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1 Introduction

Inflationary perturbations are likely to admit a weakly coupled description. In particular,

the observed near-Gaussianity of the primordial fluctuations suggests that a treatment in

terms of free fields with computably small corrections is applicable. From this point of view,

higher-order corrections in perturbation theory (i.e. loop corrections) would appear to be

unimportant. On the other hand, there are examples in field theory in which loop correc-

tions do affect the qualitative behavior of weakly coupled systems. For instance, sometimes

the tree level contribution to a given quantity vanishes for special reasons (e.g. gauge invari-

ance forbids the decay of the Higgs boson into photons at tree level). In these cases, loop

corrections are the dominant effect (e.g. the Higgs decays into photons at one-loop). More-

over, sometimes the coefficients of loop corrections are (naively) infinite (e.g. the electron
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self-energy is divergent). These cases are more subtle because they require us to under-

stand the meaning of the divergences in order to achieve physical results (e.g. removing

ultraviolet divergences may imply renormalization group flow).

Time-dependent loop corrections to the primordial curvature perturbation ζ would fall

into both categories. First of all, at tree level1 ζ̇ vanishes outside the horizon [1–5] and

therefore any loop corrections that generate ζ̇ 6= 0 would be the leading effect. Second of

all, the putative corrections are expected to scale as log a(t) [6] and therefore diverge as

we take the scale factor a(t) to infinity. Such infrared divergences would have to be un-

derstood before reliable predictions could be made. In order to sharpen the understanding

of inflationary perturbation theory, one would therefore like to develop results that hold

beyond the tree approximation [6–8]. One of the most reliable principles for achieving such

results is symmetry.

The universe contains a lot of symmetry. On large scales and/or early times, the

spacetime is invariant under spatial translations and rotations. This fixes the metric to be

of the Friedmann-Robertson-Walker (FRW) form

ds2 = −dt2 + a2(t) dx2 , (1.1)

where dx2 represents a maximally symmetric three-space (which we will take to be flat

space). Small fluctuations around the homogeneous background are close to scale-invariant,

suggesting additional symmetry in the action for the fluctuations (e.g. a global time-

translation symmetry). The time evolution of the FRW spacetime (1.1) can be thought

of as a spontaneous breaking of an even larger symmetry group. This symmetry breaking

can be characterized by introducing the Goldstone mode π as a perturbation along the

broken symmetry, i.e. a local shift in time t + π(x, t). Just as in the classic example of

the chiral Lagrangian for pions, the effective action for π is highly constrained by the non-

linearly realized symmetry [9]. This approach has been particularly fruitful for describing

inflation [10] where the time dependence of the couplings for the Goldstone mode are con-

strained by additional global symmetries. For single-field inflation, the Goldstone mode

is directly related to the adiabatic fluctuations that are observed in the cosmic microwave

background (CMB). Transforming to comoving gauge, the field π is eaten by the metric.

Adiabatic fluctuations are now represented by the curvature perturbation ζ, defined as the

isotropic scalar perturbation to the three-metric,

gij = a2(t)e2ζ(x,t)δij . (1.2)

At late times, ζ non-linearly realizes conformal symmetries on the spatial slice [2, 11, 12].

For instance, under dilatations, x 7→ eλx, the curvature perturbation transforms by a shift,

ζ 7→ ζ + λ.

At the classical level, the symmetries of ζ have been used to derive several important

theorems about single-field inflation. For example, Maldacena’s consistency relation [13]

1In [1–5], classical solutions to the equations of motion have been analyzed to non-linear order in ζ, but

only to leading order in k/(aH). A full non-linear analysis (even classically) should include modes with

k/(aH) ∼ 1.
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uses the dilatation symmetry to show that a long-wavelength mode is unobservable and

therefore can’t induce observable correlations with short-wavelength modes. Similarly,

Weinberg’s proof [2] of the conservation of ζ on superhorizon scales uses the dilatation

symmetry as a method for finding solutions to the classical equations of motion. One

might expect that both statements could be promoted to operator statements in a quan-

tum mechanical theory (where the symmetry can be expressed as a Ward identity [14]).

However, by now there are sufficiently many counterexamples to both results that it is

clear that neither statement should follow from symmetry alone.

In this paper, we will prove that ζ is indeed conserved at all-loop order in single-field

inflation. Using nothing more than locality (which forces commutators to vanish outside

of the light-cone), we first show that the operator
˙̂
ζ must satisfy an equation of the form

˙̂
ζ = f

[
ζ̂
]
, (1.3)

where f [ζ̂ ] is a functional of ζ̂ and its spatial derivatives. We then use symmetry [2, 11] to

constrain the operators appearing in f [ζ̂]. Non-derivative operators are forbidden by the

dilatation symmetry. The remaining operators can be organized according to their scaling

behavior as k/(aH) → 0. (To achieve this, we have to define renormalized composite

operators [15, 16].) We will find that the leading operators on the right-hand side of

eq. (1.3) vanish as a−2. This establishes that, in the limit k/(aH) → 0 (or on superhorizon

scales), all ζ-correlators are time independent at all orders in the loop expansion.

The outline of the paper is as follows: in section 2, we review the symmetries of adia-

batic fluctuations in general FRW cosmologies. We show that the curvature perturbation

ζ non-linearly realizes conformal symmetries. We use these symmetries, in section 3, to

provide an all-orders proof for the conservation of ζ on superhorizon scales. An essential

part of the proof is defining a renormalization procedure for composite operators in infla-

tionary spacetimes. We relegate a technical discussion of this subtle issue to appendix A.

In section 4, we comment on the relationship between our proof for the conservation of ζ

and Maldacena’s consistency relation. We state our conclusions in section 5.

2 Symmetries of adiabatic fluctuations

2.1 Non-linearly realized symmetries

Consider an FRW background with a set of matter fields ψ̄m(t). The time dependence of

the background spontaneously breaks time diffeomorphisms. Just as in particle physics, we

can define a Goldstone mode π as a perturbation of the fields along the broken symmetry,

i.e. a local shift in time. This induces adiabatic fluctuations

δψm(x, t) = ψ̄m

(
t+ π(x, t)

)
− ψ̄m(t) . (2.1)

An effective theory for the Goldstone mode π has been constructed in [9, 10] (for related

work see [17–27]). It is clear that in the case of purely adiabatic fluctuations, the pertur-

bations in the matter sector can be gauged away by performing a time diffeomorphism

t 7→ t− π(x, t) . (2.2)
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The fluctuations are then in the metric only. These metric fluctuations are described most

conveniently in comoving gauge (also called ζ-gauge), defined as

δψm = 0 and gij(x, t) = a2(t)e2ζ(x,t)δij , (2.3)

where ζ is the curvature perturbation [28, 29]. Perturbations in g00 and gi0 are related

to ζ through the Einstein equations [13]. For simplicity, we will drop tensor fluctuations

throughout, but re-introducing them doesn’t affect our conclusions. In this gauge, the

adiabatic mode is characterized by ζ(x, t) directly.

From the form of (2.3), we see that the adiabatic mode is invariant under the following

large gauge transformations2 [11]:

dilatation : x 7→ x̃ ≡ xeλ , ζ(x) 7→ ζ(x̃) + λ , (2.4)

SCTs : x 7→ x̃ ≡ x+ 2(b · x)x− x2b , ζ(x) 7→ ζ(x̃) + 2b · x , (2.5)

where SCT stands for special conformal transformation. Notice that ζ transforms non-

linearly: dilatations shift the value of ζ, while SCTs shift its spatial gradient. Both of

these symmetries are part of the group of diffeomorphisms under which the theory is in-

variant. What makes the transformations in (2.4) and (2.5) special is the fact that they

preserve ζ-gauge, but are not removed by gauge fixing. After gauge fixing, the large gauge

transformations therefore remain a symmetry of the action. As for any global symmetry,

this implies the presence of conserved currents: one for the dilatation, Jµ
d , and three for

the special conformal transformations, Jµ
sc (i). In the following, we will drop the subscripts

whenever an expression applies to both types of currents and keep it only when a dis-

tinction needs to be made. Current conservation, ∂µJ
µ = 0, implies the following Ward

identity [14] for correlation functions [30]

i ∂(x)µ

〈
Jµ(x, t)ζ(y1, t⋆) · · · ζ(yn, t⋆)

〉
=

=
n∑

i=1

δ(t− t⋆)δ(x− yi )
〈
ζ(y1, t⋆) · · · δζ(yi, t⋆) · · · ζ(yn, t⋆)

〉
, (2.6)

where δζ denotes infinitesimal variations of ζ under the large gauge transformations

δd ζ ≡ −1− x · ∂x ζ , (2.7)

δ(i)sc ζ ≡ −2xi − 2xi(x · ∂x ζ) + x2∂i ζ . (2.8)

Here, we have introduced an index i to distinguish the three SCTs associated with the

three components of the vector b. Finally, it is also convenient to define a conserved charge

associated with each symmetry

Q =

∫
d3xJ0 . (2.9)

Formally, this satisfies Q̇ = 0. However, when the symmetry is spontaneously broken, IR

divergences make the value of Q ill-defined. On the other hand, Q remains well-defined in

2By large gauge transformations we mean gauge transformations that do not vanish at infinity.
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commutators with local operators, such as [Q, ζ], and inside correlation functions. In fact,

by integrating the Ward identity (2.6) for n = 1, we see that

i[Q, ζ] = δζ . (2.10)

2.2 Symmetries and the conservation of zeta

The presence of the dilatation symmetry has played a crucial role in previous work on the

constancy of ζ outside the horizon. At a technical level, this connection was implemented

most directly by Weinberg [2], who used the existence of the large gauge transformation to

find two physical solutions to the classical equations of motion in any FRW background:

one solution is a constant and the other decays as a−3. These two solutions correspond to

the growing and decaying contributions of the adiabatic mode. If we assume that only the

adiabatic mode is present, then we have found all the possible solutions and therefore ζ is

conserved classically.

Tree-level. Although Weinberg used Newtonian gauge, his result is easily reproduced

from the dilatation symmetry in ζ-gauge. For our purposes, it will be useful to state Wein-

berg’s proof in a quantum mechanical language using the Ward identity (2.10). Taking the

expectation value, we find 〈[
Qd, ζk

]〉
= i(2π)3δ(k) . (2.11)

Since Q̇d = 0, the time derivative of this expression is

〈[
Qd, ζ̇k

]〉
= 0 . (2.12)

In order to satisfy (2.11), we require a non-zero solution for ζk→0, while (2.12) implies that

this solution is time independent. We have therefore found that a non-zero constant is a

solution for ζk→0.

Moreover, locality requires that (see section 3.1)

[
ζ̇k(t), ζk′(t)

]
∝ a−3(t)(2π)3δ(k + k′) . (2.13)

This implies the existence of a second solution scaling as a−3. Since in single-field infla-

tion there are only two solutions to the classical equations of motion, we have therefore

found that ζ is classically conserved.3 (In multi-field inflation, this solution also exists, but

there may be additional solutions where ζ is not conserved.) In this paper, we will extend

Weinberg’s proof to the quantum level.

One-loop. It is well-known that massless scalar fields can receive time evolution outside

the horizon from quantum corrections. Essentially, this arises because radiative corrections

induce a mass for any unprotected scalars, which then sources superhorizon evolution [8].

Two-point functions are found to evolve as log a(t). It is therefore natural to ask what

happens to the conservation of ζ at loop level. This question was first raised by Weinberg

3Technically speaking, we have not shown that these solutions can be extended to finite momentum k.

However, using the Ward identity (2.6) it is straightforward to prove that this is the case (see appendix A

of [30]).
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in [6, 7]. Subsequently, a calculation by Kahya, Onemli and Woodard [31], indeed, sug-

gested that loops would induce a time dependence of ζ. This conclusion was challenged by

Pimentel, Senatore and Zaldarriaga [32]. In an impressively complex calculation, these au-

thors showed that although individual one-loop diagrams do induce a time dependence, the

effect precisely cancels when all diagrams are summed. Not surprisingly, symmetry played

an important role in understanding this cancellation. At various stages in their calculation

Pimentel, Senatore and Zaldarriaga, directly or indirectly, employed the dilatation symme-

try. They showed that a class of diagrams sums to zero on account of the single-field consis-

tency relation [13, 33] (which is closely related to the Ward identity in (2.6); see [30] and sec-

tion 4), while others cancel because they are related by the non-linear transformation of ζ.

These types of cancellations are reminiscent of those appearing in QED. For instance,

consider photon-photon scattering. The leading-order diagram contains four external pho-

tons and a fermion loop connecting them. Each individual diagram, corresponding to a

particular permutation of legs, is logarithmically divergent. However, the divergences ex-

actly cancel when all diagrams are summed. In this case, the cancellation is, of course,

a consequence of gauge invariance. To see this, consider the amplitude Mµνσρ, which by

Lorentz invariance takes the following form

Mµνσρ = K(ηµνησρ + ηµσηνρ + ηµρηνσ) + finite terms . (2.14)

A priori, the amplitude K could be divergent, but the Ward identity, pµMµνσρ = 0, forces

it to be finite. This is an important result, since a divergence would have forced us to

introduce a (AµA
µ)2 counterterm, and consequently break gauge invariance [14]. In this

paper, we will show that symmetries similarly protect correlation functions of curvature

perturbations from getting a late-time evolution.

Towards all orders. At a qualitative level, it is easy to convince oneself that the di-

latation symmetry implies constancy of ζ to all orders in perturbation theory. We will

ultimately agree with this intuition (see section 3), but we would first like to point out

where we feel that some details are missing. This may explain why some authors have not

been convinced by these arguments.

A general sentiment one encounters in the literature is that, because a constant ζ mode

can be removed by a gauge transformation, ζk→0 cannot be the source for a time-dependent

solution. However, this argument appears somewhat circular since a time-dependent mode

ζ(t) cannot be removed by such a transformation. On the other hand, one might have

imagined that a time dependence of ζ would require an operator equation of the form

ζ̇ = c1ζ + c2ζ
2 + · · · . The right-hand side of this equation is incompatible with the dilata-

tion symmetry and is therefore forbidden to act as a source for ζ̇. However, why should

such an operator equation be the only possibility? Moreover, a trivial counterexample to

this logic is the case of a Goldstone boson, π, which transforms as π 7→ π+1. As in the case

of ζ, a constant value of π(x, t) = π0 is unphysical because it can be removed by a global

transformation π 7→ π−π0, which simply moves us between equivalent vacua. However, in

flat space, the conclusion that π̇k→0 = 0 as an operator is clearly false because quantum

mechanics requires that [π̇k, πk′ ] = i(2π)3δ(k + k′). Of course, this counterexample isn’t
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quite a fair analogy since in the case of ζ we know that the modes become classical outside

the horizon and freeze at tree level. Nevertheless, the example does illustrate that the

argument has to involve more than symmetry alone.

A more serious concern is that modes inside the horizon could induce a coherent effect

on large scales that would cause a time dependence of the long-wavelength modes [6, 7].

These short-scale modes are physical and cannot be removed by any symmetry. Hence,

such coherent effects cannot be argued to vanish by symmetry alone. For example, time

dependence could, in principle, arise from ζ̇(x, t) = c ∂iζ ∂
iζ(x, t), which is compatible with

the dilatation symmetry. In momentum space, this becomes

ζ̇k = c

∫
d3p

(2π)3
p · (k − p)

a2
ζp ζk−p , (2.15)

which receives contributions from p & aH. The source term in eq. (2.15) is not suppressed

as a → ∞ since the momentum integral formally includes contributions from p → ∞. Of

course, the treatment of these effects is complicated by the fact that the integral is UV

divergent and needs to be regulated. One has to be careful that a bad choice of regulator

doesn’t introduce a spurious time dependence for ζ.

Having described some of the subtleties involved in the conservation of ζ at loop level,

we will, in the next section, provide an all-orders symmetry-based proof for the time-

independence of ζ-correlators.

3 A non-renormalization theorem

Our proof involves just a few relatively straightforward steps. First, we will prove that the

modes always become classical outside the horizon (section 3.1; see also [34]). We will show

that this implies that any time evolution outside the horizon is described by an operator

equation of the form4 (section 3.2)

˙̂
ζ(x, t) =

∑

n

αn(t)ζ̂
n(x, t) + · · · . (3.1)

We will then use the dilatation symmetry to show that αn = 0 (section 3.3). Finally, we

will show that the additional terms (· · · ) vanish at least like powers of a−2 and therefore

can be ignored at late times. To understand this power law suppression requires a careful

treatment of the renormalization of composite operators (see section 3.4 and appendix A).

These terms include the effects of the modes inside the horizon that had been the concern

of previous authors [6, 7].

Any no-go result is only as good as its assumptions. Let us therefore be clear about

the assumptions that go into our proof: first, we will assume throughout that the theory is

local and that the initial state is the Bunch-Davies vacuum. Second, we will only address

loop corrections during inflation, such that the mode functions for the interaction pictures

fields are roughly the de Sitter solutions. Finally, we will assume that any time-dependent

4To avoid confusion, we will (in this section only) use a hat to denote quantum operators and reserve

unhatted variables for c-numbers (such as the eigenvalues of ζ̂).
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couplings in the action for ζ scale at most like (log a(t))r, for some finite r, and not as pow-

ers of a(t). The last two assumptions are mostly of technical nature and can probably be

relaxed. However, even with these simplifying assumptions, our analysis is sufficiently gen-

eral to cover the vast majority of inflationary models. We comment on ways to circumvent

our theorem in section 3.5.

3.1 Locality and classicality

We begin by establishing the relation between locality of the theory and classicality of ζ on

superhorizon scales. We will define a mode ζk as being “classical” at late times, if it satisfies

C ≡
〈[ ˙̂
ζ, ζ̂

]〉2
〈 ˙̂
ζ2
〉〈
ζ̂2
〉

a→∞−−−→ 0 , (3.2)

where all the operators are evaluated at the same time and a → ∞ is shorthand for
k

(aH) → 0. This definition of classicality implies that equal-time correlation functions of ζ̂k

and/or
˙̂
ζk can be rewritten in terms of classical stochastic variables, up to corrections that

vanish as a→ ∞ —i.e. we can ignore all commutators at sufficiently late times. Moreover,

eq. (3.2) assumes that the theory is approximately Gaussian, so that the power spectrum

can be used to estimate of the size of any correlation function.

Locality severely constrains the possible forms of equal-time commutators, like the one

that appears in (3.2). In particular, the commutator of any pair of local operators Ô1 and

Ô2 must satisfy [
Ô1(x, t), Ô2(y, t)

]
= 0 , for x 6= y . (3.3)

As a result, the commutator must be proportional (
√−g )−1 δ(x−y) or derivatives therefore,

[ ˙̂
ζ(x, t), ζ̂(y, t)

]
=

[
∑

n

cn(t)Ô(n)(x, t) +

(∑

m

dm(t)Ô(m)
i (x, t)

)
gij∂j + · · ·

]
δ(x− y)√−g ,

(3.4)

where Ô(n) and Ô(m)
i are some basis of local scalar and vector operators, respectively. If

the action for ζ is time independent, then the coefficients in (3.4) must be time independent

as well, i.e. cn(t) → cn and dm(t) → dm. Similarly, if the couplings in the action scale like

(log a(t))r for some finite r, then the coefficients in (3.4) are also logarithmic in a(t). In

the limit a → ∞, we see that (3.4) therefore vanishes at least as a−3, due to the overall

factor of (
√−g )−1 = a−3 required by diffeomorphism invariance.

To establish that the mode becomes classical in the sense of eq. (3.2), we now show

that 〈ζ2〉 is bounded from below by a constant as a → ∞. First, let us insert a complete

set of states into (2.11),

〈Qd ζk〉 =
∑

n

〈Qd|n〉〈n|ζk〉 = 〈Qd|1〉〈1|ζk〉 =
i

2
(2π)3δ(k) , (3.5)

where we have rotated the basis of states such that 〈Qd|n〉 = δn1〈Qd|1〉. Similarly, we can

insert the same set of states into the power spectrum of ζ to find

〈ζkζ−k〉 =
∑

n

|〈ζk|n〉|2 ≥ |〈ζk|1〉|2 . (3.6)

– 8 –
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Using Q̇d = 0 and assuming5 |〈Qd|1〉| < ∞, we must have |〈ζ|1〉|2 > ξ > 0 where ξ is a

constant. We see that C → 0 as a → ∞ provided that ζ̇ vanishes more slowly than a−3.

Recall that the goal of this section is to prove that ζ̇ vanishes at least as a−2. Anything

that violates our definition of classicality vanishes even faster. In that case, there is nothing

for us to prove.

3.2 Operator evolution

We have proven that the modes of interest become classical at late times. If these were

solutions to the classical equations of motion for a single degree of freedom, then they

would be determined by two boundary conditions. For the problem at hand, one boundary

condition is set by the choice of the Bunch-Davies vacuum and the other can be chosen

to be the classical field configuration for ζ(x, t) at a later time t. Therefore, given ζ(x, t),

the classical soultion for ζ̇(x, t) is fixed. The purpose of this subsection is to make this

statement precise, as an operator equation

˙̂
ζ(x, t) = f(ζ̂(x, t), ∂ζ̂(x, t), · · · ) , (3.7)

for some functional f [ζ̂].

Simultaneous eigenstates. As in any quantum field theory describing a single degree of

freedom, the operators ζ̂(x, t) form, at any time t, a complete set of commuting observables

(one for each point in space). This has two important consequences [35]:

• first, the eigenstates of these operators, |ζ(x, t)〉, are non-degenerate and form a

complete basis of states on the Hilbert space.6

• Second, any operator Ô(y, t) which commutes with ζ̂(x, t) is a function of ζ̂(x, t)

alone, i.e. we have Ô(y, t) = f [ζ̂(y, t)], where f is a functional of ζ̂.

Since at late times the commutator of
˙̂
ζ and ζ̂ vanishes (see eq. (3.2)), we expect that, in

the limit a(t) → ∞, the operator
˙̂
ζ can be written as a function of ζ̂. Let us derive this

result more formally. We start by defining the basis of eigenstates of ζ̂ as

|ζ〉 ≡ |(ζ1, ζ2, · · · , ζa, · · · )〉 , where ζa ≡ ζ(xa, t) . (3.8)

For clarity, we have used a discrete index to denote the spatial position. The state |ζ〉 is,
by definition, an eigenstate of the operator ζ̂a with eigenvalue ζa, i.e.

ζ̂a|ζ〉 = ζa|ζ〉 . (3.9)

5This is essentially the assumption that a generalization of the Goldstone boson decay constant, fπ,

associated withQd is finite. This is equivalent to demanding that ζ is dynamical, i.e. has a finite kinetic term.
6The relation between these states and the classical solutions is most transparent in the Schrödinger

picture, where we define a wavefunction for ζ(x, t), i.e. Ψ[ζ(x, t)]. For a single degree of freedom, the

wavefunction satisfies a differential equation whose solution is determined by the initial state in the far

past (e.g. Bunch-Davies) and the field configuration ζ(x, t) at late times t. See [13] for more details on the

connection between in-in calculations and the Schrödinger representation.
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In this notation, the commutator (3.4) becomes

[ ˙̂
ζa, ζ̂b

]
=

Âa

a3(t)
δab + · · · . (3.10)

where Âa ≡ ∑
n cn(t)Ô

(n)
a (t) and the ellipses denote terms that are suppressed by additional

powers of a(t). Evaluating eq. (3.10) in the ζ-basis (3.8), we find

(ζb − ζ̃b)
〈
ζ̃
∣∣ ˙̂ζa

∣∣ζ
〉
=

〈
ζ̃
∣∣Âa

∣∣ζ
〉

a3(t)
δab + · · · . (3.11)

This equation defines
˙̂
ζ as an operator since it allows us to compute any matrix element

by inserting a complete set of states. The r.h.s. of this equation scales at least as a−3 (up

to log a corrections) and therefore the leading behavior is governed by the homogeneous

solution, namely 〈
ζ̃
∣∣ ˙̂ζa

∣∣ζ
〉
≈ fa[ζ]δ(ζ̃ − ζ) +O(a−3) , (3.12)

where δ(ζ̃−ζ) ≡ ∏
a δ(ζ̃a−ζa) and O(a−3) stands for operators whose correlation functions

vanish as a→ ∞ (we make this more precise in appendix A).

Locality. Next, let us see how locality constrains the form of the functional fa[ζ]. Recall

that the conjugate momentum Π̂ satisfies the canonical commutation relation [ζ̂a, Π̂b] =

iδab. Locality also requires that [
˙̂
ζa, Π̂b] ∝ δab. Together with eq. (3.12), we then find

〈
ζ̃
∣∣[ ˙̂ζa, Π̂b

]∣∣ζ
〉
= −i∂fa[ζ]

∂ζb
δ(ζ̃ − ζ) ∝ δab . (3.13)

As a result, fa[ζ] cannot depend explicitly on ζb for b 6= a. Invariance under spatial

translations furthermore implies that fa[ζa] = f [ζa]. We have therefore established that

〈ζ̃| ˙̂ζa|ζ〉 ≈ f(ζa, ∂
iζa, · · · )δ(ζ̃a − ζa) . (3.14)

Although this is a statement involving matrix elements in the ζ-basis, the result holds in

any basis. To see this, note that (3.14) holds inside any correlation function:

〈 ˙̂ζa · · · 〉 =
∫

dζ̃

∫
dζ 〈0|ζ̃〉〈ζ̃| ˙̂ζa|ζ〉〈ζ| · · · 〉 = 〈f [ζa] · · · 〉 . (3.15)

This proves that (3.14) is equivalent to the operator statement

˙̂
ζ(x, t) = f [ζ̂(x, t)] , (3.16)

where we have dropped the terms of order a−3 coming from the non-zero commutator (3.10).

We will study the implications of this equation in the next two subsections.

3.3 Constraints from symmetry

A basic property of any operator equation is that the two sides of the equation must

transform in the same way under symmetries. In this subsection, we will show that the

symmetries of ζ (see section 2) severely constrain which operators are allow to appear on

the r.h.s. of eq. (3.16).
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Perturbation expansion. In perturbation theory, we usually consider situations where

〈ζ2〉 ≪ 1. This corresponds to the requirement that the split of the metric into background

and fluctuations is reliable. Given the small amplitude of fluctuations and the assumption

of weak coupling, we can Taylor expand the r.h.s. of eq. (3.16) around ζ = 0,

˙̂
ζ(x, t)=

∞∑

n=0

αn(t)ζ̂
n(x, t)+

∞∑

m=1

βm(t)
(
a−2e−2ζ̂∂2ζ̂(x, t)

)m
+

∞∑

ℓ=1

γℓ(t)
(
gij∂iζ̂∂j ζ̂(x, t)

)ℓ
+ · · · .

(3.17)

Renormalization condition. Since ζ̂ is a fluctuation, we require the expectation value

of the l.h.s. of (3.17) to vanish, 〈 ˙̂ζ 〉 = 0. This fixes the coefficient of the unit operator,

α0(t), in terms of the vacuum expectation values of the other local operators. Of course,

we are always free to define 〈O〉 ≡ 0 as a renormalization condition for all local operators

O 6= 1̂. In that case, the coefficient of the unit operator must vanish, α0(t) = 0.

Dilatation symmetry. Next, we consider the constraints imposed by the dilatation

symmetry. Recall that i[Q̂d, ζ̂] = −1− x · ∂xζ̂, which means that

i
[
Q̂d,

˙̂
ζ
]
= −x · ∂x ˙̂

ζ . (3.18)

The higher-derivative operators Ô(∂) in eq. (3.17) (i.e. those with coefficients βm, γℓ, etc.)

have been arranged in such a way that i[Q̂d, Ô(∂)] = −x · ∂xÔ(∂). Therefore, any values of

the coefficients βm and γℓ are consistent with the transformation of
˙̂
ζ(x, t) under Q̂d. The

same is not true for the operators ζ̂n, which transform as

i
[
Q̂d, ζ̂

n
]
= −nζ̂n−1 − x · ∂xζ̂n 6= −x · ∂xζ̂n . (3.19)

We see that each individual term in the sum over ζ̂n does not transform correctly to match

the transformation of
˙̂
ζ. Furthermore, there is no way to choose the coefficients αn in

such a way that the additional terms in the transformations of ζ̂n cancel between terms.

Therefore, consistency with the transformation under Q̂d requires that αn = 0 for all n.

Special conformal symmetry. We can repeat the same analysis for the SCTs generated

by Q̂i
sc. From i[Q̂i

sc, ζ̂] = −2xi − 2xi(x · ∂x ζ̂ ) + x2∂i ζ̂, we infer that

i
[
Q̂i

sc,
˙̂
ζ
]
= −2xi

(
x · ∂x ˙̂

ζ
)
+ x2∂i

˙̂
ζ . (3.20)

Matching the transformation on the r.h.s. of (3.17) imposes non-trivial relations between

the coefficients. For example, at second order in derivatives we have

˙̂
ζ(x, t) = a−2e−2ζ̂

(
β1(t)∂

2ζ̂ + γ1(t)δ
ij∂iζ̂∂j ζ̂

)
+O(∂4) . (3.21)

Imposing that the transformations on both sides agree gives

˙̂
ζ(x, t) = β1(t)a

−2e−2ζ̂

(
∂2ζ̂ +

1

2
δij∂iζ̂∂j ζ̂

)
+O(∂4) . (3.22)
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The special combination of operators on the r.h.s. should not be too surprising, since it is

precisely the combination that appears in the three-dimensional Ricci scalar,

R ≡ −4a−2e−2ζ

(
∂2ζ +

1

2
δij∂iζ∂jζ

)
. (3.23)

Both the dilatation and the SCTs are continuously connected to a general, time-

independent diffeomorphism on the spatial slice. Because
˙̂
ζ transforms as a scalar under

this group, the r.h.s. of (3.17) should be composed of invariants of the group. For this

reason, our equation should take the form

˙̂
ζ(x, t) = β̃1(t)R̂(x, t) + β̃2(t)R̂2(x, t) + β̃3(t)R̂ijR̂ij(x, t) + · · · , (3.24)

where Rij is the Ricci tensor on the spatial slice. The final step in our proof will be to show

that all these terms vanish at least like powers of a−2. Phrased in terms of curvatures, it

seems intuitive that inflation should smooth out the spatial curvatures. Showing that this

intuition survives quantum corrections will be the subject of the next subsection.

3.4 Renormalization of composite operators

The right-hand-side of eq. (3.24) contains composite operators, i.e. products of fields

evaluated at coincident points, which even in a Gaussian theory leads to divergences.

One might worry that these divergences will affect the scaling behaviour of the operators

at late times, i.e. change their a−n suppression. In particular, the renormalization of

composite operators is complicated by the tendency of operators to mix under renormal-

ization [15, 16]. In order to complete the proof, we need to show that the scaling of the

operators in (3.24) isn’t drastically affected by renormalization. More precisely, we wish to

show that if a composite operator O(x, t) scales like a−n in the free theory, any corrections

in the interacting theory that scale like a−m, where m is an integer with m < n, can be

removed by a local redefinition of the operator,

OR(x, t) ≡ O(x, t) + δO(x, t) . (3.25)

This allows us to define renormalized composite operators by local subtraction. By

definition, these operators then all decay at least as powers of a−2 in correlation functions.

An explicit demonstration of the renormalization of composite operators by local sub-

traction is rather technical. In this subsection, we therefore only show how the renormal-

ization works in a concrete example (see also [36] for a related discussion). The dedicated

reader can find the painful details for the most general cases in appendix A.

Example. Consider a massless scalar field7 in de Sitter space with interaction φ̇3. For

purposes of illustration, we will present the renormalization of the composite operator8

O(x) = (∂2φ/a2)2(x).

7Since the renormalization of composite operators is unrelated to the special symmetries satisfied by ζ,

we have switched to a generic scalar field φ.
8For notational simplicity, we will sometimes drop the time argument, i.e. O(x) means O(x, t).
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Tree-level scaling. Even in the free (or Gaussian) theory, this operator has a non-

vanishing one-point function

〈O〉 =
∫ aΛ d3k

(2π)3
k4

a4
|φk|2 =

H2

4π2

∫ aΛ k3dk

a4

(
1 +

k2

(aH)2

)
=

Λ4

16π2

[
H2 +

2

3
Λ2

]
. (3.26)

We have cut off the integral at fixed physical momentum Λ and used the Bunch-Davies

mode function

φk(τ) =
H√
2k3

(1 + ikτ)e−ikτ , (3.27)

where τ is conformal time. In accordance with our renormalization condition, we define

a shifted operator with vanishing one-point function,

OR ≡ O − 〈O〉 . (3.28)

Next, let us consider the two-point function of this operator (still in the Gaussian theory)

〈OR(x)OR(0)〉 =
2

a8
(〈
∂2φ(x)∂2φ(0)

〉)2
, (3.29)

or
∫

d3x eik·x 〈OR(x)OR(0)〉=
2

a8

∫ aΛ d3q

(2π)3
q4|φq|2|k − q |4|φk−q|2 (3.30)

=
H4

2a8

∫ aΛ d3q

(2π)3
q|k − q |

(
1 +

q2

(aH)2

)(
1 +

|k − q |2
(aH)2

)

= − 1

720π2
H4k5

a8

(
1+

3

7

k2

(aH)2
+

1

35

k4

(aH)4

)
+(contact terms) .

We observe that the two-point function in the free theory scales as a−8, as expected from

the a−4 scaling of the operator. In the final line, we have dropped all terms that are

analytic in k —e.g. (k2)n, with n being a non-negative integer. If we Fourier transform

such terms back to position space, they become contact terms — i.e. terms proportional

to δ(x) —and therefore do not contribute to correlation functions at separated points.

Notice that all terms proportional to the cutoff Λ are contact terms (as they should be

for renormalized operators).

One-loop correction. Now consider the non-Gaussian correction to the cross-correlation

∫
d3x eik·x 〈OR(x)φ(0)〉 =

1

a4

∫ aΛ d3q

(2π)3
q2|k − q |2〈φqφk−qφ−k〉′ , (3.31)

where

〈φqφk−qφ−k〉′ = i

∫ τ

−∞
dτ̃ a(τ̃) 〈Hint(τ̃)φqφk−qφ−k(τ)〉′ + h.c. (3.32)

The notation 〈· · · 〉′ denotes that an overall delta function has been omitted. Substituting

the interaction Hamiltonian,

Hint =
1

3M2

∫
d3x (φ′)3 , (3.33)
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we get

〈φqφk−qφ−k〉′ =
2

M2
φ∗q(τ)φ

∗
k−q(τ)φ

∗
−k(τ) i

∫ τ

−∞

dτ̃

Hτ̃
φ′q(τ̃)φ

′
k−q(τ̃)φ

′
−k(τ̃) + h.c. , (3.34)

where primes stand for derivatives with respect to conformal time. Since we are interested

in the behavior as q → ∞, we keep only the leading terms in k,

〈φqφk−qφ−k〉′ =
1

4

H5

M2

(1− iqτ)(1− i|k − q |τ)(1− ikτ)

q|k − q |k i

∫ τ

−∞
dτ̃ τ̃2e−iK(τ̃−τ) + h.c. ,

=
1

8

H5

M2

1

k

1

q5

(
1 + q2τ2 + 2q4τ4

)(
1 +O

(
k

q

))
, (3.35)

where K ≡ q + |k − q|+ k. Note the importance of the Bunch-Davies vacuum in deriving

eq. (3.35). In an excited state negative frequency modes would lead to contributions with

K → q − |k − q|+ k ∼ k. This would lead to extra inverse powers of k. Hence, we find

∫
d3x eik·x 〈OR(x)φ(0)〉 =

1

8

1

a4
H5

M2

1

k

∫ aΛ d3q

(2π)3
1

q

(
1 + q2τ2 + 2q4τ4

)
,

=
1

32π2
1

a2
1

k

(
Λ2H5

M2
+

1

2

Λ4H3

M2
+

1

3

Λ6H

M2

)
+O(k0) . (3.36)

Notice that this cross-correlation scales as a−2 and not as a−4 (as we would naively expect

from the scaling of the operator). The UV divergence has significantly affected the time

dependence of the correlation function. This significant change in the scaling behavior of

the operator would be a real problem if it weren’t possible to remove the contribution by

a local counterterm.

Renormalization. It is easy to see that the contribution in (3.36) can be removed by

the following local operator

δO ≡ − 1

16π2

(
Λ2H5

M2
+

1

2

Λ4H3

M2
+

1

3

Λ6H

M2

)
∂2φ

a2
, (3.37)

since ∫
d3x eik·x 〈∂2φ(x)φ(0)〉 = −k2|φk|2 = −H

2

2k
+O

(
k2

(aH)2

)
. (3.38)

Moreover, we can also cancel higher powers of k in the expansion in (3.36). The first correc-

tion, of order k0, is a pure contact term and therefore doesn’t have to be removed explicitly.

In fact, every even power, (k2)n, where n is a non-negative integer, is a contact term and

thus none of these terms contribute to correlation functions at separated points. This leaves

the odd powers, k2m−3, wherem is a positive integer. It should be clear that all these terms

can be removed by local operators of the form (∂2)mφ. As a result, the contributions to the

correlation function that lead to a physical scaling are associated with q ∼ k ≪ aH (which

we did not compute here). Clearly, all such contributions are suppressed by a−4, as desired.

In appendix A, we will argue that defining renormalized operators by adding local coun-

terterms is always possible in the Bunch-Davies vacuum. These operators have well-defined
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scaling behavior and are therefore suppressed at late times. In particular, operators with n

derivatives vanish like (k/a)n. In appendix A, we will also show that the renormalized oper-

ators satisfy the same symmetries as the bare operators. Higher-derivative composite oper-

ators therefore only make subleading contributions in eq. (3.24). This completes our proof.

3.5 Summary of results

We have shown that

lim
a→∞

˙̂
ζk = 0 +O

(
k2

a2

)
. (3.39)

Since this is an operator statement, it applies at all orders in the loop expansion. This

means that any correlation function of
˙̂
ζk will vanish as a → ∞. Equivalently, correlation

functions of ζ̂k are time independent outside the horizon at all-loop order.

We made four important assumptions in establishing this result:

1. We assumed that we can transform to a gauge in which the scalar component of the

metric, ζ, is the only propagating degree of freedom (in addition to gravitons).

2. We assumed that the theory is local, in the sense that any pair of local operators Ô1

and Ô2 satisfies [
Ô1(x, t), Ô2(y, t)

]
= 0 , for x 6= y . (3.40)

3. We assumed that couplings in the action for ζ depends only logarithmically on the

scale factor, i.e. λ(t) ∝ (log a(t))r, for some non-negative r.

4. We assumed the Bunch-Davies vacuum state.

Using assumptions 1 – 3, we derived the following operator equation

˙̂
ζ(x, t) = f [ζ̂(x, t)] +O(a−3) . (3.41)

Invariance under diffeomorphisms required that the lowest order terms in the derivative

expansion are given by

˙̂
ζ(x, t) = β1(t)a

−2e−2ζ̂

(
∂2ζ̂ +

1

2
δij∂iζ̂∂j ζ̂

)
+O(∂4) . (3.42)

This ensures that every operator in this series is suppressed by at least two derivatives.

Finally, we showed that if assumption 4 holds, all operators containing derivatives are

suppressed by factors of k/a and hence eq. (3.39) follows. Let us ask where our proof

would fail if any of these assumptions were violated:

1. In multi-field inflation, additional light scalars σ are present in ζ-gauge. The proof

that ζ̇ must satisfy an operator equation would still hold, but nothing9 would forbid

terms of the form

˙̂
ζ(x, t) = κ1(t)σ̂(x, t) + κ2(t)σ̂

2(x, t) + · · · . (3.43)

9Additional symmetries may forbid the appearance of some of these terms. For scalar fields, one would

require a new global symmetry. In the case of tensor fluctuations, they are forbidden by another class of

large diffeomorphisms [11].
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The fluctuations of σ can be non-zero outside the horizon and therefore
˙̂
ζk→0 need

not vanish. More dramatically, ref. [37] recently suggested an inflationary model

(solid inflation) in which the adiabatic mode is completely absent and it isn’t

possible to go to the standard ζ-gauge. Our proof then doesn’t apply. In fact, in

solid inflation ζ isn’t conserved (even at tree level).

2. ref. [38] introduced an inflationary model (Khronon inflation) in which ζ evolves as

ζk(τ) ∝
1√
2k3

eiαkτ , (3.44)

where α is a ratio scales that will not matter here. We see that ζ̇k→0 = i(k/a)ζk→0,

which violates our eq. (3.39). However, one also finds that

[ ˙̂
ζk(τ), ζ̂k′(τ)

]
=

i

k2
δ(k + k′) , (3.45)

which is non-local in real space. Khronon inflation therefore violates our locality

assumption.

3. In the model of ref. [39], the coefficient of the kinetic term ζ̇2 scales as a−6(t), violating

our assumption that couplings in the Lagrangian scale at most as log a(t). The

authors of [39] then find solutions that scale as ζ ∝ a3. This growing mode becomes

classical and clearly satisfies an operator equation of the form
˙̂
ζ ∼ 3Hζ̂. Why is this

equation not forbidden by the dilatation symmetry? First, we note that, due to the

significant time dependence, the commutator scales as [
˙̂
ζk(t), ζ̂k′(t)] ∼ a3 for a→ ∞.

In this case, our operator equation takes the form
˙̂
ζ ∼ 3Hζ̂+O(a0). This is consistent

with the dilatation symmetry because ζ 7→ ζ + λ can be absorbed into O(a0).

4. Assuming the Bunch-Davies vacuum was only important for the renormalization of

operators. In appendix A, we show that large corrections to the scaling behavior

of composite operators can be removed by a redefinition of the local operator.

This renormalization procedure essentially requires that the only divergences in

correlation functions arise from operators at coincident points. In some excited

states, this is known not to be the case [40]. This is usually taken as a sign that the

interacting theory is ill-defined.

4 Relation to the single-field consistency relation

In the previous section, we used both locality and symmetry to demonstrate that ζ̇

vanishes outside the horizon as a−2. In the process, we understood the late-time scaling

behavior of many other operators. In this section, we will see how this information is

useful for understanding the behavior of correlation functions of ζk when there are large

hierarchies between the momenta (i.e. for soft limits). Specifically, when the operator

product expansion (OPE) applies, these correlation functions are determined in terms of

the operators with the lowest scaling dimensions.10

10The utility of OPEs to describe soft limits of inflationary correlation functions has recently been em-

phasized by Kehagias and Riotto [41].
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4.1 Operator product expansion

The OPE is a powerful tool for understanding quantum field theories in situations where

the scaling behavior of operators is well understood [15]. The basic idea of the OPE is to

replace a set of operators in the neighborhood of a point x by a sum over local operators at

x. When the operators can be organized according to their scaling dimensions (i.e. if one

knows, for each operator, how many powers of the distance appear in correlation functions),

then the leading contribution can be determined by the first few terms in the expansion. In

the case of conformal field theories, one even understands the scaling behavior well enough

to re-sum parts of the expansion. In the context of inflation, we would like to apply the

OPE to correlation functions of ζ. On the surface, this doesn’t look like a well-controlled

procedure since ζ(x)ζ(0) ∼ log(|x|) and therefore higher powers of ζ are not suppressed

in the OPE. However, in practice, the OPE is controlled by the smallness of 〈ζ2〉.
Furthermore, from the results of the previous sections (and appendix A), we will be able

to constrain the coefficient functions and/or the scaling behavior of each local operator.

Consider the following OPE

ζ(x)ζ(y)
x→y−−−→

∑

O

fO(x−)O(x+) , (4.1)

where we defined

x+ ≡ 1

2
(x+ y) and x− ≡ |x− y| . (4.2)

In Fourier space, this OPE reads

ζk− 1

2
q ζ−k− 1

2
q

|k|≫|q|−−−−→
∑

O

fO(k)O−q . (4.3)

The types of local operators O that should be included on the right-hand side depend on

the field content of theory. Restricting to single-field inflation, the operators are composite

operators made out of ζ and its derivatives. The coefficient functions fO(u) (or their Fourier

transforms fO(k)) are constrained by the symmetries of section 2. Our arguments in sec-

tion 3 restrict the appearance of the operator ζ̇ in the OPE (in particular, up to corrections

that vanish as a−3, we can replace ζ̇ using eq. (3.24)). Moreover, from the discussion in ap-

pendix A, we know that higher-derivative composite operators are also suppressed by pow-

ers of a(t). The dominant operators in the OPE are therefore operators without derivatives

ζ(x)ζ(y)
x→y−−−→

∑

n

fn(x−)ζ
n
R(x+) + · · · . (4.4)

Acting n times with the dilatation charge, [Qd, · · · ], on both sides of eq. (4.4), we find

fn(x−) =
1

n!

(
d

d lnx−

)n

ξ(x−) + δn2 and fn(k) =
1

n!

(
3 +

d

d ln k

)n

P (k) , (4.5)

where ξ(x−) ≡ 〈ζ(x)ζ(y)〉 and P (k) ≡ 〈ζkζ−k〉′. The near-Gaussianity of the fluctuations,

fNLζ ≪ 1, implies that it is often sufficient to keep only the n = 1 term in the sum

ζk− 1

2
qζ−k− 1

2
q

|k|≫|q|−−−−→ f1(k)ζ−q + · · · =
d ln(k3P (k))

d ln k
ζ−q + · · · . (4.6)
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To capture subleading corrections, we should also consider derivative operators that

have finite correlation functions in the limit a→ ∞, such as

ζ(x)ζ(y)
x→y−−−→ · · ·+ g1(x−)x

i
− [∂i ζ](x+) + g2(x−)x

2
− [∂2ζ](x+) + · · · , (4.7)

where the functions g1(x−) and g2(x−) are at most logarithmic in x−. The Fourier trans-

form of eq. (4.7) is

ζk− 1

2
qζ−k− 1

2
q

|k|≫|q|−−−−→ · · ·+
(
g1(k)

q · k
k2

+ g2(k)
q2

k2

)
ζ−q + · · · , (4.8)

where the functions g1(k) and g2(k) scale as k−3. Acting with the charge of SCTs,

[Qi
sc, · · · ], on both sides of eq. (4.8) implies that g1(k) = 0, which ensures that first

subleading term is suppressed by q2/k2 [12].

4.2 Single-field consistency relation

One is often interested in the coincident limit of correlation functions where two or more

operators are brought close to each other (relative to the distances to other operator

insertions). The OPE is a natural way to analyze this. For instance, let us consider the

following limit of the three-point function limx→y〈ζ(0)ζ(x)ζ(y)〉. In Fourier space, this

corresponds to the squeezed limit of the bispectrum,

lim
|q|≪|k|

〈
ζq ζk− 1

2
qζ−k− 1

2
q

〉′
. (4.9)

Maldacena showed that in single-field inflation this limit is fixed by the scale-dependence

of the two-point function [13]. Here, we want to reproduce this result from the OPE. In

fact, there is not much left to do. We simply use the OPE (4.3) to replace the product of

the high-momentum modes in (4.9),

〈
ζq ζk− 1

2
q ζ−k− 1

2
q

〉′ |k|≫|q|−−−−→
∑

O

fO(k)
〈
ζqO−q

〉′
=

(
f1(k) +O

(
q2

k2

))〈
ζq ζ−q

〉′
+ · · · .

(4.10)

Terms that aren’t shown explicitly in (4.10) are either suppressed by powers of a(t) or by

the near-Gaussianity of the fluctuations. Hence, we find that the linear operators in the

OPE (n = 1) lead to Maldacena’s single-field consistency relation [13, 33]

〈
ζq ζk− 1

2
q ζ−k− 1

2
q

〉′ |k|≫|q|−−−−→ P (q)

[
d ln(k3P (k))

d ln k
+O

(
q2

k2

)]
P (k) . (4.11)

The vanishing of g1(k) in (4.8) captures11 the conformal consistency relation of Creminelli,

Noreña and Simonović [12], which ensures there is no O(q · k) correction to (4.11). The

subleading corrections (suppressed by q2/k2 ≪ 1) come from operators like the last term

in eq. (4.8).

11For higher n-point functions, the conformal consistency relation allows for terms that are linear in the

soft external momenta [12]. This would arise from an OPE involving (n − 1) insertions of ζ at separated

points, but we will not consider such cases here.
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In [30], we related the single-field consistency relation to the Ward identity associated

with the dilatation symmetry, eq. (2.6). Let us make a side remark addressed at readers

familiar with that previous work. There we had to assume that ‘multi-particle’ states

(i.e. states created by acting with several ζ-operators on the vacuum) make a negligible

contribution in single-field inflation. Here, we see that this assumption is equivalent to

being able to truncate the OPE (4.3) at order n = 1.

4.3 Violations of the consistency relation

The conservation of ζ and the consistency relation of the three-point function are closely

related. In fact, both are consequences of the non-linearly realized dilatation symmetry.

In section 3.5, we list four critical assumptions on which our proof for the conservation of

ζ was based. It is interesting to see how violations of these assumptions map to proposed

violations of the consistency relation:

1. Of course, it is well-known that large squeezed limits are possible if ζ isn’t the only

fluctuating degree of freedom (see e.g. [42, 43] for reviews of non-Gaussianity in multi-

field inflation). In terms of the OPE, these additional fields may appear unsuppressed

in (4.1). The coefficients of any such operator is not restricted by the non-linear

symmetry of ζ and therefore can be large. This is related, but not equivalent, to the

violation of the conservation of ζ we discussed in section 3.5.

2. In Khronon inflation [38] the consistency relation is still satisified, but subleading

terms are now less suppressed (by q/k rather than q2/k2). In fact, one could imagine

variants of Khronon inflation that would even violate the consistency relation. It

would be interesting to establish a more direct relation between non-locality and the

scaling of the bispectrum in the squeezed limit.

3. Strongly time-dependent couplings (e.g. power law in a(t) rather than logarithmic)

may violate the consistency relation directly through the non-conservation of ζ [39].

In this case the operator ζ̇ scales as an (for n > 0) outside the horizon and is

therefore not suppressed in the OPE. This is also clear from the argument of

Maldacena [13], which assumes that the k = 0 mode can be removed by a rescaling

of the coordinates. This is only true of time-independent solutions and therefore

does not apply in this case.

4. Some excited states have been found to violate12 the consistency relation [44–47].

This can be understood as arising at times before the long mode has crossed the

horizon, and hence derivative operators are not suppressed. However, since we

directly apply the OPE at late times, it may not be clear where our argument breaks

down. The resolution lies in the fact that the suppression of composite operators

at late times (a → ∞) requires that we can remove any divergent result by a local

12Technically speaking, the authors of [44–47] do not claim to violate the consistency relation in the limit

k → 0. However, if we removed the requirement that the states have finite energy, then a true violation can

arise. Such states are essentially the same as those discussed in [40].
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counterterm. In these excited states, this is not the case [40]. However, this is an

unphysical feature of these states that arises because they have infinite energy. One

recovers the consistency relation in the k → 0 limit when restricting to finite energy

states [44–47]. For an extensive discussion of these (and related) examples and their

observational consequences, see [48].

5 Discussion

In this paper, we proved that the superhorizon conservation of the curvature perturbation

ζ in single-field inflation holds as an operator statement. In the process, we developed

techniques for understanding correlation functions of ζ that did not require explicit use of

perturbation theory. We used these insights to understand the operator product expansion

of ζ and its relation to the single-field consistency relation.

There is reason to believe that the technical developments that we used to understand

the conservation of ζ may have applications to other problems. For example, we have not

addressed the conservation of tensor modes. It should be clear that all constraints that

followed from locality alone should apply equally to tensor perturbations. On the other

hand, the transformation properties under large diffeomorphisms are quite different [11]

and could lead to interesting results. Another application would be to eternal inflation. In

this case, the fluctuations of ζ are order one, which presents a challenge for using tradi-

tional perturbation theory techniques. However, our only result that made explicit use of

perturbation theory was the scaling behavior of renormalized composite operators. For this

reason, it is possible that some of our results will survive in the regime of eternal inflation.

Finally, our primary concern was one type of infrared divergence of inflationary

correlators, namely those that scale as log a(t). There are also infrared divergences that

scale as logL, where L is a hard infrared cutoff on the comoving momenta. These types

of divergences have been studied by many authors (see e.g. [49–56]) and it would be

interesting to see if our understanding of the conservation of ζ can shed any additional

light on this other class of divergences.

Note added. When this paper was completed, ref. [57] appeared which also presents an

all-orders proof for the conservation of ζ on superhorizon scales.
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A Renormalization of composite operators

In quantum field theory in flat space, the Callan-Symanzik equation provides the connection

between UV divergences and the scaling behavior of composite operators O(x, t) [15, 16].

In perturbation theory, the scaling of composite operators is only corrected logarithmically,

i.e. by small anomalous dimensions. This is manifest in renormalization schemes without

power law divergences such as dimensional regularization. In schemes that allow for power

law divergences, any power law corrections to the scaling can be removed by introducing

local counterterms in the definition of renormalized operators OR. In this sense, only log

corrections to scalings are physically meaningful.

In this paper, we have been interested in the behavior of cosmological correlations

functions in the limit a(t) → ∞. Here, the scale factor a(t) plays the role of an infrared

regulator and the scaling with time t is controlled by the Hamiltonian and not the

renormalization group. A priori, it is not obvious that there should be a relation between

the results in flat space and in de Sitter space (although the two are mapped to each in

the dS/CFT duality [58]). In this appendix, we will show explicitly that the intuition

regarding anomalous dimensions in ordinary field theory will continue to hold for the

scaling of cosmological correlation functions. In particular, we will show that the scaling

behavior of composite operators is corrected in perturbation theory, at most, by log a(t).

For example, suppose that, in the Gaussian theory, the two-point function of some

composite operator O(x, t) scales like a−n, where n is some integer. We will show that at

higher orders in perturbation theory, any contributions that scales like a−m, where m is

an integer with m < n, can be removed by a local redefinition of the operator,

OR(x, t) ≡ O(x, t) + δO(x, t) . (A.1)

A.1 Renormalizability by local counterterms

In section 3, we presented a specific example for the renormalization of a composite

operator by local counterterms. This example was meant to be illustrative, but it does not

establish that this procedure works at all orders in perturbation theory. In this section,

we will put forward arguments to that effect.

A.1.1 Momentum space argument

Perturbation theory is formulated most straightforwardly in momentum space, while

locality is most manifest in position space. We will therefore present the argument twice,

here in momentum and below in position space. In each case, we will first present the

general strategy and then the details of the ‘proof’.

Strategy. Consider the composite operators13 O(x, t) =
∏n

i=1(a
−2∂2)riφ(x, t). In mo-

mentum space, this becomes

Ok(t) ≡
n∏

i=1

∫
d3ki
(2π)3

(
k2i
a2

)ri

φki
(t) δ

(∑

i

ki − k

)
. (A.2)

13For notational simplicity, we will write most expressions for a specific composite operator, but our

results hold for any local operator constructed from φ and derivatives.
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Regions of finite momentum in the integrand of (A.2) scale like a−
∑

i 2ri in the limit

a → ∞, relative to the correlation function of
∏n

i=1 φki . Therefore, any contributions

that do not scale like a−
∑

i 2ri , must come from momentum configurations with ki → ∞
and ki/a fixed (assuming that

∑
ri > 0). Because momentum is conserved, a least two

of these momenta must diverge together. For purpose of illustration, let us consider the

case where all the ki’s diverge as a → ∞. We are interested in the scaling behavior of Ok

inside of correlation functions, such as

lim
a→∞

〈
Ok φp1

· · ·φpm

〉
= lim

a→∞

〈 n∏

i=1

∫
d3ki
(2π)3

(
k2i
a2

)ri

φki
δ

(∑

i

ki−k

)
φp1

· · ·φpm

〉
. (A.3)

Our goal is to show that

lim
a,ki→∞

〈 n∏

i=1

(
k2i
a2

)ri

φkiδ

(∑

i

ki−k

)
φp1

· · ·φpm

〉
=F (ki, a)×

m∏

j=1

p−3
j

[
1+O

(
p2

a2

)]
. (A.4)

Let us explain why this is the desired result. First, notice that (A.4) factorizes into a func-

tion of the diverging momenta ki and a function of the finite momenta pj . This means that

the integrals over the momenta ki in (A.3) will simply give a number C times the function

of the momenta pj . Second, the remaining function of pj is itself a correlation function of

the fields φpj
and some local operator at some lower order in perturbation theory. In the

example above, the leading term would be the correlation function of
∫
d3x eik·xφm(x) and

φp1
· · ·φpm

. On the other hand, if we were to find a factorized answer that contained higher

inverse powers of pj (e.g. p
−5
j ), then we would not be able to remove it by subtracting a local

operator. Instead, we would need to subtract a non-local operator containing powers of ∂−2.

Our strategy will be to show that each Feynman diagram contributing to the

above correlation function can be factorized into a sub-diagram containing the diverging

momenta and one containing only finite momenta. After integrating over the momenta

ki, we can simply replace the divergent sub-diagram with a local operator.

In the following, we will generalize the standard arguments from flat space quantum

field theory (see Weinberg, Vol. II, Ch. 20 [15]) to de Sitter space and the associated

in-in correlation functions. Our argument will fall short of being a complete proof for

technical reasons related to the regions of integration of the loop momenta. This is the

same complication that arises in the standard arguments for validity of the OPE in flat

space, like those in [15]. We will explain this in more detail at the end of this subsection.

‘Proof’. For concreteness, let us consider an (n+m)-point function of the form

〈 (
a−2∂2φ

)
k1

· · ·
(
a−2∂2φ

)
kn
φp1

· · ·φpm

〉
, (A.5)

where all the operators are evaluated at some fixed time t. We are interested in the

behavior as ki → ∞ and a → ∞ with ki/a fixed. One important feature of inflationary

correlation functions is that the metric contains a trivial rescaling symmetry a → λa and

x → λ−1x (and hence k → λk). Under this symmetry, local scalar operators transform

as λ0 and therefore their momentum space counterparts transform as λ−3. In general, this
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symmetry is broken in the action for ζ because any explicit function of t can be rewritten

in terms log a(t). In other words, we can’t rescale a and t independently after solving for

the background. We will assume that the time dependence of the couplings is at most

logarithmic in a(t) (power law in t, during inflation) such that the power law scaling, λ−3,

is valid up to small corrections. Usually, this is required in order to preserve the near scale

invariance of the fluctuations. As a result, we can think of the momentum dependence14

of any field as being k−3f(k/a)

(
1 + 1

2(ns − 1) log k + · · ·
)
, where k/a is counted as k0.

Let us consider Feynman diagrams associated with the following in-in correlation

function
∫ t

−∞
dt1 · · ·

∫ tr−1

−∞
dtr

〈[
Hint(t1), . . . ,

[
Hint(tr),

(
a−2∂2φ

)
k1

· · ·
(
a−2∂2φ

)
kn
φp1

· · ·φpm

]]]〉
.

(A.6)

We will focus on contributions from a diagram or sub-diagram, Γ, in which all internal

momenta are of order ki (for simplicity, we will take all the ki’s to be of compa-

rable magnitude). Every external line contributes a factor15 of k−3
i or p−3

j . Since

Hint =
∫
d3x a3(t)Hint(x, t) in position space, when written in momentum space, there is

a momentum integral for every field and an overall momentum-conserving delta function.

In terms of Feynman rules, this means that every internal line contributes a factor of

k−3
i for the contraction of the interaction picture fields and an integral

∫
d3ki (recall

that derivatives of the fields scale as k/a ∼ k0). Since every vertex is associated with

an insertion of Hint, each vertex introduces a momentum-conserving delta function and

a time integral
∫
dt′a3(t′), where we will count the factor of a3 as k3f(k/a). In addition,

there is a commutator associated with each vertex coming from the in-in expression (A.6).

Each commutator with the fields φpj
is suppressed by p3j/a

3. These contributions can be

ignored in the limit a→ ∞. On the other hand, commutators acting on the internal lines

do not affect the scaling since we are counting k/a as having scaling k0.

Consider a general diagram with N vertices, I internal lines, Ek external k lines and

Ep external p lines. The overall momentum scaling of the diagram is Γ ∼ kD, where

D = −3Ek + 3I − 3I + 3N − 3(N − 1) = −3Ek + 3 . (A.7)

Here, the term proportional to (N − 1) comes from extracting the overall momentum-

conserving delta function. In writing this expression, we haven’t been careful about

the scaling with a(tℓ) where tℓ (ℓ = 1, · · ·, r) is the time appearing the ℓ-th insertion

of Hint. We are taking a(t) → ∞, but these integrals run over all values of tℓ, not just

the far future. We have implicitly assumed that the tℓ-integrals receive their dominant

contributions at late times, when a(tℓ) → ∞. Fortunately, this assumption is valid in

the Bunch-Davies vacuum, because every internal lines comes with a factor of e−ǫk/a(t′)

from the iǫ prescription. As we take k → ∞, only contributions with a(tℓ) & ǫk aren’t

exponentially suppressed, and we may assume a(tℓ) → ∞ inside Γ.

14The mode functions in a scale-invariant theory are of the form φk(t) ∼ k−3/2f(k/a(t)). Here, we are

associating a k−3/2 scaling with the creation and annihilation operators.
15For convenience, we will assume exact scale invariance of the interaction picture fields.
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Using these Feynman rules, we find that the diagram scales as

Γ∼K3f

(
ki
a(t)

)(
log

ki
H

)w

(log a(t))v×
n∏

i=1

k−3
i

m∏

j=1

p−3
j ×δ

(∑

i

ki+
∑

j

pj

)(
1+O

(p
k

))
, (A.8)

where K3 is some product of three ki’s and w, v are positive integers. The factors of

log(ki/H) can arise from the time dependence of the coupling constants. We do not

include log(p/H) scalings from time-dependent couplings, as they could only arise from

early times. For Bunch-Davies initial conditions, these contributions are exponentially

suppressed. Finally, we have included additional factors of log a(t) which, in principle, can

arise from the time integration
∫ t

dt′ ∼ t ≃ H−1 log a [6].

We notice that eq. (A.8) is precisely of the form of eq. (A.4). We can therefore

replace this whole diagram or sub-diagram by a local operator connected to the external

lines with momenta pj times a function F (ki) (this is the operator production expansion

in momentum space). When we define the correlation function in terms of the original

local operator, we perform the integral over
∫
d3k1 · · · d3kn δ(

∑
i ki −

∑
j pj). Because the

diagram factorizes, this is simply a number times a local operator.

The higher-order terms in the p/k expansion come from Taylor expanding the

internal lines in terms of pj . For example, an internal line might have momentum

q = ki + pj ∼ ki. Using rotation invariance, we can rewrite the dependence on q in terms

of q ∼ (k2i + p2j + 2ki · pj)
1/2. If we Taylor expand q in powers of pj , the only odd powers

of pj appear in the combination ki · pj . But odd powers of ki · pj vanish when we perform

the angular integrals over the ki’s in (A.2). With only even powers of pj surviving in the

Taylor expansion, we can remove the entire series by adding derivatives inside the local

operator. Therefore, all contributions to Γ that introduce power law changes in the scaling

behavior of O can be removed by adding local counterterms.

One may be concerned that the diagram Γ could be disconnected, in the sense that not

all of the momenta ki are connected to each other via some path in Γ. Let us assume that

this is true, i.e. let us assume that Γ is disconnected or connected only through soft internal

lines. For momentum conservation to hold, this would imply that
∑r<n

i=1 ki ∼ O(pj). This

corresponds to a special momentum configuration where some subset of the diverging

momenta separately sum to a finite momentum. For generic momenta this cannot arise

and the diagram must therefore be connected. Since we will be integrating over ki, these

non-generic points can be ignored.

Loopholes and caveats. The above argument seems very general, so it is worth high-

lighting situations where it could fail. First of all, the iǫ prescription of the Bunch-Davies

vacuum was crucial for suppressing contributions at early times. For some excited states

this may not be the case. This is consistent with the observation that some excited

states in de Sitter are known not to be renormalizable by local counterterms [40]. In

our language, these examples correspond to contributions when a(tℓ) ∼ pj/H, which

would induce additional inverse powers of pj and therefore cannot be removed by local

counter-terms. In extreme situations, one could also imagine compensating for the

exponential suppression, e−ǫ k
aH , in the limit a → 0, with exponential growth of the
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couplings of the form λ(t) ∼ exp(a−δ(t)) for δ > 1. Having coupling grow this rapidly in

the far past would give a large non-local contribution to late-time correlators. We have

excluded such large time dependences throughout the paper.

Finally, we want to stress that our argument falls short of a formal proof, as we have

not been careful enough regarding the integration over loop momenta. Although we have

treated all large momenta as order ki, there are always regions of integration where the

internal momenta are much larger or much smaller than ki. One might worry that the result

of performing and regulating these integrals might somehow result in additional factors of

ki/pj . The general scaling behavior of the internal lines makes it difficult to see how such

contributions could arise, but we leave a complete investigation to future work.

A.1.2 Position space argument

In translationally invariant theories, explicit calculations are often easier to perform in

momentum space. However, locality is a fundamental property of most theories that is

easier to understand in position space. For this reason, we will now explain how the

renormalization of composite operators works in position space. The results will be less

explicit than those of the previous section, but may be more intuitive.

Strategy. Consider the in-in master formula

〈O(x, t)O(y, t)〉 = 〈0| T̄ ei
∫ t
−∞

dt′ Hint(t
′)O(x, t)O(y, t) T e−i

∫ t
−∞

dt′ Hint(t
′) |0〉 . (A.9)

In perturbation theory this expression is evaluated by expanding in powers of

∫
dt′Hint(t

′) =

∫
dt′d3x′a3(t′)Hint(x

′, t′) (A.10)

and using contractions of the interaction picture fields. We then look at the regions of

integration over the positions of Hint(x
′, t′) that are not suppressed by powers of a(t).

We will show that these contributions arise from spacetime regions where some number

of Hint(x
′, t′) are within a sphere surrounding the composite operator O(x, t) that is

much smaller than the distances to other operators in the correlation function. By Taylor

expanding Hint(x
′, t′) = Hint(x, t) + (x ′ − x) · ∂xHint(x, t

′) + · · · , we can then treat

Hint(x
′, t′) as an operator at the point (x, t). To evaluate the behavior at coincident

points, such as O(x, t)Hint(x, t) (and derivatives therefore), we simply use the free field

contractions of the fields that make up Hint and O. The result is therefore a new local

operator with a divergent coefficient. The entire contribution can then be removed by

adding a local counterterm to O(x, t).

The argument in position space is more subtle for the usual reason that perturbation

theory is easier to implement in momentum space. For this reason, let us focus an a

sightly simplified correlation function, namely the two-point function of the operator

O(x, t) ≡ (a−2∂2φ)n(x, t):

∫ t

−∞
dt1 · · ·

∫ tr−1

−∞
dtr

〈[
Hint(t1), · · · ,

[
Hint(tr),O(x, t)O(y, t)

]]]〉
. (A.11)
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Figure 1. Composite operators O(x, t) and O(y, t) inserted at future infinity of de Sitter space.

Locality requires that the operators are only influenced by sources that are inside their past light

cones (shown in grey). The shaded regions near the operators indicate where an insertion of

Hint(x
′, t′) yields an unsuppressed contribution to 〈O(x, t)O(y, t)〉. Divergences can therefore be

removed by adding local counterterms.

Despite the reduced complexity of the correlation function, it still is sufficient for our main

goal. In particular, if the correlation function between (a−2∂2φ)n(x, t) and any local oper-

ators is not suppressed (and cannot be removed by a local counterterm), then we can insert

a complete set of states to find that 〈(a−2∂2φ)n(x, t)|n〉 is unsuppressed for some state |n〉.
Inserting the same set of states in (A.11) implies that there must be a similarly unsup-

pressed contribution to this two-point function. Each such contribution to (A.11) takes the

form |〈(a−2∂2φ)n(x, t)|n〉|2 and therefore cannot be cancelled to make the final result van-

ish. Hence, it is sufficient to show that (A.11) vanishes in the limit a→ ∞ to ensure that

correlation functions of O(x, t) with any local operator will be suppressed by powers of a−1.

‘Proof’. Let us first consider the contribution to (A.11) from the insertion of Hint(xr, tr)

that includes a commutator acting on (∂2φ)n at x or y. Locality requires that this com-

mutator vanish when (xr, tr) is outside the past light-cone of (x, t) or (y, t). When tr ∼ t,

locality requires that the commutator is proportional to a delta function, δ(xr−x)Õ(x, t),

or derivatives thereof (when acting on O(x, t)). Any such contribution to the correlation

function is manifestly local at x and can be removed by subtracting Õ(x, t).

Potentially dangerous contributions must come form points where tr ≪ t. In the

Bunch-Davies vacuum, these contributions are localized on the past light cone of the

operator O(x, t), i.e. |xr − x| ∼ (a(tr)H)−1. This allows us to perform the integral∫
d3xr → (a(tr)H)−2

∫
dΩ. The factor of

∫
dtr a

3(tr) from the measure in (A.10) ensures

that these contributions scale as a(tr) in the limit a(tr) → 0. Naively, this suppression

by a(tr) in the measure could be compensated by the divergent contributions along the

light-cone arising from the contractions of free fields. However, the iǫ prescription ensures

that the only physical divergences come from operators at coincident points. Specifically,

the iǫ prescription is equivalent to the analytic continuation of the correlators from the

Euclidean sphere. These correlators are suppressed by powers of the Euclidean distance,

which only vanishes at coincident points. The same will therefore be true of the Lorentzian

correlations in the Bunch-Davies vacuum. Finally, the full expression must be invariant

under the rescaling a → λa and x → λ−1x. Due to the power law suppression along the

light-cone,16 our final result must be suppressed by (at least) a(tr)/a(t) for tr ≪ t.

16Otherwise, |xr − x|a(tr) would be consistent with the rescaling symmetry and is unsuppressed.
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So far, we have only considered the contribution to the correlation function from a

single insertion Hint(xr, tr). We found that, after integrating over xr and tr, only points

near (x, t) or (y, t) contribute significantly (i.e. do not vanish as a → ∞). However, we

should also consider what happens when the other interactions Hint(xi, ti) are included.

From the above argument, the contribution from tr ∼ t can still be removed by redefining

the local operator, even in the presence of the additional interactions. This would suggest

that the only contributions that cannot be removed are from points with tr ≪ t. However,

we found that these points are suppressed by powers of a. The only way we would get

a significant contribution would be if the integral over ti with insertion Hint(xi, ti) would

diverge as a positive power of a(t). However, for couplings that scale at most as log a(ti),

the higher orders may diverge at most as (log a(t))r [6]. This completes our demonstration

that composite operators can always be renormalized by adding local counterterms.

A.2 Symmetries of renormalized operators

We conclude this appendix by showing that the basis of renormalized operators transforms

under symmetries in the same way as the bare operators.

First, let us review how to analyze the transformation of renormalized operators in

the path integral formalism. Consider an action S0 that describes the full theory. To

compute correlation functions, we deform the action by

S = S0 + Sn(J) , (A.12)

where

Sn(J) ≡ −
∑

n

∫
d4x

√−g Jn(x, t)ζn(x, t) . (A.13)

We have added sources Jn to the action such that correlation functions of ζn can be

computed as
〈
ζn(x, t) · · ·

〉
Jn=0

=
δ

δJn
〈· · · 〉

∣∣∣
Jn=0

. (A.14)

As far as the action is concerned, Jn(x, t) is just like any other coupling. When we

perturb in Jn we will therefore find divergences that need to be removed by adding

source-dependent counterterms

SR = S0 + Sn(J) + δcS(J) . (A.15)

Because the theory is now finite, the correlation functions are also finite

〈
[ζn(x, t)]R · · ·

〉
SR,Jn=0

=
δ

δJn
〈· · · 〉

∣∣∣
SR,Jn=0

. (A.16)

The operators appearing in (A.16) are therefore the renormalized composite operators

[ζn]R ≡ ζnR. In order to maintain the symmetries of the action, the sources Jn can be given

transformations under the symmetries such that S is invariant. Moreover, we can also

choose these transformations to leave Sn invariant. By taking the functional derivative

of Sn, we see that the operator δ
δJn

must transform in the same way as ζn(x, t). Hence,
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as long as δcS(J) does not explicitly break the symmetries, then SR is also invariant and

therefore δ
δJn

≡ [ζn]R must transform in the same way as ζn.

All of this applies equally to cosmological in-in correlation functions. In fact, in-in

calculations are just a special case of the above analysis, in which the (conformal) time

integral goes from τ = −∞(1−iǫ) to τ = −∞(1+iǫ), while passing through τ = 0. Because

the symmetries of section 2 are continuously connected to the group of diffeomorphisms,

the counterterm action δcS(J) would have to explicitly break diffeomorphism invariance to

violate them. Using dimensional regularization and the results of the previous subsection,

there is no need to use such a regulator. We therefore conclude that the transformation

properties of renormalized operators follow from (2.4) and (2.5).

For the specific application in section 3, there is, in fact, a more direct way to

understand the symmetries of renormalized operators. In section 3.3, we used symmetries

to forbid the operators that transform non-linearly under the charge Qd. We then argued

in section 3.4 that the remaining operators vanish as a−2 after renormalization. The

concern is that renormalization might mix these two groups of operators. For example,

this would arise if OR(k) = Lk − cζk, where OR scales as a−2, L is some operator that

transforms linearly under Qd and c is a constant. If this were the case, then we would find

i
〈[
Qd,OR(k)

]〉
= c(2π)3δ(k) . (A.17)

However, from eqs. (3.5) and (3.6), we see that any such mode has a constant contribution

to its power spectrum. This violates the assumption that OR(k) ∼ a−2, and therefore we

must have c = 0. Repeating this argument for any other operators that vanish as a→ ∞,

we find that they all transform linearly under the dilatation symmetry.
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