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Abstract: The tree level potential for a scalar multiplet of ‘Yukawa fields’ Y for one

type of quarks admits the promising vacuum configuration 〈Y 〉 ∝ diag(0, 0, 1) that breaks

spontaneously SU(3)L × SU(3)R flavour symmetry. We investigate whether the vanishing

entries could be lifted to nonvanishing values by slightly perturbing the potential, thus

providing a mechanism to generate the Yukawa hierarchies. For theories where at the lowest

order the only massless states are Nambu-Goldstone bosons we find, as a general result,

that the structure of the tree-level vacuum is perturbatively stable against corrections

from scalar loops or higher dimensional operators. We discuss the reasons for this stability,

and give an explicit illustration in the case of loop corrections by direct computation of

the one-loop effective potential of Yukawa fields. Nevertheless, a hierarchical configuration

〈Y 〉 ∝ diag(ε′, ε, 1) (with ε′, ε� 1) can be generated by enlarging the scalar Yukawa sector.

We present a simple model in which spontaneous breaking of the flavour symmetry can

give rise to the fermion mass hierarchies.
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1 Introduction

Fermion family replication represents probably the oldest unexplained puzzle in elemen-

tary particle physics, dating back to the discovery of the muon by Anderson and Nedder-

meyer at Caltech in 1936. With the discovery of all the other second and third gener-

ation particles, the puzzle became even more intriguing because fermions with the same

SU(3)C×SU(2)L×U(1)Y quantum numbers have been found with mass values that span up

to five orders of magnitude. Explaining such strongly hierarchical mass patterns requires

a more fundamental theory than the Standard Model (SM), and a plethora of attempts

in this direction have been tried. In their large majority they basically follow two types

of approaches:

(i) The first is to postulate new symmetries under which fermions with the same SM

quantum numbers transform differently. The fact that fermion families appear to

replicate is then just an illusory feature of the low energy theory, due to our incomplete

knowledge of the full set of fundamental quantum numbers. This is, for example, the

basic ingredient of the popular Froggatt-Nielsen mechanism [1], in which the hierarchy

of the Yukawa couplings follows from a dimensional hierarchy in the corresponding

effective Yukawa operators, obtained by assigning to the lighter generations larger

values of new Abelian charges.

(ii) A different approach is to assume that the different generations contain exact replica

of the same set of states. The gauge invariant kinetic terms of each type of fermions
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of the same charge and chirality is then characterized at the fundamental level by

a U(3) (flavour) symmetry [2]. This symmetry must be broken: when the breaking

is explicit and provided simply by the Yukawa terms we have the SM. However,

interesting theoretical attempts have been put forth in which the symmetry is broken

spontaneously by vacuum expectation values (vevs) of scalar ‘Yukawa’ fields, that

transform under the various U(3) in such a way that, at the Lagrangian level, the

flavour symmetry is exact [3–14].

The first approach basically relies on ad hoc assignments of new quantum numbers in

order to reproduce qualitatively the observed mass patterns. The other approach, which

is the one pursued in this paper, can be considered theoretically more ambitious (as it

relies on less ad hoc assumptions) although it is by far more challenging than the first

one regarding successful model implementations. In order to offer a natural solution to the

Yukawa hierarchy, such models should not rely on a hierarchical arrangement of parameters

or some tuning between them while, e.g., loop-induced hierarchies would be plausible.

2 Symmetry, invariants, and the tree-level scalar potential

The SM fermions are arranged into triplets of states with the same gauge quantum numbers,

and it is then natural to postulate some symmetry group that commutes with the SM gauge

group and has three-dimensional representations. The symmetry, however, is not realized in

the spectrum, and generally this signals a non invariant ground state yielding spontaneous

symmetry breaking (SSB).

The interesting question is which type of SSB, if any, could split the masses of the

members of a multiplet and produce the large hierarchies that we observe. A step in this

direction was taken in ref. [12] and, in order to introduce the theoretical framework and

notation, we will now recall the main results obtained, following ref. [12] in particular.

We do not attempt to build a complete flavour model but rather explore the possibilities

of this kind of approaches. We therefore start simply with a pair of flavour triplets of SM

fermions with opposite chirality ψiL, ψjR, (i, j = 1, 2, 3) and in representations of the gauge

group such that their bilinear combination ψ̄iLψ
j
R can be coupled to the Higgs in a gauge

invariant way. The largest symmetry of their gauge invariant kinetic term is U(3)L×U(3)R
where the first factor acts on the electroweak fermion doublets ψL and the second on the

weak singlets ψR. Here we will concentrate on the semisimple flavour subgroup

GF = SU(3)L × SU(3)R (2.1)

since the fate of the U(1) factors (whether they are broken or contribute to linear combi-

nations of unbroken generators, as e.g. Baryon number) is of no relevance in what follows.

We assume that the SM Yukawa term which couples ψL,R to the Higgs field H originates

from a non-renormalizable effective coupling

LY =
1

Λ
ψ̄L Y ψRH (2.2)
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that involves a scalar ‘Yukawa’ field Y (which is, in fact, a matrix in flavour space) and

some large scale Λ at which the effective Yukawa operator arises. Invariance of LY under

GF fixes the following quantum number assignments under SU(3)L × SU(3)R:

ψL ∼ (3, 1), ψR ∼ (1, 3), Y ∼ (3, 3̄) . (2.3)

If Y acquires a vev, the flavour group GF gets spontaneously broken. This of course amounts

to interpreting the SM explicit breaking as the result of SSB.

2.1 The T,A,D invariants

In the following we will denote by Y a generic background field configuration with compo-

nents of constant value, although sometimes the spacetime dependence will be indicated

explicitly, Y (x), to emphasize this is a field (matrix). Configurations that minimize the

potential will be instead denoted by 〈Y 〉. To write down the most general renormaliz-

able GF -invariant potential for Y , and explore its possible ground state configurations and

properties, let us consider the characteristic equation for the eigenvalues ξ of the Hermitian

matrix Y Y †

P(ξ) ≡ det
(
ξI − Y Y †

)
= ξ3 − T ξ2 +Aξ −D2 = 0 , (2.4)

where I = I3×3 is the identity matrix in flavour space, and the coefficients are

T = Tr(Y Y †) =
∑
i

ξi , (2.5)

A = Tr
[
Adj(Y Y †)

]
=
∑
i>j

ξiξj , (2.6)

D2 = Det(Y Y †) =
∏
i

ξi . (2.7)

Being the eigenvalues invariant under group transformations, so are the coefficients of the

characteristic equation for Y Y †, namely its trace T (positive definite and of dimension 2),

the trace of its adjugate (or equivalently of the cofactor) matrix A (positive definite and

of dimension 4), and its determinant D2, which is an invariant of dimension 6. However,

under special unitary transformations VL,R of SU(3)L,R (with DetVL,R = +1) we have for

the determinant of Y : D ≡ Det(Y ) → Det(VLY V
†
R) = D, so that D is also an invariant,

but of dimension 3 and thus renormalizable. We conclude that T (x), A(x) and D(x) are

the renormalizable symmetry invariant field combinations from which the scalar potential

can be constructed.

In fact, one can show that the most general SU(3)L × SU(3)R invariant potential

including nonrenormalizable terms of any dimension, can always be expressed as a function

of just the three T,A,D invariants, that is, it has the form V (T,A,D,D∗) + h.c. . This

amounts to proving that any invariant term of higher order in Y can be reduced to powers of

T,A,D. For determinants of higher powers of Y we have straightforwardly Det(Y mY †n) =

DmD∗n. For trace invariants let us define:

T2n = Tr[(Y Y †)n] , A2n = Tr[Adj(Y Y †)n] . (2.8)
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According to this notation, T = T2 and A = A2. It is straightforward to show that

T4 = T 2
2 − 2A2 , A4 = A2

2 − 2T2D
2 . (2.9)

To show that higher order invariants T2n , A2n with n > 2 can also be written in terms

of T2, A2, D
2 we can make use of the Cayley-Hamilton theorem, which states that every

square matrix of complex numbers satisfies its own characteristic equation. That is, by

substituting ξ → Y Y † in P(ξ) of eq. (2.4), one has the matrix equation:

P(Y Y †) = (Y Y †)3 − T2 (Y Y †)2 +A2 (Y Y †)−D2 I = 0 . (2.10)

This allows to rewrite (Y Y †)3, and thus recursively any other higher power of Y Y †, in

terms of the three fundamental invariants and of (Y Y †) and (Y Y †)2 which in turn reduce

to T2, A2, D
2 after taking the trace or after tracing their adjugates and using eq. (2.9).

2.2 Scalar potential and tree-level vacua

A necessary condition to ensure that the observed hierarchy of the SM Yukawa couplings

is reproduced, is that, at the SSB minimum:

〈D〉1/3 � 〈A〉1/4 � 〈T 〉1/2 , (2.11)

where D = |D|. The first goal is then to construct a scalar potential which naturally has

such minimum. In terms of the T,A,D invariants the most general renormalizable potential

for Y can be written as [12]1

V0 = VT + VA + VD , (2.12)

with

VT = λ

[
T − m2

2λ

]2

, (2.13)

VA = λAA , (2.14)

VD = µ̃D + µ̃∗D∗ = 2µD cosφD . (2.15)

We assume that all the Lagrangian parameters are evaluated at the scale Λ, which can be

identified with that in eq. (2.2). VT in eq. (2.13) contains the two renormalizable invariants

constructed from the trace, VT = λT 2 − m2T , plus an irrelevant constant. We require

λ > 0 and m2 > 0 in order to have a potential bounded from below and to trigger SSB.

The parameter λA which multiplies A can be either positive or negative, and we need to

consider both possibilities. The last equality in eq. (2.15) is obtained after defining µ̃ = µeiδ

with µ ≡ |µ̃|, D = eiϕ(x)D, and φD(x) = ϕ(x) + δ.

Let us now seek the most general form for the vev of the scalar field. A generic 3× 3

matrix of (complex) constant background fields Y has 9 moduli and 9 phases, and by means

1 As long as 〈H†H〉/Λ2 � 1 the coupling with the Higgs, H†HT , can be omitted from eq. (2.12).

Regarding the effects of such coupling on the Higgs potential, electroweak symmetry breaking at the correct

scale would require a certain degree of fine-tuning in the term H†H
(
〈T 〉 − µ2

H

)
.
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of an SU(3)L×SU(3)R rotation (corresponding to 3+3 moduli and 5+5 phases) can always

be brought into diagonal form Y (d) = diag(Y11, Y22, Y33). Since the SU(3)L,R diagonal

generators λ3 and λ8 commute with Y (d), this matrix is invariant under the subgroup

U(1)(λ3)L+R
× U(1)(λ8)L+R

and therefore, out of the initial 9 phases, only 10 − 2 = 8 can

be removed by flavour rotations. Without loss of generality we can then choose a basis in

which the background classical field has the form

Y =
1√
2

diag(R11, R22, R33 + iJ33) , (2.16)

where Rii and Jii are real scalar fields.

Regarding the value of Y that minimizes the potential in eq. (2.12), that is, the tree-

level vev of Y , from eq. (2.15) we immediately see that if 〈D〉 6= 0 then VD is minimized

when cosφD = −1 (by 〈ϕ〉 = π − δ), so that we can restrict our analysis to D ≥ 0 in

what follows. If instead 〈D〉 = 0 at the minimum of the potential, the phase of 〈D〉 is

undetermined (and ϕ has a flat potential). This allows us to set 〈ϕ〉 = π − δ and search

for the minimum around the configuration

V min
D ≡ VD = −2µD, (2.17)

〈Y 〉 =
1√
2

diag(R11, R22, R33) , (2.18)

where, with a slight abuse of notation, we have denoted with R33 the modulus
√

2|Y33|.
From eq. (2.13) we immediately see that VT is minimized on the surface 〈T 〉 = m2/(2λ) of

the sphere in the eighteen dimensional parameter space. Note that since we must require

m2/(2λ) <∼ Λ2 in order to explain e.g. the value of the top-quark Yukawa coupling,2 then

a perturbative λ < 1 implies m2 < Λ2, consistently with the effective theory treatment.

Concerning A and D, they are both maximized for symmetric vacua 〈Y 〉 ∝ diag(1, 1, 1)

and their minimum value is zero. To ensure 〈D〉 = 0, at least one entry in 〈Y 〉 must vanish,

while for 〈A〉 = 0 two entries must vanish, e.g. 〈Y 〉 ∝ diag(0, 0, 1). Which particular

minimum on the surface of constant 〈T 〉 is selected depends on the sign and value of λA
and on the value of µ. Following [12] we recall below which types of SSB minima can occur

and under which conditions.

(i) When λA < 0 we have to require |λA| < 3λ in order that the potential remains

bounded from below. A is maximized for symmetric vacua (eq. (2.19) below) and

since VA = λAA is negative this is the favoured configuration. D is also maximized

for symmetric vacua so that the negative value of VD, eq. (2.17), further lowers the

minimum. The symmetric vev

〈Y 〉s = vs diag(1, 1, 1), (2.19)

(where vs is given in eq. (18) of [12] with λ′ = −λA) corresponds, however, to non-

hierarchical Yukawa couplings yielding 〈T 〉 ≈ 〈A〉1/2 ≈ 〈D〉2/3 = v2
s .

2For example, at a cutoff scale Λ ∼ (109−1012) GeV we have yt = 〈Y33〉/Λ ∼ 0.6−0.5 [15]. In particular,

this justifies neglecting contributions to the Yukawa terms eq. (2.2) of dimension higher than five.
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(ii) When λA > 0, VA = λAA is always positive and minimized for 〈A〉 = 0, which favours

(hierarchical) vacua with two vanishing entries

〈Y 〉h = vh diag(0, 0, 1) , (2.20)

with vh = m/
√

2λ. Given that V
(
〈Y 〉h

)
= 0, this configuration is selected as long

as the potential in the symmetric direction has a positive definite value V (〈Y 〉s) > 0

in spite of a possible negative contribution from VD. This occurs as long as (see [12]

for details)

µ2

m2
< 2λ

[(
4 +

λA
λ

)3/2

−
(

8 + 3
λA
λ

)]
. (2.21)

In this case 〈T 〉 = v2
h while 〈D〉 = 〈A〉 = 0, which represents a promising first

approximation to the realistic hierarchy, as in eq. (2.11).

Thus, the tree level analysis indicates that the most general renormalizable GF =

SU(3)L × SU(3)R invariant potential admits two types of SSB vevs, that lead to the two

symmetry breaking patterns GF → Hs and GF → Hh respectively with little groups:

Hs = SU(3)L+R , (2.22)

Hh = SU(2)L × SU(2)R ×U(1)(λ8)L+R
. (2.23)

Before concluding this section let us recall some jargon specific to SSB problems, as

well as some general results. The largest subgroup H ⊂ GF that leaves invariant some

background field configuration 〈Y 〉 is called the little group of 〈Y 〉. In particular, the

little groups Hs,h in eqs. (2.22)–(2.23) are maximal little groups in the sense that none is

contained in the other or in another little group of GF . Acting with group elements in

GF /H on 〈Y 〉 while keeping its ‘length’ (〈T 〉 in our case) fixed, one obtains the orbit of

〈Y 〉. If in the neighbourhood of 〈Y 〉 all other background configurations have the same

little group H, the collection of their orbits is called an open stratum (or dense stratum).

An example of a configuration with orbit belonging to an open stratum is the general form

〈Y 〉 ∼ diag(a, b, c) corresponding to eq. (2.18), with little group3

Habc = U(1)(λ3)L+R
×U(1)(λ8)L+R

. (2.24)

The boundaries of an open stratum are the closed strata, which contain orbits in the

neighborhood of which there are other configurations with different little groups. If H ⊂ GF
is a maximal little group, then the corresponding 〈Y 〉 is in a closed stratum. If the closed

stratum has only one orbit, this orbit is a stationary point of any smooth real invariant

functions of 〈Y 〉 (Michel-Radicati theorem [16, 17]).

In our case, the boundaries of the open stratum of the general background field con-

figuration in eq. (2.18) are 〈Y 〉s,h in eqs. (2.19)–(2.20) and, in agreement with Michel’s

theorem [19], their little groups Hs,h [eqs. (2.22)–(2.23)] are the maximal stability groups

of the most general fourth order function of the invariants (the tree-level potential).

3Considering the full initial group of invariance U(3)2 = U(1)B×U(1)L−R×SU(3)2 one readily recognizes

that the full little group of continuous transformations for the Yukawa configuration eq. (2.18) is = U(1)B×
U(1)(λ3)L+R

× U(1)(λ8)L+R
which are linear combinations of the three baryon flavour symmetries U(1)Bi

(eventually broken to U(1)B by inter-generational quark mixing).
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Figure 1. The orbit space for the group SU(3)L×SU(3)R broken by a field Y in the bi-fundamental

representation, plotted in the plane (A/T 2, D/T 3/2) with an arbitrary nonzero T . The H’s labeling

the points in the plot denote the little groups of the corresponding field configurations 〈Y 〉. Haaa =

Hs and H00b = Hh are the maximal little groups of 〈Y 〉 ∼ diag(a, a, a) and 〈Y 〉 ∼ diag(0, 0, b).

As we have seen, although the potential is a function of many scalar fields (Y has

18 degrees of freedom) the fact that only the 3 invariants T , A and D enter, simplifies

greatly the minimization problem. A further simplification follows from the observation [18]

that the orbit space can be described in a compact way by T (which is nonzero in any

symmetry breaking vacuum) and by the two dimensionless ratios of invariants rA ≡ A/T 2

and rD ≡ D/T 3/2, which are respectively bounded within the intervals 0 ≤ rA ≤ 1/3 and

0 ≤ rD ≤ 1/(3
√

3). For given fixed values of rA and rD, the potential is a function of

T only, with some minima 〈T 〉(rA, rD). The global minimum is then the deepest of such

minima in the whole range (rA, rD). Such an orbit space does not depend on the details

of the potential, but only on the group structure and on the representation of the scalar

fields. For our case the orbit space is plotted in figure 1 in which, for instance, Haaa refers

to the symmetric little group Hs = SU(3)L+R and labels the field configuration 〈Y 〉 ∼
diag(a, a, a), while a generic point Habc labels the field configuration 〈Y 〉 ∼ diag(a, b, c).

For our labels we keep the ordering a < b < c, so that the plot gives also information on

the relative size of the 〈Y 〉 entries. Note that the point labeled H0bb belongs to the same

stratum as Habb, while the point H0ab belongs to the same stratum as Habc. Regarding

Haab and Habb, although they label disconnected regions in orbit space, they correspond

to the same little group, that is SU(2)L+R × U(1)(λ8)L+R
, and so they belong to the same
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stratum. Following the method proposed in ref. [18], the little groups of the global minima

of V0 can also be determined through an analysis of equipotential lines in the orbit space.

The result is that for λA < 0 the minimum of V0 always is at Haaa =
(
1/3, 1/(3

√
3)
)
,

while for λA > 0 the minimum can be at H00b = (0, 0) or at Haaa, depending on the values

of the parameters (i.e. if eq. (2.21) is satisfied or not). This of course coincides with our

previous findings.

The question now is if, as suggested by Michel’s conjecture [19], the one-loop effective

potential can only have minima with the same maximal little groups Hs,h as the tree-level

potential, or if phenomenologically more appealing minima with the generic little group

Habc are possible. On one hand, if a phenomenologically acceptable minimum had corre-

sponded to a maximal little group, it would have been easy to model a potential leading

to it, as this is facilitated by the group structure which makes such symmetry breaking

natural. On the other hand, seeking for a symmetry breaking pattern with non-maximal

little group is harder but might offer some deeper insight into the dynamics producing

such breaking. Be that as it may, as we will discuss in the next two sections, although

counter-examples to Michel’s conjecture are known to exist [20–24], in our case Hs,h re-

main stable with respect to perturbative effects from loop corrections or from operators of

higher dimension.

3 Sequential breaking

The symmetric solution 〈Y 〉s = vs diag(1, 1, 1) in eq. (2.19), which yields non-hierarchical

Yukawa couplings, is phenomenologically uninteresting and we do not consider it (although

it might be of interest in the neutrino sector). The solution 〈Y 〉h = vh diag(0, 0, 1) in

eq. (2.20) appears instead as a promising first approximation to the observed Yukawa hier-

archies, but is tenable only if the two vanishing entries can be lifted to small nonzero values

by some effect. In this section we want to consider the possibility of obtaining a vacuum

〈Y 〉 = vY diag(ε′, ε, 1) with the non-maximal little group Habc ⊂ Hh, from a small pertur-

bation of the tree-level vacuum 〈Y 〉h in eq. (2.20). Such perturbation could be provided, for

instance, by one-loop corrections to the effective potential Veff (as hypothesized in ref. [12])

or by higher dimensional operators. We will show that in general these possibilities cannot

be realized.

Let us focus for the moment on the symmetry breaking pattern GF → Hh, i.e. the

minimum is 〈Y 〉h = vh diag(0, 0, 1) with vh = m/
√

2λ. There are nG = 8 + 8 generators in

GF , and nH = 3+3+1 = 7 unbroken generators in the little group Hh. Nine generators are

thus broken and accordingly we find in the spectrum nb = 9 massless Nambu-Goldstone

Bosons (NGB). The remaining nine states are arranged in multiplets of Hh with masses:

m2
1 = 4λv2

h , 1 state, (3.1)

m2
± = λAv

2
h ± µvh , 4 + 4 states. (3.2)

Assuming that upon minimization of the one-loop effective potential a ground state with

little group H ′ ⊂ Hh with nH′ < nHh unbroken and nb′ > nb broken generators is ob-

tained, would then imply that out of the 9 massive states, nHh − nH′ have to become the
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new massless NGB. The required cancellation between the tree-level and loop mass con-

tributions do not conform to the perturbative approach to this problem. In other words,

the zeroth-order mass relations determined by the unbroken subgroup of the symmetry

group should persist also at higher orders [25]. More precisely, a theorem proved long

ago by Georgi and Pais [26] states that a reduction of the tree-level vacuum symmetry

via radiative corrections can only occur if there are additional massless bosons in the tree

approximation.4 This can be seen in the following way: the Goldstone theorem states that

for each generator T a of a continuous symmetry acting nontrivially on the vacuum there

is a massless scalar, that is:

T a · 〈Y 〉 6= 0 =⇒ M2 · T a · 〈Y 〉 = 0 , (3.3)

where M2 is the second derivative of V with respect to the fields evaluated at Y = 〈Y 〉.
Following ref. [26], let us now write M2 = M2

0 + δM2 and 〈Y 〉 = 〈Y 〉0 + δ〈Y 〉 where M2
0

and 〈Y 〉0 are obtained from minimization of V0 , while δM2 and δ〈Y 〉 are the perturbations

induced by higher order corrections to the potential. Stepwise breaking implies that there

must be some generator T a in the little group H of the tree-level vacuum that is not in

H ′, that is:

T a · 〈Y 〉0 = 0, and T a · 〈Y 〉 6= 0 . (3.4)

At first order in the corrections, eq. (3.3) becomes

M2
0 · T a · 〈Y 〉0 + δM2 · T a · 〈Y 〉0 +M2

0 · T a · δ〈Y 〉 = 0 . (3.5)

The first two terms in this equation vanish because of the first equation in (3.4), and the

vanishing of the last term then implies additional massless scalars, that at the tree level

are not NGB. In this case, a further breaking of the symmetry by higher order effects

can simply transform some of these additional massless states into NGB. A well known

example is the Coleman-Weinberg (CW) potential [27] in which the scale invariance at the

tree level implies (non-Goldstone) massless states in the lowest order approximation. The

breaking of the symmetry at one loop then transforms some massless states into NGB and

gives mass to the remaining ones.

A crucial point in our particular case is that the extra massless scalars in the tree

approximation should appear naturally, e.g. due to some extended accidental symmetry,

because of some larger symmetry of the tree-level vacuum [28] or due to renormalization

group evolution of parameters (so that these massless scalars appear at some particular

renormalization scale). For example, it is technically possible to tune the mass m2
− in

eq. (3.2) to zero by setting λAm = µ
√

2λ, and this would result in four additional mass-

less states at the tree level. To verify if this condition allows for a further breaking of

the symmetry by loop corrections, we have carried out a numerical minimization of the

SU(3)L × SU(3)R one-loop effective potential given in the appendix. In the general case

with no additional massless states, the parameter space of the effective potential remains

divided into two regions corresponding to the two vacuum structures 〈Y 〉h = vh diag(0, 0, 1)

4Perhaps a bit surprisingly, this applies also to radiative breaking of discrete symmetries like CP [26].
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and 〈Y 〉s = vs diag(1, 1, 1) with a boundary that is still given with a good approximation

by condition eq. (2.21). By setting λAm = µ
√

2λ one obtains that this condition is never

satisfied, the vacuum remains in the symmetric configuration 〈Y 〉s with little group Hs and

no further breaking occurs.

Although there is no natural way to forbid the two terms VA and VD in the potential,

additional massless states would be obtained by setting by hand µ → 0 and λA → 0

in the tree-level potential eq. (2.12). This is because the surviving part VT , eq. (2.13),

has an accidental symmetry SO(18) that is much larger than SU(3)L × SU(3)R. The

minimum condition T =
∑

i(Y Y
†)ii = m2/(2λ) fixes the radius of the eighteen-dimensional

hypersphere, leaving the vacuum symmetry SO(17) of the hypersurface which is broken by

a choice of the vacuum direction. We thus obtain seventeen massless bosons: the nine

NGB of the broken SU(3)L × SU(3)R plus 4 + 4 additional massless states corresponding

to the eigenvalues in eq. (3.2). Clearly, in this case since the symmetry of the full theory is

just SU(3)L × SU(3)R of the Yukawa operator eq. (2.2), it is conceivable that corrections

due to other interactions (as the ones that give rise to the effective Yukawa operator, or

SU(3)L × SU(3)R gauge interactions if the flavour symmetry is gauged) could eventually

yield a stepwise breaking. We will discuss further this possibility in the next section.

In conclusion, lifting the tree-level vev 〈Y 〉h = vh diag(0, 0, 1) to a vev with hierarchical

components 〈Y 〉 = vY diag(ε′, ε, 1) would require at least the symmetry reduction SU(2)L×
SU(2)R × U(1)(λ8)L+R

→ U(1)(λ3)L+R
× U(1)(λ8)L+R

. If, as in the case we are considering,

there are no additional tree-level massless states, the nHh − nHabc = 5 new NGB cannot

appear at the loop level, and thus no stepwise reduction of the symmetry can occur. We

will mention in section 4 possible loopholes to this conclusion.

Concerning the possibility that corrections from higher dimensional operators [8] could

provide the sequential symmetry breaking we are looking for, we can again rely on the

Goldstone theorem to formulate the necessary conditions for this to happen. Including

higher dimensional terms, we can write the scalar potential as

V (pi, Λ̄) = V0(pi) +
∑
k

1

Λ̄k
O4+k , (3.6)

where V0(pi) is the tree-level potential, eq. (2.12), which depends on the parameters {pi} =

{m, µ, λ, λA} and O4+k represents the set of operators with dimension 4 + k (k ≥ 1) that

are perturbatively suppressed by powers of the high energy scale Λ̄. Eq. (3.5) translates

straightforwardly into

M2
0 (pi) · T a · δ〈Y 〉 = 0 , (3.7)

where δ〈Y 〉 depends on Λ̄. Stepwise breaking implies that T a ·δ〈Y 〉 is non vanishing, which

in turn requires additional non NGB massless states in the tree level mass matrix M2
0 (pi).

In the absence of these states, we can then conclude that also operators of higher dimension

are unable to induce perturbatively sequential symmetry breaking.
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4 Generalization

We have seen that the maximal little groups Hs,h of the stationary points of the tree-

level potential, eq. (2.12), are stable against corrections to the effective potential in-

duced by loops or higher dimensional operators. Thus, hierarchical minima with the

observed structure 〈Y 〉 = vY diag(ε′, ε, 1) cannot simply occur as a perturbation from

〈Y 〉h = vh diag(0, 0, 1). However, ref. [12] found that, if the one-loop potential were to

have terms like A logA and D logD, they could produce global minima different from 〈Y 〉h

or 〈Y 〉s in eqs. (2.19)–(2.20). Also, a potential that indeed can have a hierarchical minimum

〈Y 〉 = vY diag(ε′, ε, 1) is given in appendix B.2 of ref. [11]. Such examples show that there

is no group theory obstruction to finding potentials with minima that have little groups

different from the maximal ones Hs,h.

We will now show that under some general conditions the smallest little group preserved

by the minima of smooth functions of the SU(3)L × SU(3)R invariants is SU(2)L+R ×
U(1)(λ8)L+R

. This corresponds, in the diagonal basis, to the structure 〈Y 〉 ∼ diag(a, a, b),

which can only allow for a partial hierarchy. In contrast with the results presented in

section 3, the present argument does not rely on perturbative expansions, and can be

applied to more general classes of effects.

Let us consider from now on a generic smooth potential function V (T,A,D), where we

take D real from the start and, without loss of generality, the invariants are written in the

real diagonal basis for Y , as in eq. (2.18). The minimization equations are (i = {1, 2, 3})

∂V

∂T

∂T

∂ξi
+
∂V

∂A

∂A

∂ξi
+
∂V

∂D

∂D

∂ξi
= 0 , (4.1)

where, as above, the ξi are the eigenvalues of 〈Y Y †〉 (i.e. 〈Y Y †〉 = diag(ξ1, ξ2, ξ3) in our

specific basis). We have

∂T

∂ξi
= 1 ,

∂A

∂ξi
= T − ξi ,

∂D

∂ξi
=

1

2

D

ξi
, (4.2)

so that (4.1) leads to the quadratic equation in ξi:

∂V

∂A
ξ2
i −

[
∂V

∂T
+
∂V

∂A
T

]
ξi −

D

2

∂V

∂D
= 0 . (4.3)

Thus, at the extremal point, the three ξi eigenvalues should be solutions of the same

equation above which, being quadratic, can only have at most two different roots. It is in

this sense that we expect generically to have a little group at least as large as SU(2)L+R×
U(1)(λ8)L+R

. From this, it follows that regardless of the type of potential function V , the

only way to obtain three distinct values ξ1, ξ2, ξ3 is to make zero the three coefficients in

eq. (4.3). In this particular case the minimization equations reduce to:

∂V

∂T
= 0 ,

∂V

∂A
= 0 ,

∂V

∂D
= 0 . (4.4)

We could have anticipated this: the secular equation (2.4) gives a univocal correspondence

(modulo trivial permutations) between its coefficients and its solutions (that are physically
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acceptable in the real domain). Then, when all three ξi’s are different, we can use T,A,D

instead of the ξi to describe field space, and as we are interested in a fully hierarchical

pattern of Yukawas, we are precisely in that situation.5 In all other cases, when one of the

three equations in (4.4) is not satisfied, the vacuum will have at most the partial hierarchy

〈Y 〉 ∼ diag(a, a, b).

We can now understand from another point of view the negative result found in the

previous section in our search for a hierarchical minimum by perturbing over the tree-level

minimum 〈Y 〉h = vh diag(0, 0, 1). Writing the potential as V = V0 + ∆V , with the tree-

level potential V0 as in (2.12) and ∆V representing some small correction, either from loop

effects or higher order operators, the minimization equations (4.4) become

2λT −m2 +
∂∆V

∂T
= 0 ,

λA +
∂∆V

∂A
= 0 ,

−2µ+
∂∆V

∂D
= 0 . (4.5)

Let us write 〈T 〉 = 〈T 〉0 + δ〈T 〉, where 〈T 〉0 is the value of T at the tree level minimum

and δ〈T 〉 a shift in this value due to ∆V , with analogous notations for A and D. The tree

level minimum corresponding to 〈Y 〉h has 〈T 〉0 6= 0 and 〈A〉0 = 〈D〉0 = 0. Now if one

tries to analyze by means of equations (4.5) how this minimum can be perturbed by the

correction ∆V , the first key observation is that the tree-level minimum does not satisfy the

tree-level form (i.e. with ∆V removed) of all these equations, but only the first one, with

〈T 〉0 = m2/(2λ). The shift δ〈T 〉 would then be obtained as

2λδ〈T 〉 = − ∂∆V

∂T

∣∣∣∣
0

, (4.6)

with the subscript 0 indicating that the derivative is evaluated at the tree-level minimum.

However, the two other minimization equations are not consistent unless µ and λA are

suppressed to at least the order of the perturbation ∆V , perhaps being zero. As already

noticed in section 3, if µ and λA are in fact zero, there are 17 massless states at tree-level,

and this clears up the difficulties with Georgi-Pais’ theorem [26]. In the diagonal basis,

the minimum condition reads T = ξ1 + ξ2 + ξ3 = m2/(2λ) which is satisfied by points

on a hyperspherical surface of equivalent {ξi} vevs, including hierarchical ones. Which

vev is eventually selected then would depend on radiative corrections (or on other higher

order effects). Nevertheless, the one-loop potential does not resolve this degeneracy: when

µ = λA = 0, ∆V is a function of the T invariant only, i.e. no potential for A and D is

generated at one-loop. This can be checked explicitly using the results presented in the

appendix, which calculates the contributions to the potential from scalar self-interactions.

In principle, interactions of the Yukawa fields with other sectors of the theory could give

5In ref. [12], vev structures 〈Y 〉 = vY diag(ε′, ε, 1) were obtained by minimizing separately two functions

respectively of D and A, that included their logs, and assuming that the minimum of the two separate

functions gave the global minimum. That procedure is in fact incorrect. By minimizing numerically the

full logarithmic potential we have verified that global minima with ε′ = ε are obtained.
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additional contributions that could change this picture. This, however, would require

introducing a significant model-dependence.

Let us examine next the structure of a potential tailored to give any desired pattern

of Rii. Constructing such generic potential is in fact straightforward:6

V ≡ λ (T − 〈T 〉)2 +
1

Λ4
(A− 〈A〉)2 +

1

Λ2
(D − 〈D〉)2 , (4.7)

where the values of 〈T 〉, 〈A〉, 〈D〉 correspond to the chosen values of ξi according to

eqs. (2.5)–(2.7). Omitting an unimportant constant, we can split V = V0 + ∆V in the

usual renormalizable part

V0 = λT 2 −m2T + λAA− 2µD , (4.8)

plus the correction ∆V , which contains the following two d = 8 and d = 6 terms:

∆V =
1

Λ4
A2 +

1

Λ2
D2 . (4.9)

For any (finite) cutoff scale Λ, any chosen vacuum configuration {〈T 〉, 〈A〉, 〈D〉} can be

reproduced by choosing the values of the parameters as:

m2 = 2λ〈T 〉 , λA = −2
〈A〉
Λ4

< 0 , µ =
〈D〉
Λ2

. (4.10)

For the validity of the effective theory approach, and to reproduce the hierarchical Yukawas,

the vacuum expectation values should be smaller than the corresponding power of the scale

Λ. This means, in particular, that µ and λA are required to be quite suppressed also in

this scenario.7 Such suppression is directly responsible for the Yukawa hierarchy, and this

does not represent the kind of natural explanation we are looking for. Notice also that, as

λA < 0 and µ > 0, the minimum of the tree-level potential corresponds to the symmetric

configuration ξ1 = ξ2 = ξ3 so that ∆V does not represent a small perturbation of the tree

level vacuum structure. The correction to the potential can have such a large effect only

because in this scenario the parameters of the tree-level potential are assumed to have

values much smaller than the size of the corrections.

In the previous discussions, the scale dependence of the Lagrangian parameters has

been disregarded, although their RGE running can add new features to the minimization

problem. For example, although the functional form of the SM Higgs potential, V (h) =

−(m2/2)h2+(λh/4)h4, allows for only one minimum, its renormalization-improved version,

with running m2 and λh evaluated at a renormalization scale Q ∼ h (as necessary for a

faithful description of the potential in a large range of h values) has a richer structure.

In fact, for low values of the Higgs mass (as the value currently measured at the LHC,

mh ' 126 GeV [34, 35]) a second minimum develops at a scale much larger than the

electroweak scale, when the quartic Higgs coupling λh is driven to negative values due

6A potential of this form is given in appendix B of [11].
7For example, by adding to VA, eq. (2.14), higher order corrections in the form (λA+〈T 〉/Λ2+〈T 〉2/Λ4+

. . . )A, we would get from the hierarchy condition 〈T 〉2 > 〈A〉 and from the second relation in eq. (4.10)

that the tree level coupling λA must be smaller than the second order correction ∼ 〈T 〉2/Λ4.
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to large radiative corrections from the top Yukawa coupling (see ref. [36] for the state-

of-the-art analysis). For particular values of the Higgs mass, the negative quartic stays

small enough to cancel against the value of its β function, providing a second solution

to the minimization equation dV/dh ' [λh + (1/4)dλh/d log h]h3 = 0. We could imagine

something similar happening with the potential for the Yukawa fields Y : the structure of

this potential at the renormalization scale relevant for the largest nonzero vev Q2 ∼ ξ3

could in principle be different from its structure at the lower scales relevant for the smaller

vevs ξ1 and ξ2. However, the problem is now complicated by the fact that the potential

is a multifield one and the correct description of a hierarchical vacuum requires the use

of three different renormalization scales simultaneously (a multiscale problem often faced

in effective potential studies, see e.g. [29–33]). We limit ourselves to pointing out this

possibility as worthy of future exploration.

5 Symmetry breaking via reducible representations

The results of the previous sections make clear which way is left open to get a phenomeno-

logically viable pattern of vevs for the components of the Yukawa field Y . Namely, the

flavour symmetry must be broken down to Habc, eq. (2.24), already at the tree level. For

this, we need a non-minimal set of scalar fields in reducible representations of the flavour

group. In fact, breaking a symmetry by means of reducible representations avoids at once

the issue of maximal stability little groups: even defining what are open strata and closed

strata is not clear in this case. A minimal enlargement of the scalar sector involves adding

two multiplets, ZL,R, that transform respectively in the fundamental of one of the two

group factors SU(3)L × SU(3)R while they are singlets under the other one:8

ZL = (3,1), ZR = (1,3) . (5.1)

The most general SU(3)L × SU(3)R invariant potential involving ZL, ZR and Y = (3, 3̄)

can be written as

V = VA + VD + Vl + Vm + Vν̃ , (5.2)

with

Vl = λ

(
T − m2

2λ

)2

+ λL

(
|ZL|2 −

m2
L

2λL

)2

+ λR

(
|ZR|2 −

m2
R

2λR

)2

+ g

[(
T − m2

2λ

)
+
g1L

g

(
|ZL|2 −

m2
L

2λL

)
+
g1R

g

(
|ZR|2 −

m2
R

2λR

)]2

, (5.3)

Vm = g2LZ
†
LY Y

†ZL + g2RZ
†
RY
†Y ZR , (5.4)

Vν̃ = ν̃ Z†LY ZR + h.c. , (5.5)

8The vevs of ZL,R represent sources of flavour breaking that do not transform as the SM Yukawa

couplings, and thus in principle imply a non Minimal Flavour Violating (MFV) [37] scenario. However,

by a suitable choice of the representations of the messengers that generate the Yukawa operators, one can

forbid all dangerous FCNC Yukawa-like operators involving ZL,R.
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while VA and VD have already been given in eq. (2.14) and eq. (2.15). Vl in eq. (5.3) can

be equivalently written as

Vl = λ̂

(
T − m̂2

2λ̂

)2

+ λ̂L

(
|ZL|2 −

m̂2
L

2λ̂L

)2

+ λ̂R

(
|ZR|2 −

m̂2
R

2λ̂R

)2

+2T
(
g1L|ZL|2 + g1R|ZR|2

)
+ 2

g1L g1R

g
|ZL|2 |ZR|2 + const . (5.6)

This second way of writing Vl makes apparent which relevant terms quadratic and quartic

in the fields have been included; however, eq. (5.3) is more convenient for minimization,

since it makes transparent that Vl (which for λ, λL, λR, g > 0 has manifestly its minimum

when it vanishes) determines the ‘lengths’ of the three multiplets to be, respectively:

〈T 〉 ≡ v2
Y =

m2

2λ
, 〈|ZL|2〉 ≡ v2

L =
m2
L

2λL
, 〈|ZR|2〉 ≡ v2

R =
m2
R

2λR
, (5.7)

without having other effects on the particular structure and/or alignment of the three vevs.

Note in particular that eq. (5.3) also makes apparent that the correct tree-level minima

can already be obtained from the first line alone, that is, by setting g1L, g1R and g → 0 (in

particular, this limit largely simplifies the identification of the Goldstone bosons).

The role of Vm is instead that of misaligning (or aligning) the vevs of ZL,R with the

vev of Y . Our aim is to enforce a maximum misalignment, in order to obtain the smallest

possible intersection among the little groups of the vevs of the three multiplets, and this

is achieved for g2L, g2R > 0. Thus we assume that both couplings in Vm are positive,

and we will not analyze other possibilities, since they would only yield phenomenologically

uninteresting vacuum structures.

Once the matrix of constant fields Y has been brought to the diagonal and partially

real form, eq. (2.16), by means of symmetry rotations, we are left with the freedom of

removing only one phase from ZL and another one from ZR. However, we will now argue

that, for the minimization problem, we can take ZL,R real. After defining ν = |ν̃|, the last

term Vν̃ can be rewritten as:

Vν̃ = 2 ν
∣∣∣Z†LY ZR∣∣∣ cosφLR . (5.8)

At fixed values of 〈Y 〉, 〈ZL〉, 〈ZR〉 the minimum of Vν̃ occurs when cosφLR = −1, that is,

for real and negative values of the vev of the trilinear term 〈Z†LY ZR〉. On the other hand,

it is easy to verify that the modulus of the trilinear term in eq. (5.8) is extremized for real

values of the three vevs 〈Y 〉, 〈ZL〉, 〈ZR〉. We have already argued that minimization of the

potential can be carried out by taking VD in the simplified form VD given in eq. (2.17),

which corresponds to real Y . From eq. (5.8) we can similarly conclude that, after including

ZL,R, the minimization of the potential can be explored around the configuration

V min
ν̃ ≡ Vν = −2 ν Z†LY ZR , (5.9)

where ZL,R can also be taken to be real. With this simplification it is not difficult to work

out the structure of the vevs at the minimum of the potential. Let us start by setting
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ν → 0. For g2L, g2R > 0 and Y in diagonal form, Vm is always positive, and thus it

is minimized when it vanishes, which occurs when the vevs of ZL,R are misaligned with

respect to the vev of Y , as for example 〈Y 〉 = vh diag (0, 0, 1), 〈ZL〉 = vL (cL, sL, 0) and

〈ZR〉 = vR (cR, sR, 0), with c2
L,R+s2

L,R = 1. Thus, in this limit the minimum of the potential

is V min
(ν=0) = 0. However, when ν 6= 0 lower (negative) values of Vν become possible: for

small but nonvanishing values of the first two diagonal entries in 〈Y 〉 the negative sign of Vν
implies the possibility of adding a negative contribution to the minimum of the potential.

It is true that there is also a price to pay since the minimum of Vm will then be lifted to

positive values, but while this effect in Vm is quadratic in the small 〈Y 〉 entries, it is linear,

and thus dominant, in Vν . We thus expect that Vν can favour configurations in which the

zero entries in 〈Y 〉 are lifted to non-zero values.

To see explicitly how this can occur, let us take the new vacua in the form:

〈Y 〉 = vY diag
(
ε, ε′, y

)
, with ε, ε′ � y , ε2 + ε′

2
+ y2 = 1,

〈ZL〉 = vL
(
zL, ε

′
L, εL

)
with ε′L, εL � zL, ε′L

2
+ ε2L + z2

L = 1,

〈ZR〉 = vR
(
zR, ε

′
R, εR

)
with ε′R, εR � zR, ε′R

2
+ ε2R + z2

R = 1 . (5.10)

Vl in eq. (5.3) fixes the ‘lengths’ vY and vL,R, and vanishes. So we need to consider only

the effect of

Vε ≡ VA + VD + Vm + Vν

= λAA− 2µD + g2LZ
†
LY Y

†ZL + g2RZ
†
RY
†Y ZR − 2 ν Z†LY ZR , (5.11)

which vanishes in the limit ν → 0 but remains of O(ε) when ν 6= 0. Plugging into Vε the

vevs in eq. (5.10) we obtain:

1

v2
Y

Vε = λAv
2
Y

[
ε2ε′2 + y2

(
ε′2 + ε2

)]
− 2 vY µ εε

′y

+g2L v
2
L

(
z2
Lε

2 + ε′2Lε
′2 + ε2L y

2
)

+ g2R v
2
R

(
z2
Rε

2 + ε′2Rε
′2 + ε2Ry

2
)

−2 ν
vLvR
vY

(
zLzRε+ ε′Lε

′
Rε
′ + εLεR y

)
. (5.12)

The role of Vν , which is linear in ε in preferring values of ε 6= 0 is apparent, as well as

the role of VD in favouring in turn ε′ 6= 0. A simple illustrative solution in terms of the

relevant parameters µ and ν can be obtained by setting for simplicity vY = vL = vR and

λA = g2L = g2R and by recalling that the lengths are fixed (i.e. y2 = 1 − ε2 − ε′2 etc.).

Solving for the extremal conditions ∂Vε/∂ε = ∂Vε/∂ε
′ = ∂Vε/∂εL,R = ∂Vε/∂ε

′
L,R = 0, and

truncating to terms O
(
ε2
)

we obtain a unique solution for the global minimum:

ε =
λA ν vY

3λ2
A v

2
Y − µ2

, ε′ =
µ

λA vY
ε , εL,R = ε′L,R = 0, (5.13)

with V min
ε = −ν v3

Y ε. The relations in eq. (5.13) show that phenomenologically acceptable

vevs for the up-quark Yukawa couplings could be obtained for example for ν ∼ µ ∼
10−2 ·λA vY , yielding ε′ ∼ 10−2 ·ε ∼ 10−4. A second possibility, namely ν ∼ λA vY ∼ 10−2 ·µ
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yielding ε ∼ 10−2 ·ε′ ∼ 10−4 is in fact not viable since in this case it is not possible to satisfy

simultaneously the constraint on µ/m from eq. (2.21) and the condition vY ' m/
√

2λ ∼ Λ

from the value of the top-quark Yukawa coupling.

To verify the correctness of the simple minimization procedure that we have outlined

above, we have also performed a set of numerical minimizations.9 This has confirmed the

lifting of the zeroes in 〈Y 〉 to nonvanishing entries whose values, among other things, are

controlled in a crucial way by ν and µ that, in order to reproduce the observed Yukawa hier-

archies, should be somewhat suppressed with respect to the other dimensional parameters

m, mL, mR. Let us stress however, that the numerical analysis that we have carried out had

just the scope of confirming the structures obtained analytically, and that the extremum

corresponds to a real global minimum, and did not aim at a thorough exploration of the full

parameter space for finding sets of values satisfying particular naturalness requirements.

One final interesting point is that in all cases we find that two entries in both 〈ZL,R〉
vanish, see eq. (5.13). The little group of the vevs of the two fundamental representations

is then HLR = SU(2)L × SU(2)R. The intersection of HLR with the little group of the vev

of the bi-fundamental HY = U(1)(λ3)L+R
× U(1)(λ8)L+R

is then HLR ∩HY = U(1)(σ3)L+R
,

corresponding to the diagonal generator σ3 = 1
2(
√

3λ8−λ3) of SU(2)L+R. This means that,

out of the 8 + 8 generators of the flavour group, only one remains unbroken, and we can

then predict fifteen Goldstone bosons. We have studied numerically the spectrum of scalar

particles, and this confirmed that the symmetry breaking pattern induced by scalars in the

reducible representation (3,1)⊕ (1,3)⊕ (3, 3̄) is indeed SU(3)L × SU(3)R → U(1)(σ3)L+R
.

6 Conclusions

The possibility that the highly non-symmetric spectra of the fermions with the same SM

quantum numbers could arise from the specific structure of the vacuum of an otherwise

flavour-symmetric theory, is theoretically very attractive. In this paper, we have studied

which premises are needed to render this idea phenomenologically viable.

In ref. [12] it was found, as a promising starting point, that an SU(3)L×SU(3)R invari-

ant tree-level potential for Yukawa fields Y transforming as the irreducible bi-fundamental

(3, 3̄) representation of the flavour group admits vacuum structures 〈Y 〉 ∝ diag(0, 0, 1). It

was then natural to ask if the vanishing entries could be lifted to suppressed but nonva-

nishing values by some type of small perturbation. This would correspond to a stepwise

breaking of the flavour symmetry.

In this paper we have argued that the structure of the tree-level vacua is perturbatively

stable. Regarding the possibility of a stepwise symmetry breaking due to loop corrections,

it was already discussed long ago [25, 26] that this can only occur in the presence of

additional (non NGB) scalars that are massless at tree level. By direct computation of the

9Numerical minimizations have been carried out with the built-in minimization routines of the

Mathematica package. To seek for the global minimum, we have used a random search method : we start

with a random generation of initial search points in field space and proceed with the minimization routine.

The minima of the potential resulting from different initial search points are compared, and the lowest one

is selected. The set of initial search points is then augmented until there is no change in the final result.
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effective potential (see the appendix) we have confirmed that the little groups of the vacua

of the tree-level potential are also the little groups of the vacua of the one-loop corrected

effective potential, and that this remains true even in the presence of additional scalars

that are unnaturally massless (that is, massless due to fine tuning of some parameters).

We have also argued that this result can be straightforwardly extended to the possible

effects of operators of higher dimension. In section 4 we have further confirmed this and

argued that, except for some special cases, a generic SU(3)L × SU(3)R invariant function

of a single scalar field Y transforming in the bi-fundamental representation of the group,

admits vacuum structures 〈Y 〉 with at least two equal eigenvalues, and thus it cannot yield

a fully hierarchical pattern.

We have thus learned that a phenomenologically viable Yukawa structure 〈Y 〉 ∝
diag(ε, ε′, 1) must arise already at the tree level, and that in order to achieve this, the

breaking must occur via reducible representations. After enlarging the scalar sector by

adding two multiplets ZL and ZR transforming respectively in the fundamental represen-

tation of the SU(3)L,R factors of the flavour group, we have constructed the most general

fourth-order potential involving ZL,R and Y , and we have shown that minima yielding the

hierarchical structure 〈Y 〉 ∝ diag(ε, ε′, 1) can indeed appear. The Yukawa hierarchy for the

up-type quarks can then be qualitatively reproduced at the cost of a relatively mild hier-

archy between the dimensional parameters of the scalar potential, not exceeding ∼ 10−2.

The hierarchies in the down-quark and charged lepton sectors are also reproducible with

even milder hierarchies in the fundamental parameters.

In a more complete scenario we would first need to extend the symmetry to the full

quark flavour group SU(3)QL × SU(3)uR × SU(3)dR , and then couple through appropriate

renormalizable invariant terms the Yukawa fields of the up and down-quark sectors Y q, Zq

(q = u, d) and ZQ (see ref. [12] for a first attempt with only irreducible representations

Y q). Besides reproducing the mass hierarchies, such a scenario should also reproduce the

hierarchies in the CKM mixing angles, and yield a nonvanishing value for the CP violating

Jarlskog invariant [38]. We believe that, in spite of its complexity, such a program can

be carried out successfully, and we expect to publish soon some results that go in this

direction [39].

Eventually, one should also worry about the testability of this type of construction.

It is clear that the scalar potential of a more complete model will contain a number of

fundamental parameters much larger than the number of observables (the six quark masses,

the three mixing angles, and the CP violating phase δ) implying that it is unlikely that

predictive relations among different observables could arise. Direct evidences might arise

from the fact that if the flavour symmetry is global, then SSB implies the presence of NGB

that could show up in yet unseen hadron decays or in rare flavour violating processes [40].

Lower limits on the flavour symmetry breaking scale vY have in fact been set by searching

for this type of processes. For decays involving third generation quarks a limit vY >∼ 108 GeV

has been reported from unseen B → πf and B → Kf decays [41], where f denotes a

‘familon’ NGB. For the second generation, unseen K+ → π+f decays set stronger bounds,

at the level of 1011−12 GeV [42, 43], while in the lepton sector bounds at the level of

109−10 GeV have been set from the non observation of µ→ eγf and µ→ ef decays [44, 45].
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All these constraints are of course easily evaded if a sufficiently large symmetry breaking

scale vY >∼ 1012 GeV is assumed. If the flavour symmetry is instead gauged [9, 10] there are

no massless NBG and the scale vY can be sensibly lower. However, to ensure the absence of

gauge anomalies additional fermions must be introduced [10]. Their detection could then

represent a smoking gun for this type of models. All these considerations remain, however,

a bit speculative, especially because the theory provides no hint of the scale at which the

flavour symmetry gets broken and, as we have seen, very large scales would suppress most,

if not all, types of signatures. In spite of these considerations, being able to reproduce

the observed pattern of Yukawa couplings from the SSB of the flavour symmetry would

certainly represent an important theoretical achievement, and we believe that the results

discussed here can provide some relevant steps in this direction.

A Effective potential for a single irreducible representation

The SU(3)L×SU(3)R invariant one-loop Coleman-Weinberg (CW) [27, 46] effective poten-

tial for a scalar field Y in the bi-fundamental representation (3,3) can be written, in the

MS scheme, as:

V = V0 + V1 (A.1)

with

V0 = λ

[
T (Y )− m2

2λ

]2

+ λAA(Y ) + µD(Y ) + µ∗D∗(Y ) (A.2)

V1 =
1

64π2

∑
i

M4
i (Y )

[
log

M2
i (Y )

Λ2
− 3

2

]
(A.3)

where all the parameters in V0 are renormalized at the scale Λ: λ = λ(Λ), m2 = m2(Λ), etc.

The field dependent mass functions M2
i (Y ) in eq. (A.3) are the eigenvalues of the matrix

[M2]ij,kl =
∂2V0

∂Yij∂Ykl

∣∣∣∣
Y

(A.4)

where Yij = {Rij , Jij} with Rij (Jij) =
√

2 Re(Im)Yij and, without loss of generality,

we can take the background constant field Y in the diagonal form eq. (2.16). Here we

are including only the contributions to the effective potential that come from scalar self-

interactions between the components of the Y field. In concrete models Y will interact with

other sectors of the theory, which will then also contribute to the loop corrected potential.

From eq. (A.4) one can compute straightforwardly the two traces

TrM2 = 8 (5λ+ λA)T − 18m2, (A.5)

TrM4 = 4T 2
[
(5λ+ λA)2 + (λ− λA)2

]
− 8T

[
2m2 (5λ+ λA)− |µ|2

]
+48λλAA+ 24 (λ+ λA) (µD + µ∗D∗) + 18m4 , (A.6)
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which give the field dependent divergent part of the CW potential, which (using a cutoff

regularization) reads:

δΛV =
Λ2

32π2
TrM2 +

log Λ2

64π2
TrM4 . (A.7)

The logarithmic part can be used to obtain the beta functions of λ, λA, m2 and µ (up to

contributions from other sectors of the theory).

Computing the finite contribution to the CW potential eq. (A.3) is instead a difficult

problem, since it requires diagonalizing the full 18 × 18 matrix eq. (A.4), namely solving

the eigenvalue equation

det(M2 · I −M2) = 0 , (A.8)

where M2 are the eigenvalues, I ≡ I18×18 and M2 is given in eq. (A.4) evaluated at

Y = 〈Y 〉 = diag(
√
ξ1,
√
ξ2,
√
ξ3).

The problem is somewhat simplified by the fact that the eigenvalues will come in

multiplets of the unbroken little group, and another simplification is obtained by looking

for a minimum around the configuration eq. (2.18), that is 〈Y 〉 = diag(
√
ξ1,
√
ξ2,
√
ξ3).10

We have managed to solve the problem by means of a ‘brute force’ procedure, that can be

resumed in the following steps:

(i) The determinant in eq. (A.8) admits a factorization of the form

det(M2 · I −M2) = P (6)(M2)×Π3
i=1Π±(M2 −M2

i±)2 , (A.9)

where P (6)(M2) is a sixth-order polynomial in M2. This factorization allows to identify

the first twelve eigenvalues (labeled with i± with i = 1, 2, 3) that come arranged into six

degenerate doublets, and are:

M2
i± = m2 +

1

2
λA ξi ±

√
F (ξi, T, A,D), (A.10)

where

m2 ≡ −m2 + 2λT, (A.11)

F (ξi, T, A,D) =
1

2

[
λA

2

(
ξi
2
− T

)
+ µ2

]
ξi + λA (λAA+ 2µD) . (A.12)

The eigenvalues ξi of the matrix of constant classical fields Y Y †, and can be explicitly

written in terms of the invariants T, A, D by solving the cubic equation:

det(ξI3×3 − Y Y †) = ξ3 − Tξ2 +Aξ −D2 = 0. (A.13)

10This is justified by the fact that after reabsorbing the phase of µ̃ in D, any imaginary part of the

determinant, corresponding in our basis to J33 6= 0, would imply deviation from cosφD = −1 and would

shift the value of VD eq. (2.15) away from its minimum. In the loop corrections, functions involving terms

like Dn + D∗n ∼ Dn cos(nφD) also appear. For even n they are extremized at φD = π/n and could

thus shift, at least in principle, the minimum from π to the doubly degenerated point φD = π ± α (with

suitable values of α), yielding a complex 〈D〉 and spontaneous breaking of CP. However, the loop coefficient

suppressing these contributions is small enough to guarantee stability of the minimum in π and that the

background value of the determinant does not acquire an imaginary part. This is of course in agreement

with ref. [26] where the necessary conditions for stepwise breaking of discrete symmetries were stated.
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(ii) Concerning the roots of P (6)(M2) in eq. (A.9), it is well known that there is no

formula in radicals to solve polynomial equations beyond quartic [47, 48]. However, on

physics grounds we know that P (6)(M2) = 0 must be solvable with real and positive

solutions. We have then approached the problem of extracting the solutions by studying

various limits with increasing steps of complexity: λA, µ = 0 (λ 6= 0); λ, µ = 0 (λA 6= 0);

µ = 0 and λ, λA 6= 0; λA = 0 and λ, µ 6= 0. This allowed us to identify some characteristic

structures appearing in the solutions.

(iii) Finally, given that P (6)(M2) = 0 is solvable, it follows that the sixth order poly-

nomial must be factorizable in several different ways into lower order polynomials like

P (3) · P (3) or P (2) · P (2) · P (2) or P (2) · P (4), which all must have real and positive solu-

tions. This implies that the structure of the solutions can be recast in the general form of

solutions of quadratic, cubic and quartic polynomial equations. When written down as the

roots of two cubic polynomials the remaining six eigenvalues read (with i, i′ = {1, 2, 3}):

M2
i = m2 +

2

3
λAT +

ri
3
P 1/3 +

1

3ri

ZP
P 1/3

,

M2
i′ = m2 +

2

3
λAT +

4

3
λT +

ri′

3
Q1/3 +

1

3ri′

ZQ

Q1/3
, (A.14)

where ri,i′ are the three roots of x3 + 1 = 0, that is, {−1, e−iπ/3, eiπ/3}, while

ZP = λ2
A

(
T 2 − 3A

)
+ 3µ2T,

ZQ = ZP + 16λ2T 2 + 4λA
[
2λ
(
9A− T 2

)
+ 3λAA

]
+ 36 (2λ+ λA)µD, (A.15)

and

P =
1

2

√
X2
P − 4Z3

P − 9λAµ
2T 2 − 9

2
λ3
AAT + λ3

AT
3

+
27

2

[
2µ3D + 2λAµ

2A+ λ3
AD

2
]
,

Q = −1

2

√
X2
Q − 4Z3

Q + 9 (4λ− λA)µ2T 2 − (4λ− λA)3 T 3

−27

2

[
32λ2µD + 32λλA (λA+ µD)− λA (4λA− 8µD + λAA)

]
T

−27

2

[
2µ3D + 16λµ2A+ 2λAµ

2A+ 27λ2
A (4λ+ λA)D2

]
, (A.16)

with

XP = 54µ3D − 18λAµ
2
(
T 2 − 3A

)
+ λ3

A

(
2T 3 − 9AT + 27D2

)
,

XQ = 2
[
64λ3T 3 − 36λµ2T 2 + 432λ2µDT + 27µ2 (8λA+ µD)

]
+6λA

[
−16λ2T 3 + 3µ2T 2 + 144λµDT + 9A

(
16λ2T + µ2

)]
+3λ2

A

(
−36λAT + 8λT 3 + 972λD2 + 72µDT

)
−λ3

A

(
27AT + 2T 3 − 729D2

)
. (A.17)

By solving the eigenvalue problem numerically, and confronting the solutions with the

corresponding numerical values of the analytic expressions for M2
i , we have verified the

correctness of the analytic formulas given in eqs. (A.10)–(A.14).
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This explicit expression for the potential can then be used to explore the change of

the tree-level vacuum induced by the radiative corrections. An alternative approach (see

e.g. [49]) that does not require solving for the exact mass eigenvalues that enter the CW

potential is to calculate the field derivatives of the potential (or derivatives with respect

to the invariants T,A,D) needed in the minimization equations using perturbation theory

around the tree-level vacuum, obtaining the derivatives of the masses directly from the

derivatives of the characteristic polynomial det(M2 · I −M2) = 0 (which can be written in

terms of the T,A,D invariants, although we do not write those expressions explicitly). We

have also verified in this manner that the one-loop corrections shift the tree-level minimum

rotating it in field space, but without changing its minimum structure, which still yields a

Yukawa coupling matrix of the form 〈Y 〉 ∝ diag(0, 0, 1).
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