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1 Introduction

The finite density physics of strongly interacting quantum systems presents significant chal-

lenges for existing theoretical frameworks. The questions of physical interest range from

the behaviour of quark/baryonic matter at high densities [1–3] to the physics of quantum

critical points in condensed matter systems [4]. The AdS/CFT correspondence [5] provides

an avenue for tackling such phenomena within toy models that can be constructed and an-

alyzed using the framework of gauge/string duality [6, 7]. One of the directions that has

attracted considerable attention in recent years is the possible emergence of Lifshitz [8, 9]

and Lifshitz-like (with hyperscaling violation) [10–12] scaling symmetries as infrared (IR)

descriptions of strongly coupled field theories with holographic duals. A particularly fasci-

nating feature of such scaling is the possibility of observing logarithmic violation of the area

law for entanglement entropies indicating the presence of hidden Fermi surfaces [10, 11],

and other possible signatures of holographic fermionic physics [13].

The aim of this paper is to exhibit some supersymmetric backgrounds in string theory

resulting from the backreaction of distributions of fundamental strings (F1-strings) in the

presence of a large number of D3-branes, giving rise to (IR) geometries exhibiting a range

of Lifshitz-like scalings with and without hyperscaling violation.1 Our primary motivation

for considering such configurations arises from the interpretation of macroscopic fundamen-

tal strings as heavy quarks or Wilson lines [19, 20] in the holographic dictionary between

strongly coupled N = 4 SUSY Yang-Mills theory in the ’t Hooft large-N limit, and IIB

1String/M-theory realizations of backgrounds with hyperscaling violation (e.g. from lightlike compacti-

fication of AdS plane waves) and their properties have been studied in [14–18].
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string theory in AdS5 × S5. Spatially uniform distributions of macroscopic strings corre-

spond to a finite density of heavy quarks in the gauge theory.2 It has been found in [21]

that a specific non-supersymmetric smearing of such string sources, preserving global SO(6)

symmetry, produces a flow from AdS5 × S5 to a Lifshitz geometry with critical exponent

z = 7 and a logarithmically running dilaton (see also [22]).

Spatially homogeneous (d + 2)-dimensional spacetime metrics exhibiting Lifshitz-like

scaling with dynamical critical exponent z and hyperscaling violation have the form [10–12]

ds2 = r−2θ/d

(

−r2z dt2 +
dr2

r2
+ r2d~x 2

)

, (1.1)

so that under the rescalings: ~x 7→ a ~x, r 7→ a−1 r and t 7→ az t, the line element transforms

covariantly as ds 7→ aθ/d ds.

We will encounter such scaling backgrounds with d = 3, preserving 8 supersymmetries,

as IR descriptions of N = 4 SYM at strong coupling with a smeared density of supersym-

metric Wilson lines or heavy quarks. In the large-N limit, we take the number density of

such heavy quarks to scale as N2, so that it becomes necessary to include their backreac-

tion on the field theory vacuum. The holographic duals to such states are described by a

class of 1
4 -BPS backgrounds in IIB supergravity whose general properties will be presented

elsewhere [23]. The specific class of backgrounds that we consider in this article are those

which have the form of certain well known intersecting brane configurations [24–26]. The

configurations within this class can be thought of as pairs of quarks and antiquarks which

are mutually supersymmetric (by having opposite internal SO(6) orientations) and are

distributed uniformly in the spatial directions of the gauge theory. A particular solution

within this class has appeared in [17, 18, 27, 28] where its Lifshitz-like scaling properties

have been pointed out.

We find that one category of the intersecting F1-D3 configurations naturally leads to an

exact scaling solution in the infrared, exhibiting Lifshitz-scaling with z = 7 which is mildly

broken by a logarithmically running dilaton. The background preserves supersymmetry

and an SO(5) internal symmetry. This result is noteworthy since the z = 7 Lifshitz scaling

behaviour matches that of [21] which dealt with an SO(6) preserving non-supersymmetric

setup. This is indicative that the z = 7 scaling is probably a universal feature of N = 4

SYM with finite quark density (at strong coupling and large-N). It points toward the

possibility that when the quark flavours are made dynamical (by introducing D7-branes

for instance [29]) and their backreaction taken into account at finite baryon density, then

the low temperature IR physics may well be controlled by a similar scaling solution (see [30]

for closely related discussions). A concrete framework where this possibility can be further

investigated is the unquenched smeared flavour brane setup of [31–35].

Within the setting of the supersymmetric configurations in this paper, constructing

the full flow from AdS5 × S5 to the IR scaling solution remains a challenging task due to

the reduced isometry of the dual gravity backgrounds. However, we analytically examine

2It can also be argued that such configurations in the bulk should control the IR geometry produced

by the backreaction of massive and massless flavour D7-branes with chemical potential for baryon number.

We thank D. Mateos and J. Tarrio for stimulating discussions on this point.
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the departure of the flow induced by the supersymmetric smeared strings in the UV, and

find close similarities to the SO(6) symmetric case of [21] wherein it was possible to obtain

the entire flow numerically.

The supersymmetric intersecting brane configurations present us with a further inter-

esting route for obtaining non-trivial scaling solutions. This is because of the existence of

supersymmetric moduli spaces at zero temperature. In particular, it is possible to move

out to a generic point on the Coulomb branch moduli space (where the gauge group is

generically Higgsed to a product of Abelian factors) of N = 4 SYM and examine the effect

of a finite quark density. In the dual gravity description this corresponds to a general

distribution of N D3-branes at large-N . We consider such continuous distributions of the

D3-branes and F1-strings that are compatible with the supersymmetries preserved by the

intersecting brane configurations. Specifically, we introduce distributions for these sources

with power law scalings in the IR and solve the supergravity equations for such power law

density functions. We thus find a two parameter family of Lifshitz-like scaling solutions

with hyperscaling violation coefficients. Imposing the weak energy condition on each of

the source distributions restricts the allowed values of z and θ.

Perhaps the most interesting result within the class of Coulomb branch configurations

is the appearance of a solution with z, θ → ∞ and η ≡ −θ/z fixed (satisfying η ≥ 1). These

give rise to geometries that are conformal to AdS2 × R
3 with vanishing entropy at zero

temperature. Such geometries have been argued to be relevant for holographic descriptions

of fermionic physics [13].

All the solutions we find bear close resemblance to scaling solutions in Einstein-

Maxwell-dilaton theories [9, 36–39]. In particular the dilaton softly breaks the scaling

invariance via logarithmic running. Furthermore since the dilaton runs to zero in the IR,

it renders α′ corrections important in the deep IR.

2 Smeared strings and N = 4 SYM

N = 4 SYM theory possesses a global SO(6) R-symmetry which corresponds to the isome-

try of the five-sphere of the dual gravity background at strong coupling. A supersymmetric

Wilson line in N = 4 SYM at strong coupling is computed by an infinite probe F1-string

stretching from the boundary of AdS5 along the radial AdS coordinate, whilst remaining lo-

calized at a point on the internal S5 [19, 20]. Such a configuration preserves SO(5) ⊂ SO(6)

and more generally, is associated to the Maldacena-Wilson line in some representation R,

WR(~x) =
1

dim[R]
TrR P exp

(

i

∫

dt
(

A0(~x, t) + n̂I φI(~x, t)
)

)

, (2.1)

where n̂ is a unit vector in R
6 and φI , the six adjoint scalars in the N = 4 multiplet. We

focus our attention on straight (timelike) BPS-Wilson lines. There also exists a gravity

dual realization of such supersymmetric or BPS-Wilson lines for generic representations

R in terms of D3 and D5-brane embeddings in AdS5 × S5 [40–43]. In particular, for

representations whose size scales as N2, the gravity duals of the Wilson lines necessarily

require inclusion of back-reaction of the corresponding D3/D5-brane configurations on

AdS5 × S5, leading to the 1
2 -BPS ‘bubbling’ geometries of [44].

– 3 –
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Our goal in this paper is to model a particular state with finite heavy quark density by

taking a very specific BPS Wilson line configuration and smearing it uniformly along all

spatial directions of the N = 4 theory. The unsmeared configuration consists of a mutually

BPS quark-antiquark pair i.e. antiparallel lines placed at antipodal points of the internal

S5 [19, 20, 45]. This preserves an SO(5) global symmetry and, prior to taking the near

horizon limit of the D3-branes, can be viewed as a supersymmetric F1-D3 intersection.

A specific delocalized version of this intersection has been discussed in [17, 18, 27, 28]

and shown to lead to Lifshitz-like scaling. The backreacted geometries resulting from the

spatially smeared configurations are 1
4 -BPS, preserving 8 real supercharges.

We will consider two distinct classes of 1
4 -BPS configurations in this paper:

• In the first category lies the so-called partially localized F1-D3 intersection [26], where

F1-strings are smeared along the relative transverse directions (spatial coordinates)

on the D3-branes, and the D3-branes are not smeared. We will argue that the corre-

sponding gravity background represents a flow from AdS5×S5 to a z = 7 Lifshitz-like

geometry.

• The second class involves delocalized D3-brane and F1-string distributions, allowing

for a general smearing density for both sets of sources. The solution of [17, 18,

27, 28] is a special case within this category of solutions. We find a large class of

zero temperature scaling solutions with a range of dynamical critical exponents and

hyperscaling violation coefficients.

2.1 Metric ansatz in 10D

Given the symmetries and supersymmetries of such configurations, we show in an accom-

panying paper [23], that the type IIB fermionic variations vanish if one takes the following

ansatz for the Einstein frame metric, the Ramond-Ramond fluxes F3, F5 and Neveu-Schwarz

field strength H3:

ds2Einstein = −e2(A+φ)dt2 + e2A
3
∑

i=1

dxidxi + e−2A+φdx2 + e−2A−φ
(

dy2 + y2dΩ2
4

)

,

gsF5 =
y4

4
(1 + ∗)

[

∂y

(

e−4A−φ
)

dx− ∂x

(

e−4A−3φ
)

dy
]

∧ ǫ(4) ,

H3 = ∂y

(

e2φ
)

dt ∧ dy ∧ dx , F3 = 2 e4A−φ∂xφ dx1 ∧ dx2 ∧ dx3 . (2.2)

Note that we follow the conventions of [44] and our normalization of F5 differs from the

usual one by a factor of 4. Here dΩ2
4 is the metric of the unit radius four-sphere with

volume form ǫ(4), the warp factor A and dilaton φ are functions of the x and y coordinates

only. The gauge theory lives in the 4D spacetime spanned by the coordinates
(

t, x1, x2, x3
)

.

In addition, the ten-dimensional complex spinor ǫ parametrising supersymmetry variations

must satisfy the projection conditions

Γ t̂ x̂D−1 ǫ∗ = ǫ , iΓ t̂ x̂1x̂2x̂3ǫ = ǫ , (2.3)

leading to 1
4 -BPS solutions. Here D is the ten dimensional complex conjugation matrix.

The projections are those associated to fundamental strings and D3-branes, respectively.
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Figure 1. Left: the x-y half-plane in AdS with x = r cos θ and y = r sin θ where r is the radial

coordinate in AdS and θ the polar angle on the S5. Right: D3-brane positions (in red) on the

x-y plane, with infinite F1-strings oriented along the x-axis. The thickened lines indicate that the

respective distributions may have a non-zero extent along the x-axis.

Within this ansatz, the geometry can be viewed locally as a fibration of Rt ×R
3 × S4

over the x-y plane. Therefore, these are time independent backgrounds with an SO(5)

isometry and symmetry under translations and rotations in R
3.

2.2 (Partially) Localized F1-D3 intersection

In this paper we will only study solutions with F3 = 0. This precludes a charge density for

D5-branes that could be interpreted as baryon density as in [21]. It is also physically clear

why this is the case: we are considering a uniform density of quark and anti -quark pairs

(with opposite SO(6) orientations). With this choice, the backgrounds represent F1-D3

BPS intersections of the kind analyzed in [24–26]. We can make contact with the standard

form of the metric for such backgrounds with the identifications:

e−2φ = h1 , e−4A−φ = h3 , (2.4)

where h1 and h3 are the harmonic functions associated to the F1-strings and D3-branes

respectively. It is well known that in these types of solutions (e.g. [26]) there is a smearing

along the relative transverse directions of the strings/branes i.e. those which are parallel

to the world volume of some of the branes (strings), but perpendicular to others. They

are constructed by the so-called “harmonic rule”: to each type of brane (string) there is a

corresponding function which is harmonic in the space transverse to their world-volumes.

In order to source two sets of branes in the same solution one simply multiplies the two

harmonic functions together in the appropriate way.

AdS5 × S5 vacuum. The vacuum solution, namely AdS5 × S5, is recovered when

h1 = 1 , h3 = e−4A =
1

(x2 + y2)2
, x = r cos θ , y = r sin θ , 0 ≤ θ ≤ π . (2.5)

This is indicated in figure 1. The five-sphere is obtained by fibering the S4 along a semicircle

enclosing the origin.

Backreaction of string sources. The presence of macroscopic string sources will lead

generically to a non-vanishing NS-NS three-form flux H3. The form of H3 = dB2 in our

ansatz (2.2) suggests that the strings must lie parallel to the x-axis (see figure 1). Now,

– 5 –
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both the functions h3 and h1 are non-trivial, and for sources localized in the x-y plane they

are determined by the Bianchi identity for F5 and equation of motion for H3, namely,

∂y
(

y4∂yh3
)

+ y4 h1∂
2
xh3 = 0 , ∂y

(

y4∂yh1
)

= 0 . (2.6)

These are Laplace-like equations for (partially) localized sources smeared along certain

directions transverse to them (the transverse S4 and the spatial R3). Since F3 = 0, we also

know that h1 is only a function of the y-coordinate,

e−2φ = h1(y) = 1 +
Q1

y3
. (2.7)

This is what we would expect for a localized, infinite string source oriented along the x-

axis. The additive integration constant has been set to unity by the requirement that the

dilaton φ vanishes for large y. Here Q1 is proportional to the number density of F-strings

nF1, which also measures the density of heavy quark sources in the gauge theory:

Q1 ≡
√
λ

nF1

N2

4π2

Vol(S4)
, (2.8)

λ being the ’t Hooft coupling of the N = 4 theory. The number density of heavy quarks

nF1 must scale as N2 in order to keep Q1 fixed in the large-N limit, and to consistently

include their backreaction on the background.

The normalizations are fixed by demanding that the equation of motion for H3 yield

a number density nF1 of macroscopic F-strings localized at y = 0,

d
(

e−φ ∗H3

)

=
nF1

2πα′ 16πGN δ(y) dy ∧ ǫ(4) ∧ dx1 ∧ dx2 ∧ dx3 . (2.9)

Setting the AdS-radius to unity, the ’t Hooft coupling λ of the gauge theory is related to

the tension of a fundamental string as (2πα′)−1 =
√
λ

2π . In addition, Newton’s constant in

ten dimensions is given by 16πGN = (2π)7g2s α
′ 4, with λ = 4πgsN .

With this solution for h1, the full background is determined by h3(x, y), which solves

eq. (2.6) subject to the requirement that the geometry is asymptotically, locally AdS5 × S5.

It is not possible to solve this equation analytically, but we can analyze its UV and

IR asymptotics.

2.3 z = 7 Lifshitz IR

In the IR limit, which corresponds to small y, we have that h1 ≈ Q1/y
3. The general

solution for the harmonic function h3(x, y) in this limit is (e.g. [26]):

h3(x, y) =
1

y5/2

(

c1 (v + 4Q1)
5/2 + c2

(

v5/2 + 10Q1 v
3/2 + 30Q2

1

√
v
))

,

v ≡ x2y . (2.10)

We may view this as a ‘near horizon’ limit for the F-strings. In fact h3 can take

the more general form, similar to that for multi-centred D3-brane sources, h3 ∼
∑

i Pi

(

(x− xi)
2 + 4Q1/y

)5/2
+ . . ., but this generalization is not of particular interest to

us at this point. It is easy to see that the solution for h3 follows from a scaling argument.3

3Allowing for a source density ρ(x, y) on the right hand side of (2.6), we expect that under x 7→ sx,

y 7→ say, for a scaling solution we should have ρ 7→ ρ/s1+a. Comparing the two sides we find that a = −1/2

and h3 = h̃
(

x2y
)

/y5/2 for some function h̃. The differential equation for h̃
(

v ≡ x2y
)

, yields the general

solution h̃(v) = c1 (v + 4Q1)
5/2 + c2

√
v
(

v2 + 10Q1v + 30Q2
1

)

.

– 6 –
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The second important remark is that such solutions cannot correspond to localized F1-D3

intersections, since h3 increases as a positive power of x for large x. The D3-branes are

in fact delocalized along the x-axis in this limit
(

y/Q1
1/3 ≪ 1

)

. The reasons behind such

‘spontaneous delocalization’ were explored in [46], including the case which is precisely the

S-dual of the setup we are studying, namely D1-branes smeared along the spatial directions

of D3-branes. In this case the spontaneous delocalization was attributed to the analogue

of the Coleman-Mermin-Wagner theorem in the 0+1 dimensional quantum mechanics of

the intersection.

One can confirm that the D3-branes are indeed not localized by noting that F5 (in this

limit and with c2 = 0 for simplicity) depends only on v ≡ x2y,

gsF5 = (1 + ∗) f(v) dv ∧ ǫ(4) , v ≡ x2y , (2.11)

f(v) ≡ − 5Q1

4
√
v
(4Q1 + v)5/2 c1 . (2.12)

Therefore, the D3-brane charge can be computed by
∫

γ f(v)dv where γ is a path joining

two points on the curves, say, v = v1 and v = v2. For any two points on the x-axis, which

sits at v = 0, the integral along a path joining them vanishes trivially, and therefore the

D3-brane charge is not localized at the origin, nor at any other finite point on the axis.

It also follows, by allowing arbitary deformations of the curve, that there are no localized

D3-brane sources for any finite values of x and y. In fact the sources must be viewed as

being placed at infinity. This is also related to the fact that the S4 in the geometry does

not shrink anywhere in the x-y plane in this IR limit. This should be contrasted with

AdS5× S5 wherein the D3-brane charge is obtained by choosing a path with end-points on

the x-axis and, importantly, enclosing the origin, as in figure 1.

This picture therefore suggests that the F-strings have pulled apart the D3-branes so

that for scales set by y ≪ Q1
1/3, they appear to be ‘localized’ at infinity. Within the

full flow from the UV AdS asymptotics we expect the D3-branes to have a non-trivial

distribution (and to therefore be delocalized) along the x-axis. Since the bulk geometry

depends on two holographic directions, y and x (or y and v), the D3-brane distribution will

emerge from numerical analysis of the entire flow, a study which we postpone for the future.

Plugging in the expressions for h3 and h1 in this IR limit, defining a new radial coor-

dinate ρ ≡ y1/4 and after appropriate coordinate rescalings, we find

ds2Einstein = Q
3/2
1

[

(

−ρ14 dt2 + ρ2 dxidxi
)

f̃
(

x2ρ4
)−1/2

+ 16
dρ2

ρ2
f̃
(

x2ρ4
)1/2

+
(

dΩ2
4 + ρ4dx2

)

f̃
(

x2ρ4
)1/2

]

, (2.13)

eφ = ρ6 ,

f̃
(

x2ρ4
)

≡ c1
(

x2ρ4 + 4
)5/2

+ c2

(

(

x2ρ4
)5/2

+ 10
(

x2ρ4
)3/2

+ 30
√

x2ρ4
)

. (2.14)

This is an exact, supersymmetric solution to the type IIB equations. The constants c1 and

c2 can only be determined upon embedding this IR solution into the complete flow, with

– 7 –
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AdS UV asymptotics, triggered by the string charge density. The IR background metric

exhibits a scaling symmetry under

xi 7→ a xi , t 7→ a7 t , ρ 7→ a−1 ρ , x 7→ a2 x , (2.15)

which is an anisotropic Lifshitz-like scaling, with dynamical critical exponent z = 7, in

the 4D gauge theory. Note that the scaling symmetry is not exact, as it is broken by the

logarithmic running of the dilaton with energy scale.

Let us point out certain noteworthy aspects of the scaling solution (2.13). The IR

Lifshitz scaling is realized in an unusual fashion due to the non-trivial dependence of the

metric on two holographic directions, x and ρ, and this will further affect the scaling

properties of observables such as the entanglement entropy and thermodynamic quantities.

It is remarkable that the z = 7 Lifshitz scaling, with exactly the same running of the dilaton,

was also observed in [21, 22] within the non-supersymmetric SO(6)-symmetric ansatz for

smeared Wilson lines in N = 4 SYM. This suggests that the emergent Lifshitz symmetry

with z = 7 may be a universal feature of a dense state of heavy quarks introduced in N = 4

SYM, independent of the details of their internal SO(6) orientation. A further difference

between the SO(6)-symmetric setup of [21, 22] and the supersymmetric configuration above,

is that whilst the former has F3 6= 0 corresponding to D5-brane/baryon charge density, the

latter has F3 = 0. However this detail does not appear to affect the dynamical critical

exponent in the IR. A supersymmetric configuration with F3 6= 0 is explored in [23].

We can recover a more conventional form of the Lifshitz-like metric by taking a further

limit of the IR solution, namely x2ρ4 ≪ 1, assuming that c1 6= 0 generally. After some

coordinate rescalings, this yields

ds2Einstein ≈ c

(

dρ2

ρ2
− ρ14dt2 + ρ2

3
∑

i=1

dxidxi + ρ4dx2 +
1

16
dΩ2

4

)

eφ = ρ6 , (2.16)

where c is a constant. The four-sphere has a constant size in this limit, and the back-

ground (2.16) is not, by itself, an exact solution to the supergravity equations of motion;

it is a limiting form of the IR (small y) metric.

An interesting aspect of the IR physics that is manifest in this limit, is that it is ef-

fectively a six-dimensional geometry (after reduction on S4). The emergence of an extra

non-compact coordinate in the IR geometry suggests that the IR field theory of the smeared

heavy quark impurities in N = 4 SYM has an emergent dimension. Such an interpretation

would be consistent with the presence of a delocalized distribution of D-branes that de-

construct an extra dimension [47]. Given the complicated nature of the putative RG flow

solution, and the dual field theory being at strong coupling, it is not easy to pin-point a

direct test of this proposal. Our study of smeared strings on the Coulomb branch in the

next section, lends support to this picture. It is known that Coulomb branch configura-

tions in N = 4 SYM deconstruct a higher dimensional field theory [48]. Within such an

interpretation the deconstructed dimension should be viewed as being compact, its size

being determined by the inverse spacing between two adjacent D-branes. The anisotropy

between the deconstructed coordinate x and the spatial coordinates ~x is automatic due to

the distribution of heavy quark sources.

– 8 –
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Entanglement entropy. An important probe of the IR physics of the gauge theory

is the entanglement entropy, which can be computed using the Ryu-Takayanagi prescrip-

tion [49, 50]. For the metric in eq. (2.13), this is not a straightforward calculation since the

components depend both on x and ρ coordinates and the solution for the extremal surface

(with a prescribed boundary) could depend non-trivially on both these dimensions.

We can, however, make a simplifying approximation by assuming that the physics in

the deep infrared should be governed by sufficiently small ρ and x, so that x2ρ4 ≪ 1. Then

we can use the approximate form (2.16) to calculate the entanglement entropy of a ‘strip’

in R
3, specified by

− ℓ ≤ x1 ≤ ℓ , 0 ≤ x2,3 ≤ L , 0 ≤ x ≤ L̃ , (2.17)

with ℓ ≪ L, L̃ at a UV-slice of the geometry, ρ = ρΛ. The effective area functional for the

3D surface Σ3 with the strip as its boundary, can be defined as [49, 50]

S =
1

4GN

∫

Σ3×S4×Rx

d8x
√

det ∗g . (2.18)

Extremizing the functional and extracting its finite part in the usual way (e.g. [10, 12])

we find

S
∣

∣

∣

finite
∼ N2L̃

(

L

ℓ

)2

ℓ−2 , (2.19)

where we have omitted various constants of proportionality and traded Newton’s constant

in ten dimensions GN for a factor of N2 according to the holographic dictionary. The

scaling of the entanglement entropy with ℓ is characteristic of hyperscaling violation with

negative θ [10, 12]. If we view the (IR) gauge theory as having 3 spatial dimensions

(e.g. with the x-coordinate compactified), then θ = −2.

The hyperscaling violation could also be directly inferred by reducing the ten dimen-

sional metric (2.16) to five dimensions, by assuming the x-coordinate to be compact. The

reduction to five dimensions yields

ds25 = ρ4/3
(

dρ2

ρ2
− ρ14dt2 + ρ2d~x2

)

, (2.20)

which exhibits Lifshitz scaling with z = 7 and hyperscaling violation with θ = −2. For

the configurations on the Coulomb branch studied below, the emergence of the extra spa-

tial coordinate x can be interpreted via deconstruction and the size of this dimension is

controlled by the inverse spacing between D3-branes [47, 48].

We stress that the calculation of the entanglement entropy outlined above is only

an approximation. It would be interesting to have a more precise computation in the

exact scaling background (2.13), and to check whether these qualitative expectations are

reproduced.

2.4 UV AdS asymptotics

We will now attempt to understand how the solution to eq. (2.6) will modify the UV AdS

asymptotics. In order to find a solution which asymptotes to AdS5 × S5, and also includes
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string sources, we need to use the general form (2.7) for h1(y). Whilst the problem is not

analytically tractable, we can make progress by noting that eq. (2.6) exhibits translational

invariance in x. Fourier transforming with respect to this variable [51] yields

h̃′′3(y; p) +
4

y
h̃′3(y; p)− p2 h1(y) h̃3(y; p) = 0 , h1(y) = 1 +

Q1

y3
, (2.21)

where primes denote derivatives with respect to y. The equation has irregular singular

points of order 1/2 at y = 0 and order 1 at y = ∞. Around either of these points, the

equation can be solved as a power series using a so-called Thomé expansion [52]. Around

y = ∞, this leads to solutions of the type,

h̃3(y; p) =
epy

y2

∞
∑

n=0

an(p)

yn
, (2.22)

where the coefficients can be determined via a recursion relation and p can be either positive

or negative. A slightly different expansion which has overlap with the large y limit is a

formal series expansion in powers of Q1 — the string or ‘heavy quark’ density:

h̃3(y; p) =
∞
∑

n=0

Qn
1 fn(y, p) . (2.23)

Substituting into (2.6), and solving the resulting equations order by order in Q1, we find,

f0(y, p) =
epy

y2

(

1− 1

py

)

, f1(y, p) = −p epy

4 y4
, (2.24)

f2(y, p) = −p5 epy

40y3

(

1 +
3

2py
+

1

p2y2

)

+
p6 e−py

20y2
Ei(2py)

(

1 +
1

py

)

,

for the first few terms in the expansion (p can be either positive or negative). Ei(x) is

the exponential integral function. The correct superposition of the Fourier-transformed

solutions must reproduce AdS5 × S5 in the limit Q1 → 0. This picks out the required

combination,

h3(x, y) =

∫

dp
eipx

4

[

θ(p) p h̃3(y;−p)− p θ(−p) h̃3(y; p)
]

. (2.25)

In terms of the standard radial coordinate of AdS and the polar angle θ on the S5

(x = r cos θ, y = r sin θ) to linear order in Q1, we have,

h3(r, θ) =
1

r4

(

1 +
Q1

r3
1− 4 cos2 θ

4 sin3 θ
+O

(

Q2
1

)

)

. (2.26)

The dilaton, on the other hand, is exactly determined by

eφ = h
−1/2
1 =

(

1 +
Q1

r3 sin3 θ

)−1/2

, (2.27)
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and vanishes at θ = 0, π i.e. the north and south poles of the S5 in the UV geometry, as

expected for F1-string sources localized at y = 0. It is instructive to look at the corrections

to the metric components in the above expansion,

gii = r2 +
Q1

r

1 + 4 cos2 θ

8 sin3 θ
+O

(

Q2
1

)

, (2.28)

with similar corrections appearing for gtt. The 1/r corrections to AdS asymptotics are

characteristic of the backreaction due to string sources, as also noted in [21, 53, 54]. A

similar analysis for the internal directions suggests that upon inclusion of the backreaction

from the strings, the S4 does not shrink at θ = 0, π, and that there are curvature singu-

larities at these points. We should stress, however, that we cannot trust the expansion in

Q1 in the vicinity of the string sources at θ = 0, π. Away from these points (fixed generic

θ and large r) the geometry is asymptotically, locally AdS5 × S5.

To summarize, we have argued in this section that the introduction of an O(N2)

density of heavy quarks (specifically, mutually BPS quark-antiquark pairs), preserving

some supersymmetry in N = 4 SYM at large-N and strong coupling, induces a flow from

AdS5 × S5 to a scaling Lifshitz-like IR background with z = 7. The anisotropic scaling

solution in the IR is somewhat novel due to the presence of two non-compact holographic

directions, which scale differently to ensure that the resulting metric is scale invariant.

3 Coulomb branch solutions and hyperscaling violation

A notable feature of the supersymmetric intersections discussed above is that they inherit

the Coulomb branch moduli space of the N = 4 theory (where SU(N) is Higgsed to

U(1)N−1 generically). In particular a probe D3-brane (spanning t, x1, x2, x3) placed at any

point in the x-y plane, in the general background (2.2), experiences no force due to an

exact cancellation between the Dirac-Born-Infeld (DBI) and Wess-Zumino terms in the

probe action. A similar cancellation occurs (between the Nambu-Goto action and the

coupling to B2) for a probe F-string oriented parallel to the x-axis at any value of the

y-coordinate. This points towards the existence of more general smeared solutions where

both D3-branes and the F-strings are smeared with some distribution functions on the x-y

plane. We show that for certain choices of such distribution functions the backreacted (IR)

geometries can exhibit a range of Lifshitz-like scalings with hyperscaling violation.

General solutions with D3-branes on the Coulomb branch (within our SO(5)-symmetric

ansatz) can be obtained by considering a general D3-brane density, so that

h3(x, y) =

∫ ∫

dx′ dy′
ρD3(x

′, y′)

[(x− x′)2 + (y − y′)2]2
. (3.1)

A general density function ρD3(x, y) preserves all supersymmetries whilst also leading to a

violation of the Bianchi identity for F5 due to the extended source distribution.

Since we want to interpret our solutions below as IR limits of Coulomb branch distri-

butions it is useful to illustrate this with a simple example which allows to make contact
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with the F1-D3 intersection of [17, 18, 27, 28]. Let us first consider a uniform distribution

of D3-branes, in an interval along the x-axis with

ρD3(x, y) = ρ0 δ(y) , 0 ≤ |x| ≤ 1

2
ρ0 , (3.2)

and no macroscopic string sources. For large (x, y) the geometry asymptotes to AdS5×S5,

whilst in the IR, for small y and |x| < 1
2ρ0, we obtain

h3 ≃ π

2y3
ρ0 + . . . . (3.3)

This is a scaling regime where all metric components in (2.2) only depend on powers of y.

Upon performing a reduction of (2.2) on S4 and the x-coordinate, the resulting 5D geometry

precisely matches the reduction on a torus of the AdS7 × S4 solution in 11D SUGRA [48].

This SO(5) symmetric Coulomb branch configuration can therefore be viewed as a flow

at strong coupling and large-N , to an IR theory which appears to be (a subsector of)

the 6D superconformal theory with (2, 0) supersymmetry realized on a stack of M5-branes

(compactified on a two-torus). The Coulomb branch configuration therefore deconstructs

a higher dimensional field theory. In the deconstruction picture, the sizes of the extra

dimensions are controlled by the inverse spacings between individual D3-branes on the

Coulomb branch. The spacings ∼ O(1/N) determine the masses of the lightest W-bosons

and dyonic states on the Coulomb branch, which in turn are related to the Kaluza-Klein

harmonics of the deconstructed compact dimensions. We would now like to understand how

the IR dynamics on the Coulomb branch is modified by smeared, macroscopic fundamental

strings viewed as heavy quarks in the gauge theory.

3.1 Smeared F1-D3 intersections

In the presence of macroscopic string sources, both h1 and h3 will be non-trivial and the

Bianchi identity for F5 modified by D3-brane sources becomes

∂y
(

y4∂yh3
)

+ y4 h1∂
2
xh3 = −ρD3(x, y) . (3.4)

We will focus attention on distributions that, at least in some limit as in the above example,

only depend on y, so that ρD3 = ρD3(y). Hence, for simplicity, we also assume that h3
is a function of y alone. Similarly the equation of motion for H3 with a general smeared

distribution of F-strings leads to the equation

d

dy

(

y4
dh1
dy

)

= −ρF1(y). (3.5)

As pointed out above, probe F-strings experience no force when they are aligned along the

x-axis and placed at any value of y. Therefore a general y-dependent distribution should

preserve 1/4-supersymmetry. In the appendix we show that such smearing of sources sat-

isfies a calibration condition which ensures that the string/brane embeddings we study

respect the supersymmetries. The equations of motion follow from the type IIB supergrav-

ity action coupled to the smeared D3-brane and string sources,

S = SIIB + SNG + SDBI +
1

2πα′

∫

B2 ∧ Ω8 + 4TD3

∫

C4 ∧ Ω6. (3.6)
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The actions for the sources are the smeared versions of the Nambu-Goto and DBI actions

with a particular choice of smearing forms Ω8 and Ω6, respectively

Ω8 = −πα′

κ2
ρF1(y) dy ∧ dx1 ∧ dx2 ∧ dx3 ∧ ǫ(4) (3.7)

Ω6 = −
(

2κ2 TD3

)−1
ρD3(y) dx ∧ dy ∧ ǫ(4) , (3.8)

where we have defined 2κ2 ≡ 16πGN . The sources alter the equations of motion for

the dilaton, H3, F5 and the metric. In particular they contribute to the stress tensor.

Imposing the weak energy condition (WEC) on the source stress tensor leads to positivity

of the source density functions

TABu
AuB ≥ 0 , =⇒ ρD3 , ρF1 ≥ 0 , (3.9)

where uA is some timelike vector. For more details on the equations of motion and their

consistency with supersymmetry, we refer the reader to the appendix.

To obtain scaling solutions, we simply choose power laws for the smearing densities

ρF1 = α (3− α) Q1 y
2−α , ρD3 = β (3− β) Q3 y

2−β . (3.10)

Then the equations of motion for h1 and h3 are also solved by power laws

h1 =
Q1

yα
, h3 =

Q3

yβ
. (3.11)

Positivity of the source densities requires 0 ≤ α, β ≤ 3 . Further imposing the null energy

condition (NEC) on the complete stress tensor leads to a weaker condition on the parame-

ters α, β which is consistent with the WEC . The case α = β = 3 gives us the homogeneous

solution of [17, 18, 27, 28]. This is the situation wherein the D3-branes and strings are all

at y = 0, but the branes are uniformly smeared along the x-axis.

Inserting the general scaling solution into the metric (2.2) and reducing carefully over

the S4 and the x-coordinate (which we treat as a deconstructed compact dimension) to

five-dimensional Einstein frame we obtain a family of Lifshitz geometries with hyperscaling

violation:

ds25 = R2 r−
2

3
θ

(

−r2zdt2 +
dr2

r2
+ r2

3
∑

i=1

dxidxi

)

. (3.12)

Here the radius is R2 = 4
(β−2)2

Q
1

2

3Q
1

4

1 and we have changed the radial coordinate according

to y = r
2

β−2 and rescaled the rest. The coefficients are related to the exponents of the

sources as

z = 1 +
α

β − 2
, θ =

α+ 4β − 14

β − 2
. (3.13)

We stress that the emergence of hyperscaling violation along with Lifshitz scaling

in the 4D spacetime is already evident in the ten dimensional metric (2.2), upon direct

substitution of the scaling solutions (3.11). Reduction to 5D changes the hyperscaling

violation parameter, but leaves the Lifshitz exponent unchanged.
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Figure 2. The shaded region represents the allowed values for the dynamical exponent z and

hyperscaling violation coefficient θ for the solutions discussed in the text. If we impose an additional

requirement that θ ≤ d for stability (e.g. [12]), this would also exclude the shaded region top-left

corner (which has β < 2).

The case β = 2 needs to be treated separately, as we do below. Given that the

weak energy conditions for the sources, considered separately, restrict the values of the

parameters to lie in the range 0 ≤ α, β ≤ 3, the allowed values for z and θ in this class of

solutions are shown in figure 2. Note that if we also require θ ≤ d for stability as argued

in [12], only the solutions shown in the lower right corner of figure 2 with θ ≤ 1 survive.

These correspond to D3-brane distributions with β > 2. Finally, there are no solutions

with θ = 2, which would lead to a logarithmic violation of the area law for entanglement

entropy.

β = 2: conformally AdS2 × R
3. As stated before, the case β = 2 has to be treated

separately, since the change of variables used for the radial coordinate is not well defined

for that value of the parameter. Importantly as β → 2, both z and θ diverge,

lim
β→2

z, θ → ∞ lim
β→2

η ≡ −θ

z
→
(

6

α
− 1

)

. (3.14)

In the allowed range for α, we have η ≥ 1. The β → 2 limit is also interesting because it

corresponds to a uniform distribution of D3-branes on the x-y plane,

ρD3 = 2Q3 , (3.15)

so that the harmonic function is,

h3 =
Q3

y2
, (3.16)
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and h1 = Q1/y
α as before. Hence we obtain a one-parameter (α 6= 0) family of solu-

tions. Again, substituting this into the ten-dimensional metric and reducing to the five-

dimensional Einstein frame with the change of variable y = r
2

α we arrive at a metric

conformal to AdS2 × R
3,

ds25 = R2 r
2

3
η

(

−r2dt2 +
dr2

r2
+

3
∑

i=1

dxidxi

)

, (3.17)

where the radius is now R2 = 4α−2Q
1

2

3Q
1

4

1 . Geometries with an IR factor conformal to

AdS2 × R
2 have been used to describe locally quantum critical theories and argued to

have certain properties desirable for a holographic description of Fermi surfaces [13]. The

zero temperature entropy density associated to the conformally AdS2 × R
3 background is

vanishing since η > 0 and the entanglement entropy has no extensive finite contribution.

As pointed out in [13], the entanglement entropy of a strip in this case has a rather puzzling

behaviour in that the extremal surface only exists for a very specific value of the strip width.

In all the geometries, including the conformally AdS2 × R
3 backgrounds, curvature

singularities appear in the deep IR (see e.g. [55–57]). In particular, since the dilaton is

given by eφ = h
−1/2
1 , and runs to zero in the IR, the string frame metric leads to divergent

curvatures and the solutions will be expected to receive large α′ corrections. One can

S-dualize the backgrounds, and then the problem becomes one of strong coupling in the

IR. It is a compelling question to ask what low energy physics arises and resolves such

curvature singularities [58, 59]. This may be an interesting avenue to explore since we have

some knowledge of the microscopic field theory the geometries describe.

4 Discussion

The supersymmetric scaling geometries we have discussed in this paper were obtained from

previously known intersecting brane configurations along with a new ingredient, namely,

generic source distributions compatible with the supersymmetries. Our motivation was to

understand whether any universal features emerge within a tractable holographic frame-

work, when a state of finite (quark) density is introduced into a known field theory (with

a large-N string/gravity dual). The physical interpretation of the setup explored in this

paper is that it corresponds to a uniform density of mutually BPS quarks and anti-quarks

(with opposite SO(6) orientations) in N = 4 SYM. In particular, these configurations all

have vanishing three form flux, F3. The presence of non-zero F3 can be interpreted as a

finite baryon density, as was the case in [21] (see also [60] for related discussions). In a

forthcoming publication [23] we will derive the general form for the 1
4 -BPS configurations

involving smeared strings with non-vanishing F3.

One of the larger aims of this study is to understand whether the simplistic picture of

backreacting smeared heavy quarks can be embedded into holographic setups with dynam-

ical flavours, most notably the smeared D3-D7 system explored, for instance, in [33–35].

An important observation in this paper is the emergence of a z = 7 IR scaling regime

from the partially localized intersection described by homogeneous (sourceless) equations.
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Despite having different global symmetries and no supersymmetry, the same scaling was

observed in [21, 22]. The value of z can now be understood within the intersecting brane

framework. Following the results of [26], it is easy to verify that, more generally, partially

localized F1-Dp intersections give rise to anisotropic scaling with z = 16−3p
4−p , when p < 4.

Finding finite temperature, black brane generalizations of the solutions discussed in this

paper appears difficult. For the partially localized intersection (with z = 7), the solutions

are functions of two coordinates, v = x2y and y, and this makes the problem of ‘blackening’

the solutions challenging. We leave this question for future investigation. When the sources

are smeared, as for the Coulomb branch configurations, the zero temperature delocalization

is possible only because the theory has a moduli space of vacua. Finite temperature lifts

such moduli spaces so that the free energy is minimized at the origin of moduli space.4

A possible approach towards the finite temperature physics of smeared Coulomb branch

distributions is to introduce chemical potential for charges under the global symmetry

group, i.e. to consider rotating brane configurations along the lines of [61, 62].

Within the context of the Coulomb branch intersctions, it is interesting to note that

by engineering appropriate string/D3-brane sources we should be able to obtain zero tem-

perature flows between different scaling geometries.
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A Calibration conditions and equations of motion

We work in Einstein frame in the conventions of [44]. We restrict our discussion to the

situation with F3 = 0, and y-dependent density distributions and harmonic functions.

Smearing the fundamental strings along all the transverse directions, the Nambu-Goto

action plus coupling to the NS form are schematically,

SF1 = −
∫

(

e
φ
2 K2 −B2

)

∧ Ω8 , (A.1)

with a particular choice of smearing form

Ω8 = −ρF1(y) dy ∧ dx1 ∧ dx2 ∧ dx3 ∧ ǫ(4) . (A.2)

The function of the radial coordinate ρF1(y) describes the string charge distribution. As-

sociated to a string world-sheet embedding, one introduces a calibration form, given essen-

tially by the induced metric on the string,

K2 = −h
− 3

4

1 dt ∧ dx . (A.3)

4Away from the origin, various degrees of freedom are rendered massive, and their contribution to the

entropy thus decreases.
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In the presence of smeared sources the calibration condition, which ensures that the em-

bedding of the branes/strings respects supersymmetry, has to be modified (see for in-

stance [35]). In the case of fundamental strings the modified condition is

d
(

e
φ
2 K2

)

= H3 . (A.4)

Using that h1 = e−2φ, one can easily check that this condition is verified in our ansatz,

establishing that general backreacting string distributions are consistent with the super-

symmetries of the setup. Similarly, we introduce a set of D3 branes extending along the

4D Minkowski directions and smeared on the transverse coordinates , with action

SD3 = −
∫

(K4 − 4C4) ∧ Ω6 . (A.5)

In this case the smearing form is

Ω6 = −ρD3(y) dx ∧ dy ∧ ǫ(4) , (A.6)

while the calibration form reads

K4 = −h−1
3 dt ∧ dx1 ∧ dx2 ∧ dx3 , (A.7)

where again the function ρD3(y) parametrizes the brane charge along the radial direction.

The pertinent calibration condition

dK4 = 4dC4 (A.8)

is also straightforwardly satisfied, again in line with the expected supersymmetry of the

backgrounds.

The presence of these smeared sources alters several equations of motion, that now read

d
(

e−φ ∗H3

)

+Ω8 = 0

d ∗ F5 +
1

4
Ω6 = 0

d ∗ dφ+
1

2
e−φH3 ∧ ∗H3 −

1

2
e

φ
2 K2 ∧ Ω8 = 0

GMN = T IIB
MN + TF1

MN + TD3
MN . (A.9)

The equations for F1 and F3 are not modified and turn out to be automatically satisfied

within our ansatz. Notice that B2 couples electrically to the strings through the Nambu-

Goto action, so the Bianchi dH3 = 0 remains intact. As is customary the Bianchi for F5

coincides with its equation of motion. The stress tensors for the smeared sources are

TF1
MN = − 1√−g

δSF1

δgMN
=

1

2
e

φ
2

(

gMN Ω8y (∗K2)− ι(MΩ8yιN) (∗K2)
)

TD3
MN = − 1√−g

δSD3

δgMN
=

1

2

(

gMN Ω6y (∗K4)− ι(MΩ6yιN) (∗K4)
)

(A.10)
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where for arbitrary p-forms ωp and ξp we have defined the operations

ιMωp ≡
1

(p− 1)!
(ωp)MN1···Np−1

dxN1 ∧ · · · ∧ dxNp−1

ωpyξp ≡
1

p!
(ωp)M1···Mp(ξp)

M1···Mp . (A.11)

Using the known ansatz for the forms, all the equations above boil down to the equations

determining the harmonic functions sourced by the charge distributions

d

dy

(

y4
dh1
dy

)

= −ρF1(y) ,

d

dy

(

y4
dh3
dy

)

= −ρD3(y) . (A.12)
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