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1 Introduction

1.1 Non-relativistic quantum field theories

While diffeomorphism invariance, the statement that physics does not depend on the co-

ordinate system used for spacetime, is often seen as a hallmark of the theory of general

relativity, it is already a property of any relativistic quantum field theory (QFT) formu-

lated on a fixed, potentially curved, background spacetime metric. In the case of a QFT,

diffeomorphism invariance should be seen as a “global symmetry”, in contrast to a gauge

symmetry. The latter is not a symmetry at all, but a redundancy in the description. Gauge

variant quantities are simply not physical. The gauge variant description introduced non-

physical degrees of freedom to simplify the Lagrangian; the gauge invariance of observables

removes those extra degrees of freedom again. Diffeomorphisms are a gauge invariance of

gravity. This is the reason that gravity has no standard local observables.

A global symmetry, on the other hand, is a real symmetry of the system. Physical

quantities need to furnish a representation of it. Sometimes parameters of the theory
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transform non-trivially under global symmetries. This is, for example, the case in the

theory of a massive Dirac fermion. The mass term explicitly breaks the axial symmetry.

However, the symmetry can be restored if we assign the mass term axial charge. Although

such “spurionic” symmetries do not in general generate conserved charges, they are useful as

they constrain how couplings can appear in the low energy effective theory or correlation

functions. In a QFT on a fixed spacetime background the metric acts analogously to

the Dirac fermion mass. One should think of the metric as a set of coupling constants

specified at every point in spacetime. Position dependent diffeomorphisms are now a global

symmetry under which these coupling constants transform. Similarly, a background gauge

field should be viewed as a set of coupling constants in the Hamiltonian that transform

non-trivially under a “global” position dependent U(1) transformation.

In a non-relativistic (NR) quantum field theory, time plays a special role: there is a

preferred notion of spatial slices consisting of events happening simultaneously. This can

be implemented by considering the spacetime manifold to be equipped with a co-dimension

one foliation consisting of the spatial leaves. A global time defines the invariant notion of

whether one event occurs before or after another, and is hence required in order to have a

well defined causality. Non-relativistic theories can have instantaneous interactions that,

when turned on, have immediate influence at arbitrarily large spatial distances, but they

cannot influence events that occurred at an earlier global time. In this way causality is

preserved in the absence of light cones.

Usually one wants to insist on translation invariance in time, t → t̃ = t − f where f

is a constant, so that the system allows for a conserved energy. Sometimes one can extend

this symmetry to include the case where f is linear in t, or even to the case where f is an

arbitrary function of t. As we will review, these two special cases correspond to NR QFTs

which are scale and conformally invariant, respectively. Any such time coordinate has the

right to be called a global time: the leaves of the foliation remain at constant time even

after the transformation f(t). On the other hand, the Lorentzian diffeomorphism where f

has spatial dependence, violates the preferred foliation as it changes the time ordering of

events. Such a redefined temporal coordinate cannot be considered a global time because

it would alter the notion of which events occur before or after another, and hence violate

causality. Although in a NR QFT one can always work in a global time, and restrict

f to be a function of time only, insight and information can be gained by considering a

“non-physical” time and allowing spatial dependence of f . This is analogous to using an

arbitrary metric in a relativistic field’s action so that one can calculate the stress-energy

tensor, even if only interested in flat Minkowski space. As we will discuss, from the non-

relativistic viewpoint one can still consider these non-physical temporal transformations

by having them act on a background source coupling to energy current.

For a NR QFT defined in d spatial dimensions, we however should still expect in-

variance under purely spatial diffeomorphisms. Furthermore, for many NR QFTs we are

allowed to perform a different change of spatial coordinates at different times, that is

xi → x̃i(xi, t). In particular, these time dependent spatial diffeomorphisms include the

standard Galilean boosts. Together with translations and rotations these boosts play a

special role as they leave a flat space background with no electromagnetic field invariant.
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Correspondingly, they do not just constrain the low energy effective action but are true

symmetries and give rise to conserved charges.

Additionally, most NR QFTs allow for a conserved particle number current. In this case

we can also formulate the theory in the presence of background electric and magnetic fields

coupling to particle number, and the theory possesses a position dependent U(1) global

symmetry acting on the associated background potential. We can take these symmetries

— time-dependent spatial diffeomorphisms, a U(1) rotation acting on the background

gauge field coupled to particle number, and time translation invariance — as the defining

symmetries of a large class of NR QFTs. This class includes most interacting electron

systems and in particular the quantum Hall states. If the theory, in addition, allows

for arbitrary reparametrizations of time, it describes a conformal NR QFT, of which the

unitary Fermi gas is an example. For these conformal theories there again exists a subgroup

of transformations that leaves the trivial field theory metric and gauge potential invariant.

This subgroup is often referred to as the Schrödinger group.

These spurionic symmetries put strong constraints on possible terms in the low energy

effective action in an interacting NR QFT. This was exploited for the unitary Fermi gas

in [1], which also developed most of the formalism used here, and, more recently, for quan-

tum Hall states in [2]. For the quantum Hall states these symmetries allow one to relate

the Hall viscosity and the change in filling fraction when the theory is put on a sphere to a

single coefficient in the low energy effective action. Furthermore, the leading correction to

the Hall conductivity in the presence of a background electric field with slow spatial varia-

tion is completely determined by the symmetry in terms of thermodynamic quantities. As

the Hall states describe gapped states, the only fields appearing in the low energy effective

action are the background metric and background electric fields, making symmetries very

powerful. In the unitary Fermi gas the interplay between NR conformal invariance and NR

diffeomorphisms constrains several transport coefficients in the hydrodynamic description

of this system [1].

One can obtain a NR QFT by taking the speed of light c → ∞ limit of a relativistic

field theory. In order to yield non-trivial results, a chemical potential µ must be turned

on to provide the rest mass m of particles. This causes the free energy associated with

a particle to remain finite in the large c limit, while the free energy associated with an

antiparticle goes to infinity as twice its rest energy and they therefore completely decouple.

The absence of antiparticles in a NR QFT means that virtual pairs cannot lead to particle

creation. Instead the existence of particles requires a chemical potential to pay their rest

mass. The non-relativistic theory then describes fluctuations around this energy. We will

make extensive use of this concept and the c→ ∞ limit.

1.2 Holography

Gauge-gravity duality [3–5], or “holography” for short, is a powerful tool that allows one to

solve certain strongly coupled gauge theories in terms of a dual gravitational description in

one higher dimension. For the gravitational theory to be classical it needs to have a large

separation between the scale of curvature of the geometry and the Planck mass. In the field

theory this requires a “large Nc” limit, where Nc is the number of colors if the field theory
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is a non-Abelian gauge theory, or a similar measure of the number of degrees of freedom

in other cases. One very basic piece of evidence for this equivalence is the matching of

symmetries on both sides. For relativistic field theories formulated on a fixed background

geometry this includes changes of coordinates on this background spacetime metric. In the

bulk these diffeomorphisms are part of the higher dimensional diffeomorphism invariance.

Bulk diffeomorphisms that vanish near the boundary of the space correspond to a gauge

invariance in the bulk. As usual, they should not be interpreted as a global symmetry.

They correspond to a redundancy in the description of the bulk theory. However, changes

of coordinates that do not depend on the extra holographic radial direction do correspond to

global symmetries as they act on the boundary data in the expected way: they correspond

to a diffeomorphism acting on the metric the field theory lives on.

As most strongly coupled systems of interest in condensed matter physics are non-

relativistic, there has recently been much interest in formulating holography for NR QFTs,

starting with the work of [6, 7]. The theories studied in those works enjoyed the full

symmetry of a NR conformal field theory (CFT). More importantly, these NR CFTs

were obtained by a light-like reduction, possibly with twisted boundary conditions, of a

relativistic CFT, from which they inherited most of their properties. They hardly constitute

generic NR QFTs.

As in the relativistic case, we believe a guiding principle for constructing a gravitational

dual should be the defining symmetries of a generic NR QFT. A holographic gravity dual

should have the same set of symmetry transformations as the field theory we are interested

in: time dependent spatial diffeomorphisms, spatially dependent temporal diffeomorphisms,

and the U(1) symmetry acting on the background gauge field coupled to particle number.

We will refer to this set of transformations as “NR electro-diffeomorphisms”. If we restrict

the temporal diffeomorphisms, excluding the non-physical spatially dependent ones that

violate the preferred foliation, we have the “NR general covariance” of [8]. Furthermore, if

we exclude the U(1) gauge symmetry we have the “foliation preserving diffeomorphisms”

of [9]. We emphasize that any NR QFT that has NR electro-diffeomorphisms as its sym-

metry group must still have a notion of global time in order to have a well defined causal-

ity. This means the spacetime manifold comes equipped with a foliation by spatial leaves

parametrized by a global time. Such a theory can therefore be restricted to have only NR

general covariance by working in coordinates adapted to the foliation. Although the sym-

metry group of NR electro-diffeomorphisms can give us more information about a theory,

it can only describe the same causal theories that NR general covariance can.

A gravitational theory centered around foliation preserving diffeomorphisms was in-

troduced by Hořava in [9]. In its most simple form, Hořava-Lifshitz theory describes the

dynamics of a lapse field N , a shift vector NI(t, xI), and a spatial metric1 GIJ(t, xI). In the

language of [9] the theory is “projectable” if N is a function of t only, and non-projectable

1We are using indices i, j, . . . running over the d spatial dimensions of the field theory; µ, ν, . . . running

over the d+ 1 field theory directions including time; I, J , . . . running over the d+ 1 spatial dimensions of

the bulk including the radial coordinate r; and, last but not least, M , N , . . . running over all d + 2 bulk

directions including time and r. In section 3.2.1 we will require discussion of a d+3 dimensional bulk, there

we use indices X, Y , . . . to cover the d+ 2 directions of M , N , . . . plus one additional direction ζ.
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when N is allowed to have spatial dependence as well. Writing the most general low en-

ergy action consistent with symmetries and containing up to two derivatives, one finds

that the action is almost completely fixed to be that of Einstein gravity written in terms

of these fields. In addition to the two free dimensionful parameters of Einstein’s gravity,

the Newton’s constant GN and the cosmological constant Λ, the low energy limit of pro-

jectable Hořava gravity has one additional free parameter λ̃, which determines the relative

coefficient of the two allowed kinetic terms for the spatial metric, written in terms of the

extrinsic curvature of the slice. In the non-projectable case, which will be the main interest

in this work, there is another two derivative term we can include in the low energy action

involving spatial derivatives of N . The corresponding coupling constant is commonly re-

ferred to as α. These parameters are one of the issues that makes it difficult to find a

version of Hořava gravity that is a consistent theory of our world. In order to agree with

the observed Lorentz invariance one needs a mechanism to set λ̃ ≈ α ≈ 0, the value they

take in general relativity (GR). For applications to NR holography, this is of no concern. In

fact, one could hope that by adjusting these couplings Hořava gravity could holographically

describe a wide class of NR QFTs.

The projectable version of Hořava-Lifshitz theory was extended in [8, 10] to include

NR general covariance (that is, the U(1) symmetry corresponding to particle number con-

servation in addition to foliation preserving diffeomorphisms). In this case, the theory

contains two additional non-dynamical fields, the “potential” A(t, xI) (which arises as the

subleading term of N in a non-relativistic expansion and in that sense it restores spatial

dependence to N) and at least one of the following: a field AIJ , which can be thought of

as the subleading term of the spatial metric, or the so called “prepotential” field ν(t, xI).

The one exception is the case of D = 2 spatial dimensions, for which no extra field beyond

A is required. These versions do not allow a straightforward holographic interpretation.

In D = 2 dimensions the equations of motion for A immediately force spatial slices to

be flat, whereas for holographic interpretations following the standard recipe we expect

an asymptotically hyperbolic spatial slice.2 Similarly, the theory with AIJ requires a flat

spatial slice.3 The scenario with the prepotential ν has a different problem. Under the

U(1) symmetry ν shifts. Therefore, as discussed more in section 3.1.2, the U(1) gauge

invariance in the bulk is completely fixed by choosing ν = 0 gauge; there are no residual

gauge transformations left that could be interpreted as global symmetries acting on the

background data of the dual field theory. One could instead adopt the Nr = 0 gauge,

which leaves r-independent gauge transformations as a residual symmetry. In this case

the asymptotic value ν would have to be interpreted as the source of a boundary opera-

tor. Like the background electric and magnetic fields, this background coupling constant

would not be invariant under the U(1) global transformation. Unlike the former, which do

2AdS in flat slicing has been found as a solution to projectable Hořava gravity [11], but given in the

Gullstrand-Painleve coordinates, which do not extend to the boundary. These are related to the traditional

Fefferman-Graham coordinates [12] by a “non-physical” temporal transformation, and so correspond to

gauge inequivalent configurations of Hořava gravity.
3While it is possible to introduce a “spatial cosmological constant” Ω in the theory with AIJ , the

constraints that arise as the equations of motion of A and AIJ are only satisfied if Ω = 0.

– 5 –



J
H
E
P
0
2
(
2
0
1
3
)
1
2
3

transform exactly like background fields should under a U(1) transformation, ν shifts also

in the boundary theory. The only example of an operator that transforms like this, that

we are aware of, would be the phase of a U(1) charged operator; if either added to the

Lagrangian or having acquired an expectation value the presence of this operator would

signal that in the boundary theory the U(1) symmetry is broken (explicitly or sponta-

neously, respectively). Thus the theory with ν can at best capture the dual to a NR QFT

with a broken U(1).

We will derive a different field content that obeys the symmetries of NR electro-

diffeomorphisms by taking a particular Kaluza-Klein compactification of GR, as well as

by taking the infinite speed of light limit of Einstein-Maxwell theory. The main thrust

of this paper is that by working in adapted coordinates, and restricting the symmetry

transformations to exclude the non-physical temporal diffeomorphisms, non-projectable

Hořava gravity coupled to electric and magnetic fields captures NR general covariance, and

therefore should be dual to a generic NR QFT with these same symmetries.

Hořava-Lifshitz theory comes with an intrinsic scale, the Planck massMpl. For energies

far below the Planck mass the action should be limited to 2-derivative terms and is uniquely

fixed (givenGN and Λ) up to a small set of free parameters: λ̃ and α introduced above. This

is the appropriate action to use when L, the typical curvature radius of spacetime, is large

in Planck units. From experience with relativistic holography, this limit corresponds to a

largeNc limit in the dual QFT, which allows one to study a classical bulk theory. One of the

big selling points of Hořava-Lifshitz theory is that it is a candidate for a UV finite quantum

theory of gravity. At energies far above the Planck scale the theory is argued to flow to a

UV fixed point with a different dynamical critical exponent4 zHL. As a consequence, at this

putative UV fixed point the counting of derivatives needs to distinguish between spatial

derivatives, which have dimension 1, and temporal derivatives, which have dimension zHL.

All marginal and relevant terms (that is terms with dimension less than or equal to D+zHL,

which compensates the dimension −D− zHL of the integration measure dDx dt) need to be

included in the action. In particular, the potential energy, which depends on the curvature

of the spatial metric GIJ and its spatial derivatives, should include terms with up toD+zHL

derivatives of the metric. For the special case of D = 3, zHL = 3 a full list of the possible

terms in the potential, subject to certain discrete symmetry assumptions, has been worked

out5 in [13]. In this work we will instead focus on the low energy limit as appropriate when

MplL ≫ 1, that is, when the dual field theory is taken in the large Nc limit. In this case,

we are only interested in energies E ∼ 1/L ≪ Mpl and only terms with up to two spatial

derivatives can occur in the potential. Studying the low energy, large Nc limit will allow

us to firmly establish the dictionary between bulk and boundary quantities. The prospect

that covariant Hořava-Lifshitz theory at a given zHL may be a complete quantum theory,

4We use the notation zHL here for the dynamical critical exponent of the Hořava gravity Lagrangian to

distinguish it from the dynamical critical exponent z of the dual field theory which, as we will see, can vary

even in the case of zHL = 1.
5In the original work of [9] a simpler potential has been used by imposing the additional constraint

of detailed balance. It seems to still be under debate whether this constraint can be imposed at the full

quantum level. This question is not relevant for the MplL ≫ 1 case.
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and hence allow us to study the dual NR QFT at finite Nc, makes this approach extremely

promising and is something left for future exploration.

In the large landscape of internally consistent quantum field theories, the highly con-

strained class of relativistic quantum field theories occupies only a small corner. This work

suggests that something similar should be true on the dual holographic side. While the well

studied case of gravitational theories with the full relativistic diffeomorphism invariance

of Einstein gravity seems to require string theory for its UV completion, the holographic

dual to a generic NR QFT seems to simply be a UV fixed point of Hořava gravity, with

non-trivial dynamical scaling exponent zHL, coupled to an almost arbitrary matter sector.

This basic picture has been one of the motivations behind the original work of [9, 14] and

was also recently emphasized in [15, 16].

The organization of this paper is as follows: section 2 discusses non-relativistic quantum

field theories; focussing on their symmetry properties in 2.1, including a form of conformal

invariance in 2.3, as well as deriving their transformations, from a c → ∞ limit of a

relativistic field theory with a chemical potential set to compensate the rest mass, in 2.4.

Section 3 discusses the non-relativistic gravity theory of Hořava; a version with the same

symmetries as a generic NR QFT is developed in 3.2, and a holographic duality is proposed

in section 3.3.1, including the calculation of a correlation function in 3.3.5. We end with a

discussion of our results in section 4, where we also elaborate on string theory embeddings

of our construction. A brief summary of the main ideas in this paper appears elsewhere [17].

2 Field theories with non-relativistic electro-diffeomorphism invariance

2.1 Diffeomorphisms and the global U(1) symmetry

As first introduced in [1], and extended in [6], many NR QFTs with conserved particle

number are invariant under diffeomorphism and U(1) transformations if the background

fields transform as

δAt = ξµ∂µAt + ḟAt +Akξ̇
k − λ̇ ,

δAi = ξµ∂µAi +Ak∂iξ
k +At∂if +meΦgik ξ̇

k − ∂iλ ,

δΦ = ξµ∂µΦ+Bkξ̇
k − ḟ ,

δBi = ξµ∂µBi +Bk∂iξ
k +Bi(Bkξ̇

k − ḟ)− ∂if ,

δgij = ξµ∂µgij + gik∂jξ
k + gkj∂iξ

k + (Bigjk +Bjgik)ξ̇
k. (2.1)

The diffeomorphism parameters, ξt ≡ f and ξi, and the gauge parameter λ can be arbitrary

functions of space and time. This is the symmetry group of “NR electro-diffeomorphisms”

defined in the introduction. We can give an interpretation to these background fields by

examining an action with this symmetry. Consider free NR particles described by the

action

S =

∫

dtddx
√
g e−Φ

[

ı

2
eΦ
(

ψ†Dtψ −Dtψ
†ψ
)

− gij

2m
Diψ

†Djψ

− gijBj

2m

(

Dtψ
†Diψ +Diψ

†Dtψ
)

− gijBiBj

2m
Dtψ

†Dtψ

]

, (2.2)
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where Dµψ ≡ ∂µψ− ıAµψ is the gauge covariant derivative. This action is invariant under

the transformations (2.1) if the field ψ transforms as

δψ = ξµ∂µψ − ıλψ . (2.3)

By varying the action (2.2) with respect to the background fields we can give them physical

meaning [6]: gij is the spatial metric and couples to the stress tensor T ij ; Aµ is the gauge

field and couples to the particle number density and current (n,~j); and (Φ, ~B) are the

sources that couple to the energy density and current (ǫ, ~E).

Among the general transformations described by (2.1) is a subgroup that leaves the

trivial background, gij = δij and Aµ = Φ = Bi = 0, invariant. These are determined to be

translations, spatial rotations, and Galilean boosts. The latter are given by

~ξ(t, ~x) = ~vt , λ(t, ~x) = ~v · ~x . (2.4)

In this sense the only true non-trivial symmetry that is a consequence of NR electro-

diffeomorphism invariance are Galilean boosts. More general transformations are only a

symmetry if we treat the background fields as spurions, transforming according to (2.1).

2.2 Conservation laws

The spurionic symmetry transformations of the background fields, as captured in (2.1),

leads to expressions for the conservation of particle number, momentum, and energy [1, 6].

In general backgrounds the latter two are only conserved if one takes into account the

momenta and energy stored in the external fields. The connected part of the generating

functional, W , is defined as eıW ≡
∫

Dψ†DψeıS . Assuming that W can be written as an

integral of a local density,

W [Φ, Bi, gij , At, Ai] =

∫

dtddxW , (2.5)

the invariance of the action S under the field transformations (2.1) implies, upon integrating

by parts, the conservation laws:

∂tn+ ∂kj
k = 0, ∂tπi + ∂kT

k
i = 0 , ∂tǫ+ ∂kE

k = 0 , (2.6)

which are the conservation of particle number, momentum, and energy, respectively. The

conserved densities and currents are given by

n ≡ −δW
δAt

, jk ≡ − δW
δAk

,

πi ≡ −Bi

(

δW
δΦ

+Bj
δW
δBj

)

− (Bkgij +Bjgik)
δW
δgkj

−Ai
δW
δAt

−meΦgij
δW
δAj

,

T k
i ≡ δki W −Bi

δW
δBk

− 2gij
δW
δgkj

+Ai
δW
δAk

,

ǫ ≡ δW
δΦ

+Bi
δW
δBi

−At
δW
δAt

, Ek ≡ δW
δBk

−At
δW
δAk

. (2.7)
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In what follows we will be mostly interested in the case of Bi = 0. For such backgrounds

the momentum density and particle number current are linked [1, 18]

πi = nAi +meΦji . (2.8)

Even when Φ = Bi = 0 the variation of W with respect to these fields is needed to to

calculate the energy density ǫ and current ~E.

2.3 NR scale and conformal invariance

In addition to the above diffeomorphism and U(1) transformations we can extend the

spurionic symmetry of some NR QFTs to include a type of conformal invariance [6]. The

additional generator ω(t, ~x) acts on the background fields via

δωΦ = −2ω , δωgij = 2ωgij , (2.9)

with the rest invariant.

Although the action (2.2) is not invariant under this transformation, it can be made

so by exchanging the “minimal coupling” used here for “conformal coupling” [6]. Alterna-

tively, we can consider the restricted case of Φ = Bi = 0, as in [1]. To maintain Bi = 0,

from (2.1), we require ∂if = 0, which is simply the statement that non-physical temporal

diffeomorphisms are not allowed in NR general covariance. Conversely, the existence of a

global time allows6 Bi = 0, as long as we work in adapted coordinates. From (2.1) and (2.9)

we see that Φ = 0 is maintained for ω = −ḟ(t)/2. In this way we see how in the restricted

case of [1] time reparametrization contains the information of the conformal structure of

the theory. They are intimately linked by demanding that Φ remains zero.

It is useful to define the notion of the conformal dimension of an operator [1]. By

the argument above, we see that for NR general covariance this can be determined by the

operator’s behavior under infinitesimal time reparametrization. In general an operator/field

transforming as

δO ⊃ fȮ +∆OḟO (2.10)

is said to have the conformal dimension ∆O. From (2.1) and (2.9), and using ω = −ḟ/2,
we see that in the restricted case the remaining background fields transform as

δAt ⊃ fȦ0 + ḟAt , δAi ⊃ fȦi , δgij ⊃ fġij + 2ωgij = fġij − ḟ gij . (2.11)

Therefore, At, Ai, and gij are conformal operators with dimensions 1, 0, and −1, re-

spectively. With these transformations of the background fields the action (2.2) (with

Φ = Bi = 0) is invariant under arbitrary f(t); the free action is “conformally invariant” if

we assign the scalar field the conformal transformation

δψ ⊃ −d
2
ωψ =

d

4
ḟψ . (2.12)

6On the spatial leaves defined by a global time we require that the above action (2.2) reproduces the

Schrödinger equation. This in turn gives Bi = 0 in such a coordinate frame. Using the observation that

nµ ≡ (e−Φ,−e−ΦBi) transforms as a spacetime one-form, we can interpret the action (2.2) as giving time

evolution in the nµ direction.
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If we formulate a theory with this conformal invariance there is a subgroup of the

spurionic symmetry transformations that leave the trivial background gij = δij and Aµ = 0

invariant. We have already seen that translations, rotations, and Galilean boosts maintain

this background. A second special case is the scale transformation. This corresponds

to a constant conformal transformation, ω = −κ/2, which, by above, requires the time

reparametrization f = κt. In order to leave the trivial background metric invariant we

need to combine these transformations with a spatial diffeomorphism that corresponds to

rescaling the spatial coordinates

ξi =
ḟ

2
xi =

κ

2
xi. (2.13)

The relative weight of 1/2 between the rescaling of time and space corresponds to a dy-

namical critical exponent of z = 2, as expected for a Schrödinger system.

In later sections we will find examples of gravity backgrounds that have scaling sym-

metries for z 6= 2. In order for this more general scale transformation to be a symmetry of

a Galilean invariant QFT the conformal transformation must be modified to

δωΦ = −zω , δωgij = 2ωgij , δωm = (z − 2)ωm , (2.14)

that is, the mass m must now be treated as a spurionic field. Preserving the trivial back-

ground under the temporal rescaling f = κt then requires the conformal transformation

ω = −κ/z and the spatial rescaling ξi = κxi/z, as expected for dynamical critical expo-

nent z. It has been argued in [7], based on a holographic construction, that such scale and

Galilean invariant fixed points should exist in interacting NR QFTs. In the action (2.2), as

in Schrödinger’s equation, m is a parameter, not a dynamical field. In this case, z = 2 scale

transformations get singled out as the only true scale symmetry that leaves the mass in-

variant. All other values of z can formally be realized as spurionic symmetries under which

m transforms. This is also the case in the z 6= 2 backgrounds of [7], where the compact

light-like direction scales non-trivially for z 6= 2, and hence so does the compactification

radius which sets the mass of the Kaluza-Klein particles. In principle we can construct

a system with z 6= 2 scaling by promoting m to a dynamical field in all the above, and

adding a hidden sector action Sm which sets the scaling of m to be given by (2.14). We

will not attempt to construct an explicit field theory model that realizes such behavior.

For the z = 2 case realized by the free field theory above, there is one more sym-

metry generator that leaves the trivial background invariant. It is usually referred to as

the “special conformal” transformation of the Schrödinger group, and corresponds to the

combination

ω = −Ct , f = Ct2, ξi = Ctxi, λ =
1

2
C~x2. (2.15)

Interactions can be added to the free theory that preserve spatial diffeomorphism and

the global U(1) invariance. In particular, the physically important case of a Coulomb

interaction (as relevant for electron systems) has the full NR general covariance, while a

short range interaction in the limit of infinite scattering length (as relevant for the unitary

Fermi gas) additionally has NR conformal invariance. Hence their low energy physics are

constrained by these symmetries. General interactions need not preserve the full conformal
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symmetry of the free theory. If the theory remains invariant under transformations of the

form f(t) = f0 + f1t then it has time translation and scale invariance. For the case of

f1 = 0 the theory only has time translation invariance.

2.4 Relativistic parent theory

As mentioned in the introduction, a non-relativistic theory can be achieved by introducing

a chemical potential to supply the rest mass of relativistic particles, and then taking the

c → ∞ limit to focus on fluctuations around this energy. An illustrative example of

this process, which will be paralleled later in section 3.2.1, is to consider the Kaluza-

Klein compactification of a free complex relativistic scalar. It is widely appreciated that

momentum around the compact direction gives a tower of lower dimensional modes of mass

mn ≡ |n|mkk, where the compactification radius is related to the Kaluza-Klein mass as

Rkk ≡ 1/(mkkc).
7 Additionally, the compact momentum also gives the lower dimensional

modes a U(1) charge: the symmetry of translation around the circle acts as a phase rotation

on the n-th Kaluza-Klein mode, in accordance to it having charge qn ≡ n. Turning on a

chemical potential µ = mkkc
2, the modes have the energy:

En =
√

~p2c2 + (mnc2)2 − qnµ . (2.16)

Taking the c→ ∞ limit, while keeping mkk fixed, corresponds to taking the null Rkk → 0

limit and reduces the mode’s energy to:

En ≈ ~p2

2|n|mkk
+mkkc

2(|n| − n) . (2.17)

We see that the modes with positive charge n have the expected non-relativistic dispersion

relation, while the “anti-particles” with negative charge n have an energy that grows like

c2, and hence decouple from the theory.

In the same spirit, the transformations (2.1) can easily be derived by taking a non-

relativistic limit of the relativistic theory of a charged massive field. Of course this proce-

dure does not give the most general NR QFT, but it does give a simple way to derive the

transformation properties of the free field theory. This is easiest to illustrate in the case of

a scalar [1]. The relativistic action

S = −
∫

ddxdt
√−g 1

2

(

gµνDµφ
†Dνφ+ c2m2e2σφ†φ

)

, (2.18)

where we have introduced the gauge covariant derivative Dµφ ≡ ∂µφ − ıCµφ, is invariant

under the infinitesimal general relativistic coordinate and U(1) gauge transformations

δφ = ξρ∂ρφ− ıΛφ ,

δCµ = ξρ∂ρCµ + Cρ∂µξ
ρ − ∂µΛ ,

δgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gρν∂µξ

ρ. (2.19)

7One still has ~ = 1, so energy is measured in inverse time. E = mc2 (or more precisely KE = mv2/2)

tells us that mc = E/c has units of inverse length.
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We explicitly display powers of the speed of light in the action so we can take the non-

relativistic c→ ∞ limit. Note that the relativistic mass is defined as meσ, this is crucial as

it has a different scaling dimension than the non-relativistic mass m, as discussed above.

Additionally, we will allow m and σ to have spacetime dependence. Following [1] we would

now define the non-relativistic field by factoring out the fast phase rotation due to the scalar

field’s rest mass: φ ≡ e−ımc2tφNR/
√
c. For our charged scalar we can instead gauge away

this phase via the gauge transformation Λ = −c2mt. Therefore we can treat
√
c φ itself as

a non-relativistic charged scalar by working with the background Cµ = −∂µΛ = δµtmc
2.

Although relativistically such a gauge field would be considered highly trivial as it has

zero field strength, here it plays an important role due to the fact that c dependent gauge

transformations, such as the above Λ, and the c→ ∞ limit do not commute. Also note that,

unlike constant spatial vector potentials a constant Ct can, in general, not be completely

gauged away. The term
∫

M jµCµ (where M is the space-time manifold) is usually taken

to be gauge invariant as long as jµ is a conserved current. Under a gauge transformation

δC = −dΛ, the change in action is

δS = −
∫

M
jµ∂µΛ = −

∫

∂M
(Λjµ)dS

µ +

∫

M
Λ∂µj

µ. (2.20)

The second term vanishes by current conservation. The contributions to the boundary

term from spatial boundaries vanish for any localized current. However, for the boundaries

of the integral at the final and initial times, t = tf and t = ti, we can not take j0 to vanish.

The total charge Q is conserved, and if it is non-zero at one time, it is non-zero at all times.

In particular, for Λ = mc2t (which would be needed to set our constant Ct to zero) one has

δS = −mc2Qt
∣

∣

tf
ti

= mc2Q(ti − tf ) (2.21)

which clearly is non-zero as long as Q is non-zero. The action is only invariant under the

restricted class of gauge transformations which vanish at tf and ti. However, to remove

a constant Ct would require a gauge transformation which is non-vanishing on initial and

final surfaces.

As a warm-up, consider, as in [1], the metric expansion8

gµν =

(

−c2 + 2At

m
Ai

m
Aj

m gij

)

. (2.22)

For a constant m and σ = 0, plugging this form of the metric, the gauge field background

Ct = mc2, and the rescaled field ψ =
√
mcφ into the relativistic action (2.18), and after

discarding negative powers of c, we obtain

S =

∫

ddxdt
√
g

[

ı

2

(

ψ†∂tψ − ∂tψ
†ψ
)

+Atψ
†ψ − gij

2m

(

Diψ
†Djψ

)

]

, (2.23)

which is the non-relativistic action (2.2) with Φ = Bi = 0. The action of spatial diffeo-

morphisms and the global U(1) on the remaining background fields can be determined

from (2.19) for the generators ξµ = (λ/mc2, ξi).

8The leading piece of gtt goes as c
2 as we are using the non-relativistic time t as our temporal coordinate,

not x0 ≡ ct. Likewise for the behavior of gti.
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There are two important points in the details of this calculation, both concerning

the gauge field Cµ. First, the mass term in the relativistic action (2.18), for σ = 0,

would contribute the term −1/2c2m2ψ†ψ to the non-relativistic action, forcing ψ = 0

in the c → ∞ limit. For the background Ct = mc2 this mass term is canceled by the

−Cµg
µνCνψ

†ψ term coming from the covariant derivative. This is understood as tuning a

chemical potential that provides the rest mass of the particles, so that the non-relativistic

action only describes fluctuations around this energy. Thus the magnitude of the gauge

field acts as a chemical potential and needs to be fixed to cancel the mass term and allow

a non-trivial non-relativistic limit.

Secondly, we need to be assured that we have done a consistent expansion in powers

of c, both of the metric and the gauge field. We see that Cµ naturally has a piece of

order c2 from performing the gauge transformation removing the fast phase of the scalar

field. A consistent expansion can be made so that the next term comes in at zeroth order:

Cµ = c2bµ + vµ + O(c−2). As will be discussed in more detail in sections 3.2.2 and 3.3.2,

for the expansion of the temporal diffeomorphism generator ξt = f − α/c2 the gauge field

transforms as

δvµ ⊃ −Ct∂µα/c
2 = −bt∂µα , (2.24)

that is, the O(c0) piece of Cµ is generated by the subleading temporal diffeomorphism

α. As the warm-up example above had vµ = 0 throughout, to maintain this restriction

we implicitly performed an O(c0) gauge transformation. Therefore, the appearance of the

gauge transformation λ as the subleading term of the temporal diffeomorphism is only an

artifact of demanding α = −λ/m, so that vµ stayed zero.

We would like to extend the warm-up example to include general backgrounds. As

discussed above, the gauge field can be consistently expanded as Cµ ≡ c2bµ + vµ. We

can determine the consistent expansion of the metric by first considering the case of Cµ =

c2δtµbt, similar to the warm-up example. In this frame we parametrize the metric in the

ADM form as9

gµν =

(

−c2N2 +NkNk Ni

Nj Gij

)

, (2.25)

where Nk = GkiNi. The general leading gauge field Cµ = c2bµ can be obtained from Ct =

c2bt by performing a coordinate transformation, Cµ → Jν
µCν . Under this transformation

the metric change by two Jacobian factors, gµν → Jρ
µgρσJ

σ
ν , and it can be see that all

components generically have O(c2) pieces. We are therefore lead to expand the metric as10

gµν =

(

−c2N2 +NkNk Ni + c2Pi

Nj + c2Pj Gij − c2
PiPj

N2

)

. (2.26)

We are now in position to derive the non-relativistic action (2.2) and transforma-

tions (2.1) by taking the formal c → ∞ limit of the relativistic theory. First we must be

sure that the chemical potential provides the rest energy of our particles. As discussed

9The lack of At in this expansion will be discussed further in section 3.3.4.
10This can be seen to be a consistent expansion, meaning no other positive power of c pieces get turned

on by coordinate transformations.
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above this is achieved by a cancellation between the mass term and the magnitude of the

gauge field. In general there are O(c4) pieces of CµC
µ. For the action to have a non-trivial

non-relativistic limit this piece must vanish, requiring

Pi

N2
= −bi

bt
. (2.27)

This can be understood as the requirement that the theory has a global time, needed for a

causal non-relativistic theory. As discussed above in section 2.3, in adapted coordinates the

vector Bi vanishes. The relation of this NR field to bi and Pi, given in (2.30) below, justifies

the identification (2.27): in general these fields only arise due to coordinate changes to a

non-adapted frame. The O(c2) piece of CµC
µ will play the role of a chemical potential and

cancel the mass term. Explicitly this requires

bt
N

= meσ. (2.28)

Plugging the rescaled field φ→ φ/
√
c and our expansions into the relativistic action (2.18)

(with the generalized spacetime dependent mass), and discarding negative powers of c, we

obtain

S =

∫

dtddxmeσL , (2.29)

where L is the Lagrangian density of (2.2) if we make the identifications

e−Φ ≡ mN2

bt
,

Bi ≡ −bi
bt

=
Pi

N2
,

At ≡ vt +
btN

kNk

2N2
,

Ai ≡ vi +
btNi

N2
− biN

kNk

2N2
,

gij ≡ Gij −
biNj

bt
− bjNi

bt
+
bibjN

kNk

b2t
. (2.30)

These field combinations transform as (2.1) if we expand the relativistic generators

of (2.19) as ξµ = (f, ξi) and Λ = λ. We can no longer do O(c2) gauge transformations as

they would not leave the O(c2) piece of CµC
µ invariant, which was needed to have a well

defined c → ∞ limit. The role of the subleading temporal diffeomorphism α, introduced

previously, and its relation to the specific combinations of relativistic fields in (2.30) will

be discussed in section 3.3.2.

For constant m and σ the field can be rescaled ψ ≡ φ
√
meσ/2 and the above exactly

reproduces the Lagrangian density of (2.2). This rescaling only changes the dimension

of the field and, in fact, can be done even for time dependent m and σ. We can most

easily understand the role of the field σ by enforcing NR conformal invariance on the above

action. For the general z 6= 2, the transformation (2.14) will be a spurionic symmetry of

the action if

δωe
σ = −(d+ z − 2)ωeσ. (2.31)
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It is now clear why the NR action (2.23) of [1] has NR conformal invariance. One can use

the transformation ω to set meσ to a constant. We then consider the restricted case of [1]

with Bi = Φ = 0. This is maintained by performing ω = −ḟ/z whenever the temporal

redefinition f(t) is performed. In turn, meσ will generically become a function of time. But

such a factor can be absorbed into the fields by a redefinition, due to the anti-symmetric

nature of the time derivative in (2.2). This means the restricted case [1] will have NR

conformal invariance and the field has the transformation

δωψ ≡ δω
(

φ
√
meσ/2

)

=
1

2
√
m
φeσ/2δωm+

1

2
φ
√
me−σ/2δωe

σ = −d
2
ωψ . (2.32)

3 Gravitational theories with non-relativistic general covariance

3.1 Hořava gravity

3.1.1 Foliation preserving diffeomorphisms

Hořava gravity [9] is a metric theory built around foliation preserving diffeomorphisms,

that is, time dependent spatial diffeomorphisms and time reparametrization. The minimal

set of fields common to all versions of Hořava gravity are the lapse N(t, xI), the shift vector

NI(t, xI), and the spatial metric GIJ(t, xI). In the projectable version of the theory one

would restrict N to be a function of t only, but we will not do so here. The action can be

written as

S =

∫

dtddxdr(Lkin − LV ) , (3.1)

where the kinetic term is given in terms of the extrinsic curvature of the leaves,

KIJ ≡ 1

2N

(

ĠIJ −∇INJ −∇JNI

)

, (3.2)

and its trace, K = GIJKIJ , by

Lkin =
1

16πGN

√
GN

[

KIJK
IJ −

(

λ̃+ 1
)

K2
]

. (3.3)

Here G is the determinant of the spatial metric GIJ , and ∇I is its Levi-Civita connection.

The simplest potential term involving up to two derivatives, as appropriate for the low

energy or large Nc limit, is given by [19, 20]

− LV =
1

16πGN

√
GN

[

R− 2Λ + α
(∇IN)(∇IN)

N2

]

, (3.4)

where R is the Ricci scalar of GIJ and Λ is the cosmological constant.

The constants λ̃ and α are free dimensionless coupling constants that are allowed by

demanding only foliation preserving diffeomorphisms and not the full relativistic diffeo-

morphism invariance of GR. For λ̃ = α = 0 this becomes, up to a total derivative, the

standard Einstein-Hilbert action written in terms of the ADM decomposition of the full

d+ 2 dimensional bulk metric

G̃MN =

(

−N2 +NKNK NI

NJ GIJ

)

. (3.5)
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Even in the λ̃ = α = 0 limit this is not the theory of standard GR. Despite identical

actions, the gauge invariances of Hořava gravity lack the general temporal diffeomorphism

t → t̃(t, xI). As a consequence Hořava gravity contains an extra scalar degree of freedom

as compared to GR.

Under spatial diffeomorphisms ξI and time reparametrizations f(t) the fields trans-

form as

δGIJ = ξK∂KGIJ + fĠIJ +GIK∂Jξ
K +GKJ∂Iξ

K ,

δNI = ξK∂KNI + fṄI +NK∂Iξ
K +GIK ξ̇

K + ḟNI ,

δN = ξK∂KN + fṄ + ḟN . (3.6)

These can be derived by taking the c → ∞ limit of the transformation of the relativistic

metric G̃MN with the diffeomorphism parameters ξM = (f, ξI) (after explicitly restoring

the speed of light to the metric: N → cN) [14].

3.1.2 NR general covariance and the scalar khronon

Hořava gravity can be usefully embedded into standard GR via a Stückelberg-like mech-

anism [19–21]. This formalism makes the extra degree of freedom explicit by coupling

Einstein gravity to an additional scalar field φ. When the scalar field acquires an expecta-

tion value φ = t the symmetry of GR is broken down to only spatial diffeomorphisms along

the level sets of φ. In this way φ can be used to define the preferred foliation by a global

time, and is referred to as the khronon [19, 20]. This view of Hořava gravity as GR with

diffeomorphism invariance broken by a background field has also been recently emphasized

in [22].

To have the symmetries of foliation preserving diffeomorphisms, φ needs to have the

reparametrization symmetry in field space φ → φ̃(φ), which becomes the time reparame-

trization symmetry of Hořava gravity.11 This reparametrization invariance can be made

explicit by working with the time-like unit vector normal to the leaves of constant φ,

uM ≡ −∂Mφ
√

−G̃NP∂Nφ∂Pφ
. (3.7)

In the “unitary gauge”, where we choose our time coordinate to be the expectation value

of the khronon, t = φ, we have u0 = −N and all the spatial components vanish. The

geometric quantities of the foliation appearing in Hořava gravity can all be expressed in

terms of the khronon field. In particular, in unitary gauge the spatial components of

KMN ≡
(

G̃MP + uMuP
)

∇̃PuN (3.8)

11As explained in [20], a similar construction also underlies other modified theories of gravity. A time

dependent condensate of a scalar with a shift symmetry (giving rise to a theory with time dependent spatial

diffeomorphisms together with time translation symmetry) underlies the “ghost condensation” model [23]

as well as shift-symmetric k-essence [24]. When even time translation symmetry is absent and only time

dependent spatial diffeomorphisms are preserved, the symmetry group governs the effective theory of stan-

dard inflation [25, 26]. If time translation invariance is combined with time independent diffeomorphisms

one has the symmetry of Einstein-aether theory [27] or gauged ghost condensation [28].
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become the extrinsic curvature KIJ . The Hořava action (3.1) can now be written as the

EH action coupled to the scalar khronon [20]

Skh =
1

16πGN

∫

dtddxdr
√

−G̃
[

R̃−2Λ+ λ̃
(

∇̃Mu
M
)2
+α
(

uM∇̃Mu
P
)(

uN∇̃Nu
P
)]

. (3.9)

The reader should recall that the tilded quantities refer to those derived from the full d+2

dimensional Lorentzian metric.

A powerful use of the khronon formalism is that for λ̃ and α parametrically small we

can treat φ as a probe field since its stress tensor does not backreact on the metric. One can

then solve the full non-linear gravitational equations of motion of Hořava gravity by starting

with a solution to Einstein gravity and solving for the khronon field on this background.

A non-trivial khronon field configuration can then be reinterpreted in unitary gauge as a

solution to Hořava gravity [29]. Concretely, once we find the solution φ = t+ χ(t, xI) in a

given GR background we perform the relativistic diffeomorphism t̃ = t+ χ(t, xI) to go to

unitary gauge. The resulting lapse, shift, and spatial metric is now a solution to Hořava

gravity.

One can also use the scalar khronon to formulate the generally covariant version of

Hořava gravity [8, 10]. As initially introduced in [14] the transformations of the Hořava

fields (3.6) can be extended to include a U(1) transformation by expanding to the next

order in the speed of light. For N → N + A(t, xI)/c
2 and ξt = f − α(t, xI)/c

2 the action

of the U(1) transformation α is

δαN = 0 , δαGIJ = 0 ,

δαNI = N2∂Iα ,

δαA = − ˙(αN) +NN I∂Iα , (3.10)

while under foliation preserving diffeomorphisms A transforms as N does. As it stands the

action (3.1) is not invariant under this transformation. As first developed in [8], and later

generalized in [10], this can be fixed by postulating the “pre-potential” field ν that shifts

under the α transformation. We will now show that this field can be associated with the

scalar khronon.

For a consistent interpretation of α as a gauge transformation we need to understand

how it acts on the khronon. Restoring factors of the speed of light we have

φ = c2t+ χ(t, xI) (3.11)

for the expansion of the khronon around unitary gauge. From this we expect the transfor-

mation t → t + α/c2 to be reinterpreted as the shift χ → χ − α, that is, the subleading

relativistic temporal diffeomorphism α can be interpreted in a non-relativistic foliation

preserving way as instead shifting the khronon fluctuation χ. Therefore, we see that the

pre-potential ν is naturally identified with χ, the subleading piece of the khronon in the

c→ ∞ expansion. The transformation of χ can also be found by considering the khronon

to be the phase of a complex scalar. Expanding the relativistic transformation of a scalar,

and demanding the reparametrization invariance of the khronon field, one finds

δχ = ξK∂Kχ+ fχ̇− ḟχ− α . (3.12)
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It is easy to check that the following combinations are invariant under the U(1) trans-

formation α

N̂I ≡ NI +N2∂Iχ , Â ≡ A− ˙(χN) +NN I∂Iχ+
N3

2
GIJ∂Iχ∂Jχ . (3.13)

In the projectable case, this reproduces the “minimal substitution” of [10] if we make the

identification of the pre-potential with the khronon fluctuation:12 ν ≡ −Nχ. In particular

our Â is equivalent to [10]’s A− a.

We can now understand an obstruction to using this form of covariant Hořava gravity

in a holographic duality. The khronon must be added to the bulk action to yield invariance

under α. From the statement of holography, this action can give the correlation function of

the operator dual to the khronon by examining its on-shell boundary value. This operator

is not gauge invariant though, and will shift under α as χ does. The only operator that

shifts under a gauge transformation, that we are aware of, is the phase of a charged field;

it acquiring a nontrivial correlation function indicates that the U(1) symmetry is in fact

broken in the field theory. This is also apparent by considering how the bulk transformation

generated by α manifests itself as the global U(1) rotation of the field theory. If one gauge

fixes Nr = 0, from (3.10) it is seen that r independent α maintains this bulk gauge choice

and would be expected to correspond to boundary U(1) transformations, leading to the

above issue. One could instead use α to gauge away the khronon in the bulk. This

does not solve the issue as now there are no residual α transformations that could be

interpreted as acting on the boundary data. In this case we see the boundary U(1) appears

broken too.

There are two additional issues with the scalar khronon formulation leading us to

abandon it as a holographic gravitational theory. First is a purely classical gravitational

consideration. By its nature the khronon field needs a uniform spatial distribution to

define the leaves of the foliation. Such a configuration should generically be gravitationally

unstable to clumping, and therefore may not even define a consistent theory.13 The second

issue is quantum in nature. In order to recover the time reparametrization invariance of

Hořava gravity the khronon φ needed to have a global field redefinition symmetry. In

quantum gravity there is expected to be no global symmetries so this construction seems

problematic beyond the classical level.

These shortcomings hint at a solution; as the khronon is seen to transform as the phase

of a complex scalar, we should consider this scalar charged, and include the accompanying

gauge fields in the bulk. Being a gauged phase, this field would have no stress tensor and

therefore avoid the issue of clumping. Time reparametrization can be implemented without

the need of postulating global symmetries, and therefore can be consistent with tenets of

quantum gravity. As this construction requires the inclusion of a bulk vector field to set a

preferred time slicing we will refer to it as a vector khronon. The hope of [8, 10], that the

shift NI could play a dual role as a gauge field for both spatial diffeomorphisms ξI and the

12The factor of the lapse N is due to our differing definition of α as the subleading piece of the temporal

diffeomorphism when compared with [8, 10].
13Problems along these lines are known in the related ghost condensation theories [30, 31].
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U(1) generator α seems to not be borne out, at least for holographic purposes. We will

pursue the role of bulk gauge fields shortly, but first discuss an alternate motivation for

their necessity.

3.2 Vector khronons

3.2.1 Kaluza-Klein vector khronon

The first attempts [6, 7, 32] at a gravitational dual to a non-relativistic field theory shared

an unexpected feature: they had two extra dimensions compared to the NR QFT they

described. This can be understood by realizing these NR QFTs are basically light-like

compactifications of relativistic field theories in one higher dimension. The simplest exam-

ple is given by a light-like compactification with periodic boundary conditions for all fields.

More interesting examples can be obtained by imposing twisted boundary conditions for

R-charged fields along the light-like circle [33–35]. This twisting removes some of the zero

modes on the circle and makes the field theory more tractable. With compactification on

a light-like circle, the lower dimensional field theory preserves a non-relativistic subgroup

of the higher dimensional relativistic Lorentz symmetry, the Schrödinger group. The holo-

graphic dual description correspondingly is also a light-like compactification of general

relativity on AdS spacetime. Momentum modes along the light-like direction, ζ, appear

as separate conserved particle number sectors in the NR QFT, not as spatial momentum

modes. This direction and the traditional holographic radial coordinate gives two extra

dimensions to the bulk geometry. For an interesting non-relativistic interpretation of this

geometry see [36].

Near the boundary, r = 0, the metric can be parametrized as [6]14

dŝ2 = −2e−Φ

mr2
(dt−Bidx

i)(dζ −Atdt−Aidx
i) +

gijdx
idxj + dr2

r2
. (3.14)

The gauge gµr = gζr = 0 has been chosen, but this does not completely fix the diffeo-

morphisms of the theory. Under the residual transformations the fields parametrizing the

metric transform exactly like the NR QFT fields (2.1), for ξζ ≡ λ.

The NR QFT described by GR on this background is highly constrained: most of its

properties are inherited from the relativistic theory upon the light-like compactification,

even with twisted boundary conditions. For d = 2 it is known that the field theory dual

to (3.14) is simply the discrete light cone quantization of N = 4 Super Yang-Mills theory

in four spacetime dimensions [33, 35]. Field theory properties, such as hydrodynamics and

thermodynamics, follow from this relativistic reduction [33, 37]. Here we use this known

duality as a motivation: it has long been understood that a light-like compactification

can be equivalent to a spatial compactification on a circle of vanishing radius, plus an

appropriate boost [38, 39]. We will perform a c → ∞ scaling limit to make a spatial

compactification light-like and recover the metric (3.14).

14The r−4 “Lifshitz” term in [6, 7] is unimportant for our purposes. It is separately invariant under the

symmetry transformations. It encodes the effect of R-twisted boundary conditions in the field theory [33–

35]. To get a non-trivial field theory with the desired Schrödinger invariance twisting is not needed and the

light-like circle compactification with periodic boundary conditions suffices.
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This construction is equivalent to considering a chemical potential that provides the

rest mass of the charged Kaluza-Klein momentum modes for a purely spatial circle and then

taking the c→ ∞ limit,15 exactly as we did in our field theory construction of section 2.4.

This allows us to directly identify the correct bulk fields that map to the field theory sources

of section 2, as well as the bulk version of the constraint relating the chemical potential to

the rest mass.

Consider a d + 3 dimensional spacetime with metric ĜXY , and compactify along the

last direction ζ. The Kaluza-Klein decomposition of the metric is

ĜXY ≡ L2

(

G̃MN +GζζCMCN −GζζCN

−GζζCM Gζζ

)

, (3.15)

where L is a characteristic length scale of the geometry, such that the displayed metric

components, as well as chosen coordinates, are unitless. The proper size of the compactified

direction is dŝ2 ≡ L2R2
kke

−2Σdζ2, where we have introduced the dimensionless Kaluza-Klein

radius Rkk. To recover a light-like compactification we need to take a limit Rkk → 0. Our

formal dimensionless expansion parameter is this radius, but defining Rkk ≡ (Lmkkc)
−1

in terms of a Kaluza-Klein mass we can instead take the formal c → ∞ limit. We will

work in units with L = 1 and identify the Kaluza-Klein mass mkk with the non-relativistic

field theory mass m. The bulk proper Kaluza-Klein mass on the otherhand is meΣ. We

emphasize that this limit is simply a coordinate scaling limit: we are taking the proper

size of the compact direction to zero, while rescaling time such that the Kaluza-Klein mass

remains finite.

Expanding the Kaluza-Klein gauge field as CM = c2bM +vM , and the asymptotic d+2

dimensional metric as

G̃MN =

(

−c2N2 +NKNK c2PI +NI

c2PJ +NJ −c2 PIPJ

N2 +GIJ

)

, (3.16)

yields a line element, dŝ2 = ĜXY dx
XdxY , with pieces of O(c2) and O(c0), as well as

vanishing negative powers of c. To be a non-singular consistent scaling limit of the d + 3

dimensional geometry the O(c2) pieces must vanish. Additionally, matching the O(c0)

components to those of the metric (3.14) yields restrictions and identifications. Examining

the O(c2) term of the dt2 piece we obtain the asymptotic restriction on the fields

meΣ =
bt
N
. (3.17)

This is the bulk implementation of the field theory constraint (2.28), which is the require-

ment that the chemical potential compensates the rest energy and allows the NR limit.

15The same is also true when considering twisted boundary conditions, even though in that case the

construction is a little more complicated. It was shown in [40] that N = 4 Super Yang-Mills compactified

on a spatial circle with twisted boundary conditions can be obtained by a combination of T-dualities

and shifts from the usual black D3-brane metric. The Null-Melvin Twist procedure of [33–35] used to

generate the metric (3.14), including the additional r−4 Lifshitz term, is an infinite boost limit of this

compactification, which once again can be interpreted as setting the chemical potential equal to the rest

energy followed by a c → ∞ limit.
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Combining this with the “null” dtdζ and dxidζ pieces, and matching to the metric (3.14),

we obtain the identifications

e−Φ

m
≡ r2N2

bt
, (3.18)

Bi ≡ −bi
bt
, (3.19)

where it is understood that this is a matching of the asymptotic r → 0 fields. The vanishing

of the O(c2) term of the dtdxi piece yields the restriction

PI = −N2 bI
bt
, (3.20)

which, we recall from section 2.4, encodes the requirement of the existence of a global time.

Matching the remaining metric components to (3.14) we obtain the identifications

At ≡ vt +
btN

INI

2N2
, (3.21)

Ai ≡ vi +
btNi

N2
− biN

INI

2N2
, (3.22)

gij ≡ r2
(

Gij −
biNj

bt
− bjNi

bt
+
bibjN

INI

b2t

)

. (3.23)

It should be noted that the same partial gauge fixing which yielded the d+3 dimensional

metric (3.14) has been used to set Ĝrr = 1/r2 and Ĝrζ = Ĝrµ = 0. In terms of the Kaluza-

Klein fields this can be seen to yield

Grr =
1

r2
, br = Pr = 0 , Nr +

e−2Σ

m2
btvr = 0 , Gri +

e−2Σ

m2
vrbi = 0 . (3.24)

Extending the above definitions (3.19), (3.22), and (3.23) to hold when an index is r we

see this partial gauge fixing gives Br = Ar = gri = 0.

Compared to the field theory non-relativistic limit (2.30) the above identifications are

equivalent, up to powers of r. While the fields (Φ, Bi, At, Ai, gij) of metric (3.14) are func-

tions of only the field theory coordinates t and xi, the Kaluza-Klein fields (Σ, PI , N,NI , bM ,

vM , GIJ) generically depend on the holographic radial direction as well.16 The above iden-

tifications can be taken to tell us the asymptotic r behavior of these fields. From (3.19) we

see that bt and bi must have the same asymptotic behavior, which combined with (3.23)

gives the leading asymptotic behavior of Gij and Ni as r
−2. From (3.18) we see that N2/bt

goes as r−2, while (3.21) and (3.22) determine vM to be asymptotically independent of r.

Further determination requires assumptions on the behavior of Σ. For the asymptotic

form e−Σ ≡ e−σ(t,~x)/rδ and using (3.17) we obtain the asymptotic behaviors N ∼ rδ−2 and

bM ∼ r2δ−2. Note that for δ = 1 the lapse goes as N ∼ r−1 and the metric is asymp-

totically AdS. One can extend the symmetries to include the non-relativistic conformal

transformations of (2.9) by considering radial diffeomorphisms, as in [6], which in fact fix

δ = 1. These transformations will be more fully explored in the next section.

16We are considering the ζ independent modes in each case corresponding to unbroken U(1) invariance.
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The Kaluza-Klein viewpoint illuminates the factor ofmeσ arising in the non-relativistic

Lagrangian density derived by the c→ ∞ limit of the relativistic field theory in section 2.4.

Upon dimensional reduction the volume density of the higher dimensional theory yields the

lower dimensional volume density, as well as a factor related to the proper Kaluza-Klein

mass. In our case this gives an overall factor of
√

Gζζ = e−Σ/mc causing the non-relativistic

Lagrangian to be exactly that of (2.2), even for spacetime dependent m and Σ.

3.2.2 Einstein-Maxwell vector khronon

To the point of excess, we now present a more general derivation of a holographic map

relating bulk and NR QFT fields. The motivation follows from the previous sections: it

was seen that GR on a d+ 3 dimensional manifold can capture the generic symmetries of

a d + 1 dimensional NR QFT by taking a particular compactification and scaling limit.

This specific duality is overly restrictive; despite containing fields that obey NR electro-

diffeomorphism invariance most of the properties are simply inherited from the relativistic

derivation.

We start with the Kaluza-Klein reduced field content of section 3.2.1, a graviton and

a Maxwell field (the scalar will not play a role here), and show that the NR limit can

be taken directly in Einstein-Maxwell theory. Previously, spatial compactification and a

scaling limit gave a light-like compactification of d + 3 dimensional general relativity. We

will now start with the d+ 2 dimensional field content of the Kaluza-Klein theory, that is

the Einstein-Maxwell system, and take a true d + 2 dimensional17 non-relativistic c → ∞
limit.

The relativistic diffeomorphism generators are expanded as ξM = (f−α/c2, ξI), under
which the d+ 2 dimensional metric transforms as

δG̃MN = ξP∂P G̃MN + G̃MP∂Nξ
P + G̃NP∂Mξ

P . (3.25)

For the consistent expansion

G̃MN ≡
(

−c2N2 − 2N2A+NKNK c2PI +NI

c2PJ +NJ −c2 PIPJ

N2 +GIJ

)

, (3.26)

under the diffeomorphism transformations in the c → ∞ limit, the metric fields trans-

17This is to contrast with the scaling limit of the previous section. There, after the c → ∞ limit, we still

had a finite d+3 dimensional spacetime metric. If the Einstein-Maxwell fields were recombined back into a

higher dimensional spacetime metric it would contain non-sensible O(c2) pieces. In this section we simply

take the fields that survived in this limit, but do not take the specific form of the Kaluza-Klein action with

a scalar field dependent gauge kinetic term.
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form as:

δN = ξK∂KN + fṄ + ḟN − PK

N
ξ̇K ,

δA = ξK∂KA+ fȦ− (α̇−N I∂Iα)

(

1 +
NKPK

N2

)

+ 2
APK

N2
ξ̇K − 2ANK∂Kf ,

δNI = ξK∂KNI+NK∂Iξ
K+fṄI+ḟNI+GIK ξ̇

K+∂If(N
KNK−2N2A)+N2∂Iα−α̇PI ,

δGIJ = ξK∂KGIJ+GIK∂Jξ
K+GJK∂Iξ

K+fĠIJ+NI∂Jf+NJ∂If−PI∂Jα−PJ∂Iα ,

δPI = ξK∂KPI + PK∂Iξ
K + fṖI + ḟPI −

PIPK

N2
ξ̇K −N2∂If . (3.27)

The relativistic Maxwell gauge field can be expanded as CM ≡ c2bM+vM . It transforms

under the action of the gauge generator Λ ≡ c2β + λ and the relativistic diffeomorphisms

ξM as

δCM = ξN∂NCM + CN∂Mξ
N − ∂MΛ . (3.28)

Taking the c→ ∞ limit gives the transformations for the gauge fields:

δbt = ξK∂Kbt + f ḃt + ḟ bt + bK ξ̇
K − β̇ ,

δbI = ξK∂KbI + bK∂Iξ
K + f ḃI + bt∂If − ∂Iβ ,

δvt = ξK∂Kvt + fv̇t + ḟvt + vK ξ̇
K − λ̇− btα̇ ,

δvI = ξK∂KvI + vK∂Iξ
K + fv̇I + vt∂If − ∂Iλ− bt∂Iα . (3.29)

Lastly, we consider a complex scalar Ψ charged under the gauge field. It has the

relativistic transformation

δΨ = ξM∂MΨ− ıΛΨ . (3.30)

Expanding the field as Ψ ≡ ρe−ıη for η ≡ c2φ+ χ, in the c→ ∞ limit, the real magnitude

and phases transform as

δρ = ξK∂Kρ+ fρ̇ ,

δφ = ξK∂Kφ+ fφ̇+ β ,

δχ = ξK∂Kχ+ fχ̇+ λ− φ̇α . (3.31)

In the background we are considering we will work with Ψ = 0 in the end, so this particular

form of the matter fields is not essential. What we need is that some charged matter exists

in the bulk, so that constant At can not be simply gauged away. In the Kaluza-Klein

example of the previous subsection the role of the charged matter was played by the massive

Kaluza-Klein gravitons.

This procedure has given us a consistent set of fields that transform sensibly in the c→
∞ non-relativistic limit. To go further, for example to construct an action and determine

which fields have non-trivial dynamics, we will make some simplifying restrictions. Most

importantly, we require the theory to have a global time. As discussed in section 1.1 this is

necessary to have a causal non-relativistic theory. It can be implemented by constructing

a spacetime foliation whose leaves contain events that happen at the same global time.

Parallel to the previous discussion, this can be achieved by considering a scalar field whose
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level sets define the foliation leaves. The shortcomings of this scalar khronon formalism,

enumerated in section 3.1.2, requires a different approach in the pursuit of a bulk theory.

These problems will be circumvented by considering φ to be the gauged phase of a

charged field, but we will not define a global time via its level sets. Instead, given the

expectation value φ = t we will set this phase to zero by performing the gauge transfor-

mation β = −t, which will turn on a constant time component of the gauge field, bt. Thus

the vector bM acts as a “khronon” and determines the foliation by a global time: when in

adapted coordinates it has only a temporal component. Once the expectation value of φ

has been gauged away, in order to preserve φ = 0, we can no longer perform the “large”

gauge transformations β. We still have time reparametrizations as performing a spatially

independent f(t) maintains bI = 0, that is, it keeps us with a physical global time.

3.3 NR holography

3.3.1 Holographic map

By examining the above transformations of bulk fields, we can determine combinations

which asymptotically transform as (2.1). Firstly, for β = 0, the two combinations

− bi
bt
,

Pi

N2
, (3.32)

both transform as the non-relativistic field Bi, with which we identify them. This relation

between the metric field PI and the gauge field bI , as discussed in section 2.4, is required

for the existence of a global time. It is then seen that both N and bt transform like e−Φ,

and in generality we asymptotically identify

e−Φ ≡ rγ(δΦ+1)N

(

N

bt

)δΦ

, (3.33)

where the factor rγ(δΦ+1) is required to strip off the asymptotic radial behavior of the bulk

fields, and δΦ is an arbitrary power. This parametrization assumes that asymptoticaly

bt ∼ r0, which is natural for the vector khronon, and that therefore N ∼ 1/rγ . We will

shortly find restrictions on δΦ and γ due to the conformal dimensions of the NR fields.

Lastly, it can be seen that the combinations

At ≡ vt +

(

bt
N

)
2
γ
−1(N INI

2N
−NA

)

,

Ai ≡ vi +

(

bt
N

)
2
γ
−1
(

Ni

N
− bi
bt

(

N INI

2N
−NA

)

)

,

gij ≡ r2ĝij = r2

(

Gij −
biNj

bt
− bjNi

bt
+ 2

bibjN

b2t

(

N INI

2N
−NA

)

)

, (3.34)

asymptotically transform under f , ξi, and λ as the field theory gauge fields and metric if

we make the identification

m ≡ rγ(δΦ+1)−2

(

bt
N

)
2
γ
−δΦ−1

. (3.35)
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This requirement comes from examining the transformation of Ai, and equating the coef-

ficient of ĝij ξ̇
j with the bulk fields corresponding to meΦ, to reproduce (2.1).

3.3.2 Subleading temporal diffeomorphisms

We now come to the overdue discussion of the role of the subleading temporal diffeo-

morphism α. The field theory quantities are not affected by this transformation, as seen

in (2.1). There are two different scenarios for the role of α in the bulk; both of them have an

interesting holographic interpretation and lead to physically distinct pictures. One option

is that the bulk action is not invariant under α transformations, we therefore never perform

this transformation in the bulk. This is a consistent truncation of the c → ∞ expansion,

and also allows us to set A = 0; we need not consider the subleading expansion of the

lapse N . The above then gives a well defined dictionary between bulk and field theory

quantities, parametrized by the two constants γ and δΦ. The fields defined in (3.34) are

then just a part of the boundary sources; there are additional gauge invariant bulk fields,

such as e.g. Nr, and hence also additional field theory sources.

Alternatively, the subleading temporal diffeomorphism α can be a gauge invariance of

the bulk theory. That is, it can be interpreted as a redundancy of the bulk description,

and therefore should not effect the field theory data. The fields defined in (3.34) are

only invariant under α for γ = 1, or equivalently N ∼ 1/r. Appearing mysterious in

the Kaluza-Klein derivation of section 3.2.1, this justifies the combinations of bulk fields

that give the field theory ones. As that bulk theory contains the full diffeomorphism

invariance of GR, the only physical boundary fields are those that are invariant under

the bulk redundancy α, and therefore the ones appearing in (3.34) with γ = 1. This

also elucidates the appearance of the subleading temporal diffeomorphism in the NR QFT

work of [1] and the generally covariant Hořava-Lifshitz theory of [8, 10]. As they inherently

consider uncharged fields they do not have the explicit gauge field vµ. From (3.29), to

consistently consider the transformation α, but to maintain vµ = 0, one must implicitly

perform a gauge transformation λ. The α variant piece vI of the invariant AI , defined

above, was held fixed. Thus the redundancy α was made physical by linking it to the

transformation λ, which is a global symmetry of the field theory.

3.3.3 NR scale and conformal invariance

We additionally would like to be able to describe NR QFTs that have the NR conformal

symmetry of (2.14). As with traditional holography, this transformation is captured by

symmetries of the bulk theory. Unlike the usual AdS/CFT correspondence, these symme-

tries are not strict isometries of the spacetime geometry, but instead manifest as trans-

formations acting on the above combinations identified as field theory quantities. As in

traditional holography and [6], the conformal structure of the field theory is captured by
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radial diffeomorphisms in the bulk. Under ξr = −ω(t, ~x)r the field theory data transform as

δe−Φ ⊃ rγ(δΦ+1)ξr∂r

(

N

(

N

bt

)δΦ
)

= γ(δΦ + 1)ωe−Φ,

δgij ⊃ r2ξr∂r(ĝij) = 2ωĝijr
2 = 2ωgij ,

δm ⊃ rγ(δΦ+1)−2ξr∂r

(

bt
N

)
2
γ
−δΦ−1

=
(

γ(δΦ + 1)− 2
)

ωm , (3.36)

which agrees with the field theory conformal transformation (2.14) for δΦ = z/γ − 1. The

most interesting case for us, with the bulk being AdS (that is N ∼ 1/r) and a mass

invariant under scale transformations, corresponds to

γ = 1 , z = 2 , δΦ = 1 . (3.37)

For NR general covariance the bulk transformations that preserve the trivial asymp-

totic background Φ = BI = At = AI = 0 and GIJ = δIJ/r
2, should agree with the

field theory symmetries. The first case of a scale transformation starts with the tempo-

ral rescaling f = κt. To maintain Φ = 0, from above, we see that we require the radial

rescaling ξr = κr/z. To maintain Gij the spatial rescaling ξi = κxi/z must be performed,

in agreement with a dynamical critical exponent of z. Lastly, BI , GrI , and AM = 0 are

automatically maintained under these scale transformations. In complete parallel to the

field theory discussion in section 2.3, m changes for z 6= 2 and so in this case the symme-

try is only spurionic. Although these bulk combinations have the same isometries as the

field theory quantities with which we identify them, the bulk fields themselves may not be

invariant. Under the scale transformations we see that generically

δbt = κbt , δN = κ

(

1− γ

z

)

N . (3.38)

As we will discuss further below, this non-invariance of N can be interpreted as evidence for

hyperscaling violation of the theory. On the other hand, for the bulk action of probe fields,

we expect bulk fields to enter only in the combinations identified above. Here factors

of bt/N act like the σ field of previous sections, adding it to the action can change the

dimension of the probe fields.

For the special case of z = 2 there is an additional transformation of the bulk fields

preserving the trivial background. This “special conformal” transformation involves the

time reparametrization f = Ct2. To preserve Φ = 0, from above, we must also perform

the radial redefinition ξr = Ctr. Preservation of the trivial metric then requires ξi =

Ctxi. Lastly, maintaining the form of the bulk fields that correspond to the trivial gauge

configuration requires the gauge transformation λ = C(~x2 + r2)/2. As with the scale

transformation, not all bulk fields are invariant under this special conformal transformation.

In addition to N and bt, and the issues discussed above, the shift vector is not invariant

under the time dependent ξI , but transforms as

δNI =
CxI

r2
. (3.39)
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These fields should correspond to gauge invariant operators in the field theory, and thus

it appears that NR conformal invariance is generically untenable. It can be recovered for

the special case of bulk invariance under the subleading temporal diffeomorphism α. This

transformation allows the shift NI to be held to zero, as well as the maintenance of A = 0

for the subleading term of the lapse. As shown above, α invariance restricts N ∼ 1/r, that

is, the bulk background is asymptotically AdS. We are therefore able to realize the NR

scale and conformal isometries of section 2.3.

3.3.4 Bulk action

Consider, initially, bulk theories without the α transformation. This also allows us to

consistently set A = 0; we do not need to consider the subleading piece of the lapse N

in the c expansion. As previously discussed, by working in a global time we can also

maintain bI = PI = 0. This gives us the following consistent field content: the metric is

decomposed in the ADM variables N , NI , and GIJ adapted to the preferred foliation; the

gauge vector behaves as the non-relativistic decomposition vt and vI with respect to the

global time. The background “large” gauge field bt determines the foliation by a global

time, and should be considered a parameter that must be tuned to yield a NR holographic

duality, much like the cosmological constant in traditional holography. The non-redundant

transformations are spatial diffeomorphisms ξI , temporal reparametrization f(t), and the

U(1) transformation λ. This is exactly the field content and symmetries of Hořava gravity

coupled to non-relativistic electromagnetic fields: our proposal for a holographic dual to a

generic NR QFT obeying the symmetries (2.1) is this non-relativistic gravity theory, on a

background spacetime with a non-zero bt. The bulk action will therefore be determined by

the couplings λ̃ and α of Hořava gravity, as well as those introduced with non-relativistic

electromagnetic fields.18 To go further, we note that the covariant Hořava-Lifshitz theory

of [8, 10], coupled to electromagnetic fields, is a bulk theory with α invariance and the

same fields and symmetries as above. It therefore is capable of holographically describing

Schrödinger invariant NR CFTs.

3.3.5 Background solutions and correlation functions

A class of simple solutions to Hořava gravity is motivated by the scalar khronon formulation

of section 3.1.2. There it was argued that for parametrically small λ̃ and α solutions of

Einstein gravity descend to solutions of Hořava gravity. This was justified as the scalar

khronon χ had a stress tensor of order (λ̃, α) and therefore acted as a probe and did not

backreact. Here we simply use it as motivation: using Einstein solutions as a leading

order ansatz we then look for solutions to the action (3.1) to leading order in these small

parameters. For the negative cosmological constant Λ = −d(d + 1)/2 and no bulk gauge

18Besides the gauge coupling we have one more parameter which gives the relative size of the ~E2 and
~B2 terms in the action; the effective speed of light for the electromagnetic field is a free parameter and not

fixed to be c, very much like in the textbook treatment of electromagnetism in matter.
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fields we obtain the leading fields:

Gij =
δij
r2
,

Grr =
1

r2
+ α

2d+ 1

d(d+ 1)r2
,

N =
1

r
− α

log[r]

r
. (3.40)

In this formulation the new degree of freedom in Hořava gravity is captured by the shift

component Nr, which is zero in GR. Linearizing its equation of motion we obtain the near

boundary behavior

Nr ∼ r

(

d−3
2

± 1
2

√

(d+1)2+ 4dα

λ̃

)

. (3.41)

This structure implies a Breitenlohner-Freedman [41] like bound on the values these pa-

rameters can take to avoid rapidly oscillating (and hence presumably unstable) solutions

for Nr. In order for the exponents to be real, we need

α

λ̃
≥ −(d+ 1)2

4d
. (3.42)

As discussed in section 3.3.1 the asymptotic behavior of the lapse N function is cap-

tured by the exponent γ and sets the form of the holographic map. To zeroth order in α,

the above metric is that of AdS and the scaling is N ∼ 1/r. The appearance of the log

correction to N is a signal that this scaling is modified asymptotically and the corrected

exponent is 1 + α. Indeed, moving away from the “probe” limit of small λ̃ and α, and

making the ansatz Nr = 0, one finds19 the solution

Λ =
−d(d+ 1) + α(2d2 − 1)− α2d(d− 1)

2(1− α)2
,

GIJ =
δIJ
r2

, N = r
1

α−1 . (3.43)

Most interestingly the radial behavior of the lapse N , for α < 1, seems capable of repro-

ducing an arbitrary γ. In the holographic context this background solution undoubtedly

deserves further study.

To calculate correlation functions one needs to examine the on-shell action of the dual

bulk fields. For a bulk scalar with z = 2, to motivate the form of the action, we will

take the non-relativistic action (2.2) written in terms of the Hořava fields. This gives the

following bulk action for a charged scalar

SΨ =

∫

dtdrddx
√
G
N2

bt

[(

ıbt
2N2

Ψ†(Dt−NJDJ)Ψ + h.c.

)

− GIJ

2m
DIΨ

†DJΨ− M2

2m
Ψ†Ψ

]

,

(3.44)

where the metric and gauge covariant derivatives are given by Dt = ∂t− ıv0, DI = ∇I− ıvI ,
and we have included the non-relativistic bulk mass term M . The combination of tem-

poral and spatial derivatives in the kinetic term is expected for invariance under foliation

19This solution was first brought to our attention in private discussion by Charles Melby-Thompson.
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preserving diffeomorphisms. To zeroth order in α we have found AdS as a background

solution. On this background the scalar action becomes

SΨ =

∫

dtdrddx
1

btrd+3

[

ıbtr
2Ψ†∂tΨ− r2

2m
∂IΨ

†∂IΨ− M2

2m
Ψ†Ψ

]

, (3.45)

where we have assumed m and bt are constant. This agrees with the action of [6] up to an

overall constant. We therefore can copy their calculation of the correlation function of the

field theory operator dual to this scalar. In momentum space this gives

〈OO〉 ∼
(

~k2 − 2mbtω
)2ν

, (3.46)

where

ν =

√

(d+ 2)2

4
+M2 .

Upon Fourier transforming to real space this gives the restrictive form dictated by Galilean

and scale symmetry [42–44], providing a quantitative check of the duality. Comparison

to [6, 7] shows that the constant mbt plays the role of the charge or particle number of the

operator O.

This form of the action can also be motivated as a derivative expansion. At zero

derivatives we have simply the mass term. At one derivative, using the NR fields, we can

construct the terms

Ψ†bt∂tΨ , Ψ†N I∂IΨ , Ψ†bI∂IΨ , Ψ†P I∂IΨ . (3.47)

For Hořava gravity the last two terms are absent, while the first two are taken in the com-

bination that is invariant under foliation preserving diffeomorphisms. At two derivatives

the leading term is simply the canonical spatial gradient squared term. Other bulk probe

actions are possible, given only the symmetry restrictions of Hořava gravity. In particular,

the Lagrangian can be multiplied by the overall factor (bt/N)Θ. The effect of this factor

is to shift the dimension of the operator coupled to the bulk field, mimicking the σ field of

section 2.4. It can also be understood to represent hyperscaling violation, as the dimension

of the operator is changed by replacing d→ d−Θ, modifying the effective number of spatial

dimensions of the theory. The scalar action with Θ = 1 in many ways appears to be the

most natural. In that case no inverse powers of bt appear in the action and the potential

simply has an overall prefactor of N as part of the usual measure. This is exactly the scalar

action one would have written down in Hořava gravity without the extra Maxwell field.

4 Discussion: string theory embeddings

We have argued that, based on its symmetry structure, Hořava gravity is the natural

holographic dual of a generic NR QFT. To make sure our ideas are correct, it would of

course be nice to confirm that our construction can be consistently embedded into string

theory. This embedding is facilitated by our observation that we can derive NR systems

quite generically as a c→ ∞ limit of a relativistic theory by setting the chemical potential
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equal to the rest energy of the lightest charged particle. All we need to do in order to give

string theory embeddings of our scenario is to find relativistic examples of holographically

dual pairs where the field theory side has a global U(1) symmetry with massive charged

particles.

One such example was in fact already presented in section 3.2.1. We can start with the

known duality between AdS5 × S5 in type IIB string theory and N = 4 super Yang-Mill

gauge theory and compactify the latter on a circle with periodic boundary conditions. In

this case the resulting 2 + 1 dimensional relativistic field theory has a new global U(1)

symmetry associated with shifts around the compact circle. The charged particles are

the momentum modes in the internal direction and they naturally have a mass equal to

the inverse circle radius. The non-relativistic limit in this theory introduces a chemical

potential for this U(1) particle number equal to the rest mass of the KK particles and then

takes the c→ ∞ limit. This is exactly what we did in section 3.2.1 where we showed that

in this limit the circle becomes light-like. In this KK example, a massless scalar in the

relativistic geometry (for example the IIB dilaton) in terms of the Hořava gravity variables

is exactly given by the action (3.44). Here the at first sight unnatural N/bt prefactor we

introduced in the action in order to avoid hyperscaling violating comes from the higher

dimensional origin; it is exactly the
√

Gζζ prefactor in the bulk action we alluded to at the

end of section 3.2.1.

While many examples of holographic dualities in the presence of finite chemical po-

tential are understood by now, the task of finding additional examples where the charge

carriers are massive so that we can implement the NR limit advertised here is somewhat

more non-trivial. One example is ABJM theory which allows a supersymmetric preserving

mass term and a non-relativistic limit [45, 46]. Gravitational solutions of M-theory match-

ing the global symmetries of this NR CFT were studied in detail in [47]. There it was

found that the prospective gravity dual did not have the same amount of supersymmetry

as the NR ABJM field theory. This leads one to question the role of supersymmetry in

non-relativistic holograpy. Although it is crucial in traditional AdS/CFT, often providing

stability to the best known examples, it may not be as important for NR physics.

Another large class of examples of holographically dual pairs with a finite density of

massive charge carriers is based on probe branes [48] which were first studied at finite

chemical potential in [49]. In this situation the thermodynamics and the spectrum of

hydrodynamic modes was recently analyzed exactly in the NR limit advertised here [50, 51].

While in those papers the results were not phrased in the language of Hořava gravity, the

findings, especially of the latter, are completely consistent with the picture we developed

here. In the scaling limit the probe brane system is found to be governed by a NR CFT

with z = 2 and Θ = 1 for two physically quite distinct probe systems (with d = 3 and

d = 2 spatial dimensions respectively).

Obviously many interesting questions still remain. A first step is the calculation of bulk

solutions away from the probe limit of small λ̃ and α. These will be holographically dual

to NR QFTs that are not light-like reductions of relativistic parent theories. An example

of such a solution is the background (3.43). This can be seen to be dual to Lifshitz field

theories, that is NR QFTs with scale symmetry but no Galilean nor conformal invariance.
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These field theories can be obtained from the Schrödinger invariant theories that have

been the focus of this paper by adding a U(1) charged operator of the right dimension to

the Lagrangian. This preserves the scale invariance, but breaks the U(1), and hence both

the Galilean boost and conformal invariances. Holography away from the probe limit has

recently been discussed in [52], which appeared after the orignal version of this paper had

been posted.

Along these lines will be the study of thermodynamic properties of NR systems that

do not simply follow by a scaling limit from a relativistic theory. This can safely be done

in the large Nc limit by studying black hole solutions to low energy Hořava-Maxwell theory

with parameters away from the relativistic probe limit. Of course even more interesting

will be to tackle quantum Hořava theory in the bulk and move away from large Nc in the

field theory.
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