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1 Introduction

In recent years much of the focus of the holographic gauge/gravity duality has shifted

towards geometries which exhibit interesting scaling properties, which have shown to be a

rich playground for constructing toy models of condensed matter systems. A prime example

is that of Lifshitz metrics, dual to field theories that violate Lorentz invariance,

ds2d+2 = − 1

r2z
dt2 +

1

r2
(

dr2 + d~x2
)

, (1.1)

which are parametrized by a dynamical critical exponent z and are invariant under

t→ λzt , r → λr , xi → λxi .

Metrics of the form (1.1) are exact solutions to gravitational theories coupled to a matter

sector [1, 2], with an abelian gauge field and a dilaton providing the simplest realization of

the latter.

It was realized more recently (see e.g. the work of [3–9]) that Einstein-Maxwell-dilaton

theories

Ld+2 = R− 2 (∂φ)2 − f(φ)FµνF
µν − V (φ) (1.2)
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can support quite generally — for simple choices of gauge kinetic function and scalar

potential — larger classes of scaling solutions exhibiting an additional exponent θ,

ds2d+2 = r−
2(d−θ)

d

(

−r−2(z−1)dt2 + dr2 + d~x2
)

, (1.3)

supported by a running scalar field

φ(r) ∼ log(r) . (1.4)

In particular, it was emphasized in [9] that theories with θ 6= 0 realize systems with

hyperscaling violation in the dual field theory.

While they are not scale invariant, the metrics (1.3) are conformal to Lifshitz space-

times (1.1), and exhibit the scaling

t→ λzt , r → λr , xi → λxi , ds→ λθ/dds .

While in systems which preserve hyperscaling the free energy scales by its naive dimension,

so that s ∼ T d/z, a non-zero θ modifies the scaling of the entropy density,1 leading to

s ∼ T
d−θ
z .

Precisely for this reason, scaling geometries with θ = d− 1 have been relevant for probing

compressible states with hidden Fermi surfaces, for which s ∼ T 1/z in general dimensions.

Hyperscaling violating solutions have also been of interest for their connection with log

violations of the area law of entanglement entropy [10]. We refer the reader to e.g. [11–21]

for various properties of these systems, and for ways to obtain them within supergravity

and string theory embeddings.

The running of the scalar (1.4) in this class of geometries is a reflection of the fact that

the solutions cannot be trusted in the deep IR — they are ‘IR incomplete’ — and should

only be thought of as being an accurate description of the geometry in some intermediate

near-horizon region. For magnetically charged branes — the case we are interested in here

— the break-down of the solutions results from the fact that the dilatonic scalar runs

towards strong coupling near the horizon — the low-energy theory itself is breaking down,

and quantum effects (in a putative string realization) are no longer negligible. For their

electrically charged cousins, on the other hand, the dilaton drives the system to extreme

weak coupling close to the horizon, and α′ corrections are expected to become important.

While the fate of these geometries is equally interesting, in this note our focus will be on

understanding the behavior of the strongly coupled, magnetic case (see [22] and [23] for

related discussions in the context of Lifshitz systems without running couplings).

For the case of a brane exhibiting Lifshitz scaling, which is generated by

f(φ) ∝ e 2αφ and V (φ) = −2Λ , (1.5)

1Note that there are cases in which, after uplifting to higher dimensions, one regains the expected ‘naive’

scaling of thermodynamic quantities, thus explaining the unusual lower-dimensional behavior [8]. In such

cases the higher-dimensional embedding also offers a possible resolution of the singular horizon behavior of

the lower-dimensional (zero temperature) solutions.
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with α dictating the strength of the Lifshitz dynamical exponent z, this point was noted

in [24, 25] and was the focus of the analysis of [26], where the inclusion of (a toy model

for) quantum corrections was shown to lead to a modification of the geometry in the deep

IR and the appearance of an AdS2 × R2 description, thus IR completing the running

dilaton solutions.

In this note, we would like to extend the analysis of [26] to the more general class

of geometries exhibiting both hyperscaling violation and Lifshitz-like scaling, which are

generated by

f(φ) ∝ e 2αφ and V (φ) ∝ e−ηφ , (1.6)

with the parameters α and η determining the scaling exponents θ and z. Magnetically

charged brane solutions in this theory also contain a running dilaton — leading to the

same issue of strong coupling at the horizon — and therefore suffer from the same ‘IR-

incompleteness’ discussed above.

With these motivations in mind, our goal here is to probe the IR fate of this class

of geometries, working in particular with solutions that are asymptotically AdS. To this

end, we will follow the strategy of [26] and consider a toy model for the quantum-corrected

version of the theory, by appropriately modifying the structure of the gauge kinetic function.

Specifically, we will mimic the effects of quantum corrections by elevating f(φ) to an

expansion in powers of the coupling g ≡ e−αφ,

f(φ) = e2αφ −→ e2αφ + ξ1 + ξ2e
−2αφ + . . . (1.7)

and more generally by replacing it with an arbitrary function, f(φ) → e2αφ + G(φ). Cor-

rections such as (1.7), which become stronger and stronger as the deep IR is approached,

will generate — in appropriate regions of parameter space — an effective potential for the

scalar, stabilizing it at a constant value at the horizon. Thus, as in [26] we will see the

emergence of an AdS2×R2 region very close to the horizon, providing an IR-completion to

the scaling geometry which would not have been generically possible at the classical level2

for (1.6). These geometries will flow, then, from AdS2 ×R2 in the deep IR to AdS4 in the

UV, traversing during the flow an intermediate region which exhibits both hyperscaling

violation and Lifshitz-like scaling.

Finally, we note that the requirement of the existence of an AdS2 factor in the infrared

places simple restrictions on the structure of the arbitrary correction G(φ) to the gauge

kinetic function — constraining in particular its value and slope at the horizon. These

restrictions are valid independently of the origin of the corrections — and in particular, of

whether they are classical3 or quantum in nature. Similar considerations can also be easily

applied to generic corrections to the scalar potential. Thus, constraints of this type may

offer insight into the broader question of the emergence of hyperscaling violation in the

2For the class of theories we are studying here, described by (1.2) and (1.6) in the presence of a constant

magnetic field, we will find that AdS2 × R2 is only possible classically for the special case θ = 2 (and z

finite), or alternatively in the z → ∞ limit.
3It is plausible that a gauge kinetic function of the form of (1.7) may be realized even classically within

a consistent supergravity truncation, with ξ1 and ξ2 set to fixed values. Our construction would still be

applicable in such cases.
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intermediate region of a solution to classical Einstein-Maxwell-dilaton theories with more

generic choices of V (φ) than those studied here. It may also prove useful for realizing flows

of the type described above in the context of supergravity and string theory constructions.

Before we conclude, we would like to point out that by turning on a (small) magnetic

field in addition to an electric field [27], the action with (1.6) can support a near-horizon

AdS2 × R2 already classically — for appropriate choices of parameters, the electric and

magnetic charge contributions to the effective potential lead to a stabilization of the scalar,

providing an explicit classical realization of the mechanisms we have just discussed. Thus,

the analysis in [27] leads to a very interesting picture which is complementary to that

studied in this note, where we have not allowed for any electric flux.

The structure of this note is as follows. In section 2 we introduce our setup, that of

Einstein-Maxwell-dilaton theory, and discuss the class of solutions we will focus on. We also

derive a set of simple constraints that a generic gauge kinetic function and scalar potential

must satisfy, in order to obtain metrics with hyperscaling violation and Lifshitz-like scaling.

In section 3 we discuss under which conditions the theory admits an AdS2×R2 description

in the deep IR, in the presence of a class of quantum corrections to the action. In this

section we also setup the irrelevant perturbations which will take the geometry away from

the IR, and describe conditions for the existence of AdS4 in the UV. Finally, in section 4 we

analyze numerically the entire flow from the near-horizon AdS2×R2 region to the boundary.

We start by discussing the case in which the UV geometry is hyperscaling violating, and

then move on to the case in which the geometry approaches AdS4. In appendix A we

present a short study of the null energy condition for the classical theory which gives rise

to the hyperscaling violating solutions.

Note added in v1: while we were completing this work we became aware of [27] where

similar results have been obtained.

2 The setup — Einsten-Maxwell-dilaton theory

Our starting point is Einstein-Maxwell-dilaton theory,

Ld+2 = R− 2 (∂φ)2 − f(φ)FµνF
µν − V (φ) , (2.1)

where we denote by D = d + 2 the total dimensionality of the space-time. As we already

discussed in the introduction, theories of this type have a rich structure, and give rise

to geometries which exhibit interesting scaling properties. In particular, by appropriately

choosing the gauge kinetic function f(φ) and the scalar potential V (φ), one can engineer

metrics of the form4

ds2d+2 = r−
2(d−θ)

d

(

−r−2(z−1)dt2 + dr2 + d~x2
)

, (2.2)

characterized by two independent exponents, the Lifshitz critical exponent z and the hy-

perscaling violation exponent θ [5, 9].

4Here we are following the notation of [19].
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In this note, we are interested in exploring (extremal) solutions to (2.1) which are

magnetically charged, with the goal of gaining insight into how they behave in the deep

IR, as the theory runs towards strong coupling. In this section, we will start by deriving

the types of constraints on the structure of generic functions f(φ) and V (φ) needed to

obtain metrics of the form of (2.2), which exhibit both Lifshitz-like scaling and hyperscaling

violation. This will serve as motivation for using a gauge kinetic function and scalar

potential of the form of (1.6), and will give us an explicit map between the lagrangian

parameters {α, η} and the exponents {z, θ}. We will then briefly summarize the main

properties of the solutions to this system, which are used throughout the analysis.

From now on we will restrict our attention to four dimensions, taking d = 2. We choose

the background gauge field to be that of a constant magnetic field,

F = Qm dx ∧ dy , (2.3)

and parametrize the metric, which we take to be homogeneous and isotropic, by

ds2 = L2

(

−a(r)2dt2 + dr2

a(r)2
+ b(r)2d~x2

)

. (2.4)

Einstein’s equations for this theory are given by

Rµν+
1

2
(V (φ)−R) gµν = 2 ∂µφ∂νφ−gµν ∂ρφ∂ρφ−2f(φ)

(

FµρF
ρ
ν −

1

4
gµνFρσF

σρ

)

, (2.5)

while the scalar equation and Maxwell’s equations take the simple form

4Dµ∂
µφ− fφ(φ)FµνF

µν − Vφ(φ) = 0 , (2.6)

Dµ (f(φ)F
µν) = 0 , (2.7)

where D denotes the covariant derivative with respect to the Levi-Civita connection, and

we have defined fφ ≡ ∂φf and Vφ ≡ ∂φV . After simple manipulations, this system of

equations can be easily shown to reduce to

φ ′ 2 = − b ′′

b
, (2.8)

4b2L2V (φ) = −2 (a2b2) ′′ , (2.9)

f(φ)Q2
m − 2b4L4V (φ) = 2L2b2

(

b2(a2)′
)

′ , (2.10)

fφ(φ)Q
2
m + 2 b4L4 Vφ(φ) = 8L2b2

(

a2b2φ ′
) ′
, (2.11)

where primes denote radial derivatives, i.e. ′ ≡ ∂r, and we have already used our flux ansatz.

2.1 Engineering hyperscaling violation

Here we would like to address the question of what type of constraints the requirements of

hyperscaling violation and Lifshitz-like scaling place on the structure of generic f(φ) and

V (φ). With this in mind, we start by taking the metric (2.4) to be

a(r) = Ca r
1−γ , b(r) = Cb r

β , (2.12)
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characterized by two ‘scaling exponents’ β and γ. Note that in our metric (2.4) we have

a slightly different choice of gauge compared to (2.2). By a suitable redefinition of the

radial coordinate

r → r
1

γ−β , (2.13)

our metric can be mapped to (2.2), where z and θ in (2.2) are related to β and γ through

the following relations,

β =
θ − 2

2(θ − z)
and γ =

θ

2(θ − z)
. (2.14)

Thus, the parameter γ directly measures the strength of the violation of hyperscaling. As

we will discuss in more detail below, note that when θ = γ = 0 the system reduces to

the Lifshitz-like scaling case, as it should. In particular, we recover the relation β = 1/z

familiar from studies of Lifshitz solutions.

Plugging the power-law ansatz (2.12) into the equations of motion, we note first

that (2.8) reduces to the simple form

φ ′ 2 =
β − β2

r2
, (2.15)

from which we can immediately read off that the scalar must run logarithmically,5

φ(r) = K log(r) , K2 = β − β2 , (2.16)

as expected. The scalar potential can be extracted from (2.9), and is given by

V = −V0 e−ηφ , (2.17)

where we have introduced

V0 ≡
C2
a(1 + 2β − 2γ)(1 + β − γ)

L2
and η ≡ 2γ

K
. (2.18)

Plugging the latter into (2.10), we fix the form of the gauge kinetic function, which is

given by

f(φ) = e 2αφ
2C2

a C
4
b L

2(1− β − γ)(1 + 2β − 2γ)

Q2
m

, (2.19)

where we have introduced an additional parameter

α ≡ 2β − γ

K
. (2.20)

For our metric and scalar ansatz, the remaining equation (2.11) is automatically satisfied

by the potential and gauge kinetic function found above.

In summary, what we have just seen is that the requirement of a metric which exhibits

both anisotropic Lifshitz-like scaling and hyperscaling violation forces the scalar poten-

tial and the gauge kinetic function to be single exponentials, and the dilatonic scalar to

run logarithmically,

f(φ) = c1e
2αφ , V (φ) = −V0e−ηφ , φ(r) = K log(r) , (2.21)

5We are setting the integration constant to zero.

– 6 –



J
H
E
P
0
2
(
2
0
1
3
)
1
4
7

with the various parameters in the lagrangian {c1, V0, α, η} as well as K directly sensitive

to the scaling exponents β and γ and the constants Ca, Cb and L,

α =
2β − γ

K
, η =

2γ

K
, K2 = β − β2 ,

c1 =
2C2

a C
4
b L

2(1− β − γ)(1 + 2β − 2γ)

Q2
m

,

V0 =
C2
a(1 + 2β − 2γ)(1 + β − γ)

L2
. (2.22)

As a consistency check, we note that this analysis agrees with that of [7], who considered

the (entirely analogous) case of electrically charged solutions (see also [28]). In addition,

here we have recast the analysis explicitly in terms of the scaling exponents z and θ, thanks

to the relations (2.13) and (2.14).

Clearly, once the theory is specified so that the precise form of f(φ) and V (φ) is

known, the structure of the solution is fully determined. In particular, normalizing the

gauge kinetic term so that f(φ) = e 2αφ and choosing V0 =
1
L2 fixes the ratio6 Qm/C

2
b and

the value of Ca,

Q2
m = 2L2C4

b

1− β − γ

1 + β − γ
and C2

a =
1

(1 + β − γ)(1 + 2β − 2γ)
. (2.23)

Note that the requirement that K is real forces 0 < β < 1, which happens to be one of

the constraints that follow from the null energy condition (see appendix A). Also, since in

this note we are interested in solutions which run towards strong coupling7 in the IR, we

will always require αK > 0, for which we need to have γ < 2β. The range of γ can be

refined further by ensuring that the right-hand sides of (2.23) are positive, i.e. the reality

of Qm and Ca. We will come back to these points in the appendix, when we discuss the

null-energy condition.

2.1.1 Lifshitz as a special case

We can easily recover the Lifshitz-like scaling, with no hyperscaling violation, by taking

θ = 0, which amounts to setting γ = 0 in the conditions above. While the scalar remains of

the logarithmic form, the potential (2.17) now becomes a (negative cosmological) constant,

V = −C
2
a(1 + 2β)(1 + β)

L2
. (2.24)

The gauge kinetic function also remains of the exponential form,

f(φ) = e 2αφ
2(1 + β − 2β2)C2

aC
4
bL

2

Q2
m

, (2.25)

where we now have α = 2β
K with K2 = β − β2 as before, so that

z = 1 +
4

α2
. (2.26)

6Although the constant Cb is redundant and could be set to one, leaving it arbitrary turns out to be

useful in our numerical analysis.
7Recall that the coupling g = e−2αφ = e−2(2β−γ) log(r) needs to grow as r → 0.
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Taking the scalar potential to be V = −1/L2, and normalizing the gauge kinetic function

so that it takes the simpler form f = e2αφ, we find

C2
a =

1

(2β + 1)(β + 1)
, Q2

m = 2L2 1− β

1 + β
, (2.27)

where for simplicity we have set the redundant constant Cb equal to one. As a simple check

of our results, we note that the form of this solution is in agreement with the analogous

one in [25].

3 Construction of IR and UV geometry

In the previous section we have seen that a system with non vanishing θ and z can be

engineered holographically by working within the framework of Einstein-Maxwell-dilaton

theories, provided the gauge kinetic function and scalar potential are of the form

f(φ) = e2αφ , V (φ) = −V0e−ηφ , (3.1)

with the lagrangian parameters α and η dictating the form of z and θ. In particular,

magnetically charged solutions to this system exhibiting both Lifshitz-like scaling and hy-

perscaling violation are of the form

a(r) = Ca r
1−γ , b(r) = Cb r

β , φ(r) = K log(r) , (3.2)

β =
(2α+ η)2

16 + (2α+ η)2
, γ =

2η(2α+ η)

16 + (2α+ η)2
, (3.3)

with the remaining constants given in terms of {α, η} by

Ca =
1

2

(

L2V0
(

4α2 + 4αη + η2 + 16
)2

24α4 + 20α3η + 2α2 (η2 + 40)− αη (η2 − 32)− 4η2 + 64

)
1
2

,

Cb =

(

Q2
m

(

2α2 + αη + 4
)

L4V0 (−2αη − η2 + 8)

)
1
4

, K =
4(2α+ η)

(2α+ η)2 + 16
.

(3.4)

Note that this solution is identical to that in (2.22); here we have merely expressed all the

solution parameters explicitly in terms of those in the lagrangian.

As we already discussed in the introduction, the dilatonic scalar field in these solutions

drives the system towards strong coupling at the horizon,8 indicating a breakdown of

the theory — and in particular denoting the failure of (3.2) to accurately describe the

geometry. Assuming such solutions can arise in a concrete string theory realization, as the

coupling g = e−αφ grows quantum corrections are expected to become important and to

lead to a deformation of the geometry itself — providing an IR-completion of (3.2). For the

case of branes exhibiting Lifshitz scaling, this point was discussed in [24, 25] and studied

recently in [26].

8Recall that we are taking αK > 0.
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Here we would like to follow the strategy of [26] and add generic corrections to the

gauge kinetic function, meant to mimic the effects of adding quantum corrections in the

theory. The analysis of corrections to the scalar potential — which we are assuming to

be protected here — would proceed in an entirely analogous manner, as will be clear

shortly. We will see that promoting the gauge kinetic term to an expansion in powers of

the coupling g,

f(φ) = e2αφ + ξ1 + ξ2e
−2αφ + . . . (3.5)

will generate an attractor potential for the scalar field, allowing for the existence of a

minimum φ = φH and in turn for AdS2 × R2 solutions. We should emphasize that —

although a simple expansion of the form of (3.5), controlled by just two parameters ξ1, ξ2,

is enough to make our point — we have also considered a generic f(φ) in our analysis.

Finally, we would like to note that in the recent study of dyonic solutions [27] it has been

shown that (in certain regions of phase space, in which a small magnetic field perturbation

is relevant in the infrared) a similar AdS2 × R2 IR completion is realized classically. We

refer the reader to [27] for a discussion of the effects of adding a small magnetic field in

the background of an electric field, and of the behavior of the entanglement entropy in

that context.

3.1 AdS2 × R2 as an exact solution

We are now ready to ask whether AdS2×R2 with a constant dilaton (φ = φH) is a solution

to this system, first classically, i.e. by setting ξ1 = ξ2 = 0 in (3.5), and then with the

inclusion of quantum corrections, by allowing them to be non-zero. We will first assume

that f(φ) is given by (3.5), and then generalize it to an arbitrary function. We start by

taking the metric to be of the AdS2 ×R2 form,

ds2 = L2

(

−r2dt2 + dr2

r2
+ b2H(dx2 + dy2)

)

, (3.6)

with bH a constant, and consider the two cases — classical vs. quantum — separately:

• Case (i): ξ1 = ξ2 = 0

We note first that (2.8) reduces to the simple condition φ ′(r) = 0, which clearly

supports a constant scalar φ = φH , independently of the form of f(φ) and V (φ). The

equation (2.9) for the scalar potential, which is also independent of f , is easily satisfied

V0 =
e ηφH

L2
, (3.7)

and guarantees that the overall sign of V (φH) is negative. Plugging the expression

for the potential in (2.10) then leads to

e2αφH =
2b4HL

2

Q2
m

, (3.8)

and finally (2.11) gives the more interesting condition

e2αφH = −b
4
HL

2

Q2
m

η

α
, (3.9)
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which cannot be satisfied if α and η have the same sign. Moreover, satisfying

both (3.8) and (3.9) forces9

η

α
= −2 ⇒ β = 0 . (3.10)

Using (2.14), for finite z this constraint translates into the following condition on the

hyperscaling violating exponent,

θ = 2 , (3.11)

which is forbidden [9] by the requirement10 (recall for us d = 2)

θ ≤ d− 1 (3.12)

that the entanglement entropy associated with the hyperscaling violating region obeys

the area law (modulo log corrections). The constraint (3.10) is also satisfied in the

limit z → ∞, as expected.11 Here we will restrict our attention to the case of finite

z and θ < 1, with the latter condition meant to avoid having to match onto scaling

solutions with area-law violations. Thus, just as in the Lifshitz case studied in [26], we

see explicitly that classically the theory considered here — with a constant magnetic

field and an effective potential controlled by (3.1) — does not allow for an AdS2×R2

geometry in the IR — apart from the two special cases θ = 2 and z → ∞ discussed

above.

• Case (ii): ξ1, ξ2 6= 0

Next, we turn on the parameters ξ1,2 which control our toy model for quantum

corrections, with the expectation that they will generate an effective potential for the

scalar, stabilizing it at some constant value φH . It is easy to see that (2.8) and (2.9)

are insensitive to the gauge kinetic function and therefore remain unchanged — a

constant scalar is still supported by the former, and the latter still reduces to (3.7).

The remaining two conditions, (3.8) and (3.9) respectively, are now modified and take

the form

e2αφH + ξ1 + ξ2e
−2αφH =

2b4HL
2

Q2
m

, (3.13)

e2αφH − ξ2e
−2αφH = − η

α

b4HL
2

Q2
m

. (3.14)

It is now clear that once ξ2 is turned on it is possible to satisfy (3.14), provided that

the condition
(

1− ξ2 e
−4αφH

)

< 0 (3.15)

is obeyed. The actual value φH at which the scalar is stabilized can be found by

solving (3.13).

9In the double scaling limit of [18], i.e. z → ∞, θ → ∞ with η̃ ≡ −θ/z fixed, our expression for β

takes the form β = η̃

(2η̃+2)
. Our condition β = 0 is clearly solved only by η̃ = 0, which corresponds to

AdS2 × R2 [18]. Thus, the double scaling limit does not give rise to any additional solutions. We thank

Sean Hartnoll for clarifying this point.
10This relation is expected to hold for holographic duals of QFTs that do not have large accidental

degeneracies in their low energy spectrum.
11In the z → ∞ limit Lifshitz metrics are known to reduce to AdS2 ×R2.
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Clearly, this analysis can be easily redone with a more general form for the putative

quantum corrections. More precisely, parameterizing

f(φ(r)) = e2αφ(r) + G(φ(r)) , (3.16)

the conditions (3.13) and (3.14) are modified in the following way,

e2αφH + G(φH) =
2b4HL

2

Q2
m

, (3.17)

2α e2αφH + ∂φG(φH) = −η2b
4
HL

2

Q2
m

. (3.18)

Thus, these relations provide constraints on the value and slope of the arbitrary correction

G(φ) (evaluated at the horizon) needed to obtain AdS2 × R2 as a solution. In particu-

lar, since only the first derivative of G affects the analysis, there is a certain amount of

‘universality’ in the structure of possible corrections.

Even though thus far we have taken V (φ) to be protected and left it untouched,

corrections to the potential can also be easily incorporated. More specifically, letting

V (φ) = −V0 e−ηφ + V(φ), it’s apparent from (2.9)–(2.10) that (3.17) will remain the same,

while (3.18) will be modified to

2α e2αφH + ∂φG(φH) = −2b4HL
2

Q2
m

[

η + ηL2V(φH) + L2∂φV(φH)
]

, (3.19)

with the correction V satisfying the condition V(φH) = V0e
−ηφH − 1

L2 . Although here we

have just sketched the analysis, the simple point we would like to stress is that the emer-

gence of an AdS2 factor in the infrared is in no way restricted to the specific choice (3.5),

but is in fact much more robust. Clearly these types of conditions (restricting the value and

slope of G and V at the horizon) apply to arbitrary corrections, independently of whether

their origin is quantum mechanical or classical. In particular, they illustrate the emergence

of AdS2 × R2 at the classical level in the setup of [27], where the presence of electric and

magnetic fields gives rise to a trapping potential for the dilatonic scalar, in appropriate

regions of phase space.

3.2 Perturbations about AdS2 × R2

Having constructed and established conditions for the existence of an AdS2 ×R2 solution

to the system (2.1), we proceed to construct solutions that evolve from AdS2 × R2 in the

IR to AdS4 in the UV. In particular, among solutions which interpolate between the two

fixed points, we wish to explore the possibility of the existence of an intermediate geometry

characterized by non-trivial scaling exponents z and θ. In order to achieve our goal, we

begin by classifying all linear perturbations to the AdS2 ×R2 geometry that are irrelevant

in the IR.

Borrowing notation from [26], we perturb around the infrared AdS2 × R2 solution

obtained in section 3.1 with the ansatz

a(r) = r(1 + d1r
ν) , br = bH(1 + d2r

ν) , φ(r) = φH(1 + d3r
ν) , (3.20)
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where the magnitude of d1, d2 and d3 is proportional to the amplitude of the perturbation

and is assumed to be small (we work at leading order in these parameters). Einstein’s

equations lead to the conditions

d2(−1 + ν2) = 0,

d2(−1 + ν) = 0,

d2(2 + ν + ν2) + d1(2 + 3ν + ν2) + d3ηφH = 0 ,

(3.21)

while the scalar equation gives rise to the following constraint at leading order in

the perturbations,

d3φH

(

2e2αφH
(

−4α2 + η2 + 4ν(ν + 1)
)

+ ξ1
(

−2αη + η2 + 4ν(ν + 1)
)

)

= 4ηd2

(

2e2αφH + ξ1

)

.
(3.22)

Note that the apparent absence of ξ2 in the above conditions is due to the fact that we

have eliminated it using (3.13), as it was more convenient than solving for φH .

Clearly, to ensure that the modes are indeed irrelevant in the IR we need ν > 0 to hold

— this guarantees that they become more and more unimportant as r decreases. There

are two sets of solutions to these conditions which appear as modes that are irrelevant in

the IR:

Mode 1: The first mode corresponds to the following solution

ν(1) = 1,

d
(1)
2 = −3d

(1)
1

(

2
(

4α2 − η2 − 8
)

e2αφH + ξ1
(

2αη − η2 − 8
))

4 ((4α2 − 2 (η2 + 4)) e2αφH + ξ1 (αη − η2 − 4))
,

d
(1)
3 = − 3ηd

(1)
1

(

2e2αφH + ξ1
)

φH ((−4α2 + 2η2 + 8) e2αφH + ξ1 (−αη + η2 + 4))
.

(3.23)

Note that in this solution d
(1)
1 is arbitrary, and its value sets the amplitude of

the perturbation.

Mode 2: For the second mode, the solution is given by

ν(2) =

√

(2e2αφH + ξ1) ((8α2 − 2η2 + 2) e2αφH + ηξ1(2α− η) + ξ1)− 2e2αφH − ξ1
2 (2e2αφH + ξ1)

,

d
(2)
1 =

A

B
, d

(2)
2 = 0 ,

A ≡ 4η d
(2)
3 φH

(

2e2αφH + ξ1

)

,

B ≡
(

−4

(

√

(2e2αφH + ξ1) ((8α2 − 2η2 + 2) e2αφH + ηξ1(2α− η) + ξ1) + ξ1

)

+
(

−8α2 + 2η2 − 8
)

e2αφH + ηξ1(η − 2α)
)

.

(3.24)

Here d
(2)
3 is the parameter whose value determines the amplitude of the perturbation.
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3.3 The asymptotic UV region

Before proceeding to construct the numerical solutions, we pause briefly to understand

the asymptotic UV behavior of our system. As mentioned previously in section 1, we

are particularly interested in solutions which asymptote to AdS4 in the UV, in order to

be able to apply standard holographic interpretations to our bulk physics. However, the

scalar field potential (3.1) that we have considered thus far does not admit a minimum in

the UV corresponding to a negative cosmological constant, and therefore does not support

AdS4 asymptotically. Recall that in this note we are allowing for a constant magnetic flux

only. In the ultraviolet, the effect of its gauge kinetic term becomes negligible compared to

that of the scalar field potential, so that the effective potential of the system is controlled

entirely by V (φ). Thus, in the far UV region the scalar asymptotes to the extremum of

the scalar potential, which in the case of (3.1) is zero.12

This problem can be easily addressed by appropriately modifying the potential (as

discussed e.g. in [9]), and in particular in such a way not to affect the qualitative behavior

of the system in the infrared. As an example, one can take the potential to be of the

simple form V (φ) ∝ −V0 cosh ηφ, with a (negative) minimum at φ = 0, or more generally

by choosing it to be of the form

V (φ) = −V0
(

e−ηφ + c1e
η1φ
)

, (3.25)

which allows for a minimum at a non-zero value of the scalar,

φuv =
1

η + η1
ln

(

η

c1η1

)

. (3.26)

It’s then easy to see that the scalar potential at the minimum takes the value V (φuv) =

−V0e−ηφuv

(

1 + η
η1

)

, corresponding to a negative cosmological constant as long as the quan-

tity in parenthesis is positive. For simplicity from now on we will assume that η1 = η.

Note that a potential like that of (3.25) can in principle (for appropriate parameter

choices) induce a near-horizon AdS2 ×R2 region without the need for modifications to the

gauge kinetic function (recall our discussion at the end of section 3.1). In the simple η = η1
case we are discussing here, the existence of AdS2 × R2 in the infrared — assuming that

f(φ) = e2αφ is left unchanged — leads to the following expression for the near-horizon

value of the scalar,

e2ηφH =
η + 2α

c1(η − 2α)
. (3.27)

Notice that this condition cannot be met e.g. when c1(η − 2α) < 0 and η + α > 0. Thus,

as long as η and c1 are chosen to lie within the range above, the potential alone will not

be enough to generate an infrared AdS2 region — the types of (quantum) corrections to

the gauge kinetic function we have introduced will still be needed, and the qualitative

near-horizon behavior we have discussed will remain unaffected by the modifications to the

original scalar potential.

12The scalar approaches ±∞ in the UV, with the sign determined by the sign of η.
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Since to describe the entire flow from the IR to the UV we will resort to numerics, for

the rest of the discussion in this subsection we will work with13

α =
√
3, ξ1 = 0, ξ2 = 1, V0 = 3× 104, c1 = 10−4, η1 = η =

2√
3
. (3.28)

Note that these values (otherwise unmotivated) have been chosen to obtain large regions

of hyperscaling violation in the numerical plots that we present in section 4. With a more

extensive numerical analysis we expect to find similar flows for a broad region of parameter

space, and in particular for more ‘natural’ values14 of {V0, c1}. However, we recall that

our main interest in this note is to probe the IR behavior of solutions with hyperscaling

violation, and in particular to identify cases in which near the horizon they are replaced by

AdS2×R2. As a result, here we will content ourselves with presenting an explicit realization

of the flow we are after, without performing a more exhaustive numerical analysis.

We can easily verify that for the parameter choice (3.28) we continue to have an

infrared AdS2 ×R2 solution with two irrelevant perturbations, as described in section 3.1

and section 3.2. The corresponding AdS2 ×R2 parameters are then given by

φH = −0.1, bH = 13.74
√

Qm, L = 0.0054, (3.29)

with the irrelevant fluctuations about this geometry — of the form (3.20) — given by

mode 1 : ν(1) = 1, d
(1)
2 = −2.99 d

(1)
1 , d

(1)
3 = 5.19 d

(1)
1 ,

mode 2 : ν(2) = 1.21, d
(2)
1 = 0, d

(2)
2 = −0.16 d

(2)
3 .

(3.30)

In the extreme UV the scalar field settles to the minimum of the (effective) potential (3.25),

which in this case occurs when

φuv = 3.99. (3.31)

The value of the potential evaluated at this minimum then provides the negative cosmo-

logical constant needed to support the asymptotic AdS4 geometry,

ds2 = L2

(

−(Ar)2dt2 +
1

(Ar)2
dr2 +B2r2

(

dx2 + dy2
)

)

(3.32)

where A and B are numbers fixed by the choice of parameters in the IR.

Next, we would like to discuss briefly linear fluctuations about the AdS4 UV geometry,

a(r) = Ar(1 + ǫλ1r
ν) , b(r) = Br(1 + ǫλ2r

ν) , φ(r) = φuv + ǫλ3r
ν , (3.33)

where we emphasize that the leading order value φuv of the scalar field is determined by

minimizing the potential (3.25). If we want to satisfy the equations of motions up to linear

order in ǫ we are forced to choose

λ1 = 0, λ2 = 0, ν = −2,−1 , (3.34)

13These parameters satisfy the conditions c1(η − 2α) < 0 and η + α > 0 discussed above.
14Note that for these parameters, the value of the scalar at the UV minimum of the potential is φuv =

1
2η

ln
(

1
c1

)

. Thus, increasing c1 corresponds to lowering the value of φuv.
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where we have taken into account the fact that in the far UV the magnetic flux contribution

to the effective potential is suppressed compared to the remaining terms. Thus, from (3.34)

we conclude that the scalar field approches its UV value (the minimum of the potential)

either as r−2 or as r−1.

Finally, we note that the hyperscaling violating geometry constructed in (3.2), (3.3)

and (3.4) ceases to be an exact solution with the modified potential (3.25), just like it ceases

to be an exact solution in the presence of the corrections (3.5) to the gauge kinetic term.

However, even in the presence of these modifications, a hyperscaling violating geometry

can be realized in an intermediate region, where the effects of such terms are negligible.

For the choice of parameters in (3.28), this hyperscaling violating geometry has θ = −2

and z = 3/2. We shall now proceed to construct numerical solutions realizing the type of

flow we have discussed, admitting a regime of hyperscaling violation.

4 Numerical solution

In this section we construct numerical solutions to the set of equations (2.8)–(2.11) which

flow from AdS2 × R2 in the deep IR to an intermediate region displaying both hyperscal-

ing violation and Lifshitz-like scaling. As we have discussed in section 3, there is a two

parameter set of irrelevant deformations to this infrared AdS2 × R2 geometry — here we

will follow these deformations numerically (for specific parameter choices) as they evolve

towards the UV.

We will consider first the original single-exponential potential (3.1) which does not

support an asymptotic AdS4, as discussed in section 3.3. In this case we will see that

— by fine-tuning sufficiently the deformation parameters — it is possible to obtain an

hyperscaling violating geometry in the UV.15 After studying numerically several examples,

we suspect that in the two parameter set of deformations there is a line along which the

hyperscaling violating solution exists as the UV geometry. We present our numerical plots

for this case in section 4.1.

We will then go on to consider a potential of the form of (3.25), which admits a

minimum in the ultraviolet corresponding to a negative cosmological constant. In this

case, starting from AdS2×R2 in the IR, we numerically shoot to obtain an AdS4 geometry

in the UV. Again, for sufficient fine-tuning of the deformation parameters one can pass

through a regime of hyperscaling violation, keeping the UV AdS4 geometry intact. In the

intermediate hyperscaling violating region the dilaton decreases logarithmically as we move

towards the IR, and the geometry transits into AdS2 ×R2 when the scalar reaches φH —

this happens when the toy quantum correction terms (controlled by ξ1 and ξ2) become

important. On the other hand, as the dilaton moves away from the hyperscaling violating

geometry and approaches the UV, it settles to the minimum of the (effective) potential,

where the geometry is AdS4. We present out numerical plots for this case in section 4.2.

15While performing the numerical analysis we found that the hyperscaling violating geometry broke down

at some point in the extreme UV. However, this point could be pushed further and further away with better

accuracy of the fine-tuning. This leads us to conclude that such a break down is essentially a numerical

artifact.
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4.1 Asymptotically hyperscaling violating geometry

For performing our numerical analysis with the potential (3.1), we have chosen the following

set of values for the lagrangian parameters

α = 1, V0 = 1, ξ1 = 1, ξ2 = 0.5 , (4.1)

and have taken the value of the constant magnetic flux to be

Qm = 2 . (4.2)

For this set of parameters, we have obtained the optimal values for the amplitude of the

IR irrelevant fluctuations which lead to hyperscaling violation in the UV. In this note, we

present the results for two sets of parameters for this choice of potential

set 1 : η = 0.1 , d
(1)
1 = −0.001 , d

(2)
3 = −0.141202 ,

γ = 0.02 , β = 0.21 ,

θ = −0.21 , z = 4.9 ,

set 2 : η = −0.1 , d
(1)
1 = −0.001 , d

(2)
3 = −0.239086 ,

γ = −0.02 , β = 0.18 ,

θ = 0.19 , z = 5.1 . (4.3)

The numerical plots16 of our solutions for these parameter choices are shown in figure 1

and figure 2. We have tested that for the chosen range of parameters the null energy

condition holds (see appendix A), indicating that we have reasonable matter and valid

gravitational solutions in the classical regime, away from the deep IR. For the first set

(set1 ) of parameters the hyperscaling violating coefficient θ is negative (see also [19] for

explicit string theory realizations of systems with hyperscaling violation with θ < 0 and

z = 1). In set2 we have chosen parameters so as to obtain θ > 0.

In all the three functions in figure 1 and figure 2, we see a distinct scaling region in

the UV. From the plots on the left hand side it is apparent that beyond a certain point in

the radial direction, there is precise agreement between the numerical solution (the blue

line) and the corresponding hyperscaling violating solution (the red line) with the same

scaling exponents.

The presence of the scaling region in the UV is even more apparent from the log-log

plots on the right hand side of figures 1 and 2. Deep in the IR, we start with the AdS2×R2

solution, for which a ′(r) and b(r) are constants, as clearly visible in their respective plots.

The scalar field in this region assumes a constant value determined by (3.13). As we move

away from the IR we enter the hyperscaling violating regime, where the functions a ′(r) and

b(r) scale with the exponents {−0.02, 0.21} and {0.02, 0.18} respectively, for the chosen set

of parameters, and the scalar field runs logarithmically. As visible from the plots, in all of

the three functions in figures 1 and 2 the matching with the hyperscaling violating solutions

16As a test of our numerics we have reproduced the plots in [26] for η = 0 and d
(1)
1 = −0.001, d

(2)
3 =

−0.1779.

– 16 –



J
H
E
P
0
2
(
2
0
1
3
)
1
4
7

0 1 ´ 10 6 2 ´ 10 6 3 ´ 10 6 4 ´ 10 6 5 ´ 10 6r0.60

0.65

0.70

0.75

0.80
a ¢H r L

0.1 10 1000 10 5 10 7 10 9 r

0.6

0.7

0.8

0.9

1.
a ¢H r L

LogLog Plot

0 1 ´ 10 6 2 ´ 10 6 3 ´ 10 6 4 ´ 10 6 5 ´ 10 6r1

2

3

4

5

6

7
b H r L

0.1 10 1000 10 5 10 7 10 9 r

0.5

1.0

5.0

10.0

b H r L
LogLog Plot

0 1 ´ 10 6 2 ´ 10 6 3 ´ 10 6 4 ´ 10 6 5 ´ 10 6r0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ΦH r L

10 4 10 6 10 8 10 10 r

0.1

0.2

0.5

1.0

2.0

5.0

ΦH r L
LogLog Plot

Figure 1. Plots of the metric functions and dilaton for the parameter set 1 (η = 0.1). Note that the

red line represents a hyperscaling violating and Lifshitz-like scaling solution with {θ = −0.21, z =

4.9}, while the blue line represents our numerical solution. The fact that a hyperscaling violating

regime emerges in the UV is clear from the matching of the two plots in that region.

occurs at the same radial distance, confirming the fact that a hyperscaling violating region

does indeed emerge.

Before closing this section, we emphasize once again that hyperscaling violation in the

UV arises for extremely fine-tuned values of the parameters d
(1)
1 and d

(2)
3 . When the defor-

mation parameters are away from these fine-tuned values we are generally led to singular

geometries in the UV. In certain cases, however, one finds that an AdS4 geometry emerges

beyond the hyperscaling violating region, where the scalar field runs to ±∞ (towards the

extremum of the unmodified potential). Finally, it may also be possible to obtain other

scaling geometries in the UV, but a conclusive statement along this direction can only be

made with a more detailed exploration of the parameter space of deformations.17

17We would like to thank Blaise Goutéraux for pointing out that these may correspond to neutral scaling

solutions, which have non-zero θ but z = 1.
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Figure 2. Plots of the metric functions and dilaton for the parameter set 2 (η = -0.1). As in the

previous figure, the red line represents a hyperscaling violating and Lifshitz-like scaling solution

with {θ = 0.19, z = 5.1}, while the blue line represents our numerical solution. The fact that the

hyperscaling violating solution emerges in the UV is clear from the matching of the two plots in

that region.

4.2 Asymptotically AdS4 geometry

In this subsection we present numerical plots for the case corresponding to the modified

potential (3.25), which we recall was constructed to support AdS4 in the UV. We make

the same choices as in (3.28), and take the remaining parameters to be

Qm = 2 , d
(1)
1 = −0.001 , d

(2)
3 = 0.00215 . (4.4)

The numerical plots for this case are shown in figure 3.

We begin with AdS2×R2 in the IR, followed by an intermediate scaling region with θ =

−2 and z = 3/2. The geometry ultimately goes over to AdS4 in the UV, which is indicated

by the fact that a′(r) is a constant while b(r) grows linearly with r. In the ultraviolet, the

dilaton settles to φuv = 3.99, the value which minimizes the scalar potential (3.25), as can
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Figure 3. Plots of the metric functions and dilaton with the modified potential. Here the red

lines represent a hyperscaling violating solution (with θ = −2 and z = 3/2) while the blue lines

represents our numerical solution. The fact that the hyperscaling violating solution emerges in the

intermediate region is clear from the matching of the two plots there. In the log-log plot for φ, the

yellow line is the constant UV value φuv = 3.99. The numerical plot (blue line) approaches the

yellow line like φuv − 2× 105 r−1, as expected.

be read off from (3.26). In particular, the dilaton approaches its UV value scaling as r−1,

which is consistent with the asymptotic linear fluctuation analysis sketched in section 3.3.

The r−1 fall-off behavior is best seen in the log-log plot at the bottom of figure 3.

In closing we would like to emphasize that, just like in the previous cases, the value

of d
(2)
3 has to be fine-tuned to a very high accuracy in order to obtain the intermediate

hyperscaling violating regime. It is also interesting to note that there is a nearby point (in

the two-dimensional phase space of IR irrelevant modes) on approaching which we obtain

larger and larger intermediate regions of hyperscaling violation. Right beyond this point

the solutions diverge in the UV. This makes us wonder if the following picture is true.

There may exist a subspace of this two dimensional phase space for which we have AdS4
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asymptotically — and it is only when we approach the boundary of this subspace that the

intermediate hyperscaling violating regime emerges. Confirming this picture would require

a more detailed scan of the parameter space. However, an extensive numerical study is

beyond the scope of this note.

5 Discussion

Einstein-Maxwell-dilaton theories with simple scalar field profiles have proven to be a rich

playground for generating solutions with interesting scaling properties. In particular, they

have been shown to give rise to holographic realizations of condensed matter systems char-

acterized by both Lifshitz scaling and hyperscaling violation — parametrized, respectively,

by the exponents z and θ. Solutions realizing such scalings are of particular interest because

— for appropriate regions of parameter space — they give rise to phases which violate the

area law for entanglement entropy.

In this note we have examined a class of Einstein-Maxwell-dilaton theories that admits

magnetically charged solutions with non-trivial Lifshitz-like scaling and hyperscaling viola-

tion. These solutions are well-known to be supported by a logarithmically running scalar,

which drives the system towards strong coupling near the horizon — thus, the solutions

are not ‘IR-complete,’ and are expected to be modified by quantum corrections no longer

negligible in the strongly coupled region. Our main interest here was precisely to under-

stand the fate of these hyperscaling violating geometries as the theory is pushed towards

the IR. By taking into account the generic features expected from quantum effects, we have

argued that the deformed theory admits a new class of exact solutions with an AdS2 ×R2

geometry emerging in the deep IR. The latter ceases to be a solution if the (quantum)

deformation parameters are taken to zero. We find that the only two exceptions — i.e. sit-

uations in which the IR-completion occurs classically — are the special cases with z → ∞
(for which the geometry is known to reduce to AdS2 × R2), and θ = 2 for finite z. The

latter, however, is associated with a violation of the area law of entanglement entropy in

the regime of validity of the hyperscaling violating geometry.

We have started our analysis by deriving a set of constraints on the form that a

generic gauge kinetic function and scalar potential would need to have in order to engineer

hyperscaling violating solutions, recovering the simple system

L = R− 2(∂φ)2 − e2αφF 2 − V0e
−ηφ , (5.1)

with the parameters α and η dictating the structure of the scaling exponents z and θ.

Having done that, we have deformed the (classical) theory by including corrections to

the gauge kinetic function, which one can parametrize as an expansion in powers of the

coupling g = e−αφ,

f(φ) → e2αφ + ξ1 + ξ2e
−2αφ + . . . (5.2)

Although keeping the first two terms in the expansion is enough to stabilize the dilaton —

and to generate AdS2 × R2 — we have performed the analysis with arbitrary corrections

to the gauge kinetic function. However, since only f and its first derivative ∂φf affect
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the analysis, cutting off a generic expansion of the type of (5.2) does not qualitatively

change the result — i.e., we see a form of ‘universality’ in the structure of the conditions

for the existence of AdS2 × R2. We should also emphasize that keeping the form of the

correction generic makes it feasible to include in a straightforward way possible corrections

to the scalar potential, which would play an analogous role to those discussed here. In

particular, this may prove useful for realizing these geometries within concrete string theory

embeddings, and relating to known supergravity solutions (see e.g. [29, 30]).

Finally, we constructed numerical solutions to the quantum-corrected action which

interpolate between two fixed points, AdS4 in the UV and AdS2 × R2 in the IR — in the

presence of a constant magnetic flux. The most novel feature of this interpolating solution

is the emergence of an intermediate region with hyperscaling and Lorentz violation, which

is precisely what we were after.18 This realizes concretely the intuitive picture that the

scaling solutions are not generically expected to survive in the deep IR — where the low-

energy breaks down — but should be modified appropriately once quantum effects are

taken into account. Precisely the same type of flow was already seen in [26] for the Lifshitz

case. Although our focus here has been on magnetically charged branes, the electrically

charged case is equally interesting. In that context, however, the dilatonic scalar drives the

system to weak coupling, and α′ corrections are believed to become important.

Moreover, some of these hyperscaling violating solutions can be IR-completed already

at the classical level, by turning on, in addition to an electric field, a small magnetic

field [27]. In this type of dyonic system the effective potential is such as to stabilize the

dilatonic scalar at the horizon, giving rise to an AdS2 × R2 description — this occurs for

regions of parameter space in which the magnetic field corresponds to a relevant pertur-

bation in the IR. Thus, we should emphasize that our analysis in this note complements19

that of [27], which stresses that turning on even a small amount of magnetic field can

have a dramatic effect on the behavior of the system — and in particular on that of the

entanglement entropy.

In summary, our construction in this note adds to the large landscape of vacua that

may find interesting applications to condensed matter systems. The emergence of the

AdS2 factor in the deep IR feeds into the well-known puzzle associated with the extensive

ground state entropy of the extremal Reissner-Nordstrom AdS2 ×R2 region, and ties into

the question of what is the true ground state of these theories (see [31] for a discussion of

the (in)stability of magnetically charged AdS2 × R2 backgrounds). Moreover, one of the

elusive goals in the study of hyperscaling violating theories has been to find string theory

embeddings of these solutions for general θ and z. It would be interesting to lift our toy

model to the framework of string theoretic constructions. Along these lines, solutions such

as the ones obtained in this note also exists for classical actions with more general dila-

ton potentials (see e.g. [30], which also contains magnetic solutions interpolating between

AdS2 ×R2 in the IR and AdS4 in the UV). Although hyperscaling violating solutions may

not be exact solutions in such systems (as indicated by the analysis in section 2.1), they

18 In particular, the intermediate scaling region was obtained for parameter choices that correspond to

θ < d− 1, i.e. not violating the area law of entanglement entropy.
19The range for the lagrangian parameters α, η in this note corresponds to Case II of [27].
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Figure 4. Plots of E(r) for two distinct values of ψ for the parameter set 1 (η = 0.1) and set 2

(η=-0.1). The fact that E(r) is positive for all values of r (for two distinct values of ψ) shows that

the chosen set of parameters correspond to sensible matter.

do appear as intermediate geometries in these set up. In fact this could be the reason

why they have not been easily observed in the study of such general systems within the

framework of supergravity. We leave further study of this question to future work.
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A Restrictions from null-energy condition

To test whether we have sensible matter in a theory with negative cosmological constant

we generally impose the null energy condition

E = nµnνT
µν ≥ 0 , (A.1)
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where nµ is an arbitrary null vector. Here we would like to examine the restrictions which

the null energy condition places on the structure of the hyperscaling violating solutions to

the classical theory given by (2.1) and (3.1). We choose the null vector to be of the form

nµ =

{

1
√

a(r)
,
√

a(r) cosψ,
1

√

b(r)
sinψ, 0

}

, (A.2)

where ψ is kept as an arbitrary parameter. Reading off the stress tensor from the Ein-

tein equation

Tµν = Rµν −
1

2
gµνR , (A.3)

we find that for our metric ansatz (3.2) E evaluates to

E =
1

2
C2
ar

−2γ
(

−4β2 +
(

β − 2γ2 + 3γ − 1
)

cos(2ψ) + 3β + 2γ2 − 3γ + 1
)

. (A.4)

For the null energy condition to hold for arbitrary ψ we require

β(β − 1) ≤ 0,

(β + γ − 1)(2β − 2γ + 1) ≤ 0.
(A.5)

The necessary and sufficient condition for the first condition to hold is 0 ≤ β ≤ 1. In

addition to this, the second condition constrains γ to satisfy γ < 1 − β and γ < 1
2 + β.

Given 0 ≤ β ≤ 1 this implies that we must have γ ≤ 1. Note that the first null-energy

condition in (A.5) is equivalent to requiring that K is real (recall that K = β − β2). For

the case f(φ) = e2αφ which we have considered, the second null-energy condition turns

out to be identical to requiring that the magnetic charge (or more precisely, the quantity

C2
a C

4
b /Q

2
m) is real, as can be seen from (2.23). Finally, note that γ < 0 and 0 ≤ β ≤ 1

satisfy automatically both null-energy conditions.

If we plot E for the numerical solutions that we obtained in section 4, we arrive at what

is shown in figure 4. Although we don’t expect the null energy condition to be satisfied in

the system describing the deep infrared, in which we are accounting for quantum correc-

tions, these plots (which show that E is everywhere positive) illustrate that the parameters

we have chosen to glue onto the (classical) hyperscaling violating solution correspond to

sensible matter in the region where quantum corrections are negligible.
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