AdS2 ×R2 solutions to the equations of motion.

• It was clear from the beginning that because of the running dilaton, the Lifshitz-like

solutions of [17, 19] should not be expected to remain valid down to arbitrarily low

energy scales - one has not attained a true scale-invariant fixed point if the scalar

field breaks the scaling symmetry of the metric. On the other hand, there are plenty

of Lifshitz solutions (in macroscopic theories [6] and in string theory [7–13]) which

have exact scale invariance and do not involve a running scalar. Then, there is no

excuse for quantum corrections or α′ corrections to grow large and smoothly deform

the near-horizon geometry, as happened here. In these exact Lifshitz solutions, we

expect the quantum or stringy fate of the horizon could be quite different. In fact, the

singularities there may be a feature, mirroring the stronger IR singularities present

in scale-invariant field theories with z > 1. Some interesting work trying to resolve

this issue by studying Coulomb branch probes of such theories is underway [35].

• There has also been recent interest in more general metrics with both dynamical

critical exponent z and hyperscaling violation parameter θ, which arise in very similar

Einstein-Maxwell-dilaton theories with simple dilaton potentials [22, 23, 26, 36–40].

This is in part because such metrics give rise, for appropriate θ, to phases which

violate the area law for (holographic) entanglement entropy [36–39]. These metrics

are also supported by a running dilaton which violates the scaling, and we expect

that IR modifications similar to those we saw here will also occur rather generically

in that setting. In particular, corrections to the exponential scaling potential used in

those systems are also rich enough to give rise, rather generally, to critical points in

the attractor potential for the dilaton which support AdS2 ×R2 solutions.

• We find that our results help add to the general confusion about the correct ground

state for doped holographic theories in e.g. AdS4. The AdS2 × R2 geometry of the

extremal Reissner-Nordstrom black brane has a notorious extensive ground-state en-
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tropy, which leads us to believe it should be a rather unstable phase.4 One motivation

for adding the dilaton and seeing its effects on the charged black brane geometry in

asymptotically AdS4 theories in [17] was precisely to resolve this problem, and indeed

the Lifshitz-like emergent IR metrics do have vanishing entropy at zero temperature.

However, the same dilaton which supports the modified geometry leads to a break-

down of the g or α′ expansion in the deep IR, and we see here that one generic result

can be a re-emergent AdS2! Quite possibly, a more detailed study of the phase dia-

grams of these toy models would reveal that more general phases — the homogeneous

anisotropic phases of [5] or even inhomogeneous phases — are the truly generic end-

points of holographic RG flows induced by doping 3d CFTs with a charge density. In

fact, the analysis in section 5 of [34] indicates that such instabilities should be generic

in AdS2×R2 solutions of more involved dilaton gravity theories that also have a non-

trivial near-horizon scalar potential driving the RG flow of the dilaton. This makes

it promising to look for flows from homogeneous, anisotropic phases to the finite z, θ

metrics with hyperscaling violation that arise in the presence of dilaton potentials.

Because the AdS2×R2 geometry we found here is stabilised by quantum corrections,

the entropy density is actually smaller by a factor of the coupling than it would

be in a pure Einstein-Maxwell theory without running dilaton. One can see this

by comparing the entropy of two solutions with fixed φ∞ - one of them with finite

α, and the other with α → 0 (which is the Einstein-Maxwell limit). The ratio of

entropy densities, when the horizon is stabilized at weak coupling in the finite α

theory (ξ2 � 1) and so the discussion is reliable, is given by

Sα
SEinstein−Maxwell

∼ g∞
gh

(4.1)

where g∞ is the (shared) coupling at infinity, and gh is the coupling at the horizon

in the magnetic solution of the theory with finite α. Because the flow in these

solutions is towards stronger coupling, gh � g∞ and the ground-state degeneracy is

somewhat relaxed.

• Finally, it is an important question to study similar examples in full string theory

solutions, where we know there is a bona fide dual quantum field theory whose dy-

namics at finite charge density is captured by the gravity solution. This may be

possible by first embedding such solutions into string-derived gauged supergravities

along the lines of [32], for instance.
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