
J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

Published for SISSA by Springer

Received: January 9, 2013

Accepted: January 27, 2013

Published: February 26, 2013

Features of warped geometry in presence of

Gauss-Bonnet coupling

Sayantan Choudhurya and Soumitra SenGuptab

aPhysics and Applied Mathematics Unit, Indian Statistical Institute,

203 B.T. Road, Kolkata 700 108, India
bDepartment of Theoretical Physics, Indian Association for the Cultivation of Science,

2A and 2B Raja S.C. Mullick Road, Kolkata - 700 032, India

E-mail: sayanphysicsisi@gmail.com, tpssg@iacs.res.in

Abstract: We study the role of the Gauss-Bonnet corrections and two loop higher genus

contribution to the gravity action on the Kaluza-Klien modes and their interactions for

different bulk fields which enable one to study various phenomenological implications of

string loop corrected Gauss-Bonnet modified warped geometry model in one canvas. We

have explicitly derived a phenomenological bound on the Gauss-Bonnet parameter so that

the required Planck to TeV scale hierarchy can be achieved through the warp factor in the

light of recently discovered Higgs like boson at 125GeV. Moreover due to the presence of

small perturbative Gauss-Bonnet as well as string loop corrections we have shown that the

warping solution can be obtained for both de-Sitter and anti-de-Sitter bulk which is quite

distinct from Randall-Sundrum scenario. Finally we have evaluated various interactions

among these bulk fields and determined the coupling parameters and the Kaluza-Klien

mode masses which is crucial to understand the phenomenology of a string two loop cor-

rected Einstein-Gauss-Bonnet warp geometry.

Keywords: Phenomenology of Field Theories in Higher Dimensions, Strings and branes

phenomenology

ArXiv ePrint: 1301.0918

c© SISSA 2013 doi:10.1007/JHEP02(2013)136

mailto:sayanphysicsisi@gmail.com
mailto:tpssg@iacs.res.in
http://arxiv.org/abs/1301.0918
http://dx.doi.org/10.1007/JHEP02(2013)136


J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

Contents

1 Introduction 1

2 Einstein Gauss-Bonnet warped geometry model with string loop correc-

tion in a 5-dimensional bulk spacetime 3

3 Warp factor and brane tension 4

4 Analysis of bulk Kaluza-Klien spectrum and their coupling for different

bulk fields in presence of Gauss-Bonnet coupling 10

4.1 Bulk graviton field 10

4.2 Gravitino field 16

4.3 Bulk scalar field 21

4.4 U(1) abelian gauge field 24

4.5 SU(N ) non-abelian gauge field 28

4.6 Massive fermionic field 31

4.7 Bulk Kalb-Rammond antisymmetric tensor field 36

4.8 Bulk Kalb-Rammond antisymmetric tensor field with parity violating exten-

sion 42

4.9 Bulk rank-4 antisymmetric tensor field 47

5 Bulk-brane interaction in presence of Gauss-Bonnet coupling 49

5.1 Fermion interaction 49

5.1.1 Brane standard model fields with bulk gravitons 49

5.1.2 Brane fermions with bulk Kalb-Rammond field 50

5.1.3 Brane fermions with bulk rank-4 antisymmetric tensor field 52

5.1.4 Bulk fermions with bulk dilatons 52

5.2 Self interaction of bulk scalar field 53

5.3 Bulk gravidilatonic interaction 54

6 Summary and outlook 55

1 Introduction

Warp geometry models have been extensively studied in recent years from both theoretical

and phenomenological perspectives. The Randall Sundrum braneworld model (RS) [1, 2],

one of the pioneering warped geometry model, was proposed to resolve the long standing

problem in connection with the fine tuning of the mass of Higgs (also known as gauge

hierarchy or naturalness problem) in an otherwise successful Standard Model of elementary

– 1 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

particles. RS model has been studied extensively both in the context of collider physics [3–

51] as well as cosmological physics [52–68]. In particle phenomenology, one of the important

experimental signatures of such extra dimensional models is the search of the Kaluza-Klien

(KK) gravitons in pp collision leading to dilepton decays in the Large Hadron Collider

(LHC) [69]. The couplings of the zero mode as well as the higher KK modes are determined

by assuming the standard model fields to be confined on a 3-brane located at an orbifold

fixed point. Such a picture is rooted in a string-inspired model where the standard model

fields being open string-excitations are localized on a 3-brane. This led to the braneworld

description of extra dimensional models with gravity only propagating in the bulk as a

closed string excitation. But apart from graviton, string theory admits of various higher

rank antisymmetric tensor excitations as closed string modes which can also propagate as a

bulk field. It was found that remarkably such fields are heavily suppressed on the brane in

such warped geometry model and thus offers a possible explanation of invisibility of these

fields in current experiments [70–73]. Subsequently going beyond the stringy description,

the implications of the presence of standard model fields in the bulk were also studied in

different variants of warped braneworld models. All these models in general assumed the

3-brane hypersurface to be flat. These models were subsequently generalized to include

non-flat branes [74–76] and also braneworld with larger number of extra dimensions [77–84].

From a theoretical standpoint, warped geometry model has its underlying motivation

in the backdrop of string theory where the throat geometry (Klevanov-Strassler) [85] so-

lution exhibits warping character. However the Randall-Sundrum models captures the

essence of such warped geometry models in a simple way and also drew the attention in

the context of AdS/CFT correspondence as the Randall-Sundrum model is defined on a

AdS5 slice [86–94].

While the Randall-Sundrum model starts with Einstein’s gravity in AdS5 manifold in

five dimensional space-time, there have been efforts to include the higher curvature effects

in the nature of the warped geometry [56, 95–100]. Such corrections originate naturally in

string theory where power expansion in terms of inverse string tension yields the higher

order corrections to pure Einstein’s gravity [101–106]. Supergravity, as the low energy

limit of heterotic string theory yields the Gauss-Bonnet (GB) term as the leading order

correction [56, 100, 107] and therefore became an active area of interest as a modified

theory of gravity. Various cosmological implications of GB correction have been studied

extensively in the context of slow roll inflationary models [56, 100, 108–111], initial singu-

larities [112–117], tensor perturbations [118–122] etc. It has been shown that the positivity

or negativity of the GB couplings as well as it’s magnitude can be strongly constrained

from the WMAP9 [123] and PLANCK [124] data. In a different context like black hole

Physics it has been shown that GB correction suppresses graviton emission [125–132] and

therefore the black hole becomes more stable [133–140]. Moreover the correction to black

hole entropy due to GB term has also been an active area of interest [141–150]. Thus the

Gauss-Bonnet gravity as a modified gravity theory has been studied exhaustively in differ-

ent scenarios [151–160] as a first step to include the higher curvature effects over Einstein’s

gravity. In addition to this string theory admits of higher loop corrections [102, 161–164]

which is a further modification on Einstein-Gauss-Bonnet correction on Einstein’s gravity.
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In this work we investigate the role of the GB corrections and two loop higher genus

contribution to the gravity action on the KK- modes and their interactions for different

bulk fields which would enable one to study various phenomenological implications of string

loop corrected Gauss-Bonnet modified warped geometry model in one canvas.

Considering the GB correction as a small perturbative correction over the original

Einstein’s action, we first derive the modified warp factor and brane tensions in a Z2

orbifolded model. We show that though the warp factor looks similar to RS model but

the warp factor parameter which in RS model depends on the bulk cosmological constant

now have solutions in two branches which are functions of the GB parameter α(5), string

loop correction parameter A1 and also depends on the extra dimensional coordinate. We

determine a bound on the GB parameter so that the required Planck to TeV scale hierarchy

can be achieved through the warp factor in the light of recently discovered Higgs like boson

at 125GeV. Moreover due to the presence of GB as well as string loop corrections, here we

show that the warping solution can be obtained for both de-Sitter and anti-de-Sitter bulk.

This feature is quite distinct from RS-scenario which is defined only on an AdS5 bulk in

order to achieve a warped solution. After a detailed analysis of the character of the solutions

of the warp factor and brane tensions we proceed to evaluate the zero mode and KK mode

excitations of bulk graviton along with the 5-dimensional supergravity extension with bulk

gravitino. In both the cases we find the profile of the bulk wave functions. We then extend

our calculations with bulk scalar as well as bulk gauge field by addressing both abelian

and non-abelian cases including dilaton coupling. Among other closed string modes, string

theory admits of various higher rank antisymmetric tensor fields which are also possible

candidates for bulk fields. We study the KK-modes and the profiles of the bulk wave

functions for various antisymmetric tensor fields including the possible dilaton and axion

couplings. It is followed by a detailed analysis of bulk fermions where the profile of both

left and right chiral modes are determined in presence of the GB extended gravity model.

We then evaluate various interactions among these bulk fields and determine the coupling

parameters which is crucial to understand the phenomenology of a string two loop corrected

Einstein-Gauss-Bonnet warp geometry. Finally we conclude by summarizing our results.

2 Einstein Gauss-Bonnet warped geometry model with string loop cor-

rection in a 5-dimensional bulk spacetime

We start our discussion with a warped model on the topological bulk manifold

M5 := dS5/AdS5 ⊗ S5. Consider the Ads5 slice in a two brane framework described

by the following action:

S(5) = SEH + SGB + Sloop + SBulk + SBrane , (2.1)

where the contribution from the gravity sector is given by the Einstein Hilbert, Gauss-

Bonnet and string two-loop correction [102] coming from the interaction with dilatonic
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degrees of freedom via the Conformal Field Theory (CFT) in the bulk geometry such that,

SEH =
M3

(5)

2

∫

d5x
√−g(5)R(5), (2.2)

SGB =
α(5)M(5)

2

∫

d5x
√−g(5)

[

RABCD(5)R
(5)
ABCD − 4RAB(5)R

(5)
AB +R2

(5)

]

, (2.3)

Sloop = −
α(5)A1M(5)

2

∫

d5x
√−g(5)eθ1φ

[

RABCD(5)R
(5)
ABCD − 4RAB(5)R

(5)
AB +R2

(5)

]

(2.4)

with A,B,C,D = 0, 1, 2, 3, 4(Extra Dimension) and a conformal two-loop coupling con-

stant A1. Other contributions come from bulk and two brane sector which are given as:

SBulk =

∫

d5x
√−g(5)

[

LfieldBulk − 2Λ(5)e
θ2φ
]

, (2.5)

SBrane =

∫

d5x
2
∑

i=1

√

−g(i)(5)

[

Lfield(i) − T(i)eθ2φ
]

δ(y − y(i)). (2.6)

The LfieldBulk represents the bulk field Lagrangian which may include different spin fields such

as U(1) abelian gauge fields, SU(N ) non-abelian gauge fields, spin 1/2 fermions, dila-

ton, pure bulk scalar, rank-3 (Kalb-Rammond) and rank-4 antisymmetric tensor fields.

Throughout the article we use α(5) as Gauss-Bonnet coupling, A1 as two-loop confor-

mal coupling and (θ1, θ2) for dilatonic coupling. In equation (2.6) the brane index

i = (1[hidden brane], 2[visible brane]) and Lfield(i) represents brane Lagrangian which con-

tains brane fields. The bulk cosmological constant Λ(5) couples to the dilatonic degrees

of freedom.

The background metric describing slice of the dS5/AdS5 warped geometry is given

by [1],

ds2(5) = gABdx
AdxB = e−2A(y)ηαβdx

αdxβ + r2cdy
2, (2.7)

where rc = e−B0(∼ O(1)) is the dimensionless quantity in the Planckian unit representing

the compactification radius of extra dimension in a S1

Z2
orbifolding and it is expressed in

terms of the stabilized radion B0. Most importantly the compactification radius is assumed

to be independent of four dimensional coordinates (by Poincare invariance) and extra di-

mensional coordinate (fifth dimension). Here the orbifold points are yi = [0, π] and pereodic

boundary condition is imposed in the closed interval −π ≤ y ≤ π. After orbifolding, the size
of the extra dimensional interval is πrc. Moreover in the above metric ansatz e−2A(y) repre-

sents the warp factor and the Minkowski flat metric ηαβ = (−1,+1,+1,+1). This will lead

to dimensional reduction of the manifold dS5 →
(

M1,3 ⊗ S1

Z2

)

or AdS5 →
(

M1,3 ⊗ S1

Z2

)

depending on the signature of the bulk cosmological constant.

3 Warp factor and brane tension

Varying the action stated in equation (2.1) and neglecting the back reaction of all the

other brane/bulk fields except gravity, the five dimensional Bulk Einstein’s equation turns
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out to be

√−g(5)
[

G
(5)
AB +

α(5)

M2
(5)

(

1−A1e
θ1φ
)

H
(5)
AB

]

= − e
θ2φ

M3
(5)

[

Λ(5)

√−g(5)g(5)AB +
2
∑

i=1

T(i)

√

−g(i)(5)g
(i)
αβδ

α
Aδ

β
Bδ(y − y(i))

]

(3.1)

where the five dimensional Einstein’s tensor and the Gauss-Bonnet tensor [56, 100] is

given by

G
(5)
AB =

[

R
(5)
AB −

1

2
g
(5)
ABR(5)

]

, (3.2)

H
(5)
AB = 2R

(5)
ACDER

CDE(5)
B − 4R

(5)
ACBDR

CD(5) − 4R
(5)
ACR

C(5)
B + 2R(5)R

(5)
AB

− 1

2
g
(5)
AB

(

RABCD(5)R
(5)
ABCD − 4RAB(5)R

(5)
AB +R2

(5)

)

. (3.3)

Similarly varying equation (2.1) with respect to the dilaton field the gravidilaton equation

of motion turns out to be

θ2
M2

(5)

2
∑

i=1

T(i)

√

−g(i)(5)e
θ2φδ(y − y(i))

=
√−g(5)

{

α(5)A1θ1

[

RABCD(5)R
(5)
ABCD − 4RAB(5)R

(5)
AB +R2

(5)

]

+ 2
Λ(5)

M2
(5)

θ2e
θ2φ +

✷(5)φ

M(5)

}

(3.4)

where the five dimensional D’Alembertian operator is defined as ✷(5)φ =
1√
−g(5)

∂A

(

√−g(5)∂Aφ
)

. Now from the equation (3.1) (A = α,B = β) component of

the Einstein’s equation can be written as:

1
r2c

{

6
(

dA(y)
dy

)2
− 3d2A(y)

dy2
− 8α(5)

M2
(5)

(

1−A1e
θ1φ
)

[

(

d2A(y)
dy2

)2
− 2d2A(y)

dy2

(

dA(y)
dy

)2
+
(

dA(y)
dy

)4
]}

+
4α(5)

r4cM
2
(5)

(

1−A1e
θ1φ
)

{

19d2A(y)
dy2

(

dA(y)
dy

)2
− 5

(

d2A(y)
dy2

)2
− 14

(

dA(y)
dy

)4
}

= − eθ2φ

M3
(5)

[

Λ(5) +
1
rc

(

T(1)δ(y) + T(2)δ(y − π)
)

]

(3.5)

and from (A = 4, B = 4) component we get

1

r2c

{

6

(

dA(y)

dy

)2

−
208α(5)

M2
(5)

(

1−A1e
θ1φ
)

(

dA(y)

dy

)4
}

+
144α(5)

r4cM
2
(5)

(

1−A1e
θ1φ
)

(

dA(y)

dy

)4

= −
Λ(5)e

θ2φ

M3
(5)

. (3.6)

To solve equation (3.5) and equation (3.6) we assume that the dilaton is weakly coupled

to gravity (weak coupling θ1) and the bulk cosmological constant (weak coupling θ2) since
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the Gauss-Bonnet coupling is an outcome of perturbative correction to gravity at the

quadratic order. In this context dilaton is function of extra dimension only in the bulk.

Using this fact, the gravidilaton equation stated in equation (3.4) is simplified to the

following expression:

α(5)A1θ1

[

− 16

r4c

{

(

d2A(y)

dy2

)

− 4

(

dA(y)

dy

)2
}2

+
16

r2c

{

(

d2A(y)

dy2

)

−
(

dA(y)

dy

)2
}2

+
16

r4c

{

2

(

d2A(y)

dy2

)

− 5

(

dA(y)

dy

)2
}2 ]

+
1

M(5)

d

dy

(

e−4A(y)dφ

dy

)

+
θ2e

θ2φ

M2
(5)

[

2Λ(5) −
1

rc

(

T(1)δ(y) + T(2)δ(y − π)
)

]

= 0

(3.7)

Now including the well known Z2 orbifolding symmetry at the leading order of θ1,

θ2 and α(5) we get

φ(y) =
∑2

p=1

(

|y|
θ
5
2
p

+ 1
θp

)

(3.8)

with
{

θp
θq
→ 1∀(p,q)

}

and the corresponding warp factor turns out to be

A(y) := A±(y) = k±rc|y| (3.9)

where

k± =

√

√

√

√

3M2
(5)

16α(5)(1−A1eθ1φ)

{

1± 1

3rcM
5
2
(5)

√

[

9M5
(5)

r2c
+
(

208− 144
r2c

)

α(5) (1−A1eθ1φ) Λ(5)eθ2φ
]

}

(3.10)

along with a stringent constraint

α(5)Λ(5) ≥ −





9M5
(5)

r2c

(

208− 144

r2c

)

(1−A1eθ1φ)eθ2φ



 . (3.11)

It may be observed that though the warp factor looks similar to RS warp factor [1]

but the parameter k is now defined over two different branches k+ and k− and unlike RS

scenario it is dependent on the extra dimensional coordinate y. It can be easily observed

that after taking (θ1, θ2, A1, α(5))→ 0 limit k− branch asymptotically reaches to Randall-

Sundrum limit. On the contrary the k+ branch asymptotically diverges.

The brane tensions for the visible and hidden brane turn out to be

T∓
hid := T(1) = ∓

{

Λ(5)rc + 6k2±M
3
(5)rce

−θ2φ

[

1− 4α(5)(1−A1eθ1φ)
3M2

(5)

k2±
(

r2c + 7
)

]}

,

T±
vis := T(2) = ±

{

Λ(5)rc + 6k2±M
3
(5)rce

−θ2φ

[

1− 4α(5)(1−A1eθ1φ)
3M2

(5)

k2±
(

r2c + 7
)

]}

.
(3.12)
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Figure 1. Variation of k± vs Gauss-Bonnet coupling α(5) for (a) Λ(5) > 0 and A1 > 0, (b) Λ(5) > 0

and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this context B0 = 0.002,

rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04.

Furthermore the modified four dimensional effective Planck mass in presence of Gauss-

Bonnet perturbative coupling is given by

MPL :=M(4) =

√

M3
(5)rc

∫ +π

−π
dy e−2k±rc|y|

=
M

3
2

√

k±

√

[1− e−2k±rcπ]. (3.13)

In figure 1 we have plotted the behavior of characteristic parameter k± with respect to

Gauss-Bonnet coupling α(5) for all possible signatures of five dimensional bulk cosmological

constant Λ(5) and two-loop conformal coupling coefficient A1. For Λ(5) > 0 the k− solution

touches the α(5) axis at zero for α(5) < 0 in figure 1(a) and figure 1(b) which is physically

redundant. The only features that are accepted Λ(5) < 0 situation where the k− solution is

– 7 –
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α(5)(> 0) α(5)(< 0) Λ(5) A1 θ1 θ2 rc k+rc k−rc A+(π) A−(π)

(for k+ branch) (for k+ branch) (in M5
PL) (in M−1

PL) (in M−1
PL) (in M−1

PL)

0.00460 - 0.00510 (-0.00160) - (-0.00170) 1 0.04 0.05 0.04 0.996 11.46 - 12.10 11.52 - 12.10 36.0 - 38.0 36.2 - 38.0

0.00090 - 0.00100 (-0.00032) - (-0.00034) 1 -0.04 0.05 0.04 0.996 11.68 - 12.38 11.68 - 12.19 36.7 - 38.9 36.7 - 38.3

0.00310 - 0.00340 (-0.00220) - (-0.00260) -1 0.04 0.05 0.04 0.996 11.49 - 12.19 11.49 - 12.16 36.1 - 38.3 36.1 - 38.2

0.00064 - 0.00070 (-0.00045) - (-0.00050) -1 -0.04 0.05 0.04 0.996 11.52 - 12.13 11.71 - 12.38 36.2 - 38.1 36.8 - 38.9

Table 1. Allowed parameter space for k+ and k− branch to produce Planck to TeV scale warping.

asymptotic in nature for α(5) < 0 are clearly exhibited in figure 1(c) and figure 1(d). It is

evident from the figure 1(a) and figure 1(b) is that the k+ solution shows the asymptotic

behavior for Λ(5) > 0, α(5) > 0 and non-zero for rest of the two situations. It is important

to mention here that for all situations in figure 1 α(5) → 0 shows the well known Randal-

Sundrum feature for k− branch (k− → kRS). On the other hand in the same limit k+ branch

asymptotically diverges. The overall parameter space satisfies the criteria k±rc ≃ 12 and

A±(±π) ≃ 36, which is a necessary requirement to solve the well known gauge hierarchy

problem in the two brane set up are explicitly mentioned in table 1.

It is interesting to observe from the figures 1(a)–1(d) that both k± decreases with

increase in the GB parameter α(5) which would cause a fall in the warping through the

warp factor unless the value of the modulus rc is changed accordingly. So if one wants to

resolve the gauge hierarchy problem then a little hierarchy will enter through rc (which is

now greater than the RS value) due to the non-vanishing value of the GB coupling α(5).

We shall see it’s implications in the subsequent sections.

In figure 2 explicitly shows the behavior of positive warp function A+(y) with respect

to the coordinate characterizing the extra dimension y for all possible signatures of five

dimensional bulk cosmological constant Λ(5) and two-loop conformal coupling coefficient

A1. In this context we use three positive fixed values of the Gauss-Bonnet coupling α(5)

to explain the behavior of A+(y). It is important to mention here that that the point

y = 0 satisfies the no warping condition which is evident from equation (3.9). If we

tune the numerical value of Gauss-Bonnet coupling to a small value then A+(±π) ≃ 36

which can easily solve the well known hierarchy problem. As we increase the strength of

the coupling then we see that A+(±π) < 36 and it is no longer possible to address the

gauge hierarchy problem due to Gauss-Bonnet correction. This feature directly sets the

constraint on Gauss-Bonnet coupling strength appearing as a perturbative correction on

Einstein-Hillbert term in the gravity action.

Similarly figure 3 explicitly shows the behavior of negative warp function A−(y) with
respect to the coordinate characterizing the extra dimension y for all possible signatures

of five dimensional bulk cosmological constant Λ(5) and two-loop conformal coupling coef-

ficient A1. The graphical behavior of negative warp function is significantly different from

the positive one. But it is clear from the figure 2 and figure 3 that both the positive and

negative bulk cosmological constant can solve the hierarchy problem in the perturbative

regime. In this connection the most significant result comes from figure 2 and figure 3 the

tiny parameter space between the red and green colored curve corresponds to the recently

observed Higgs like scalar at 125GeV.
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Figure 2. Variation of warp function A+ vs extra dimensional coordinate y for (a) Λ(5) > 0 and

A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this

context B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04 with three different sets of

Gauss-Bonnet coupling coefficient α(5). The region between red and green colored line corresponds

to the recently discovered Higgs like boson at 125GeV.

The graphical behavior of visible brane tension with respect to the Gauss-Bonnet

Coupling for all signatures of five dimensional bulk cosmological constant Λ(5) and two-

loop conformal coupling co-efficient A1 is explicitly shown in figure 4. In the α(5) → 0 limit

visible brane tension asymptotically follows Randall-Sundrum feature. It is important to

mention here that in figure 4 we have maintained the restriction for k+ branch α(5) > 0

and for k− branch α(5) < 0 which is strictly valid throughout our article. Consequently the

visible brane tension is always negative for negative Gauss-Bonnet coupling followed by the

k+ branch and positive signature of the Gauss-Bonnet coupling followed by the k− branch.
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Figure 3. Variation of warp function A− vs extra dimensional coordinate y for(a) Λ(5) > 0 and

A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this

context B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04 with four different sets of

Gauss-Bonnet coupling coefficient α(5). The region between red and green colored line corresponds

to the recently discovered Higgs like boson at 125GeV.

4 Analysis of bulk Kaluza-Klien spectrum and their coupling for differ-

ent bulk fields in presence of Gauss-Bonnet coupling

In this section we elaborately discuss the technical details of the dimensional reduction

technique of the bulk fields appearing in the bulk action via Kaluza-Klien spectrum analysis

in presence of perturbative Gauss-Bonnet coupling in modified Randall-Sundrum scenario.

4.1 Bulk graviton field

In this context we are interested to find out the Kaluza-Klien spectrum of spin-2 bulk

graviton field. To explore the characteristic features of bulk graviton we rescale the four
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Figure 4. Variation of visible brane tension Tvis vs Gauss-Bonnet coupling α(5) for (a) Λ(5) > 0

and A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In

this context we use B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04.

dimensional counterpart of the five dimensional Randall-Sundrum metric stated in equa-

tion (2.7) in presence of perturbative Gauss-Bonnet coupling α(5). This induces the tensor

perturbation in the gravity sector via the fluctuation through graviton degrees of freedom.

Such spin-2 field content is the essential ingredient in the context of phenomenology of extra

dimension studied from Randall-Sundrum two brane scenario. This picture is constructed

out of the underlying assumption that gravity is the only candidate which propagates in

the bulk via the bulk graviton. In this section we will concentrate solely on the gravi-

ton degrees of freedom. After rescaling the old four dimensional counterpart of the five

dimensional metric can be recast as

gαβ = e−2A±(y)
[

ηαβ +K(5)hαβ(x, y)
]

(4.1)

where K(5) := 2

M
3
2
(5)

represents the expansion parameter for tensor perturbation. Here in

the context of perturbative graviton field theory we also use the fact that such expansion

– 11 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

parameter is much smaller than unity. Consequently the total resulting metric for the

tensor perturbation is given by

ds2(5);new = e−2A±(y)
[

ηαβ +K(5)hαβ(x, y)
]

dxαdxβ + r2cdy
2. (4.2)

Plugging the new metric stated in equation (4.2) in the Einstein-Hilbert action via five
dimensional Ricci scalar the five dimensional perturbative action for graviton can be writ-
ten as

SEH =
1

2

∫

d4x

∫ +π

−π

dy rce
−4A±(y)

{

1+K(5) Tr(hαβ(x, y)) +
K2

(5)

2

[(

Tr(hαβ(x, y))

)2

− Tr(h2
αβ(x, y))

]

+K3
(5)h

[α
α (x, y)hβ

β(x, y)h
γ]
γ (x, y)

}[

1

r2c

(

− 1

2

−→
Dy

{

e2A±(y)

(

ηαβ

+K(5)h
αβ(x, y)

)[

ηβα
−→
Dy

(

e−4A±(y)

)

+K(5)
−→
Dy

(

e−4A±(y)hβα(x, y)

)]}

− 1

4
e4A±(y)

(

ηαλ+K(5)h
αλ(x, y)

)(

ηβρ+K(5)h
βρ(x, y)

)

×
{

ηλβ
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hλβ(x, y)

)}{

ηρα
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hρα(x, y)

)})

+ e2A±(y)

(

ηαβ+K(5)h
αβ(x, y)

){

− 1

2r2c

{

ηβα
−→
D2

y

(

e−2A±(y)

)

+K(5)
−→
D2

y

(

e−2A±(y)hβα(x, y)

)}

+
K(5)

2
∂γ

{(

ηγλ+K(5)h
γλ(x, y)

)[

∂βhαλ(x, y)

+ ∂αhλβ(x, y)− ∂λhαβ(x, y)

]}

− K(5)

2
∂β

{(

ηγλ+K(5)h
γλ(x, y)

)

×
[

∂γhαλ(x, y) + ∂αhλγ(x, y)− ∂λhαγ(x, y)

]}

+
e2A±(y)

4r2c

(

ηλα
′

+K(5)h
λα

′

(x, y)

)

×
{

ηαλ
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hαλ(x, y)

)}{

ηβα′

−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hβα
′ (x, y)

)}

− e2A±(y)

4r2c

(

ηλδ+K(5)h
λδ(x, y)

){

ηβλ
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hβλ(x, y)

)}{

ηδα
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hδα(x, y)

)}

− e2A±(y)

4r2c

(

ηλδ+K(5)h
λδ(x, y)

){

ηδβ
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hδβ(x, y)

)}

×
{

ηλα
−→
Dy

(

e−2A±(y)

)

+K(5)
−→
Dy

(

e−2A±(y)hλα(x, y)

)}

−
K2

(5)

4

(

ηλδ+K(5)h
λδ(x, y)

)

×
(

ηηρ+K(5)h
ηρ(x, y)

)[

∂βhηδ(x, y) + ∂ηhδβ(x, y)− ∂δhηβ(x, y)

]

×
[

∂λhαρ(x, y) + ∂αhρλ(x, y)− ∂ρhλα(x, y)

]

+
K2

(5)

4

(

ηλδ+K(5)h
λδ(x, y)

)

×
(

ηηρ+K(5)h
ηρ(x, y)

)[

∂βhηδ(x, y) + ∂ηhδβ(x, y)− ∂δhηβ(x, y)

]

×
[

∂λhαρ(x, y) + ∂αhρλ(x, y)− ∂ρhλα(x, y)

]}]

(4.3)
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where we introduce a new symbol
−→Dy := d

dy . Let the Kaluza-Klien expansion of the spin-2

graviton field is given by

hαβ(x, y) =
∑∞

n=0 h
(n)
αβ (x)

χ
(n)
±;G(y)√

rc
. (4.4)

Now plugging equation (4.4) in equation (4.3) and including the transverse and traceless

criteria of the graviton given by

hµ (n)
µ = 0 = ηαβh

(n)
αβ ,

∂µh(n)
µν = 0 = ηαβ∂αh

(n)
βγ

(4.5)

the leading order contribution to the effective four dimensional action reduces to the fol-

lowing expression:

SEH ≃ M3
(5)

K2
(5)

2

∫

d4x
∑∞

n=0 h
αβ (n)(x)h

(n)
αβ (x)

(

mG
n

)2

±
(4.6)

In this context we impose the following orthonormalization condition of extra dimen-

sion dependent wave functions

∫ +π
−π dy e

−2A±(y) χ
(m)
±;G(y) χ

(n)
±;G(y) = δmn (4.7)

The mass term of the graviton field is defined through the following differential equation as

− 1
r2c

−→Dy

(

e−4A±(y)−→Dyχ
(n)
±;G(y)

)

= e−2A±(y)
(

mG
n

)2

± χ
(n)
±;G(y). (4.8)

Introducing two new quantities z±;G
n :=

(mG
n )±
k±

eA±(y) and fn±;G := e−2A±(y)χ
(n)
±;G the equa-

tion (4.8) can be recast in terms of Bessel differential equation of order two as
[

(

z±;G
n

)2−→
D2

z±;G
n

+ z±;G
n
−→D

z±;G
n

+

{

(

z±;G
n

)2
− 4

}]

fn±;G = 0 (4.9)

The analytical solution of this equation turns out to be

χ
(n)
±;G(y) = e2A±(y)

N±;G
(n)

[

J2(z±;G
n ) + α±;G

n Y2(z±;G
n )

]

. (4.10)

Here N±;G
(n) is the normalization constant of the extra dimension dependent wave func-

tion and α±;G
n is the integration constant to be determined from the orthonormalization

condition and the continuity conditions at the orbifold fixed point. Self-adjointness and

hermiticity of the differential operator appearing in equation (4.9) demands that
−→Dyχ

(n)
±;G(y)

is continuous at the orbifold fixed points yi = 0, π. Consequently we have

−→Dyχ
(n)
±;G|yi=0 = 0 =⇒ α±;G

n =

[

(mG
n )±
k±
J ′

2

(

(mG
n )±
k±

)

+ J2
(

(mG
n )±
k±

)]

[

2Y2
(

(mG
n )

±

k±

)

+
(mG

n )
±

k±
Y ′

2

(

(mG
n )

±

k±

)] . (4.11)

−→Dyχ
(n)
±;G|yi=π = 0 =⇒ α±;G

n =

[

J2
(

x±;G
n

)

+ x±;G
n J ′

2

(

x±;G
n

)]

[

x±;G
n Y ′

2

(

x±;G
n

)

+ Y2
(

x±;G
n

)] (4.12)
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where z±;G
n (π) := x±;G

n =
(mG

n )±
k±

ek±rcπ. For ek±rcπ ≫ 1,
(mG

n )±
k±

≪ 1 the mass spectrum

for the graviton field is expected to be of the order of TeV scale i.e.

α±;G
n ≃ −π

4

(

x±;G
n

)2
e−2k±rcπ. (4.13)

Now using equation (4.13) and equation (4.11) we get

π

4

(

x±;G
n

)2
e−2k±rcπ =

[

J2
(

x±;G
n

)

+ x±;G
n J ′

2

(

x±;G
n

)]

[

Y2
(

x±;G
n

)

+ x±;G
n Y ′

2

(

x±;G
n

)]

⇒ J1
(

x±;G
n

)

≃ −π
4

(

x±;G
n

)2
e−2k±rcπY1

(

x±;G
n

)

≈ 0 (4.14)

which is a transcendental equation of x±;G
n and the roots of this equation gives the graviton

field mass spectrum
(

mG
n

)

± in presence of perturbative Gauss-Bonnet coupling α(5). This

leads to approximately the various Kaluza-Klien mode masses for the graviton field as,

(

mG
n

)

± ≈
(

n+ 1
2 ∓ 1

4

)

πk±e−k±rcπ. (4.15)

This shows that for both A+ and A−, unless the Gauss-Bonnet coupling α(5) is suffi-

ciently small i.e. much much smaller than 0.005, the warp factor suppression will not be

sufficient to produce warping of the oder of 10−16, and hence, then graviton KK-modes

will be much higher than the TeV scale and beyond the scope of detection in LHC. The

graphical behavior of KK mass spectrum of graviton mode in the first excited state with

respect to the Gauss-Bonnet coupling α(5) is explicitly shown in figure 5 for all possible sig-

natures of cosmological constant Λ(5) and the conformal factor A1 appearing in the string

loop correction for the two branches of warping solution.

Now using equation (4.7) the normalization constant for n 6= 0 mode reduces to the

following expression

N±;G
(n) = ek±rcπ√

k±rc
√

{

[

J2
(

x±;G
n

)

+α±;G
n Y2

(

x±;G
n

)]2

−e−2k±rc

[

J2
(

x±;G
n e−k±rcπ

)

+α±;G
n Y2

(

x±;G
n e−k±rcπ

)]2
}

.

(4.16)

For ek±rcπ ≫ 1,
(mG

n )±
k±

≪ 1 the integration constant α±;G
n ≪ 1. Consequently Y2(z±;G

n )

is neglected compared to J2(z±;G
n ) in equation (4.10) and then the normalization constant

for n 6= 0 mode turns out to be

N±;G
(n) =

ek±rcπ

√

k±rc
J2
(

x±;G
n

)

. (4.17)

Consequently the extra dimensional dependent wave function for n 6= 0 is,

χ
(n)
±;G(y) =

√

k±rc e2A±(y)

ek±rcπ

J2(z±;G
n )

J2(x±;G
n )

. (4.18)
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Figure 5. Variation of Kaluza Klien graviton mass (mG
1 )± vs Gauss-Bonnet coupling α(5) in the

first excited state for (a) Λ(5) > 0 and A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0

and (d) Λ(5) < 0 and A1 < 0. In this context we use B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04,

θ1 = 0.05 and θ2 = 0.04.

For massless n = 0 mode the solution of the equation (4.8) is

χ
(0)
±;G =

C1

4k±rc
e4A±(y) + C2. (4.19)

Here C1 and C2 are arbitrary integration constants. Now applying the boundary condition

through the continuity of the wave function we get C1 = 0. As a result the zero mode

solution turns out to be χ
(0)
±;φ = C2. Now applying the normalization condition the ground

state massless zero mode wave function turns out to be

χ
(0)
±;G = C2 =

√

k±rc. (4.20)

The ground state obtained for graviton for our set up is exactly same as the massless

graviton obtained in the context of Randall-Sundrum scenario.
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4.2 Gravitino field

We now address the supersymmetric version of the above model in a 5-dimensional super-

gravity framework then the onshell supergravity multiplet consists of the vierbein (V α
M ),

the graviphoton degrees of freedom (BM ) and two simplectic-Majorana gravitinos
(

Ψ
(j)
sG

)

P

with i = 1, 2. In a dS(5)/AdS(5) slice the five dimensional action for the spin 3
2 supersym-

metric gravitino field in the context of N = 1 supergravity can be written as [165–167],

SΨsG
= −

iM3
(5)

2

∫

d5x Det(V)
2
∑

i=1

2
∑

j=1

[

(

Ψ̄
(i)
sG

)

M
ΥMNP←→D sG

N

(

Ψ
(j)
sG

)

P
δij

− 3

2

−→
DyA±(y)

(

Ψ̄
(i)
sG

)

M
ΥMNΣij

3

(

Ψ
(j)
sG

)

P

]

(4.21)

where the index i and j label the fundamental representation of the SU(2)R automorphism

group of the N = 1 supersymmetry algebra in five dimensions. In this context

ΥMNP :=
1

3!
γ[M ⊗ γN ⊗ γP ] =

∑

p=permutaion

(−1)p
3!

γM ⊗ γN ⊗ γP ,

ΥMN :=
1

2!
γ[M ⊗ γN ] =

∑

p=permutaion

(−1)p
2!

γM ⊗ γN
(4.22)

are the antisymmetrized tensor product of five dimensional gamma matrices. Without

loosing any physical information here we choose a physical gauge in which the graviphoton

degrees of freedom vanishes. The gravitino supersymmetry transformation is given by

δ
(

Ψ
(i)
sG

)

P
(x, y) =

2
∑

j=1

(−→
DsG

N δij +
1

2

−→
DyA±(y)γNΣij

3

)

ϑj(x, y) (4.23)

where Σ3 = diag(1,−1) and ϑi is the symplectic-Majorana spinor which represents a pa-

rameter of supergravity transformation. We define the Z2 transformation of the symplectic-

Majorana spinor as

ϑi(x,y)
Z2−→ ϑi(x,−y) :=

2
∑

j=1

Σij
3γ5ϑ

j(y) (4.24)

for which local supersymmetry is intact due to δ
(

Ψ
(i)
sG

)

P
= 0 subject to the Killing

condition

−→
DsG

N ϑi(x, y) = −1

2

−→
DyA±(y)

2
∑

j=1

γNΣij
3 ϑ

j(x, y) (4.25)

which is always valid in non compact AdS(5) bulk space. But after imposing S(1)

Z2
orbifold

symmetry the surface term satisfies an extra condition γ5ϑ
i =

∑2
j=1 σ

ij
3 ϑ

j which implies

that after orbifold compactification we have N=1 supergravity theory instead of N=2

supergravity.
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The Kaluza-Klien expansion of the five dimensional gravitino
(

Ψ
(j)
sG

)

P
and five di-

mensional supergravity parameter (ϑi) are given by

(ΨL,R;sG)µ (x, y) =
∞
∑

n=0

(

Ψ
(n)
L,R;sG

)

µ
(x)

χ
(n);L,R
±;sG (y)
√
rc

(4.26)

(ΨL,R;sG)4 (x, y) =
∞
∑

n=0

(

Ψ
(n)
L,R;sG

)

4
(x)

χ
(n);4 L,R
±;sG (y)
√
rc

(4.27)

ϑL,R(x, y) =
∞
∑

n=0

ϑ
(n)
L,R(x)

χ
(n);L,R
±;sG (y)
√
rc

(4.28)

where henceforth we have omitted the SU(2)R index i since we only consider i = 1. The

remaining i = 2 component is obtained by imposing symplectic-Majorana criteria. Here

L,R stands for left and right chiral five dimensional gravitino which is responsible for

chiral flipping along with a overall signature under the action of the chiral matrix γ5 i.e.

γ5 (ΨL,R;sG) = γ5PL,R (ΨsG) = ± (ΨR,L;sG). Throughout our analysis including the

contribution from Gauss-Bonnet coupling we use
−→
DyA±(y) = k±rcsgn(y) and

−→
D2

yA±(y) =

2k±rc
−→
Dysgn(y) = 2k±rc [δ(y)− δ(y − π)]. Consequently the supergravity transformation

for i = 1 turns out to be

δ (ΨsG)µ (x, y) =
(−→
∂ µ + k±rcsgn(y)γµPL

)

ϑ(x, y), (4.29)

δ (ΨsG)4 (x, y) =

(−→
∂ 4 +

1

2
k±rcsgn(y)γ5

)

ϑ(x, y). (4.30)

After substituting the Kaluza-Klien expansion stated in equation (4.26) and equa-

tion (4.28) in equation (4.29) the supergravity transformation for nth gravitino mode re-

duces to the following expressions:

δ
(

Ψ
(n)
L;sG

)

µ
(x) =

∞
∑

k=0

(

δnk
−→
∂ µϑ

(k)
R (x) + γ̃µd

(nk)ϑ
(k)
L (x)

)

,

δ
(

Ψ
(n)
R;sG

)

µ
(x) =

∞
∑

k=0

δnk
−→
∂ µϑ

(k)
R (x).

(4.31)

where γ̃µ is the four dimensional Minkowski gamma matrix. The expansion coefficients

appearing as an outcome of dimensional reduction takes the following form:

d(nk) := k±rc

∫ +π

−π
dy sgn(y)e−2A±(y)χ

(n);L
±;sG(y)χ

(k);R
±;sG(y). (4.32)

Consequently we have

χ
(n);4 L,R
±;sG (y) =

1

(msG
n )±

(

±−→∂ 4 +
k±rc
2

sgn(y)

)

χ
(n);L,R
±;sG (y) (4.33)

and the N=1 supergravity transformation for the fifth component of the gravitino field in

presence of Gauss-Bonnet coupling can be recast in terms of the Kaluza-Klien modes as

δ
(

Ψ
(n)
L,R;sG

)

4
(x) := ±

(

msG
n

)

± ϑL,R(x). (4.34)
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This directly shows that under N=1 supergravity transformation the nth Kaluza-Klien

mode of the fifth component of the gravitino transform as a Goldstino realized in term of the

parameter for the supergravity transformation ϑL,R. This is usually known as superHiggs

mechanism. Considering all these facts the four dimensional Kaluza-Klien gravitino can

be redefined in terms of physical degrees of freedom as

̂
Ψ

(n)
µ L;sG :=

{

(

msG
n

)

±

(

Ψ
(n)
µ L;sG + γ̃µ

∞
∑

k=0

d(nk)

(

msG
k

)

±
Ψ

(k)
4 R;sG

)

− ∂µΨ(n)
4 L;sG

}

,

̂
Ψ

(n)
µ R;sG :=

{

(

msG
n

)

±Ψ
(n)
µ L;sG − ∂µΨ

(n)
4 L;sG

}

.

(4.35)

which are invariant under N=1 supergravity transformations. To find out the Kaluza-

Klien spectrum for the bulk gravitino field we start with the master equation for the bulk

five dimensional gravitino field, commonly known as Rarita-Schwinger equation which can

be written as
[

ΥMNP−→DsG
N −

3

2
k±sgn(y)ΥMP

]

(

Ψ
(i)
sG

)

P
= 0,

(

Ψ̄
(i)
sG

)

M

[

ΥMNP←−DsG
N −

3

2
k±sgn(y)ΥMP

]

= 0.

(4.36)

After dimensional reduction the four dimensional effective action for rescaled four dimen-

sional gravitino in the context of N=1 supergravity can be written as:

SΨsG
= −

iM3
(5)

2

∫

d4x
∞
∑

n=0

2
∑

i=1

2
∑

j=1

[

̂
Ψ̄

(n);(i)
α L,R;sG(x)γαβσ

←→
∂ β

̂
Ψ

(n);(j)
σ L,R;sG(x)δij

−
(

msG
n

)

±
̂

Ψ̄
(n);(i)
α L,R;sG(x)γασ

̂
Ψ

(n);(j)
σ L,R;sG(x)

]

(4.37)

and the effective Rarita-Schwinger equation in four dimension turns out to be

[

γαβσ
−→
∂ β −

(

msG
n

)

± γ
ασ
]

̂
Ψ

(n)
σ L,R;sG(x) = 0,

̂
Ψ̄

(n)
α L,R;sG(x)

[

γαβσ
←−
∂ β −

(

msG
n

)

± γ
ασ
]

= 0

(4.38)

The extra dimension dependent Kaluza-Klien wave function for gravitino field is de-

termined from the following two differential equations
(−→D y +

1

2
k±rcsgn(y)

)

χ
(n);L
±;sG(y) =

(

msG
n

)

± χ
(n);R
±;sG (y) (4.39)

(−→D y −
5

2
k±rcsgn(y)

)

χ
(n);R
±;sG (y) = −

(

msG
n

)

± χ
(n);L
±;sG(y) (4.40)

subject to the following boundary conditions:

χ
(n);L
±;sG(yi)χ

(n);R
±;sG (yi) = 0,

χ
(n);L
±;sG(yi) = 0, χ

(n);R
±;sG (yi) = 0

(4.41)

where at yi = 0, π the Z2 orbifold symmetry is imposed. This follows from the fact that

left-handed or all right-handed fermionic wave functions are Z2 odd. In this context the

– 18 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

gravitino differential operator
(−→D y +

1
2k±rcsgn(y)

)

and
(−→D y − 5

2k±rcsgn(y)
)

are hermi-

tian and the mass eigen values are real. Consequently χ
(n);L,R
±;sG (y) is chosen to be real.

Additionally we impose the following orthonormalization condition

∫ +π

−π
dy e−A±(y)χ

(n);L,R
±;sG (y)χ

(m);L,R
±;sG (y) = δnm. (4.42)

Now introducing two new variables z±;L,R
n :=

(msG
n )

±

k±
eA±(y) and ĝ

(n)
L,R;sG :=

e−A±(y)χ
(n);L,R
±;sG equation (4.39) can be recast in terms of Bessel differential equation of

order two as

[

(

z±;L
n

)2−→D2
z±;L
n

+ z±;L
n

−→D
z±;L
n

+
{

(

z±;L
n

)2 − 4
}

]

ĝ
(n)
L (z±;L

n ) = 0 (4.43)

and the analytical solution for left chiral n 6= 0 gravitino Kaluza-Klien modes turn out to be

χ
(n);L
±;sG(z±;L

n ) =
e

3
2
A±(y)

N±;L
(n);sG

[

J2(z±;L
n ) + β±;L

n Y2(z±;L
n )

]

. (4.44)

Substituting equation (4.39) and equation (4.40) the analytical solution for the right

chiral n 6= 0 gravitino Kaluza-Klien modes takes the following form:

χ
(n);R
±;sG (z±;R

n ) =
rce

3
2
A±(y)

N±;R
(n);sG

[

J1(z±;R
n ) + β±;R

n Y1(z±;R
n )

]

. (4.45)

Here N±;L,R
(n) be the normalization constant of the extra dimension dependent wave

function and β±;L,R
n is the integration constant determined from the orthonormalization

condition and the continuity conditions at the orbifold fixed points. Now applying the

boundary condition on equation (4.44) and equation (4.45) we get

χ
(n);L
±;sG|yi=0 = 0 =⇒ β±;L

n = −
J2
(

(msG
n )

±

k±

)

Y2
(

(msG
n )

±

k±

) . (4.46)

χ
(n);L
±;sG|yi=π = 0 =⇒ β±;L

n = −
J2
(

x±;L
n

)

Y2
(

x±;L
n

) (4.47)

χ
(n);R
±;sG |yi=0 = 0 =⇒ β±;R

n = −
J1
(

(msG
n )

±

k±

)

Y1
(

(msG
n )

±

k±

) . (4.48)

χ
(n);R
±;sG |yi=π = 0 =⇒ β±;L

n = −
J1
(

x±;L
n

)

Y1
(

x±;L
n

) (4.49)
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where z±;L,R
n (π) := x±;L,R

n =
(msG

n )
±

k±
ek±rcπ. Now using equation (4.46)–(4.49) we get

J2
(

x±;L
n e−k±rcπ

)

Y2
(

x±;L
n e−k±rcπ

) =
J2
(

x±;L
n

)

Y2
(

x±;L
n

) (4.50)

J1
(

x±;R
n e−k±rcπ

)

Y1
(

x±;R
n e−k±rcπ

) =
J1
(

x±;R
n

)

Y1
(

x±;R
n

) (4.51)

which is an transcendental equation of x±;L,R
n and the roots of this equation give the left

and right chiral fermionic field mass spectrum
(

mL,R
n

)

±
in presence of perturbative Gauss-

Bonnet coupling α(5). This approximately leads to the various Kaluza-Klien mode masses

for the gravitino field as,

(

msG
n

)

± ≈
(

n+
1

4

)

πk±e−k±rcπ. (4.52)

The gravitino mass spectrum exhibits similar feature as graviton mode. Now using equa-

tion (4.42) the normalization constant for n 6= 0 mode reduces to the following expression

N±;L
(n) =

ek±rcπ

√

k±rc

{

[

J2
(

x±;L
n

)

+ β±;L
n Y2

(

x±;L
n

)]2

− e−2k±rc
[

J2
(

x±;L
n e−k±rcπ

)

+ β±;L
n Y2

(

x±;L
n e−k±rcπ

)]2
} 1

2

(4.53)

N±;R
(n) =

ek±rcπ

√

k±rc

{

[

J1
(

x±;R
n

)

+ β±;L
n Y1

(

x±;R
n

)]2

− e−2k±rc
[

J1
(

x±;R
n e−k±rcπ

)

+ β±;L
n Y1

(

x±;R
n e−k±rcπ

)]2
} 1

2

. (4.54)

For ek±rcπ ≫ 1,
(msG

n )
±

k±
≪ 1 the integration constant β±;L,R

n ≪ 1. Consequently Y2(z±;L
n )

and Y1(z±;R
n ) are neglected compared to J2(z±;L

n ) and J1(z±;R
n ) in equation (4.44) and

equation (4.45). Hence the normalization constant for n 6= 0 mode turns out to be

N±;L
(n) =

ek±rcπ

√

k±rc
J2
(

x±;L
n

)

, (4.55)

N±;R
(n) =

ek±rcπ

√

k±rc
J1
(

x±;R
n

)

. (4.56)

Consequently the extra dimension dependent wave function for n 6= 0 mode turns out to be

χ
(n);L
±;sG(z±;L

n ) =

√

k±rce
3
2
A±(y)

ek±rcπ

J2(z±;L
n )

J2
(

x±;L
n

) , (4.57)

χ
(n);R
±;sG (z±;R

n ) =

√

k±rce
3
2
A±(y)

ek±rcπ

J1(z±;R
n )

J1
(

x±;R
n

) . (4.58)
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For massless n = 0 mode the solution of the equation (4.120) turns out to be

χ(0);L±;sG(y) =
e−

1
2
A±(y)

N±;L
(0)

, χ(0);R±;sG(y) =
e

5
2
A±(y)

N±;R
(0)

. (4.59)

Here N±;L,R
(0) normalization constant for zero mode. Now applying the normalization con-

dition we get N±;L
(0) =

√

(1−e−2k±rcπ)
k±rc

and N±;L
(0) =

√

(e4k±rcπ−1)
2k±rc

. Consequently the ground

state massless zero mode wave function for gravitino species turns out to be

χ(0);L±;sG(y) =

√

(1− e−2k±rcπ)

k±rc
e−

1
2
A±(y), χ(0);R±;sG(y) =

√

(e4k±rcπ − 1)

2k±rc
e

5
2
A±(y). (4.60)

For each of the left and right chiral mode shows two fold characteristics due to the presence

of two branches (k±) in the context of Gauss-Bonnet coupling induced string phenomenol-

ogy. In the asymptotic limit α(5) → 0 the k− branch will reproduce the well known

Randall-Sundrum behavior for both left and right chiral mode. Also the k+ branch gives

us completely new informations about the warped phenomenology in presence of Gauss-

Bonnet coupling. Most significantly the ground state obtained for gravitino in the brane

is fixed, but in the bulk it goes with the extra dimensional coordinate y.

4.3 Bulk scalar field

The five dimensional action for bulk scalar field can be written as

SΦ =
1

2

∫

d5x
√−g(5)

[

gAB
(−→
∂ AΦ(x, y)

)(−→
∂ BΦ(x, y)

)

−m2
ΦΦ

2(x, y)
]

=
1

2

∫

d4x

∫ +π

−π
rc

[

e−2A±(y)ηµν
(−→
∂ µΦ(x, y)

)(−→
∂ νΦ(x, y)

)

+
1

r2c
Φ(x, y)

−→
∂ y

{

e−4A±(y)
(−→
∂ yΦ(x, y)

)}

−m2
Φe

−4A±(y)Φ2(x, y)

]

. (4.61)

We choose the Kaluza-Klien expansion of the bulk scalar as,

Φ(x, y) =

∞
∑

n=0

Φ(n)(x)
χ
(n)
±;Φ(y)√
rc

. (4.62)

Plugging equation (4.62) in equation (4.61) the effective four dimensional action re-

duces to the following form:

SΦ =

∫

d4x
∞
∑

n=0

[

ηµν
(−→
∂ µΦ

(n)(x)
)(−→

∂ νΦ
(n)(x)

)

−
(

mΦ
n

)2

±

(

Φ(n)(x)
)2
]

(4.63)

subject to the orthonormalization condition of extra dimension dependent wave functions

∫ +π

−π
dy e−2A±(y) χ

(m)
±;Φ(y) χ

(n)
±;Φ(y) = δmn (4.64)
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and the mass term of the bulk scalar field is defined through the following differential

equation as

− 1

r2c

−→Dy

(

e−4A±(y)−→Dyχ
(n)
±;Φ(y)

)

+m2
Φe

−4A±(y)χ
(n)
±;Φ(y) = e−2A±(y)

(

mΦ
n

)2

± χ
(n)
±;Φ(y). (4.65)

Now introducing a new variable z±;Φ
n :=

(mΦ
n )±
k±

eA±(y) equation (4.65) can be recast in

terms of Bessel differential equation of order νΦ± :=

√

4 +
m2

Φ

k2
±

as

[

(

z±;Φ
n

)2−→D2
z±;Φ
n

+ z±;Φ
n

−→D
z±;Φ
n

+
{

(

z±;Φ
n

)2 −
(

νΦ±
)2
}

]

χ
(n)
±;Φ = 0 (4.66)

and the analytical solution turns out to be

χ
(n)
±;Z(y) =

e2A±(y)

N±;Φ
(n)

[

JνΦ
±
(z±;Φ

n ) + α±;Φ
n YνΦ

±
(z±;Φ

n )
]

. (4.67)

Here N±;Φ
(n) be the normalization constant of the extra dimension dependent wave function

and α±;Φ
n is the integration constant determined from the orthonormalization condition and

the continuity conditions at the orbifold fixed point. Self-adjointness and hermiticity of the

differential operator appearing in equation (4.66) demands that
−→Dyχ

(n)
±;Φ(y) is continuous

at the orbifold fixed points yi = 0, π. Consequently we have

−→Dyχ
(n)
±;Φ|yi=0 = 0 =⇒ α±;Φ

n =

[

(mΦ
n )±
k±
J ′

νΦ
±

(

(mΦ
n )±
k±

)

+ 2JνΦ
±

(

(mΦ
n )±
k±

)]

[

2YνΦ
±

(

(mΦ
n )

±

k±

)

+
(mΦ

n )
±

k±
Y ′

νΦ
±

(

(mΦ
n )

±

k±

)

] . (4.68)

−→Dyχ
(n)
±;Φ|yi=π = 0 =⇒ α±;Φ

n =

[

2JνΦ
±

(

x±;Φ
n

)

+ x±;Φ
n J ′

νΦ
±

(

x±;Φ
n

)]

[

x±;Φ
n Y ′

νΦ
±

(

x±;Φ
n

)

+ 2YνΦ
±

(

x±;Φ
n

)

] (4.69)

where z±;Φ
n (π) := x±;Φ

n =
(mΦ

n )±
k±

ek±rcπ. For ek±rcπ ≫ 1,
(mΦ

n )±
k±

≪ 1 the mass spectrum

for the bulk scalar field is expected to be of the order of TeV scale i.e.
[

x±;Φ
n e−k±rcπJ ′

νΦ

±

(

x±;Φ
n e−k±rcπ

)

+ 2JνΦ

±

(

x±;Φ
n e−k±rcπ

)

]

[

2YνΦ

±

(

x±;Φ
n e−k±rcπ

)

+ x±;Φ
n e−k±rcπY ′

νΦ

±

(

(mΦ
n
)
±

k±

)] =

[

2JνΦ

±

(

x±;Φ
n

)

+ x±;Φ
n J ′

νΦ

±

(

x±;Φ
n

)

]

[

x±;Φ
n Y ′

νΦ

±

(

x±;Φ
n

)

+ 2YνΦ

±

(

x±;Φ
n

)]

⇒ JνΦ

±

(

x±;Z
n

)

+ x±;Φ
n J ′

νΦ

±

(

x±;Φ
n

)

≈ 0 (4.70)

which is an transcendental equation of x±;Φ
n and the roots of this equation gives the scalar

field mass spectrum
(

mΦ
n

)

± in presence of perturbative Gauss-Bonnet coupling α(5). This

leads to approximately

(

mΦ
n

)

± ≈
(

n+
1

2
νΦ± −

3

4

)

πk±e−k±rcπ. (4.71)
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Now using equation (4.64) the normalization constant for n 6= 0 mode reduces to the

following expression

N±;Φ
(n) =

e
k±rcπ

√
k±rc

√

{

[

JνΦ

±

(

x
±;Φ
n

)

+α
±;Φ
n YνΦ

±

(

x
±;Φ
n

)]2

−e−2k±rc

[

JνΦ

±

(

x
±;Φ
n e−k±rcπ

)

+α
±;Φ
n YνΦ

±

(

x
±;Φ
n e−k±rcπ

)]2
}

.

(4.72)

For ek±rcπ ≫ 1,
(mZ

n )±
k±

≪ 1 the inegration constant α±;Z
n ≪ 1. Consequently YνΦ

±
(z±;Φ

n ) is

neglected compared to JνΦ
±
(z±;Φ

n ) in equation (4.74) and then the normalization constant

for n 6= 0 mode turns out to be

N±;Φ
(n) =

ek±rcπ

√

k±rc
JνΦ

±

(

x±;Φ
n

)

√

√

√

√

√

1 +
4−

(

νΦ±
)2

(

x±;Φ
n

)2 . (4.73)

Consequently the extra dimensional dependent wave function for n 6= 0 turns out to be

χ
(n)
±;Φ(y) =

√

k±rc e2A±(y)

(√

1 +
4−(νΦ±)

2

(x±;Φ
n )

2

)

ek±rcπ

JνΦ
±
(z±;Φ

n )

JνΦ
±
(x±;Φ

n )
. (4.74)

In figure 6 we have clearly depicted the behavior of the extra dimension dependent first

excited state for all possible signatures of Gauss-Bonnet coupling for k+ and k− branch

for scalar field different from dilatonic degrees of freedom. The asymptotic behavior in the

α(5) → 0 is different for two existing physical branches in the context of Gauss-Bonnet

coupling induced string phenomenology. Most significantly in this free asymptotic limit k−
branch reproduces the well known Randall-Sundrum feature. Additionally in figure 7 we

have plotted the graphical behavior of the extra dimension dependent wave function for k+
and k− branch corresponding the first excited state for two signatures of bulk cosmological

constant Λ(5) and negative two-loop conformal coupling A1 for three distinct values of

Gauss-Bonnet coupling α(5). The behavior of the scalar wave function for the Kaluza Klien

first excited state explicitly shows that the confinement of the scalar degrees of freedom

in the dS5/AdS5 bulk topological space is larger compared to the dilatonic degrees of

freedom. If if include the possibility of self interaction via pure quartic coupling or through

derivative coupling which we have elaborately discussed later induces the appearance of

SU(2) Higgs doublet in the bulk topological space.

For massless n = 0 mode the solution of the equation (4.65) turns out to be

χ
(0)
±;Φ =

C1

4k±rc
e4A±(y) + C2. (4.75)

Here C1 and C2 are arbitrary integration constants. Now applying the boundary condition

through the continuity of the wave function we get C1 = 0. As a result the zero mode
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Figure 6. Variation of χ
(1)
±;Φ(π)(= χ

(1)
±;vis) vs Gauss-Bonnet coupling α(5) for (a) Λ(5) > 0 and

A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this

context B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04.

solution turns out to be χ
(0)
±;Φ = C2. Now applying the normalization condition the ground

state massless zero mode wave function turns out to be

χ
(0)
±;Φ = C2 =

√

k±rc
1− e−2k±rcπ

≈ 1√
2π
. (4.76)

The ground state obtained for bulk scalar field for our set up is exactly same as it is obtained

in the context of Randall-Sundrum scenario. Additionally the ground sate obtained for the

graviton and bulk scalar field is exactly identical.

4.4 U(1) abelian gauge field

The five dimensional action for the pure U(1) abelian gauge theory can be written as

SA = −1

4

∫

d5x
√−g(5) FMN (x, y)FMN (x, y) (4.77)
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Figure 7. Variation of χ
(1)
+;Φ(y) and χ

(1)
−;Φ(y)vs extra dimensional coordinate y for (a) Λ(5) < 0 and

A1 < 0 and (b) Λ(5) > 0 and A1 < 0 respectively. In this context we use B0 = 0.002, rc = 0.996 ∼ 1,

|A1| = 0.04, θ1 = 0.05 and θ2 = 0.04 three distinct values of Gauss-Bonnet Coupling α(5).

where the five dimensional rank-2 antisymmetric U(1) abelian gauge field strength ten-

sor is given by

FMN :=
−→
∂ [MAN ](x, y) (4.78)

with AM := (Aα,A4). This leads to the five dimensional Maxwell’s equation

1
√−g(5)

−→
∂ N

(
√−g(5)FMN (x, y)

)

= 0. (4.79)

Equation (4.77) does not involve the affine connection terms due to the antisymmetry of

the U(1) abelian gauge field strength tensor. To find out effective four dimensional ac-

tion through the Kaluza-Klien spectrum we assume that Aα (satisfies Neumann boundary

condition) and A4 (satisfies Dirichlet boundary condition) are Z2 even and odd respec-

tively. Depending on this crucial choice of the Z2 parity the gauge-fermion interactions

are preserved. It also ensures that A4 does not have zero mode in the four dimensional

effective theory. This leads to

SA = −1

4

∫

d5x
[

ηµκηνλFκλ(x, y)Fµν(x, y) + 2e−2A±(y)ηνλ
−→DyAν(x, y)

−→DyAλ(x, y)
]

(4.80)

where we introduce a new symbol
−→Dy := d

dy . In equation (4.80) we use the gauge de-

grees of freedom

A4 = 0 =⇒ A4(x, y(i)) =
−→
∂ 4A(x, y(i)) =

−→DyA(x, y(i)) = 0 (4.81)

where at the orbifolding Z2 symmetry is imposed on y(i). This is consistent with the

gauge invariant equation
∮

d4xA4 = 0 which is the outcome of previous parity assignment.
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Consequently the theory on the 3-brane is completely free from A4 and the gauge invariance

of the effective four dimensional gauge theory in intact. Let the Kaluza-Klien expansion

of the Aµ(x, y) gauge field is given by

Aµ(x, y) =
∞
∑

n=0

A(n)
µ (x)

χ
(n)
±;A(y)√
rc

. (4.82)

Additionally the Gauss law constraint is given by

−→
∂ 4

(−→
∂ µAµ(x, y)

)

= 0 =⇒ ηµν
∞
∑

n=0

−→
∂ µA(n)

ν (x)
−→Dyχ

(n)
±;A(y) = 0. (4.83)

an outcome But this implies for n = 0 we have
−→Dyχ

(0)
±;A = 0 and due the four dimen-

sional U(1) gauge invariance this condition is not imposed on the zero mode A(0)
µ . On

the other hand

ηµν
−→
∂ µA(n)

ν (x) = 0 ∀ n 6= 0 (4.84)

due to
−→Dyχ

(n)
±;A(y) 6= 0. This is very important criteria satisfied by the massive vector

particles in four dimensional flat Minkowski space. Now plugging equation (4.82) in equa-

tion (4.80) the effective four dimensional action reduces to the following form:

SA = −
∫

d4x
∞
∑

n=0

[

1

4
ηµκηνλF (n)

κλ (x)F (n)
µν (x) +

1

2

(

mA
n

)2

± η
νλA(n)

ν (x)A(n)
λ (x)

]

(4.85)

where the effective four dimensional U(1) abelian gauge field strength is defined as

F (n)
µν (x) :=

−→
∂ [µA(n)

ν] (x). In this context we impose the following orthonormalization con-

dition of extra dimension dependent wave functions

∫ +π

−π
dy χ

(m)
±;A(y) χ

(n)
±;A(y) = δmn (4.86)

and the mass term of the gauge field is defined through the following differential equation as

− 1

r2c

−→Dy

(

e−2A±(y)−→Dyχ
(n)
±;A(y)

)

=
(

mA
n

)2

± χ
(n)
±;A(y). (4.87)

Now introducing two new variables z±;A
n :=

(mA
n )±
k±

eA±(y) and f±;A
n := e−A±(y)χ

(n)
A (y)

equation (4.87) can be recast in terms of Bessel differential equation of order 1 as

[

(

z±;A
n

)2−→D2
z±;A
n

+ z±;A
n

−→D
z±;A
n

+
{

(

z±;A
n

)2 − 1
}

]

f±n = 0 (4.88)

and the analytical solution turns out to be

χ
(n)
±;A(y) =

eA±(y)

N±;A
(n)

[

J1(z±;A
n ) + α±;A

n Y1(z±;A
n )

]

. (4.89)
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Here N±;A
(n) be the normalization constant of the extra dimension dependent wave function

and α±;A
n is the integration constant determined from the orthonormalization condition and

the continuity conditions at the orbifold fixed point. Self-adjointness and hermiticity of the

differential operator appearing in equation (4.88) demands that
−→Dyχ

(n)
±;A(y) is continious at

the orbifold fixed points yi = 0, π. Consequently we have

−→Dyχ
(n)
±;A|yi=0 = 0 =⇒ α±;A

n = −

[

J1
(

(mA
n )±
k±

)

+
(mA

n )±
k±
J ′

1

(

(mA
n )±
k±

)]

[

Y1
(

(mA
n )

±

k±

)

+
(mA

n )
±

k±
Y ′

1

(

(mA
n )

±

k±

)] . (4.90)

−→Dyχ
(n)
±;A|yi=π = 0 =⇒ α±;A

n = −

[

J1
(

x±;A
n

)

+ x±;A
n J ′

1

(

x±;A
n

)]

[

Y1
(

x±;A
n

)

+ x±;A
n Y ′

1

(

x±;A
n

)] (4.91)

where z±;A
n (π) := x±;A

n =
(mA

n )±
k±

ek±rcπ. For ek±rcπ ≫ 1,
(mA

n )±
k±

≪ 1 the mass spectrum

for the gauge fields is expected to be of the order of TeV scale i.e.

α±;A
n ≃ − π

2
[

ln
(

x±;A
n
2

)

− k±rcπ + γ + 1
2

] (4.92)

where γ = 0.5772 = −ψ(1) is the Euler-Mascheroni constant. In general ψ(n + 1) is

defined through the well known Gamma function as

Γ(ǫ− n) = (−1)n
n!

[

1

ǫ
+ ψ(n+ 1) +

ǫ

2

{

π2

3
+ ψ2(n+ 1)− ψ′

(n+ 1)

}

+O(ǫ2)
]

(4.93)

where

ψ(n+ 1) =
n
∑

m=1

1

m
− γ, (4.94)

ψ
′

(n+ 1) =
π2

6
−

n
∑

m=1

1

m2
. (4.95)

Now using equation (4.92) and equation (4.90) we get

π

2
[

ln
(

x±;A
n
2

)

− k±rcπ + γ + 1
2

]

=

[

J1
(

x±;A
n e−k±rcπ

)

+ x±;A
n
2 e−k±rcπ

{

J0
(

x±;A
n e−k±rcπ

)

− J2
(

x±;A
n e−k±rcπ

)}]

[

Y1
(

x±;A
n e−k±rcπ

)

+ x±;A
n
2 e−k±rcπ

{

Y0
(

x±;A
n e−k±rcπ

)

− Y2
(

x±;A
n e−k±rcπ

)}] (4.96)

which is an transcendental equation of x±;A
n and the roots of this equation gives the gauge

field mass spectrum
(

mA
n

)

± in presence of perturbative Gauss-Bonnet coupling α(5). This

leads to approximately

(

mA
n

)

± ≈
(

n∓ 1

4

)

πk±e−k±rcπ. (4.97)
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Once again as in case of graviton, Gauss-Bonnet coupling α(5) has to have an upper bound

to detect their signature in TeV scale experiment.

Now using equation (4.86) the normalization constant for n 6= 0 mode reduces to the

following expression

N±;A
(n) =

ek±rcπ

√

k±rc
√

{

[

J1
(

x±;A
n

)

+ α±;A
n Y1

(

x±;A
n

)]2

− e−2k±rc

[

J1
(

x±;A
n e−k±rcπ

)

+ α±;A
n Y1

(

x±;A
n e−k±rcπ

)]2
}

.

(4.98)

For ek±rcπ ≫ 1,
(mA

n )±
k±

≪ 1 the integration constant α±;A
n ≪ 1. Consequently Y1(z±;A

n )

is neglected compared to J1(z±;A
n ) in equation (4.89) and then the normalization constant

for n 6= 0 mode turns out to be

N±;A
(n) =

ek±rcπ

√

k±rc
J1
(

x±;A
n

)

. (4.99)

Consequently the extra dimension dependent wave function for n 6= 0 modes turns out to be

χ
(n)
±;A(y) =

eA±(y)
√

k±rc
ek±rcπ

J1(z±;A
n )

J1(x±;A
n )

. (4.100)

In figure 8 we have explicitly shown the behavior of the extra dimension dependent first

excited state for all possible signatures of Gauss-Bonnet coupling for k+ and k− branch.

Additionally in figure 9 we have plotted the graphical behavior of the extra dimension

dependent wave function for k+ and k− branch corresponding the first excited state for

two possible signatures of bulk cosmological constant Λ(5) and negative two-loop conformal

coupling A1 for three distinct values of Gauss-Bonnet coupling α(5).

For massless n = 0 mode the solution of the equation (4.87) turns out to be

χ
(0)
±;A = − C1

2k±rc
e−2A±(y) + C2. (4.101)

Here C1 and C2 are arbitrary integration constants. Now applying the boundary condition

through the continuity of the wave function we get C1 = 0. As a result the zero mode

solution turns out to be χ
(0)
±;A = C2. Now applying the normalization condition the ground

state massless zero mode wave function turns out to be

χ
(0)
±;A = C2 =

1√
2π
. (4.102)

4.5 SU(N ) non-abelian gauge field

The five dimensional action for the pure SU(N ) non-abelian gauge theory can be written as

SA = −1

4

∫

d5x
√−g(5) Fa

AB(x, y)FAB
a (x, y) (4.103)
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Figure 8. Variation of χ
(1)
±;A(π)(= χ

(1)
±;vis) vs Gauss-Bonnet coupling α(5) for (a) Λ(5) > 0 and

A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this

context B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04.

where the five dimensional rank-2 antisymmetric SU(N ) non-abelian gauge field strength

tensor is given by

Fa
MN :=

−→
∂ [MAa

N ](x, y) + gAfabcAMb(x, y)ANc(x, y) (4.104)

with the matrix valued five dimensional non-abelian gauge field is defined as Aa
M :=

(Aa
α,Aa

4). Here the superscript a is used for SU(N ) non-abelian gauge index runs from

a = 1, 2, . . . ,N 2 − 1. Next applying the gauge constraint the action reduces to the fol-

lowing form

SA = −1

4

∫

d5x
[

ηµκηνλFa
κλ(x, y)Fµν;a(x, y)− 2ηνλAλa(x, y)

−→Dy

(

e−2A±(y)−→DyAa
ν(x, y)

)]

.

(4.105)

– 29 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

-3 -2 -1 0 1 2 3
-1

0

1

2

3

4

y

Χ
+A
@y
D

(a)

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

6

y

Χ
-A
@y
D

(b)

Figure 9. Variation of χ
(1)
+;A(y) and χ

(1)
−;A(y)vs extra dimensional coordinate y for (a) Λ(5) < 0 and

A1 < 0 and (b) Λ(5) > 0 and A1 < 0 respectively. In this context we use B0 = 0.002, rc = 0.996 ∼ 1,

|A1| = 0.04, θ1 = 0.05 and θ2 = 0.04 three distinct values of Gauss-Bonnet Coupling α(5).

In this context the Kaluza-Klien decomposition of the SU(N ) non-abelian gauge field

Aa
µ(x, y) can be written as

Aa
µ(x, y) =

∞
∑

n=0

Aa;(n)
µ (x)

χ
(n)
±;A(y)√
rc

. (4.106)

Substituting equation (4.106) in equation (4.107) we get

SA =

∫

d4x

∞
∑

n=0

[

− 1

4

{

(−→
∂ [µAa;(n)

ν] (x)
)2

+ 2
gA

r
3
2
c

fabc
∞
∑

p=0

∞
∑

q=0

C(npq)1

(−→
∂ [µAa;(n)

ν] (x)
)

Aµ;(p)
b (x)Aµ;(q)

c (x)

+
g2A
r2c
fabcfade

∞
∑

m=0

∞
∑

p=0

∞
∑

q=0

C(nmpq)
2 A(n)

µb (x)A(m)
µc (x)Adµ;(p)(x)Aeν;(q)(x)

}

− 1

2

(

mA
n

)2

± η
νλA(n)

ν (x)Aa;(n)
λa (x)

]

(4.107)

where

C(npq)1 :=

∫ +π

−π
dy χ

(n)
±;A(y) χ

(p)
±;A(y) χ

(q)
±;A(y)

C(nmpq)
2 :=

∫ +π

−π
dy χ

(n)
±;A(y) χ

(m)
±;A(y) χ

(p)
±;A(y) χ

(q)
±;A(y)

(4.108)

characterizes trilinear and quartic self interaction of SU(N ) non-abelian gauge field. Most

importantly the terms appearing in equation (4.108) terms breaks the SU(N ) non-abelian
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C(000)1 C(001)1 C(010)1 C(011)1 C(100)1 C(101)1 C(110)1 C(111)1

0.398 0.214 0.214 0.113 0.214 0.113 0.113 0.068

Table 2. Numerical values of C(npq)1 for lowest lying modes of the trilinear SU(N ) non-abelian

gauge interaction for k− branch.

C(000)1 C(001)1 C(010)1 C(011)1 C(100)1 C(101)1 C(110)1 C(111)1

0.398 0.378 0.378 0.234 0.378 0.234 0.234 0.123

Table 3. Numerical values of C(npq)1 for lowest lying modes of the trilinear SU(N ) non-abelian

gauge interaction for k+ branch.

C(0000)2 C(0001)2 C(0010)2 C(0011)2 C(0100)2 C(0101)2 C(0110)2 C(0111)2 C(1000)2 C(1001)2 C(1010)2 C(1011)2 C(1100)2 C(1101)2 C(1110)2 C(1111)2

0.159 0.115 0.115 0.094 0.115 0.094 0.094 0.045 0.115 0.094 0.094 0.045 0.094 0.045 0.045 0.007

Table 4. Numerical values of C(nmpq)
2 for lowest lying modes of the quartic SU(N ) non-abelian

gauge interaction for k− branch.

C(0000)2 C(0001)2 C(0010)2 C(0011)2 C(0100)2 C(0101)2 C(0110)2 C(0111)2 C(1000)2 C(1001)2 C(1010)2 C(1011)2 C(1100)2 C(1101)2 C(1110)2 C(1111)2

0.159 0.142 0.142 0.108 0.142 0.108 0.108 0.087 0.142 0.108 0.108 0.087 0.108 0.087 0.087 0.056

Table 5. Numerical values of C(nmpq)
2 for lowest lying modes of the quartic SU(N ) non-abelian

gauge interaction for k+ branch.

gauge invariance in the four dimensional effective field theory. But the amount of SU(N )

gauge breaking can be considerably small if the non-abelian SU(N ) gauge coupling gA is

very small. In table 2–table 5 we have tabulated the numerical values of the trilinear and

quartic interaction for zero and lowest lying modes for k− and k+ branch. During the

evaluation of these interaction terms we use the previous results for U(1) abelian gauge

field theory since for both of the cases the results are exactly same.

4.6 Massive fermionic field

In this subsection we explore the profile of bulk fermion wave function where we begin

with an action of such fermions coupled to a U(1) bulk gauge field as described in the

previous subsection. The five dimensional action for the massive fermionic field theory
(

spin 1
2 type

)

can be written as

Sf =

∫

d5x [Det(V)]
{

iΨ̄L,R(x, y)γ
αVMα

←→
DµΨL,R(x, y)δ

µ
M

− sgn(y)mf Ψ̄L,R(x, y)ΨR,L(x, y) + h.c.
}

(4.109)

where
←→
Dµ :=

(←→
∂µ +Ωµ + igfAµ

)

represents the covariant derivative in presence U(1)
abelian gauge field and fermionic spin connection Ωµ = 1

8ω
ÂB̂
µ

[

ΓÂ,ΓB̂

]

. Here ωÂB̂
µ repre-

sents the gauge field respecting SO(3, 1) transformation on the vierbein coordinate. Most
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importantly the 5D Gamma matrix is given by ΓÂ =
(

γµ, γ5 :=
i
4!ǫµναβγ

µγνγαγβ = iγ4
)

satisfies the Clifford algebra anti-commutation relation {ΓÂ,ΓB̂} = 2ηÂB̂ with ηÂB̂ =

diag (−1,+1,+1,+1,+1). In this context

gMN :=
(

VÂM ⊗ VB̂N
)

ηÂB̂ (4.110)

where VÂM represents vierbein (inverse of fünfbein) characterized by the following con-

ditions:

V44 = 1, VÂµ = eA±(y)δÂµ , Det(V) = e−4A±(y) (4.111)

and Â, B̂ being tangent space indices. For our set up SO(3, 1) gauge field can be written

in terms of the christoffel connection and vierbein degrees of freedom as

ωÂB̂
µ :=

1

2
gNP

(

V [ÂN ∂[µVB̂]
P ] +

1

2
gTSV [ÂN V

B̂]
T ∂[SV ĈP ]VD̂µ ηĈD̂

)

= VÂN
(

VB̂PΓN
MP + ∂MVB̂N

)

(4.112)

In presence of Gauss-bonnet coupling Ω4 = 0 and Ωµ = −1
2e

−A±(y)k±rcγ5γµ. It is impor-

tant to mention here that the contribution to the action from the spin connection vanishes

due to the presence of the hermitian conjugate counterpart is included. Here ΨL,R repre-

sents the left and right chiral fermionic field defined as

ΨL,R(x, y) ≡ PL,RΨ(x, y) (4.113)

where the left/right chiral projection operator is defined as PL,R = 1
2 (1∓ γ5) which satisfies

PR + PL = 1 and PRPL = PLPR = 0. To find the effective four dimensional action

the Kaluza-Klien decomposition of the massive left/right chiral fermionic spin 1
2 type of

field is given by

ΨL,R (x, y) =
∞
∑

n=0

Ψ
(n)
L,R(x)

e2A±(y)√
rc

f̂
(n)
L,R(y) (4.114)

where L,R represent the chirality of the massive fermionic fields and f̂
(n)
L,R(y) characterizes

two distinct set of complete orthonormal function satisfies the following orthonormalization

criteria:

∫ +π

−π
dy eA±(y)f̂

(m)⋆
L (y)f̂

(n)
L (y) = δmn,

∫ +π

−π
dy eA±(y)f̂

(m)⋆
R (y)f̂

(n)
R (y) = δmn.

(4.115)

Due to the requirement of Z2 symmetry of the action, f̂
(n)
R (y) and f̂

(n)
L (y) necessarily have

opposite Z2 parity. Without loosing any physical information we choose f̂
(n)
L (y) to be Z2

even and f̂
(n)
R (y) to be Z2 odd. Then the matter fields then refers to the zero mode fermionic
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I(000)L,R I(001)L,R I(010)L,R I(011)L,R I(100)L,R I(101)L,R I(110)L,R I(111)L,R

0.053/0.562 0.031/0.412 0.028/0.246 0.014/0.206 0.031/0.412 0.009/0.128 0.014/0.206 0.001/0.105

Table 6. Numerical values of I(nmp)
L,R for lowest lying modes of the trilinear interaction between

massive fermeonic field and U(1) abelian gauge fields for k− branch.

I(000)L,R I(001)L,R I(010)L,R I(011)L,R I(100)L,R I(101)L,R I(110)L,R I(111)L,R

0.053/0.562 0.043/0.502 0.035/0.341 0.027/0.271 0.043/0.502 0.026/0.197 0.027/0.271 0.012/0.165

Table 7. Numerical values of I(nmp)
L,R for lowest lying modes of the trilinear interaction between

massive fermeonic field and U(1) abelian gauge fields for k+ branch.

function f̂
(0)
L . Consequently the action for the fermionic fields takes the following form

Sf =

∫

d4x

∫ +π

−π
dy
[

e−3A±(y)
(

Ψ̄L,R(x, y)i
←→
∂/ ΨL,R(x, y)

)

− e−4A±(y)sgn(y)mf Ψ̄L,R(x, y)ΨR,L(x, y)

− Ψ̄L,R(x, y)
(

e−4A±(y)−→∂ 4 +
−→
∂ 4e

−4A±(y)
)

ΨR,L(x, y)

− gfe−3A±(y)
(

Ψ̄L,R(x, y)A/ΨL,R(x, y)
)

+ h.c.
]

=

∫

d4x
∞
∑

n=0

[

Ψ̄
(n)
L,R(x)i

←→
∂/ Ψ

(n)
L,R(x)−mL,R

n Ψ̄
(n)
L,R(x)Ψ

(n)
R,L(x)

+
igf√
rc

∞
∑

m=0

∞
∑

p=0

I(nmp)
L,R Ψ̄

(n)
L,R(x)iA/(m)(x)Ψ

(p)
R,L(x)

]

(4.116)

where the trilinear interaction term between massive fermeonic field and U(1) abelian

gauge field is given by

I(nmp)
L,R :=

∫ +π

−π
dyeA±(y)f̂

(n)⋆
L,R (y)χ

(m)
±;A(y)f̂

(p)
L,R(y). (4.117)

In table 6 and table 7 we have tabulated the numerical values of the trilinear interaction

for zero and lowest lying modes.

Finally clubbing the contributions from the first and last term of the action stated in

the second line of the equation (4.116) the compact form of the effective four dimensional

action can be recast as

Sf =

∫

d4x
∞
∑

n=0

∞
∑

p=0

Ψ̄
(n)
L,R(x)

←→
∆

(np)
DIRACΨ

(p)
L,R(x) (4.118)

where the four dimensional covariant Dirac operator for the effective massive fermionic

field theory interacting via electromagnetic (photon) U(1) abelian gauge field is given by

←→
∆

(np)
DIRAC :=

[

i
←→
D/

(np)
COV −mL,R

n δnp
]

,

←→
D/

(np)
COV :=

(

δnp
←→
∂/ +

igf√
rc

∞
∑

m=0

I(nmp)
L,R A/(m)(x)

)

.
(4.119)
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Throughout the analysis we assume that the Majorana fermions do not contribute in the

effective action. The fermionic Kaluza-Klien mass spectrum is determined from the fol-

lowing two fold differential equation

(

± 1

rc

−→D y −mf

)

f̂
(n)
L,R(y) = −

(

mL,R
n

)

± f̂
(n)
L,R(y) (4.120)

subject to the following boundary conditions:

f̂
(n)
L (yi)f̂

(n)
R (yi) = 0,

f̂
(n)
L (yi) = 0, f̂

(n)
R (yi) = 0

(4.121)

where at yi = 0, π the Z2 orbifolding symmetry is imposed. This follows from the fact

that left-handed or all right-handed fermionic wave functions are Z2 odd. In this context

the fermionic differential operator
(

± 1
rc

−→D y −mf

)

are hermitian and the mass eigen values

are real. Consequently f̂
(n)
L,R(y) is chosen to be real.

Now introducing a new variable z±;L,R
n :=

(mL,R
n )

±

k±
eA±(y) equation (4.120) can be

recast in terms of Bessel differential equation as

(

±z±;L,R
n

−→D
z±;L,R
n

− ν±
)

f̂
(n)
L,R(z

±;L,R
n ) = −z±;L,R

n f̂
(n)
L,R(z

±;L,R
n )

⇒
[

(

z±;L,R
n

)2−→D2
z±;L,R
n

+
(

z±;L,R
n

)2 − ν±
(

ν± ∓ 1
)

]

f̂
(n)
L,R(z

±;L,R
n ) = 0

(4.122)

and the analytical solution for n 6= 0 turns out to be

f̂
(n)
L,R(z

±;L,R
n ) =

z±;L,R
n

N±;L,R
(n)

√

(mL,R
n )

±

k±

[

J∓( 1
2
+ν±)(z

±;L,R
n ) + β±;L,R

n Y∓( 1
2
+ν±)(z

±;L,R
n )

]

.

(4.123)

HereN±;L,R
(n) be the normalization constant of the extra dimension dependent wave function

and β±;L,R
n is the integration constant determined from the orthonormalization condition

and the continuity conditions at the orbifold fixed point. In this context we use ν± :=
mf

k±
.

Now applying the boundary condition on equation (4.123) we get

f̂
(n)
L,R|yi=0 = 0 =⇒ β±;L,R

n = −
J∓( 1

2
+ν±)

(

(mL,R
n )

±

k±

)

Y∓( 1
2
+ν±)

(

(mL,R
n )

±

k±

) . (4.124)

f̂
(n)
L,R|yi=π = 0 =⇒ β±;L,R

n = −
J∓( 1

2
+ν±)

(

x±;L,R
n

)

Y∓( 1
2
+ν±)

(

x±;L,R
n

) (4.125)
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where z±;L,R
n (π) := x±;L,R

n =
(mL,R

n )
±

k±
ek±rcπ. Now using equation (4.124) and equa-

tion (4.125) we get

J∓( 1
2
+ν±)

(

x±;L,R
n e−k±rcπ

)

Y∓( 1
2
+ν±)

(

x±;L,R
n e−k±rcπ

) =
J∓( 1

2
+ν±)

(

x±;L,R
n

)

Y∓( 1
2
+ν±)

(

x±;L,R
n

) (4.126)

which is an transcendental equation of x±;L,R
n and the roots of this equation gives the

left and right chiral fermionic field mass spectrum
(

mL,R
n

)

±
in presence of perturbative

Gasuss-Bonnet coupling α(5). This leads to approximately

(

mL,R
n

)

± ≈
(

n+
1

2

[

ν± ± 1

2

]

− 1

4

)

πk±e−k±rcπ. (4.127)

This again shows a similar feature as of the graviton modes.

Now using equation (4.115) the normalization constant for n 6= 0 mode reduces to

the following expression

N±;L,R
(n) =

ek±rcπ

√

k±rc

{

[

J∓( 1
2
+ν±)

(

x±;L,R
n

)

+ β±;L,R
n Y∓( 1

2
+ν±)

(

x±;L,R
n

)

]2

− e−2k±rc
[

J∓( 1
2
+ν±)

(

x±;L,R
n e−k±rcπ

)

+ β±;L,R
n Y∓( 1

2
+ν±)

(

x±;L,R
n e−k±rcπ

)]2
} 1

2

.

(4.128)

For ek±rcπ ≫ 1,
(mL,R

n )
±

k±
≪ 1 the integration constant β±;L,R

n ≪ 1. Consequently

Y∓( 1
2
+ν±)(z

±;L,R
n ) is neglected compared to J∓( 1

2
+ν±)(z

±;L,R
n ) in equation (4.123) and then

the normalization constant for n 6= 0 mode turns out to be

N±;L,R
(n) =

ek±rcπ

√

k±rc
J∓( 1

2
+ν±)

(

x±;L,R
n

)

. (4.129)

Consequently the extra dimension dependent wave function for n 6= 0 mode turns out to be

f̂
(n)
L,R(z

±;L,R
n ) =

z±;L,R
n

ek±rcπ

√

(

mL,R
n

)

±
rc

J∓( 1
2
+ν±)(z

±;L,R
n )

J∓( 1
2
+ν±)

(

x±;L,R
n

) . (4.130)

In figure 10 we have explicitly shown the behavior of the extra dimension dependent

left chiral fermionic first excited state for all possible signatures of Gauss-Bonnet coupling

for k+ and k− branch. For α(5) → 0 the left chiral wave function corresponding to the

k− branch falls faster than compared to the k+ branch for bulk cosmological constant

Λ(5) > 0 and all possible signatures of two-loop conformal coupling A1. On the other

hand just exactly opposite behavior is observed in the case of Λ(5) < 0 including the

information from all possible signatures of A1. Additionally in figure 11 we have plotted

the graphical behavior of the extra dimension dependent wave function for k+ and k−
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branch corresponding the first excited state for two signatures of Λ(5) and negative two-

loop conformal coupling A1 including three distinct values of Gauss-Bonnet coupling α(5).

It is clearly observed from the plot that the left chiral wave function for k− branch is

more localized than the k+ branch at the boundary of the visible brane. So from the

phenomenological point of view figure 11a is not desirable. Similarly in figure 12 we have

explicitly depicted the behavior of the extra dimension dependent right chiral fermionic first

excited state for all possible signatures of Gauss-Bonnet coupling for k+ and k− branch

which follows subsequently different behavior from its left chiral counterpart. Additionally

in figure 13 we have plotted the graphical behavior of the extra dimension dependent wave

function for k− branch corresponding the first excited state for all possible signatures of

bulk cosmological constant Λ(5) and two-loop conformal coupling A1 for three distinct

values of Gauss-Bonnet coupling α(5). The figure 11b and figure 13 depicts that to achieve

the localization of the left handed chiral mode on the boundary of the visible brane the

branch k− is a favored choice as parameter. Additionally in α(5) → 0 limit the left/right

chiral solution for k− branch exactly reproduces the Randall-Sundrum behavior compared

to the rest of the physical situations.

For massless n = 0 mode the solution of the equation (4.120) turns out to be

f̂
(0)
L,R(y) =

e±ν±A±(y)

N±;L,R
(0)

. (4.131)

Here N±;L,R
(0) normalization constant for zero mode. Now applying the normalization con-

dition we get N±;L,R
(0) =

√

(1±2ν±)k±rc

2
[

e(1±2ν±)k±rcπ−1
] and the ground state massless zero mode wave

function for fermionic species turns out to be

f̂
(0)
L,R(y) =

√

2
[

e(1±2ν±)k±rcπ − 1
]

(1± 2ν±) k±rc
e±ν±A±(y). (4.132)

4.7 Bulk Kalb-Rammond antisymmetric tensor field

In the context of string theory closed string modes include antisymmetric tensor fields of

different rank. The five dimensional action for rank-3 antisymmetric pure Kalb-Rammond

tensor field can be written as [70]

SH =

∫

d5x
√−g(5) HMNL(x, y)HMNL(x, y) (4.133)

where five dimensional action for rank-3 antisymmetric pure Kalb-Rammond field strength

tensor is given by

HMNL :=
−→
∂ [MBNL](x, y) (4.134)

with antisymmetric tensor potential BNL = −BLN , usually called “Neveu-Schwarz– Neveu-

Schwarz” (NS-NS) two-form. For historical reasons the field B is also called “torsion” since,

to lowest order, it can be identified with the antisymmetric part of the affine connection, in
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Figure 10. Variation of χ
(1)
±;L(π)(= χ

(1)
vis) vs Gauss-Bonnet coupling α(5) for (a) Λ(5) > 0 and

A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this

context B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04.

the context of a non-Riemannian geometric structure. An alternative, often used, name is

“Kalb-Ramond axion”, in reference to the pseudo-scalar axionic field related to the Kalb-

Rammond antisymmetric tensor field via space-time “duality” transformation is elaborately

discussed in the next subsection.

Now applying the gauge fixing condition B4µ = 0 the action stated in equation (4.133)

takes the following form

SH=

∫

d5x rc e
2A±(y)

[

ηµαηνβηλγHµνλ(x, y)Hαβγ(x, y)−
3

r2c
e−2A±(y)ηµαηνβBµν(x, y)

−→Dy
2Bαβ(x, y)

]

(4.135)

where we introduce a new symbol
−→Dy := d

dy . Let the Kaluza-Klien expansion of the Kalb-
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Figure 11. Variation of χ
(1)
+;L(y)(= f̂

(1)
+,L(y)) and χ

(1)
−;L(y)(= f̂

(1)
−,L(y))vs extra dimensional coordi-

nate y for (a) Λ(5) < 0 and A1 < 0 and (b) Λ(5) > 0 and A1 < 0 respectively. In this context

we use B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04 three distinct values of

Gauss-Bonnet Coupling α(5).

Rammond antysmmetric NS-NS two form potential field is given by

Bµν(x, y) =
∞
∑

n=0

B(n)µν (x)
χ
(n)
±;H(y)√
rc

. (4.136)

Now plugging equation (4.136) in equation (4.135) the effective four dimensional action

reduces to the following form:

SH =

∫

d4x
∞
∑

n=0

[

ηµαηνβηλγH(n)
µνλ(x)H

(n)
αβγ(x) +

(

MH
n

)2

± η
µαηνβB(n)µν (x)B(n)αβ (x)

]

(4.137)

where the effective four dimensional Kalb-Rammond field strength is defined as H(n)
µνλ(x) :=−→

∂ [µB(n)νλ](x). In this context we impose the following orthonormalization condition of extra

dimension dependent wave functions
∫ +π

−π
dy e2A±(y) χ

(m)
±;H(y) χ

(n)
±;H(y) = δmn (4.138)

and the mass term of the gauge field is defined through the following differential equation as

− 1

r2c

−→
D2

yχ
(n)
±;H(y) = e2A±(y)

(

mH
n

)2

± χ
(n)
±;H(y). (4.139)

Here the mass of the nth mode Kalb-Rammond antisymmetric field is given by
(

MH
n

)

± =
√
3
(

mH
n

)

±. Now introducing a new variable z±;H
n :=

(mH
n )±
k±

eA±(y) equation (4.87) can be

recast in terms of Bessel differential equation of order zero as
[

(

z±;H
n

)2−→D2
z±;H
n

+ z±;H
n

−→D
z±;H
n

+
(

z±;H
n

)2
]

χ
(n)
±;H = 0 (4.140)
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Figure 12. Variation of χ
(1)
R

(π)(= χ
(1)
±;vis) vs Gauss-Bonnet coupling α(5) for (a) Λ(5) > 0 and

A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In this

context B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04.

and the analytical solution turns out to be

χ
(n)
±;H(y) =

1

N±;H
(n)

[

J0(z±;H
n ) + α±;H

n Y0(z±;H
n )

]

. (4.141)

Here N±;H
(n) be the normalization constant of the extra dimension dependent wave function

and α±;H
n is the integration constant determined from the orthonormalization condition and

the continuity conditions at the orbifold fixed point. Self-adjointness and hermiticity of the

differential operator appearing in equation (4.160) demands that
−→Dyχ

(n)
±;H(y) is continious
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Figure 13. Variation of χ
(1)
−;R(y)(= f̂

(1)
−,R(y)) vs extra dimensional coordinate y for (a) Λ(5) > 0

and A1 > 0, (b) Λ(5) > 0 and A1 < 0, (c) Λ(5) < 0 and A1 > 0 and (d) Λ(5) < 0 and A1 < 0. In

this context we use B0 = 0.002, rc = 0.996 ∼ 1, |A1| = 0.04, θ1 = 0.05 and θ2 = 0.04 three distinct

values of Gauss-Bonnet Coupling α(5).

at the orbifold fixed points yi = 0, π. Consequently we have

−→Dyχ
(n)
±;H|yi=0 = 0 =⇒ α±;H

n = −

[

J0
(

(mH
n )±
k±

)

+
(mH

n )±
k±
J ′

0

(

(mH
n )±
k±

)]

[

Y0
(

(mH
n )

±

k±

)

+
(mH

n )
±

k±
Y ′

0

(

(mH
n )

±

k±

)] . (4.142)

−→Dyχ
(n)
±;H|yi=π = 0 =⇒ α±;H

n = −

[

J0
(

x±;H
n

)

+ x±;H
n J ′

0

(

x±;H
n

)]

[

Y0
(

x±;H
n

)

+ x±;H
n Y ′

0

(

x±;H
n

)] (4.143)

where z±;H
n (π) := x±;H

n =
(mH

n )±
k±

ek±rcπ. For ek±rcπ ≫ 1,
(mH

n )±
k±

≪ 1 the mass spectrum
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for the Kalb-Rammond fields is expected to be of the order of TeV scale i.e.

α±;H
n ≃ x±;H

n e−2k±rcπ. (4.144)

Now using equation (4.166) and equation (4.142) we get

x±;H
n e−2k±rcπ =

[

J0
(

x±;H
n

)

− x±;H
n J1

(

x±;H
n

)]

[

Y0
(

x±;H
n

)

− x±;H
n Y1

(

x±;H
n

)] ⇒ J1
(

x±;H
n

)

≃ π

2
x±;H
n e−2k±rcπ ≈ 0

(4.145)

which is an transcendental equation of x±;H
n and the roots of this equation gives the Kalb-

Rammond field mass spectrum
(

mH
n

)

± in presence of perturbative Gasuss-Bonnet coupling

α(5). Now using equation (4.138) the normalization constant for n 6= 0 mode reduces to
the following expression

N±;H
(n) =

ek±rcπ

√

k±rc
√

{

[

J0
(

x±;H
n

)

+ α±;H
n Y0

(

x±;H
n

)]2

− e−2k±rc

[

J0
(

x±;H
n e−k±rcπ

)

+ α±;H
n Y0

(

x±;H
n e−k±rcπ

)]2
}

.

(4.146)

For ek±rcπ ≫ 1,
(mH

n )±
k±

≪ 1 the integration constant α±;H
n ≪ 1. Consequently Y0(z±;H

n ) is

neglected compared to J0(z±;H
n ) in equation (4.141) and then the normalization constant

for n 6= 0 mode turns out to be

N±;H
(n) =

ek±rcπ

√

k±rc
J0
(

x±;H
n

)

≈ π

2

x±;H
n

√

k±rc
e−k±rcπ. (4.147)

Consequently the extra dimensional dependent wave function for n 6= 0 turns out to be

χ
(n)
±;H(y) =

2
√

k±rc

πx±;H
n

ek±rcπJ0(z±;H
n ). (4.148)

For massless n = 0 mode the solution of the equation (4.139) turns out to be

χ
(0)
±;H = C1|y|+ C2. (4.149)

Here C1 and C2 are arbitrary integration constants. Now applying the boundary condition

through the continuity of the wave function we get C1 = 0. As a result the zero mode

solution turns out to be χ
(0)
±;H = C2. Now applying the normalization condition the ground

state massless zero mode wave function turns out to be

χ
(0)
±;H = C2 =

√

k±rc
e2k±rcπ − 1

≈
√

k±rce−k±rcπ. (4.150)

This give zero mode is heavily suppressed in the visible brane, though the warping will

be reduced if one choses large Gauss-Bonnet coupling α(5).
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4.8 Bulk Kalb-Rammond antisymmetric tensor field with parity violating ex-

tension

The five dimensional action for rank-3 antisymmetric pure Kalb-Rammond tensor field can

be extended with a parity violating term as [168],

SH =

∫

d5x
√−g(5)

[

HMNL(x, y)HMNL(x, y) + 2Θ0 ǫ
ABMNLBAB(x, y)HMNL(x, y)

]

(4.151)

where five dimensional action for rank-3 antisymmetric pure Kalb-Rammond field strength

tensor is given by

HMNL :=
−→
∂ [MBNL](x, y) (4.152)

with antisymmetric tensor potential BNL = −BLN . Here Θ0 represents the axion Kalb-

Rammond interaction strength. The parity violating term is a topological term invariant

under the Kalb-Rammond gauge transformation: δBMN = ∂[MΛN ], where Λ is the gauge

parameter. Now to get rid of massive vector modes on the brane we applying the gauge

fixing condition B4µ = 0 and consequently the action stated in equation (4.151) takes the

following form

SH =

∫

d5x rc e
2A±(y)

[

ηµαηνβηλγHµνλ(x, y)Hαβγ(x, y)

− 3

r2c
e−2A±(y)ηµαηνβBµν(x, y)

−→Dy
2Bαβ(x, y)

+
6Θ0

rc
e−2A±(y)E4µναβBαβ(x, y)

−→DyBµν(x, y)
]

(4.153)

where we introduce a new symbol
−→Dy := d

dy and the five dimensional Levi-Civita tensor

(ǫABMNL) is defined in terms of five dimensional Levi-Civita tensor density (EABMNL) as

ǫABMNL :=
EABMNL

√−g(5)
. (4.154)

Let the Kaluza-Klien expansion of the Kalb-Rammond antisymmetric NS-NS two form

potential field is given by

Bµν(x, y) =
∞
∑

n=0

B(n)µν (x)
χ
(n)
±;H(y)√
rc

. (4.155)

Now plugging equation (4.155) in equation (4.153) the effective four dimensional action

reduces to the following form:

SH =

∫

d4x
∞
∑

n=0

[

ηµαηνβηλγH(n)
µνλH

(n)
αβγ + 3ηµαηνβB(n)µν (x)B(n)αβ (x)





e−2A±(y)

r2cχ
(n)
±;H

−→Dy
2χ

(n)
±;H





+ 6ǫµναβB(n)µν (x)B(n)αβ (x)





e−2A±(y)Θ0

r2cχ
(n)
±;H

−→Dyχ
(n)
±;H





]

. (4.156)
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In this context we impose the following orthonormalization condition of extra dimen-

sion dependent wave functions

∫ +π

−π
dy e2A±(y) χ

(m)
±;H(y) χ

(n)
±;H(y) = δmn (4.157)

It is interesting to mention here that the four dimensional effective action contains, apart

from the kinetic term and the mass term (B(n)µν B(n) µν) for the Kalb-Rammond field, an

additional term of the form B(n)µν B̃(n) µν where B̃(n) µν = ǫµναβB(n)αβ is the dual of Kalb-

Rammond field. On solving the equation of motion from this effective four dimensional

action stated in equation (4.156), it is quite straightforward to find the solution for the

Kalb-Rammond field. It is pointed out in cite that the only non-trivial solution corresponds

to self-dual or anti-dual Kalb-Rammond fields i.e, B(n)µν = B̃µν(n) or B
(n)
µν = −B̃µν(n). Such self-

dual or anti self-dual conditions imply the reduction in the degrees of freedom of the Kalb-

Rammond field has a five dimensional topological quantum field theoretic origin (TQFT).

Then the effective four dimensional action reduces to the following expression:

SH =

∫

d4x
∞
∑

n=0

[

ηµαηνβηλγH(n)
µνλ(x)H

(n)
αβγ(x) +

(

MH
n

)2

±;SD/AD
ηµαηνβB(n)µν (x)B(n)αβ (x)

]

(4.158)

where the effective four dimensional Kalb-Rammond field strength is defined as H(n)
µνλ(x) :=−→

∂ [µB(n)νλ](x). Most importantly the mass term of the Kalb-Rammond field is defined through

the following two fold differential equations as

Self-Dual KR: − 1

r2c

−→
D2

yχ
(n)
±;H(y) +

2Θ0

rc

−→Dyχ
(n)
±;H(y) = e2A±(y)

(

mH
n

)2

±;SD
χ
(n)
±;H(y)

Anti-Dual KR: − 1

r2c

−→
D2

yχ
(n)
±;H(y)−

2Θ0

rc

−→Dyχ
(n)
±;H(y) = e2A±(y)

(

mH
n

)2

±;AD
χ
(n)
±;H(y).

(4.159)

It may be observed that now apart from the two possible branches k+ and k−, the axion

term Θ0 has resulted into the decomposition of Kalb-Rammond field into self-dual and

anti-self dual parts with different equation of motion. Here the mass of the nth mode

self-dual and anti-dual Kalb-Rammond antisymmetric field is given by
(

MH
n

)

±;SD/AD
=

√
3
(

mH
n

)

±;SD/AD
. Now introducing a new variable z

±;H;SD/AD
n :=

(mH
n )±;SD/AD

k±
eA±(y)

equation (4.159) can be recast in terms of Bessel differential equation of order ν := 2Θ0
k±

as

Self-Dual KR:
[

(

z±;H;SD
n

)2−→D2
z±;H;SD
n

+ (1− ν) z±;H;SD
n

−→D
z±;H;SD
n

+
(

z±;H;SD
n

)2
]

χ
(n)
±;H;SD = 0

Anti-Dual KR:
[

(

z±;H;AD
n

)2−→D2
z±;H;AD
n

+ (1 + ν) z±;H;AD
n

−→D
z±;H;AD
n

+
(

z±;H;AD
n

)2
]

χ
(n)
±;H;AD = 0

(4.160)
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and the analytical solution turns out to be

Self-Dual KR: χ
(n)
±;H;SD(y) =

(

z±;H;SD
n

)ν

N±;H;SD
(n)

[

Jν(z±;H;SD
n ) +

(

α±;H
n

)

SD
Yν(z±;H;SD

n )
]

Anti-Dual KR: χ
(n)
±;H;AD(y) =

(

z±;H;AD
n

)−ν

N±;H;AD

(n)

[

Jν(z±;H;AD
n )+

(

α±;H
n

)

AD
Yν(z±;H;AD

n )
]

.

(4.161)

Here N±;H;SD/AD

(n) be the normalization constant of the extra dimension dependent wave

function and
(

α±;H
n

)

SD/AD
is the integration constant determined from the orthonormal-

ization condition and the continuity conditions at the orbifold fixed point. Self-adjointness

and hermiticity of the differential operator appearing in equation (4.160) demands that−→Dyχ
(n)
±;H;SD/AD

(y) is continuous at the orbifold fixed points yi = 0, π. Consequently we have

Self-Dual KR:

−→Dyχ
(n)
±;H;SD|yi=0 = 0 =⇒

(

α±;H
n

)

SD
= −

[

νJν
(

(mH
n )±;SD

k±

)

+ J ′

ν

(

(mH
n )±;SD

k±

)]

[

νYν
(

(mH
n;SD)±;SD

k±

)

+ Y ′

ν

(

(mH
n )

±;SD

k±

)

] .

(4.162)

−→Dyχ
(n)
±;H;SD|yi=π = 0 =⇒

(

α±;H
n

)

SD
= −

[

νJν
(

x±;H;SD
n

)

+ J ′

ν

(

x±;H;SD
n

)]

[

νYν
(

x±;H;SD
n

)

+ Y ′

ν

(

x±;H;SD
n

)] (4.163)

Anti - Dual KR:

−→Dyχ
(n)
±;H;AD|yi=0 = 0 =⇒

(

α±;H
n

)

AD
= −

[

−νJν
(

(mH
n )±;AD

k±

)

+ J ′

ν

(

(mH
n )±;AD

k±

)]

[

−νYν
(

(mH
n )

±;AD

k±

)

+ Y ′

ν

(

(mH
n )

±;AD

k±

)] .

(4.164)

−→Dyχ
(n)
±;H;AD|yi=π = 0 =⇒

(

α±;H
n

)

AD
= −

[

−νJν
(

x±;H;AD
n

)

+ J ′

ν

(

x±;H;AD
n

)]

[

−νYν
(

x±;H;AD
n

)

+ Y ′

ν

(

x±;H;AD
n

)] (4.165)

where z
±;H;SD/AD
n (π) := x

±;H;SD/AD
n =

(mH
n )±;SD/AD

k±
ek±rcπ. For ek±rcπ ≫ 1,

(mH
n )±;SD/AD

k±
≪ 1 the mass spectrum for the Kalb-Rammond fields is expected to be
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of the order of TeV scale i.e.

Self-Dual KR:
(

α±;H
n

)

SD
≃





1√
ν − 2 (ν − 1)!

(

x±;H;SD
n

2
e−2k±rcπ

)ν−1




2

Anti-Dual KR :
(

α±;H
n

)

AD
≃





1

ν!

(

x±;H;AD
n

2
e−2k±rcπ

)ν+1




2

.

(4.166)

Now using equation (4.166) and equation (4.142) we get

Self-Dual KR:





1√
ν − 2 (ν − 1)!

(

x±;H;SD
n

2
e−2k±rcπ

)ν−1




2

= −

[

νJν
(

x±;H;SD
n e−k±rcπ

)

+ J ′

ν

(

x±;H;SD
n e−k±rcπ

)]

[

νYν
(

x±;H;SD
n e−k±rcπ

)

+ Y ′

ν

(

x±;H;SD
n e−k±rcπ

)]

⇒ Jν−1

(

x±;H;SD
n

)

≈ 0

(4.167)

Anti-Dual KR:





1

ν!

(

x±;H;AD
n

2
e−2k±rcπ

)ν+1




2

= −

[

−νJν
(

x±;H;AD
n e−k±rcπ

)

+ J ′

ν

(

x±;H;AD
n e−k±rcπ

)]

[

−νYν
(

x±;H;AD
n e−k±rcπ

)

+ Y ′

ν

(

x±;H;AD
n e−k±rcπ

)]

⇒ Jν+1

(

x±;H;AD
n

)

≈ 0

(4.168)

which are transcendental equations of x
±;H;SD/AD
n and the roots of these equations give

the Kalb-Rammond field mass spectrum
(

mH
n

)

±;SD/AD
in presence of perturbative Gauss-

Bonnet coupling α(5). Now using equation (4.157) the normalization constant for n 6= 0

mode reduces to the following expression

Self-Dual KR:

N±;H;SD
(n) =

√

{∫ +π

−π
dy e2A±(y)

(

z±;H;SD
n

)2ν [

Jν
(

z±;H;SD
n

)

+
(

α±;H
n

)

SD
Yν
(

z±;H;SD
n

)]2
}

(4.169)

Anti-Dual KR:

N±;H;AD

(n) =

√

{∫ +π

−π
dy e2A±(y)

(

z±;H;AD
n

)−2ν[

Jν
(

z±;H;AD
n

)

+
(

α±;H
n

)

AD
Yν
(

z±;H;AD
n

)]2
}

.

(4.170)
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For ek±rcπ ≫ 1,
(mH

n )±;SD/AD

k±
≪ 1 the integration constant

(

α±;H
n

)

SD/AD
≪ 1. Conse-

quently Yν(z±;H;SD/AD
n ) is neglected compared to Jν(z±;H;SD/AD

n ) in equation (4.161) and

then the normalization constant for n 6= 0 mode turns out to be

Self-Dual KR:

N±;H;SD
(n) =

√

{∫ +π

−π
dy e2A±(y)

(

z±;H;SD
n

)2ν [

Jν
(

z±;H;SD
n

)]2
}

(4.171)

Anti-Dual KR:

N±;H;AD

(n) =

√

{∫ +π

−π
dy e2A±(y)

(

z±;H;AD
n

)−2ν [

Jν
(

z±;H;AD
n

)]2
}

. (4.172)

Consequently the extra dimensional dependent wave function for n 6= 0 turns out to be

Self-Dual KR:

χ
(n)
±;H;SD(y) =

(

z±;H;SD
n

)ν

√

{

∫ +π
−π dy e

2A±(y)
(

z±;H;SD
n

)2ν [

Jν
(

z±;H;SD
n

)]2
}

Jν(z±;H;SD
n )

Anti-Dual KR:

χ
(n)
±;H;AD(y) =

(

z±;H;AD
n

)−ν

√

{

∫ +π
−π dy e

2A±(y)
(

z±;H;AD
n

)−2ν [

Jν
(

z±;H;AD
n

)]2
}

Jν(z±;H;AD
n ).

(4.173)

For massless n = 0 mode the solution of the equation (4.159) turns out to be

Self-Dual KR: χ
(0)
±;H;SD =

C2

2Θ0rc
e2Θ0rc|y| + C1

Anti-Dual KR: χ
(0)
±;H;AD = − C2

2Θ0rc
e−2Θ0rc|y| + C1.

(4.174)

Here C1 and C2 are arbitrary integration constants. Now applying the boundary condition

through the continuity of the wave function we get C2 = 0. As a result the zero mode

solution turns out to be χ
(0)
±;H;SD = χ

(0)
±;H;AD = C1. Now applying the normalization

condition the ground state massless zero mode wave function turns out to be

χ
(0)
±;H;SD = χ

(0)
±;H;AD = C1 =

√

k±rc
e2k±rcπ − 1

≈
√

k±rce−k±rcπ. (4.175)

This is again heavily suppressed on the visible brane.
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4.9 Bulk rank-4 antisymmetric tensor field

In five dimension we can have at most rank-3 antisymmetric tensor field with rank-4 anti-

symmetric tensor field strength whose five dimensional action can be written as [72]

SZ =

∫

d5x
√−g(5) ZMNAB(x, y)ZMNAB(x, y) (4.176)

where five dimensional action for rank-4 antisymmetric field strength tensor is given by

ZMNAB :=
−→
∂ [MXNAB](x, y) (4.177)

with antisymmetric rank-3 tensor potential XNAB, under the exchange of any two indices.

It is usually called “Rammond- Rammond” (R-R) differential three-form generated from

the Rammond-Rammond sector of the closed string excitation. Now applying the gauge

fixing condition Xµν4 = 0 the action stated in equation (4.176) takes the following form

SZ =

∫

d5x

[

e4A±(y)ηµληνρηαγηβδZµναβ(x, y)Zλργδ(x, y)

+
4

rc
e2A±(y)ηµληνρηαγ

(−→DyXµνα(x, y)
)(−→DyXλργ(x, y)

)

] (4.178)

where we introduce a new symbol
−→Dy := d

dy . Let the Kaluza-Klien expansion of the rank-4

antisymmetric R-R three form potential field is given by

Xµνα(x, y) =
∞
∑

n=0

X (n)
µνα(x)

χ
(n)
±;Z(y)√
rc

. (4.179)

Now plugging equation (4.179) in equation (4.178) the effective four dimensional action

reduces to the following form:

SZ =

∫

d4x
∞
∑

n=0

[

ηµληνρηαγηβδZ(n)
µναβ(x)Z

(n)
λργδ(x) +

(

MZ
n

)2

± η
µληνρηαγX (n)

µν (x)X (n)
αβ (x)

]

(4.180)

where the effective four dimensional Rammond-Rammond field strength is defined as

Z(n)
µναβ(x) :=

−→
∂ [µX (n)

ναβ](x). In this context we impose the following orthonormalization

condition of extra dimension dependent wave functions
∫ +π

−π
dy e4A±(y) χ

(m)
±;Z(y) χ

(n)
±;Z(y) = δmn (4.181)

and the mass term of the gauge field is defined through the following differential equation as

− 1

r2c

−→Dy

(

e2A±(y)−→Dyχ
(n)
±;Z(y)

)

= e4A±(y)
(

mZ
n

)2

± χ
(n)
±;Z(y). (4.182)

Here the mass of the nth mode Rammond-Rammond antisymmetric field is given by
(

MZ
n

)

± = 2
(

mZ
n

)

±. Now introducing a new variable z±;Z
n :=

(mZ
n )±
k±

eA±(y) equation (4.182)

can be recast in terms of Bessel differential equation of order one as
[

(

z±;Z
n

)2−→D2
z±;Z
n

+ z±;Z
n

−→D
z±;Z
n

+
{

(

z±;Z
n

)2 − 1
}

]

χ
(n)
±;Z = 0 (4.183)

– 47 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
6

and the analytical solution turns out to be

χ
(n)
±;Z(y) =

e−A±(y)

N±;Z
(n)

[

J1(z±;Z
n ) + α±;Z

n Y1(z±;Z
n )

]

. (4.184)

Here N±;Z
(n) be the normalization constant of the extra dimension dependent wave function

and α±;Z
n is the integration constant determined from the orthonormalization condition and

the continuity conditions at the orbifold fixed point. Self-adjointness and hermiticity of the

differential operator appearing in equation (4.183) demands that
−→Dyχ

(n)
±;Z(y) is continuous

at the orbifold fixed points yi = 0, π. Consequently we have

−→Dyχ
(n)
±;Z |yi=0 = 0 =⇒ α±;Z

n =

[

(mZ
n )±
k±
J ′

1

(

(mZ
n )±
k±

)

− J1
(

(mZ
n )±
k±

)]

[

Y1
(

(mZ
n )

±

k±

)

− (mZ
n )

±

k±
Y ′

1

(

(mZ
n )

±

k±

)] . (4.185)

−→Dyχ
(n)
±;Z |yi=π = 0 =⇒ α±;Z

n =

[

J1
(

x±;Z
n

)

− x±;Z
n J ′

1

(

x±;Z
n

)]

[

x±;Z
n Y ′

1

(

x±;Z
n

)

− Y1
(

x±;Z
n

)] (4.186)

where z±;Z
n (π) := x±;Z

n =
(mZ

n )±
k±

ek±rcπ. For ek±rcπ ≫ 1,
(mZ

n )±
k±

≪ 1 the mass spectrum

for the Rammond-Rammond fields is expected to be of the order of TeV scale i.e.

α±;Z
n ≃ π

32

(

x±;Z
n

)4
e−4k±rcπ. (4.187)

Now using equation (4.187) and equation (4.185) we get

π

32

(

x±;Z
n

)4
e−4k±rcπ =

[

J1
(

x±;Z
n

)

− x±;Z
n J ′

1

(

x±;Z
n

)]

[

x±;Z
n Y ′

1

(

x±;Z
n

)

− Y1
(

x±;Z
n

)]

⇒ J2
(

x±;Z
n

)

≃ π

32

(

x±;H
n

)4
e−4k±rcπY ′

1

(

x±;Z
n

)

≈ 0

(4.188)

which is an transcendental equation of x±;Z
n and the roots of this equation gives the gauge

field mass spectrum
(

mZ
n

)

± in presence of perturbative Gauss-Bonnet coupling α(5). Now

using equation (4.181) the normalization constant for n 6= 0 mode reduces to the follow-
ing expression

N±;Z
(n) =

ek±rcπ

√

k±rc
√

{

[

J1
(

x±;Z
n

)

+ α±;Z
n Y1

(

x±;Z
n

)]2

− e−2k±rc

[

J1
(

x±;Z
n e−k±rcπ

)

+ α±;Z
n Y1

(

x±;Z
n e−k±rcπ

)]2
}

.

(4.189)

For ek±rcπ ≫ 1,
(mZ

n )±
k±

≪ 1 the integration constant α±;Z
n ≪ 1. Consequently Y1(z±;Z

n ) is

neglected compared to J1(z±;Z
n ) in equation (4.184) and then the normalization constant

for n 6= 0 mode turns out to be

N±;Z
(n) =

ek±rcπ

√

k±rc
J1
(

x±;Z
n

)

. (4.190)
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Consequently the extra dimensional dependent wave function for n 6= 0 turns out to be

χ
(n)
±;Z(y) =

√

k±rc e−A±(y)

ek±rcπ

J1(z±;Z
n )

J1(x±;Z
n )

. (4.191)

For massless n = 0 mode the solution of the equation (4.182) turns out to be

χ
(0)
±;Z = − C1

2k±rc
e−2A±(y) + C2. (4.192)

Here C1 and C2 are arbitrary integration constants. Now applying the boundary condition

through the continuity of the wave function we get C1 = 0. As a result the zero mode

solution turns out to be χ
(0)
±;Z = C2. Now applying the normalization condition the ground

state massless zero mode wave function turns out to be

χ
(0)
±;Z = C2 =

√

2k±rc
e4k±rcπ − 1

≈
√

2k±rce−2k±rcπ. (4.193)

This give zero mode is heavily suppressed in the visible brane, though the warping

will be reduced if one choses large Gauss-Bonnet coupling α(5). Moreover the zeroth mode

is function of extra dimensional coordinate y appearing through the dilatonic contribu-

tion. It is interesting to note that the suppression of the zero mode on the visible brane

increases with the rank of the field. This explains the reason of invisibility of these fields

in our universe.

5 Bulk-brane interaction in presence of Gauss-Bonnet coupling

In this section we elaborately discuss about the possible interaction picture between brane-

bulk fields in the context of dS5/AdS5 ⊗ S5 warped phenomenology and there conse-

quences in presence of the five dimensional bulk Gauss-Bonnet coupling.

5.1 Fermion interaction

5.1.1 Brane standard model fields with bulk gravitons

The five dimensional action describing the interaction between bulk graviton and visible

Standard Model fields dominated by fermionic contribution on the brane is given by

SSM−G = −
K(5)

2

∫

d5x
√−g(5)Tαβ

SM(x)hαβ(x, y)δ(y − π) (5.1)

where Tαβ
SM(x) represents the energy momentum or stress energy tensor containing all in-

formations of Standard Model matter fields on the visible brane. In this context K(5) is the

coupling strength describing the tensor fluctuation in the context of graviton phenomenol-

ogy. After substituting the Kaluza-Klien expansion for graviton degrees of freedom and
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rescaling the fields appropriately, the effective four dimensional action turns out to be

SSM−G = −
K(5)

2

∫

d4x rc e
−4A±(y)Tαβ

SM(x)
∞
∑

n=0

h
(n)
αβ (x)

χ
(n)
±;G(y)
√
rc

δ(y − π)

= −
√
rcK(5)

2

∫

d4x e−4A±(π)Tαβ
SM(x)

∞
∑

n=0

h
(n)
αβ (x)χ

(n)
±;G(π)

= −
√

k±rcK(5)

2

∫

d4x Tαβ
SM(x)

[

h
(0)
αβ(x) + ek±rcπ

∞
∑

n=1

h
(n)
αβ (x)

]

.

(5.2)

It is evident from equation (5.2) that while the zero mode couples to the brane fields

with usual gravitational coupling ∼ 1/MPL which we have taken as unity, the coupling

of the KK modes are ∼ ek±rcπ/MPL ∼ TeV −1 which is much larger than the coupling

of massless graviton. Though such feature is also observed for the graviton KK modes

in the usual RS model, here due to GB coupling α(5), the k± will change. It may be

seen from the figures that the values of k± decrease with α(5) and hence the graviton KK

mode couplings decrease due to GB interaction leading to the decrease in their detection

signature in collider experiments unless one modifies the value of rc to resolve the gauge

hierarchy problem. Moreover equation (4.15) and figure 5 indicate that the decrease in

k± lead to increase in the masses for the graviton KK modes. Thus the absence of any

signature of graviton KK modes, as reported by ATLAS data in dilepton decay processes,

may be the result of GB coupling rather than any negative result for the warped geometry

models. However in an alternative scenario if one modifies the value of rc to obtain the

desired Planck to TeV scale warping, then the KK mode graviton couplings with brane

fields do not change from the RS values, but the graviton KK mode masses decrease from

their counter part in RS model. In that case the non-vanishing GB coupling make the

detectability of the signature of KK mode graviton through dilepton decay process more

pronounced. Absence of any such signature, as reported by ATLAS collaborations, put

question on the validity of GB extension in RS like warped geometry model.

5.1.2 Brane fermions with bulk Kalb-Rammond field

The interaction between bulk Kalb-Rammond field with the fermions localized at visible

brane is described by the following action:

SΨ̄ΨH = −ig
∫

d5x Det(V) Ψ̄L,R(x)γ
αVMα σNLHµνλ(x, y)ΨL,R(x)δ

µ
Mδ

ν
Nδ

λ
Lδ(y − π) (5.3)

where σNL := i
4

[

ΓN ,ΓL
]

. Substituting Kaluza-Klein expansion of the bulk Kalb-

Rammond field in equation (5.3) we get

SΨ̄ΨH = − ig√
rc

∫

d4x
∞
∑

n=0

e−
3
2
A±(π)Ψ̄L,R(x)γ

µσνλH(n)
µνλ(x)χ

(n)
±;H(π)ΨL,R(x)e

− 3
2
A±(π) (5.4)

Now rescaling the fermionic fields via Ψ̄L,R(x) → e−
3
2
A±(π)Ψ̄L,R(x) equation (5.4) takes

the following form
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Pure KR:

SPure
Ψ̄ΨH = −i

∫

d4xΨ̄L,R(x)γµσνλ

[

1
MPL

g
ek±rcπ

H(0)
µνλ(x) +

2

π

1
Λπ

g

∞
∑

n=1

H(n)
µνλ(x)

J0(x±;H
n )

x±;H
n

]

ΨL,R(x)

(5.5)

Topologically extended KR:

(a)Self Dual KR:

SSD
Ψ̄ΨH = −i

∫

d4xΨ̄L,R(x)γ
µσνλ













1
MPL
g ek±rcπ

H(0)
µνλ(x)

+
1

√

k±rcMPL

∞
∑

n=1

H(n)
µνλ(x)Jν

(

x±;H;SD
n

)(

x±;H;SD
n

)ν

√

{

∫ +π
−π dy e

2A±(y)
(

z±;H;SD
n

)2ν [

Jν
(

z±;H;SD
n

)]2
}













ΨL,R(x),

(5.6)

(b)Anti Dual KR:

SAD
Ψ̄ΨH = −i

∫

d4xΨ̄L,R(x)γ
µσνλ













1
MPL
g ek±rcπ

H(0)
µνλ(x)

+
1

√

k±rcMPL

∞
∑

n=1

H(n)
µνλ(x)Jν

(

x±;H;AD
n

)(

x±;H;AD
n

)−ν

√

{

∫ +π
−π dy e

2A±(y)
(

z±;H;AD
n

)−2ν [

Jν
(

z±;H;AD
n

)]2
}













ΨL,R(x)

(5.7)

where MPL is defined earlier and Λπ := MPLe
−k±rcπ. It is evident from equation (5.5)

that when pure Kalb-Rammond field is interacting with the fermions localized at the

visible brane then the zero mode is exponentially suppressed and the excited Kaluza-

Klien modes of Kalb-Rammond field are stronger as the number of mode n increases. The

remarkable point to note here is that the massive mode coupling to fermion, as given

by equations (5.6), are drastically reduced compared to the corresponding case without

the presence of the axionic contribution. It appears as if the large coefficient Θ0 in the

additional five dimensional topological term characterized by the axionic extra part in the

action causes the Kalb-Rammond modes to decouple from all visible physics on the brane,

although a tower within the kinematic reach of accelerator experiments is still around.
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5.1.3 Brane fermions with bulk rank-4 antisymmetric tensor field

The interaction between pure bulk rank-4 antisymmetric tensor field with the fermions

localized at visible brane is described by the following action:

SΨ̄ΨZ = −igz
∫

d5x Det(V) Ψ̄L,R(x)γ
αVMα σNLΓSZµνρβ(x, y)ΨL,R(x)δ

µ
Mδ

ν
Nδ

ρ
Lδ

β
Sδ(y − π),

= −igz
∫

d4x

∫ +π

−π
dy Ψ̄L,R(x)e

− 3
2
A±(y)γαVµασνλγβZµνλβ(x, y)ΨL,R(x)e

− 3
2
A±(y)δ(y − π)

(5.8)

Now rescaling the fermionic fields via Ψ̄L,R(x) → e−
3
2
A±(π)Ψ̄L,R(x) and substituting the

Kaluza-Klien expansion of the rank-4 antisymmetric tensor field in equation (5.8) we get

S
Ψ̄ΨZ = −i

∫

d4xΨ̄L,R(x)γµσνλγβ

[

1
MPL√
2gz

e2k±rcπ
Z(0)

µνλβ(x) +
1

Λπ

gz
e3k±rcπ

∞
∑

n=1

Z(n)
µνλβ(x)

]

ΨL,R(x).

(5.9)

This explicitly shows that both the zero mode and the excited mode of the Kaluza-Klien

expansion of the bulk rank-4 antisymmetric tensor field are suppressed at the visible brane.

But the amount of such suppression is larger for massive excited modes.

5.1.4 Bulk fermions with bulk dilatons

The five dimensional action describing the interaction between the massive fermionic field
(

spin 1
2 type

)

and dilaton field can be written as

Sf−φ =

∫

d5x [Det(V)] eθ7φ(y)
{

iΨ̄L,R(x, y)γ
αVMα

←→
DµΨL,R(x, y)δ

µ
M

− sgn(y)mf Ψ̄L,R(x, y)ΨR,L(x, y) + h.c.

} (5.10)

where
←→
Dµ :=

(←→
∂µ +Ωµ + igfAµ

)

represents the covariant derivative in presence U(1)
abelian gauge field and fermionic spin connection Ωµ = 1

8ω
ÂB̂
µ

[

ΓÂ,ΓB̂

]

. Substituting the

Kaluza-Klien expansion for fermion and extra dimension dependent dilaton field (similar

as the bulk scalar field)in the action stated in equation (5.10) we get

Sf−φ =

∫

d4x

∞
∑

n=0

∞
∑

m=0

{

(

1 + θ7
√

k±
)

δmn +
θ7√
rc

∞
∑

r=0

H
(mnr)
9

}

[

Ψ̄
(n)
L,R(x)i

←→
∂/ Ψ

(n)
L,R(x)

−mL,R
n Ψ̄

(n)
L,R(x)Ψ

(n)
R,L(x)

]

+
igf√
rc

∞
∑

n=0

∞
∑

m=0

∞
∑

p=0

{

(

1 + θ7
√

k±
)

H
(mnp)
10

+
θ7√
rc

∞
∑

s=0

H
(mnps)
11

}

Ψ̄
(m)
L,R(x)iA/(n)(x)Ψ

(p)
R,L(x)

(5.11)
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H
(000)
9 H

(000)
10 H

(0000)
11

0.452/4.348 0.219/3.456 0.145/2.116

(a)

H
(000)
9 H

(000)
10 H

(0000)
11

0.489/4.248 0.244/3.566 0.179/2.180

(b)

Table 8. Numerical values of different heterotypic couplings for lowest lying modes of the triliear

fermionic interaction with dilatonic fields for (a) k− branch and (b) k+ branch.

where the trilinear and quartic interaction between dilatonic field and fermionic fields are

characterized by

H
(mnr)
9 :=

∫ +π

−π
dy eA±(y)f̂

(m)⋆
L,R (z±;L,R

m )f̂
(n)
L,R(z

±;L,R
n )χ

(r)
±;φ(z

±;φ
r ),

H
(mnp)
10 :=

∫ +π

−π
dy eA±(y)f̂

(m)⋆
L,R (z±;L,R

m )f̂
(n)
L,R(z

±;L,R
n )χ

(p)
±;A(z

±;A
p ),

H
(mnps)
11 :=

∫ +π

−π
dy eA±(y)f̂

(m)⋆
L,R (z±;L,R

m )f̂
(p)
L,R(z

±;L,R
n )χ

(p)
±;A(z

±;A
p )χ

(s)
±;φ(z

±;φ
s ).

(5.12)

In table 8a and table 8b we have tabulated the numerical values of the trilinear and

quartic interaction for zeroth mode.

5.2 Self interaction of bulk scalar field

In five dimension the m-th order self interaction for bulk scalar field (other than dilaton)

is described by

SΦΦ =
λ(5)

M3m−5
(5)

∫

d5x
√−g(5) (Φ(x, y))2m . (5.13)

Substituting the Kaluza-Klien expansion for bulk scalar field the effective four dimensional

contribution to the self interaction turns out to be

SΦΦ =
λ(5)

M3m−5
(5) rmc

∞
∑

r=0

∫

d4x
(

Φ(r)(x)
)2m

∫ +π

−π
dy rc e

−4A±(y)
(

χ
(r)
±;Φ(y)

)2m

=
∞
∑

r=0

∫

d4x
(

Φ(r)(x)
)2m

λ
Φ;(r)
(4)

(5.14)

where the effective four dimensional mth order self interaction coupling strength can be

expressed in terms of its five dimensional counterpart as

λ
Φ;(r)
(4) =

λ(5)

M3m−5
(5) rmc

∫ +π

−π
dy rc e

−4A±(y)
(

χ
(r)
±;Φ(y)

)2m

= 2λ(5)

(

k±
M(5)

)m−1
(

M(5)e
−k±rcπ

)4−2m
∫ 1

0
dΠ Π4m−5













JνΦ
±

(

x±;Φ
r Π

)

JνΦ
±

(

x±;Φ
r

)

√

1 +
4−(νΦ±)

2

(x±;Φ
r )

2













2m

.

(5.15)
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It is important to mention here that the renormalizable scalar field theory only exist in the

visible brane iff m = 2. There may be other situation appears where the self interaction

of the five dimensional bulk scalar field is characterized by the derivative m-th order self

interaction. In the bulk the five dimensional action describing the effect of derivative

self-interaction is characterized by

SΦΦ =
λ(5)

M5m−5
(5)

∫

d5x
√−g(5)

(

gAB−→∂ AΦ(x, y)
−→
∂ BΦ(x, y)

)m
. (5.16)

Substituting the Kaluza-Klien expansion for bulk scalar field the effective four dimensional

contribution to the derivative self interaction turns out to be

SΦΦ =
λ(5)

M5m−5
(5) rmc

∞
∑

r=0

∞
∑

s=0

∫

d4x
(

Φ(r)(x)
)m (

Φ(s)(x)
)m

×
∫ +π

−π
dy rc e

−4A±(y)
(−→
Dyχ

(r)
±;Φ(y)

)m (−→
Dyχ

(s)
±;Φ(y)

)m

=
∞
∑

r=0

∞
∑

s=0

∫

d4x
(

Φ(r)(x)
)m (

Φ(s)(x)
)m

λ
Φ;(rs)
(4)

(5.17)

where the effective four dimensional mth order derivative self interaction coupling strength

can be expressed in terms of its five dimensional counterpart as

λ
Φ;(rs)
(4) =

λ(5)

M5m−5
(5) rmc

∫ +π

−π
dy rc e

−4A±(y)
(−→
Dyχ

(r)
±;Φ(y)

)m (−→
Dyχ

(s)
±;Φ(y)

)m

= 2λ(5)

(

k±
M(5)

)3m−1
(

M(5)e
−k±rcπ

)4−2m

×
∫ 1

0
dΠ Π2m−5













−→
DΠ













JνΦ
±

(

x±;Φ
r Π

)

JνΦ
±

(

x±;Φ
r

)

√

1 +
4−(νΦ±)

2

(x±;Φ
r )

2

























m

×













−→
DΠ













JνΦ
±

(

x±;Φ
s Π

)

JνΦ
±

(

x±;Φ
s

)

√

1 +
4−(νΦ±)

2

(x±;Φ
s )

2

























m

.

(5.18)

5.3 Bulk gravidilatonic interaction

The five dimensional action describing the interaction between two spin-2 graviton and the

dilatonic field via Gauss-Bonnet perturbative coupling in the bulk is given by the following

gravidilaton contribution

Sφ h = α(5)

∫

d5x
√−g(5)eθ8φ(y)hαβ(x, y)h

αβ(x, y). (5.19)

Throughout this analysis we assume that the graviton field non-interacting with other field

contents in the bulk. Only self-interaction and gravidilatonic interaction are allowed in the
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X
(00)
1 X

(01)
1 X

(10)
1 X

(11)
1

0.500 0.367 0.212 0.189

(a)

X
(00)
1 X

(01)
1 X

(10)
1 X

(11)
1

0.411 0.256 0.187 0.009

(b)

Table 9. Numerical values of X
(pq)
1 for lower lying modes of the nontrivial bilinear heterotypic

gravidilatonic interaction for (a) k− branch and (b) k+ branch.

bulk. Now substituting the Kaluza-Klien expansion for graviton and dilaton equation (5.19)

reduces to the following form

Sφ h = α(5)

∫

d4x ηαµηβν
∞
∑

p=0

∞
∑

q=0

h
(p)
αβ(x)h

(q)
µν (x)

[

(

1 + θ8
√

k±
)

X
(pq)
1 +

θ8√
rc

∞
∑

r=1

X
(pqr)
2

]

(5.20)

where the gravidilatonic interactions are characterized by the following integrals:

X
(pq)
1 := Gpq

1 , X
(pqr)
2 :=

∫ +π

−π
dy e−2A±(y)χ

(p)
±;G(z±;G

p )χ
(q)
±;G(z±;G

q )χ
(r)
±;φ(z

±;φ
r ). (5.21)

The numerical values of such contributions are estimated in table 9a and table 9b.

6 Summary and outlook

In this article we have made a comprehensive study of string inspired warped geometry

and it’s phenomenological implications. Our model is a perturbation of the RS model

by Gauss-Bonnet coupling in five dimension which also includes the effect of string two

loop correction in the gravity sector coming from the interaction with dilatonic degrees

of freedom via the CFT disk amplitudes in the bulk dS5/AdS5 geometry. Our study

centered around three distinct aspects:

• Determining the modified warp factor, the brane tensions and addressing the gauge

hierarchy issue.

• Study of different bulk fields and the profile of the wave functions to examine their

overlap on the visible brane as well as various KK mode masses for these bulk fields.

• Examining the interaction with the brane fields to evaluate their possible signatures.

We also compare our results with that obtained through the usual RS analysis. Our

results can be summarized as follows:

• For small GB coupling the warp factor turns out to be exponential with two different

branches for the bulk parameters k which we denote as k±. Moreover unlike the RS

scenario, in our case k± depend on the bulk coordinate as well as the GB parameter

α(5). In addition a warped solution can be obtained for both anti de-Sitter and

de-Sitter bulk.
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• The gauge hierarchy problem can be resolved by appropriate choices of the parameters

k±, rc and α(5). The dependence of k± on α(5) has been determined which indicates

that the increase in the GB coupling decreases the value of k± leading to lesser

warping between the two branes unless one takes a larger value for the modulus rc to

compensate the fall in the value of k±. Also equation (3.13) implies that increase GB

coupling causes increase in the effective 4-dimensional Planck scale from the pure RS

scenario. The brane tensions also increases with increase in α(5) and finally reaches

a saturation.

• We have determined a stringent constraint on the GB coupling so that the required

Planck to TeV scale hierarchy can be achieved through the modified warp factor.

Most significantly for both the warping solutions the recently observed Higgs like

boson at 125GeV can be explained through our model for very small values of the

Gauss-Bonnet coupling.

• We have evaluated and analyzed the zero mode and the KK mode excitations of

bulk graviton along with the five dimensional N = 1 supergravity extension with

bulk gravitino from the bulk wave function. The characteristic features of graviton

mass spectrum as well as the bulk wave functions are different for the two warping

solutions for all possible signatures of Gauss-Bonnet coupling α(5) and the string

loop correction in two loop level. In the limit α(5) → 0 the negative warping branch

produces the Randall-Sundrum features. The behavior of the mass spectrum for

gravitino is almost similar to that of the graviton degrees of freedom.

• We then extend our idea with bulk scalar as well as bulk gauge field by addressing

both abelian and non-abelian cases including dilaton coupling. It is a important

finding of our model that while the zeroth mode bulk wave function for bulk scalar

field and U(1) abelian gauge field are exactly same as Randall-Sundrum model, the

higher excited states are significantly different. Furthermore we have numerically

estimated the values of the trilinear and quartic self interaction strength up to first

excited state in presence of Gauss-Bonnet coupling and string loop correction.

• Next we have studied the detailed features of the KK-spectrum of various higher

rank antisymmetric tensor fields which are also possible candidates for bulk fields

including the possible dilaton-axion couplings which has a topological field theoretic

origin. The bulk wave function for all such antisymmetric tensor fields follows distinct

features in presence of the two warping solutions.

• Following the similar prescription we have analyzed the behavior of bulk fermions

where the profile of both left and right chiral modes are determined in presence

of the GB extended gravity model in presence of dilaton and two loop conformal

coupling. In this context we have estimated the trilinear interaction strength between

the left/right chiral fermions and the U(1) abelian gauge fields. Phenomenologically

such values are very interesting and gives new informations in the context of TeV

scale physics in presence of Gauss-Bonnet coupling and string loop correction. The
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behavior of left/right chiral fermions are significantly different for different warping

solutions and different signatures of the couplings. It is one of the important outcome

of our model that the right and left chiral fermions are localized on the bulk and visible

brane respectively for the warping solution A−(y). This establishes that among the

two solutions, the k− branch is phenomenologically preferred over the k+ branch.

• We have explicitly shown the detailed characteristic features of various interactions

among these bulk field contents by determining the numerical values of the coupling

parameters. Such estimations are very very useful to understand the underlying

physics of the phenomenological model of a Einstein-Gauss-Bonnet warp geometry

in presence of string loop corrections and dilaton couplings.

• The profiles of different bulk fields apart from graviton are determined along with

their KK mode masses. Since k± decreases with the GB coupling therefore the

warping decreases and the KK mode masses of various bulk fields increase unless

one introduces a little hierarchy by taking a larger rc to resolve the gauge hierarchy

problem.

• This brings out two possible scenario: 1) Due to fall in the value of k±, the warping

decreases so that the requirement of Planck to TeV scale warping to resolve the gauge

hierarchy problem can not be met. However the couplings of the graviton KK modes

with brane fields decreases and the masses of the graviton KK mode increases which

may lead to their escape from the present collider search, 2) If we change the value

of rc to maintain the required hierarchy then the coupling does not change from RS

value but the KK mode masses decreases. The absence of any signature of graviton

KK modes through their decay into dileptons in ATLAS search at LHC therefore

would signal the invalidity of the presence of GB couplings as a correction to RS

warped geometry models.

Some interesting open issues in this context of the present study can be to study the

cosmological consequences of KK spectrum and detailed features of AdS/CFT correspon-

dence for the GB coupled warped geometry model. The other possibility is to study the

detailed bouncing cosmological features as well as its imprints on the Cosmic Microwave

Background via cosmological perturbation using the supergravity extension of our model.

A detailed report on this issue will be brought forth in future.
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