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1 Introduction

In the past few years we have seen tremendous progresses for one-loop diagram com-

putations1 using Passrino-Veltman(PV) reduction method [3]. The newly developed re-

duction methods can be sorted into two categories: (a) the reduction performed at the

integral level, such as the unitarity cut method [4–11] and generalized unitarity cut

method [12, 13]; (b) the reduction performed at the integrand level, which was initiated by

Ossola-Papadopoulos-Pittau(OPP) in [14] and further generalized in [15–20]. Comparing

methods of these two categories, methods in the first one focus only on coefficients having

nonzero final contributions while methods in the second one must also include spurious co-

efficients. Although more coefficients must be calculated, methods in the second category

are still very useful because all manipulations are performed purely algebraically at the

integrand level, thus they can be easily programmed.

Encouraged by successful computations at one-loop level, it is natural to generalize

these methods to higher loops, partially because of our theoretical curiosity and partially

because of the precise prediction for modern collide experiments. However, the generaliza-

tion is not so trivial. The first difficulty is that in general we do not know much about

the basis for multi-loop amplitudes. In fact, now it is clear that we should distinguish

the integral basis and the integrand basis. Unlike the one-loop amplitude, the number of

integrand basis is much larger than the number of integral basis for multi-loop amplitudes.

Thus it is highly desirable to reduce integrand basis to integral basis further. One standard

method of doing so is the Integrate-by-Part (IBP) method [21–24]. The IBP can be carried

out in a reasonable short time if the amplitude involves only a few external particles, but it

becomes unpractical with time consuming when the number of external particles increases.

The second difficulty is how to extract coefficients of basis. For one-loop amplitudes, find-

ing coefficients is separated from finding basis, while the frequently-used IBP reduction

method combines these two tasks together at the same time.

These computation difficulties for multi-loop amplitudes have been addressed in the

past few years by several groups [25–35]. The main focus of study is the reduction at inte-

grand level, which includes finding integrand basis and matching their coefficients. The step

towards this direction was first taken in [25], where four-dimensional constructive algorithm

for integrand has been applied to two-loop planar and non-planar contributions of four and

five-point Maximal-Helicity-Violating(MHV) amplitudes in N = 4 Super-Yang-Mills the-

ory. Using constraints from Gram matrix, similar determinant of monomials of numerators

was achieved in [26]. Besides reduction at the integrand level, reduction at the integral

level is discussed in [27–31], where in order to determine the physical contour for integral

basis, the variety defined by setting all propagators on-shell has been carefully analyzed.

Among these new developments, the application of computational algebraic geometry

method to multi-loop amplitude calculations is very intriguing [33, 34], where the Gröbner

basis plays a central role. It is quite easy to determine integrand basis by Gröbner basis

method, although different sets of integrand basis can be obtained with different orderings

in polynomial division. Besides the integrand basis, their coefficients can also be deter-

1See reports [1, 2] for references.
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mined by the same method. The knowledge of variety, including its branch structure and

intersection pattern of branches, is very important in the application of this method. This

method has been tested by several examples in at two and three-loops [33, 35].2 Encour-

aged by the success, in this paper we will use algebraic geometry method to systematically

study all possible topologies of two-loop diagrams in pure four-dimension for any exter-

nal momentum configurations, not only restrict to double-box or penta-triangle studied in

various references.

The paper is organized as follows. In section 2 we classify all possible topologies for

two-loop diagrams. In section 3 the one-loop topologies are re-examined using algebraic

geometry method. Ideas from the reexamination will be used to analyze two-loop topolo-

gies. In section 4, as a warm-up, we present results of some trivial two-loop topologies.

In section 5, a careful analysis of planar penta-triangle topology has been given, while

in section 6, we give a detailed study of non-planar crossed double-triangle topology. In

section 7, we summarize results of all remaining topologies. In the last section, conclusions

and discussions are given. In appendix, we introduce some mathematical facts that can be

used to study the branch structure of variety.

2 An overview of general two-loop topologies

In this section, we give an overview of general two-loop topologies. Much of the results are

scattered in literatures, and we assemble them here to make the paper self-contained.

2.1 The two-loop topology

Since two-loop diagrams can always be reduced to one-loop diagrams by cutting an inner

propagator, we can inversely reconstruct two-loop ones by sewing two external legs of one-

loop diagrams. The topology of one-loop diagrams is very simple: we just attach various

tree structures along the loop at some vertices Vi (see figure 1 ).

From one-loop topology we can reconstruct two-loop topology by connecting two ex-

ternal legs, and there are several ways of doing so, which give different two-loop topologies:

• (A) If the two to-be-connected external legs are attached to the same tree struc-

ture, we will get two-loop topology as drawn in figure 2. Explicit illustration shows

that there are two kinds of connections. In the first kind (A1), two one-loop sub-

topologies do not share the same vertex while in the second kind (A2), they do share

a common vertex.

• (B) If the two to-be-connected external legs are attached to two nearby vertices along

the loop, we will get two-loop topology as drawn in (B) of figure 3. All two-loop planar

topologies can be generated from this type.

• (C) If the two to-be-connected external legs are attached to two non-nearby tree

structures along the loop, we will get two-loop topology as drawn in (C) of figure 3.

All two-loop non-planar topologies can be generated from this type.

2The numeric algebraic geometry method [36] can also be used if we only want the number of irreducible

components.
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Figure 1. The general topology of one-loop diagrams where various tree structures are attached

along the loop at some vertices.

(A1) (A2)

Figure 2. The two-loop topology generated from one-loop topology by connecting two external

legs attached to the same tree structure. The connection has been denoted by red color thick line.

In connection (A1), two one-loop sub-topologies do not share the same vertex while in connection

(A2), they do share a common vertex.

(C)(B)

Figure 3. The two-loop topologies of case (B) and case (C) obtained by connecting two external

legs attached to two different tree structures. For case (B), two tree structures are adjacent while

for case (C), not adjacent.
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2.2 Classification of denominators of two-loop basis

Having understood the general two-loop topologies, the next step is to classify the basis

used to expand any two-loop amplitudes. This is similar to the classification of scalar basis

for one-loop diagrams, which includes box, triangle, bubble and tadpole. However, it is

necessary to distinguish the integrand basis and the integral basis. The integrand basis

is that used by OPP method to expand expressions coming from Feynman diagrams at

integrand level. However, after carrying out the integrations, some elements of integrand

basis will vanish, while others may have nontrivial linear relations. After excluded these

redundancies from integrand basis we obtain the integral basis. The integral basis is also

called the master integrals(MIs). The number of integral basis is much smaller than the

number of integrand basis, since after integration. The difference between these two kinds

of basis can be easily seen in the one-loop box topology: there is only one master integral
1

D1D2D3D4
, but there are two integrand basis 1

D1D2D3D4
and ǫ(ℓ,K1,K2,K3)

D1D2D3D4
. Numerator of ǫ ·ℓ

with odd power will vanish after integration because of parity.

To find the integrand and integral basis, we can use the procedure called PV-reduction.

Among manipulations on expressions coming from Feynman diagrams, some are done at

the integrand level, such as rewriting 2K1 · ℓ = −(ℓ−K1)
2 + ℓ2 +K2

1 , while some manip-

ulations are carried out using properties of integral, such as IBP method. Pure algebraic

manipulations at the integrand level will produce the integrand basis, while combining

with operations such as IBP, will reduce integrand basis further to integral basis. Above

reduction has been discussed in many references, for example, [31] for details and reference.

For two-loop diagrams, denominators of expressions coming from Feynman diagrams

can always be written as products of three kinds of propagators

D = DD̃D̂ , (2.1)

where

D = ℓ21(ℓ1 −Ka,1)
2(ℓ1 −Ka,2)

2 . . . (ℓ1 −Ka,n1−1)
2 ,

D̃ = ℓ22(ℓ2 −Kb,1)
2(ℓ2 −Kb,2)

2 . . . (ℓ2 −Kb,n2−1)
2 ,

D̂ = (ℓ1 + ℓ2 +Kc,1)
2 . . . (ℓ1 + ℓ2 +Kc,n3)

2 . (2.2)

Here n1, n2 are numbers of propagators containing only ℓ1 or ℓ2, while n3 is the number

of propagators containing both ℓ1, ℓ2. By the freedom of relabeling ℓ1, ℓ2, we can always

restrict ni with condition

n1 ≥ n2 ≥ n3 . (2.3)

The up-bound of n1, n2, n3 and their summation depend on the space-time dimension. For

example, if we consider physics in (4− 2ǫ)-dimension, we would have

n1, n2, n3 ≤ 5 , n1 + n2 + n3 ≤ 11 . (2.4)

But if we constrain to pure four-dimension, the condition becomes

n1, n2, n3 ≤ 4 , n1 + n2 + n3 ≤ 8 . (2.5)
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By combining conditions (2.3) and (2.5) for 4-dimension case (or (2.3) and (2.4) for (4−2ǫ)-

dimension case), we can classify denominators of integrand and integral. For (4 − 2ǫ)-

dimension, conditions (2.3) and (2.4) constrain n3 ≤ 3. Thus if we arrange all possible

solutions of (n1, n2, n3) by value of n3, we have following 4 groups of solutions

n3 = 3 : (5, 3, 3), (4, 4, 3), (4, 3, 3), (3, 3, 3) ;

n3 = 2 : (5, 4, 2), (5, 3, 2), (4, 4, 2), (5, 2, 2), (4, 3, 2), (4, 2, 2), (3, 3, 2), (3, 2, 2), (2, 2, 2) ;

n3 = 1 : (5, 5, 1), (5, 4, 1), (5, 3, 1), (4, 4, 1), (5, 2, 1), (4, 3, 1), (5, 1, 1), (4, 2, 1),

(3, 3, 1), (4, 1, 1), (3, 2, 1), (3, 1, 1), (2, 2, 1), (2, 1, 1), (1, 1, 1) ;

n3 = 0 : (5, 5, 0), (5, 4, 0), (5, 3, 0), (4, 4, 0), (5, 2, 0), (4, 3, 0), (5, 1, 0), (4, 2, 0), (3, 3, 0),

(4, 1, 0), (3, 2, 0), (3, 1, 0), (2, 2, 0), (2, 1, 0), (1, 1, 0) . (2.6)

For pure four-dimension, the number of solutions decreases a lot, since now we have n3 ≤ 2.

The possible solutions of (n1, n2, n3) for (2.3) and (2.5) are listed into 3 groups:

n3=2: (4, 2, 2), (3, 3, 2), (3, 2, 2), (2, 2, 2); (2.7)

n3=1: (4, 3, 1), (4, 2, 1), (3, 3, 1), (4, 1, 1), (3, 2, 1), (3, 1, 1), (2, 2, 1), (2, 1, 1), (1, 1, 1);

n3=0: (4, 4, 0), (4, 3, 0), (4, 2, 0), (3, 3, 0), (4, 1, 0), (3, 2, 0), (3, 1, 0), (2, 2, 0), (2, 1, 0), (1, 1, 0).

Solutions with n3 = 0 contain two-loop topologies coming from sewing two one-loop topolo-

gies at a single vertex as shown in figure 4, while solutions with n3 = 1 contain planar two-

loop topologies with one common propagator as shown in figure 5. All two-loop non-planar

topologies are included in solutions n3 = 2 as shown in figure 6.

While two-loop topologies of basis have been classified by (n1, n2, n3), to get the inte-

grand or integral basis, we still need to determine corresponding numerators. For two-loop

the so called ”scalar basis” is not enough to expand all amplitudes, we also need terms

with numerators containing Lorentz invariant scalar product having internal momenta.

The distinction between integrand and integral basis becomes important when discussing

the classification of numerators. In this paper, we will focus only on the integrand basis in

pure four-dimension.

3 The integrand basis of one-loop diagrams in pure four-dimension

As a warm-up, we take the one-loop integrand basis as a simple example to demonstrate

various ideas that we will meet in later part of this paper. All results in this section are

known in other references such as [14, 33, 34], however, we recall them here since these

results are also related to two-loop integrand basis with n3 = 0.

In pure four-dimension, since each external or internal momentum has four compo-

nents, we need four independent momenta to expand all kinematics. One construction

of momentum basis is to take two arbitrary independent momenta K1,K2 and construct

– 6 –
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following four null momenta ei, i = 1, 2, 3, 4 (assuming (K1 +K2)
2 6= 0)

e1 =
1

γ12

(
K1 −

K2
1 +K1 ·K2 − sgn(K1 ·K2)|

√
(K1 ·K2)2 −K2

1K
2
2 |

(K1 +K2)2
K12

)
,

e2 =
1

γ12

(
K2 −

K2
2 +K1 ·K2 − sgn(K1 ·K2)|

√
(K1 ·K2)2 −K2

1K
2
2 |

(K1 +K2)2
K12

)
,

e3 =
〈e1|γµ|e2]

2i
, e4 =

〈e2|γµ|e1]
2i

, (3.1)

where γ212 =
2[(K1·K2)2−K2

1K
2
2 ]

(K1+K2)2
. This momentum basis has following property: among all

inner products of ei·ej , the only non-zero ones are e1·e2 = 1 and e3·e4 = 1.3 Definition (3.1)

also makes massless limit smoothly, i.e., when K2
1 → 0, e1 → K1 and when K2

2 → 0,

e2 → K2. Using above momentum basis, we can expand any momentum, such as

Ki = (Ki · e2)e1 + (Ki · e1)e2 + (Ki · e4)e3 + (Ki · e3)e4 ,
ℓ = (ℓ · e2)e1 + (ℓ · e1)e2 + (ℓ · e4)e3 + (ℓ · e3)e4 ≡ x2e1 + x1e2 + x4e3 + x3e4 , (3.2)

and the Lorentz invariant scalar products are given by

ℓ2 = x1x2 + x3x4 , ℓ ·Ki =
4∑

j=1

αijxj . (3.3)

The importance of above expansions (3.2) and (3.3) is that any integrand can be written

as a rational function f(x1,x2,x3,x4)∏
t Dt(x1,x2,x3,x4)

, and the PV-reduction procedure is equivalent to

finding following expansion of numerator

f(xi) =
∑

t

ct(xi)Dt(xi) + r(xi) , (3.4)

where the remaining polynomial r(xi) is nothing but the integrand basis we are looking

for. In a more mathematical language, propagators Dt generate an ideal I in polynomial

ring k[x1, x2, x3, x4], and the integrand basis is constructed by representative elements in

the quotient ring k/I under some physical constraints. One physical constraint is the

total degree nℓ of loop momentum ℓ in numerator. For renormalizable theory, we require

nℓ ≤ nD where nD is the number of propagators in denominator.

Having these general preparations, we will discuss explicitly various one-loop integrand

basis, such as box, triangle, bubble and tadpole [14, 33, 34]. For simplicity, we will only

consider massless propagators, but the massive ones can be discussed in a similar way.

3.1 One-loop box topology

For box topology, four propagators are given by

D0 = ℓ2, D1 = (ℓ−K1)
2, D2 = (ℓ−K1 −K2)

2, D3 = (ℓ−K1 −K2 −K3)
2 . (3.5)

3In fact, this property has not determined ei uniquely, since there is a freedom to rescale e1 → we1 and

e2 → w−1e2 and similarly for e3, e4 pair.

– 7 –
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Without loss of generality, we can use K1,K2 to construct momentum basis and use it

to expand all momenta. There are 4 variables (x1, x2, x3, x4) coming from loop momen-

tum expansion. All above propagators can be translated into following polynomials of

xi variables

D0 = x1x2 + x3x4 , D1 = D0 − 2(α11x1 + α12x2) + 2α11α12 ,

D2 = D0 − 2(α21x1 + α22x2) + 2α21α22 ,

D3 = D0 − 2(α31x1 + α32x2 + α33x3 + α34x4) + 2α31α32 + 2α33α34 , (3.6)

where we have used the parametrization K1 + . . .+Ki ≡
∑4

t=1 αitet. It is easy to see that

(D0 −D1)/2 = α11x1 + α12x2 − α11α12 belongs to the ideal generated by D0, D1, D2, D3.

However, the linearity of this equation means that in quotient ring k[x1, x2, x3, x4]/I, we can

always treat variable x1 as combination α12 − α12
α11

x2. In other words, we can use equation

0 = α11x1 + α12x2 − α11α12 to solve x1 and eliminate variable x1 from the quotient ring

k[x1, x2, x3, x4]/I. Similarly using other two linear equations (D0 −D2), (D0 −D3) we can

solve variables x2, x3

x1 =
α12α22(α11 − α21)

α11α22 − α12α21
, x2 =

α11α21(α12 − α22)

α12α21 − α11α22
,

x3 =
−x4α34 − α21α32 + α31α32

α33
+

α12(α11 − α21)(α21α32 − α22α31)

α33(α11α22 − α12α21)
+ α34 . (3.7)

Since x1, x2, x3 have been solved as linear polynomial of x4, we will call them reducible

scalar products (RSP), while the remaining variable x4, irreducible scalar products (ISP).

After substituting solution (3.7) into D0 we get a quadratic polynomial of single vari-

able x4

D0(x4) = −α34

α33
x24 + c1x4 + c0 , (3.8)

where

c1 =
α12α21(α31(α32−α22)+α33α34)+α11(α12(α22α31−α21α32)+α22((α21−α31)α32−α33α34))

(α12α21−α11α22)α33
,

c0 = −α11α12α21α22(α11 − α21)(α12 − α22)

(α12α21 − α11α22)2
. (3.9)

The problem of finding integrand basis for box topology is then reduced to finding repre-

sentative elements in quotient ring k[x4]/ 〈D0(x4)〉. Since (3.8) is a quadratic polynomial,

the representative elements in quotient ring can take following two terms: 1 and x4. It is

worth to notice that although in this example the dimension of quotient ring is finite, it is

not true in general. In fact, if we consider the quotient ring as linear space, in general the

dimension of it will be infinity, i.e., there are infinite number of representative elements.

Only when some constraints are imposed we get finite number of representative elements.

There is another issue regarding to the ideal defined by (3.8). The quadratic polynomial

is reducible, i.e., it can be factorized as product of two factors a(x4 − z1)(x4 − z2) where

– 8 –
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z1, z2 are two roots. This will split the solution space into two branches, which are obtained

by setting either factor to zero. The variety4 defined by this polynomial is the union

of two branches (here is just two points). Both branches are needed to analytically (or

numerically) determine coefficients of two integrand basis 1
D0D1,D2D3

and x4
D0D1,D2D3

at the

integrand level. One of the main focus of this paper is varieties determined by setting all

propagators of a given topology to zero. Their branch structures as well as degeneracy

for specific kinematic configurations, such as massless limit of external momenta or some

attached momenta becoming zero, will be studied carefully.

3.2 One-loop triangle topology

The three propagators are given by D0, D1, D2 as in (3.5), thus we can solve

x1 =
α12α22(α11 − α21)

α11α22 − α12α21
, x2 =

α11α21(α22 − α12)

α11α22 − α12α21
. (3.10)

For triangle, x1, x2 become RSPs, while x3, x4 are left as ISPs. Putting them back to D0

we obtain

D0(x3, x4) =
α11α12α21α22(α11 − α21)(α22 − α12)

(α12α21 − α11α22)2
+ x3x4 . (3.11)

The quotient ring is given by k[x3, x4]/ 〈D0(x3, x4)〉. Its representative elements can

be taken as 1, xn3
3 , xn4

4 with n3, n4 ≥ 1.5 Unlike the box topology, the dimension of

this quotient ring will be infinity. To select finite number of representative elements

from quotient ring, we constrain the power n3, n4 to be no larger than three. This

corresponds to the condition that the power of ℓ in numerator is no more than three for

triangle topology. Under this constraint we get following seven representative elements

{1, x3, x4, x23, x24, x33, x34} as given in [14].

After getting the integrand basis, we need to find their coefficients in expansion of

amplitudes. For this purpose, understanding the variety defined by (3.11) becomes im-

portant. Assuming that the equation is given by x3x4 + d = 0 with d 6= 0, we can solve

x3 = −d/x4. Putting x3 back to integrand basis we get seven monomials of x4 only: xt4
with t = −3,−2,−1, 0, 1, 2, 3. Thus to find coefficients of integrand basis, we just need to

substitute x1, x2, x3 as functions of x4 into integrand obtained by Feynman diagrams or

sewing three on-shell amplitudes using unitarity cut method. Having the monomial of x4,

we can identify corresponding coefficients for a each power of x4. For numerical analysis,

we can take seven arbitrary values of x4 to write down seven linear equations and by solving

them, find the seven unknown coefficients of integrand basis.

There is a technical issue regarding to the method we just described. To guarantee

that we will get exactly the form
∑+3

t=−3 ctx
t
4, we must first subtract all contributions from

box topologies. Similar manipulation should be taken when finding coefficients for bubble

and tadpole at one-loop. In other words, we should subtract contributions from all other

higher topologies which contain the same set of propagators in the problem.

4We call the solution space as variety following the terminology used in algebraic geometry.
5Using (3.11) we can eliminate any product of x3, x4.
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The procedure we have just described is called parametrization of variety. For the

simple example with d 6= 0, there is only one irreducible branch parameterized by x4. How-

ever, with some specific kinematic configurations, above branch can split to two branches.

This happens when K2
1 = 0, so α12 = 0 or K2

2 = 0, so (α21 − α11)(α22 − α12) = 0, or

K2
3 = (K1+K2)

2 = 0, so α21α22 = 0. In other words, when at least one leg is massless, the

definition equation of variety is reduced to x3x4 = 0, and we get two irreducible branches.

The first branch is parameterized by setting x3 = 0 with x4 as free parameter, and the

second branch, by setting x4 = 0 with x3 as free parameter. Using the parametrization of

the first branch, integrand basis xn3 with n = 1, 2, 3 will be zero and their coefficients can

not be detected by method described in previous paragraph. It means that the first branch

can only be used to find four coefficients of integrand basis 1, x4, x
2
4, x

3
4. Similarly, the

second branch can only be used to find coefficients of integrand basis 1, x3, x
2
3, x

3
3. These

two branches intersect at one point x3 = x4 = 0, thus we have 4 + 4 − 1 = 7, i.e., both

branches are necessary to fully determine coefficients of integrand basis.

3.3 One-loop bubble topology

Because of momentum conservation there is only one external momentum. In this case, we

take K1 and another auxiliary momentum P to construct the momentum basis. With two

propagators D0, D1 we can solve

x1 = α12

(
1− x2

α11

)
, (3.12)

and there are three ISPs (x2, x3, x4). After eliminating x1, D0 becomes polynomial of

three ISPs

D0(x2, x3, x4) = x2α12

(
1− x2

α11

)
+ x3x4 , (3.13)

which defines the variety in polynomial ring k[x2, x3, x4]. Unlike box and triangle topolo-

gies, it is hard to find representative elements in the quotient ring

k[x2, x3, x4]/ 〈D0(x2, x3, x4)〉

and we need a systematic way to do so. A good way is to use the Gröbner basis of ideal.

Firstly we write down all possible monomials xn2
2 xn3

3 xn4
4 with n2 + n3 + n4 ≤ 2 required

by physical constraints. Then we divide each monomial xn2
2 xn3

3 xn4
4 by Gröbner basis and

collect all monomials in the remainder. These monomials collected from the remainder

times 1
D0D1

give the integrand basis.

A technical issue of above algorithm is the ordering of ISPs in the constructing of

Gröbner basis. Different ordering gives, in general, different Gröbner basis and different

sets of representative elements, although they are equivalent to each other. Once a par-

ticular ordering is chosen, we should stick to it through the whole calculation to avoid

inconsistency. For instance, if the ordering is chosen as x3 > x4 > x2 we get 9 integrand

basis as

{
1, x2, x2

2, x3, x2x3, x3
2, x4, x2x4, x4

2
}

. (3.14)
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This integrand basis can be used to expand bubble topology. In order to get the coeffi-

cients of integrand basis analytically, we should first put ℓ = x2e1+x1e2+x4e3+x3e4 back

into integrand after subtracting all box and triangle contributions. Then we can replace

x1 by (3.12), and get a polynomial A(x2, x3, x4). The next step is to divide this polyno-

mial by Grönber basis and obtain the remainder. This algorithm, different from previous

parametrization method, ensures that the remainder is nothing but the linear combination

of monomials in integrand basis with coefficients we want to find.

If using the parametrization method, we can replace6 x3 = −α12
x2
x4

(
1 − x2

α11

)
in the

expression A(x2, x3, x4) as well as integrand basis, and get

c(6)x2
4α2

12

x42α2
11

− 2c(6)x2
3α2

12

x42α11
+

c(5)x2
3α12

x4α11
+

c(6)x2
2α2

12

x42
+

c(4)x2
2α12

x4α11
− c(5)x2

2α12

x4

−c(4)x2α12

x4
+ c(3)x2

2 + c(8)x2x4 + c(2)x2 + c(9)x4
2 + c(7)x4 + c(1) .

Since we have already used the equation to reduce one variable further, remaining variables

x2, x4 are totally free variables. What we need to do is to compare each independent

monomial xa4x
b
2 (a, b could be negative integers) at both sides. The parametrization method

can also be used for numerical fitting. We only need to write down enough linear equations

to solve coefficients by taking sufficient numerical values (x2, x4) at both sides.

Similar to triangle topology, the variety defined by (3.13) is irreducible for general

kinematic configuration. However, when K2
1 = 0,7 we have α12 = 0 by our construction,

thus equation (3.13) is reduced to x3x4 = 0. In other words, the variety is degenerated to

two branches: one with x3 = 0 and x2, x4 as free parameters, and another with x4 = 0 and

x2, x3 as free parameters. Each branch can detect six coefficients out of nine integrand

basis, while three basis {1, x2, x22} can be detected by both branches. Thus we have

6 + 6 − 3 = 9, and both branches are necessary to find all coefficients of integrand basis

analytically or numerically.

3.4 One-loop tadpole topology

In this case, we choose arbitrary two independent momenta to construct the momentum

basis. Since there is only one propagator D0, all four variables xi, i = 1, 2, 3, 4 are ISPs

and the variety is defined by equation

D0 = x1x2 + x3x4 . (3.15)

Requiring the total dimension of monomials to be no larger than one, we get following basis

{1, x1, x2, x3, x4} . (3.16)

This variety is irreducible and we can parameterize it by solving x1 = −x3x4
x2

. Thus after

putting x1 back to integrand after subtracted all contributions from boxes, triangles and

6This parametrization works for almost every value of x2 except x2 = 0 and x2 = α11 where the variety

is degenerate.
7For one-loop theory, bubble basis with K2

1 = 0 vanishes after integration, but it is necessary at the

integrand level.
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(A44) (A33)

(A42)

(A43)

(A41) (A32)

(A31) (A22) (A21) (A11)

Figure 4. The type (A) contains 10 topologies with n3 = 0. Every topology is denoted by (Anm)

where n,m are the numbers of propagators of the left and right one-loop sub-topologies respectively.

These diagrams are drawn in most general form, and some external momenta, for instance K7 in

(A44) diagram, could be absent. All external momenta are out-going while convention of loop

momenta is labeled by arrows in each diagram.

bubbles, we can read out coefficients of one-loop tadpole integrand basis by comparing

monomials of xa2x
b
3x

c
4.

4 A premiere: some trivial two-loop topologies

Starting from this section, we will discuss the integrand basis and variety of various two-

loop topologies classified in (2.7) using the same method presented in previous section for

one-loop topologies. Before we discuss non-trivial topologies, there are some topologies

whose integrand basis and structure of variety are quite simple. These include two cases.

The first case is all topologies of type (A), where two one-loop sub-structures share only

one single vertex. The second case is all topologies having maximal number of propagators,

i.e., 8 propagators for pure 4-dimensional two-loop diagrams.

4.1 Two-loop topologies of type (A)

All two-loop topologies of type (A) can be found in figure 4. Since there is no propagator

involving both ℓ1, ℓ2, integrand basis and variety defined by propagators will be double copy

of corresponding two one-loop sub-topologies with minor modification. This modification

comes from constraints of total degree of monomials in integrand basis. Taking topology

(A33) as an example, for the left one-loop sub-topology, we can use K1,K2 to construct

momentum basis e1, e2, e3, e4, thus x3 = ℓ1 · e3, x4 = ℓ1 · e4 will become ISPs after solving

linear equations. Similarly for the right one-loop sub-topology, we can use K3,K4 to
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construct another momentum basis ẽ1, ẽ2, ẽ3, ẽ4, thus y3 = ℓ2 · ẽ3, y4 = ℓ2 · ẽ4 become

ISPs. The representative elements of integrand basis for (A33) can be given by monomial

xn3
3 xn4

4 ym3
3 ym4

4 . From the left one-loop sub-topology we have constraint n3+n4 ≤ 3 because

along the loop there are only three vertices. Similarly we have m3 + m4 ≤ 3 from right

one-loop sub-topology. However, since there are only five vertices along whole two-loop

topology we should have n3 + n4 +m3 +m4 ≤ 5. Under these conditions x33y
3
3 should be

excluded from integrand basis and we get 7× 7− 4 = 45 basis for (A33).

The variety is also the union of varieties of corresponding two one-loop sub-topologies,

so its structure can be easily inferred. To determine coefficients of integrand basis, similar

procedures as presented in previous section can be applied, such as Gröbner basis method

or parametrization method.

4.2 Topologies with eight propagators

Besides topologies of type (A), there are three special topologies in type (B) and (C) which

have maximal number (eight) of propagators. Since there are eight components for two

loop momenta ℓ1, ℓ2, putting eight propagators on-shell will completely freeze all eight

components, thus the variety will be fixed to isolated points. These three topologies are

planar penta-box (B43) as shown in figure 5, and non-planar crossed penta-triangle (C42),

crossed double-box (C33) as shown in figure 6.8

4.2.1 The topology (B43): planar penta-box

For (B43) topology, we take K1,K5 to construct momentum basis ei, i = 1, 2, 3, 4 and use

them to expand both loop momenta ℓ1, ℓ2 with coefficients xi = ℓ1 ·ei and yi = ℓ2 ·ei. Since
there are four propagators containing only ℓ1, just like the one-loop box case, x1, x2, x3 can

be solved as linear functions of x4. After substituting these solutions, D0 = ℓ21 becomes

quadratic function of single variable x4

D0 = c2x
2
4 + c1x4 + c0 , (4.1)

where ci are some functions of external momenta, which may be complicated depending on

kinematic configurations, but not important here. Similarly, there are three propagators

containing only ℓ2, so like the one-loop triangle case, y1, y2 are solved as linear functions

of y3, y4. After substituting these solutions, D̃0 = ℓ22 becomes

D̃0 = c̃20y
2
3 + c̃02y

2
4 + c̃11y3y4 + c̃10y3 + c̃01y4 + c̃00 . (4.2)

Propagator (ℓ1 + ℓ2 +K6)
2 can also be expressed as function of these ISPs as

D̂0 =
∑

ij

dijx
i
4y

j
3 +

∑

ij

d̃ijx
i
4y

j
4 , i, j = 0, 1 , (4.3)

where we have used the conditions ℓ21 = ℓ22 = 0.

8Topology (A44) also has eight propagators. The variety is simply given by four isolated points and

integrand basis has exactly four terms. These four points can be used to determine four coefficients of basis.
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The integrand basis is constructed by dividing monomials xn4
4 ym3

3 ym4
4 with conditions

n4 ≤ 5, m3 +m4 ≤ 4 and n4 +m3 +m4 ≤ 7 over Gröbner basis of the ideal generated by

polynomials D0, D̃0, D̂0. The result is

BB43 = {1, x4, y3, y4} . (4.4)

The variety defined by D0, D̃0, D̂0 has four branches and each branch has a single solution.

Thus using four branches, we can fit coefficients of four integrand basis analytically or

numerically by the method discussed in previous section.

Above results will not change for following specific kinematic configurations: (1) K6

or K7 or both are absent; (2) some of Ki, i = 1, 2, 3, 4, 5 are massless.

4.2.2 The topology (C42): non-planar crossed penta-triangle

For (C42) topology, we take K1,K4 to construct momentum basis ei, i = 1, 2, 3, 4 and use

them to expand both loop momenta ℓ1, ℓ2 with coefficients xi = ℓ1 ·ei and yi = ℓ2 ·ei. Since
there are four propagators containing only ℓ1, x1, x2, x3 can be solved as linear functions

of x4, and D0 = ℓ21 can be rewritten as a quadratic polynomial of x4

D0 = c2x
2
4 + c1x4 + c0 . (4.5)

Coefficients ci are again some functions of external momenta whose explicit expressions

are not important here. Similarly, there are two propagators containing only ℓ2, and

y2 can be solved as linear function of y1, y3, y4. However, unlike the topologies of type

(B), here we have two propagators containing both ℓ1, ℓ2, i.e., D̂0 = (ℓ1 + ℓ2 + K6)
2 and

D̂1 = (ℓ1 + ℓ2 + K6 + K7)
2. We can get one more linear equation D̂1 − D̂0 and solve y1

as linear function of x4, y3, y4. Thus we have three ISPs (x4, y3, y4) and three quadratic

polynomials. Using ideal generated by these three polynomials we find the integrand basis

is given by

BC42 = {1, x4, y3, y4} . (4.6)

The variety defined by these three quadratic equations has four branches, and each branch

is given by a point. Thus using four branches we can find coefficients of four integrand

basis. Again above discussion does not change whether K6,K7 are absent or not, or any

of other external momenta go to massless limit.

4.2.3 The topology (C33): non-planar crossed double-box

For (C33) topology, we take K1,K4 to construct momentum basis ei, i = 1, 2, 3, 4, and use

them expand both loop momenta ℓ1, ℓ2. We can get five linear equations from eight on-shell

equations, and solve, for instance, x1, x2, x3, y1, y2 as functions of three ISPs (x4, y3, y4).

After substituting all RSPs in the remaining three propagators we get three quadratic poly-

nomials. The variety defined by these three quadratic polynomials is given by eight points

(eight branches). By Gröbner basis method, the integrand basis is given by 8 elements

BC33 = {1, x4, y3, x4y3, y23, y33, y4, y3y4} . (4.7)
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Figure 5. The type (B) contains 9 togologies with n3 = 1. Every topology is denoted by (Bnm)

where n,m are the numbers of propagators containing only ℓ1 or ℓ2. The diagrams are drawn in

most general form, and some external momenta, for instance K6,K7 in (B43), could be absent. All

external momenta are out-going while convention of loop momenta is labeled by arrows in each

diagram.

As usual, each branch of variety can detect one coefficient of integrand basis, and using all

8 branches, we can get all coefficients. Again above discussion does not rely on the explicit

kinematic configuration of external momenta.

5 Example one: planar penta-triangle

Having understood simple topologies of planar penta-box, non-planar crossed penta-

triangle and crossed double-box, we move to non-trivial topologies where varieties are given

by manifolds with dimension at least one, not just isolated points. For these topologies,

analysis becomes more complicated, so we will take two topologies as examples to illus-

trate various properties. The first example we will study is planar two-loop penta-triangle

topology (B42), as shown in figure 5.

The penta-triangle topology has 7 propagators. If we choose K1,K4 to generate mo-

mentum basis ei, i = 1, 2, 3, 4, all kinematics can be expanded as

ℓ1 = x2e1 + x1e2 + x4e3 + x3e4 , ℓ2 = y2e1 + y1e2 + y4e3 + y3e4 ,

K1 = α11e1 + α12e2 , K1 +K2 = α21e1 + α22e2 + α23e3 + α24e4 ,

K1+K2+K3 = α31e1 + α32e2 + α33e3 + α34e4 ,

K4 = β11e1 + β12e2 , K5 = γ11e1 + γ12e2 + γ13e3 + γ14e4 , (5.1)

and K6 is constructed from momenta conservation. Above parameters are general if K6 is

arbitrary, but when K6 = 0 or K6 is massless, there will be relations among parameters.

For example, when K6 = 0, we should have

γ11 = −β11 − α31 , γ12 = −β12 − α32 , γ13 = −α33 , γ14 = −α34 , (5.2)
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and when K5 = K6 = 0 we should have γ1i = 0 and

α31 = −β11 , α32 = −β12 , α33 = 0 , α34 = 0 . (5.3)

These relations will be important when discussing branch structure of variety under specific

kinematic configurations.

Using above expansion, we can expand all seven propagators

D0 = ℓ21 , D1 = (ℓ1 −K1)
2 , D2 = (ℓ1 −K1 −K2)

2, D3 = (ℓ1 −K1 −K2 −K3)
2

D̃0 = ℓ22, D̃1 = (ℓ2 −K4)
2, D̂0 = (ℓ1 + ℓ2 +K5)

2 , (5.4)

and use four linear equations D1 −D0 = 0, D2 −D0 = 0, D3 −D0 = 0 and D̃1 − D̃0 = 0 to

solve x1, x2, x3, y2 as linear functions of four ISPs (x4, y1, y3, y4). The results are given by

x1 =
α12(α24α33 − α23α34)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
x4

+
α12(−α21α22α33 + α11(α22α33 − α23α32) + α23(α31α32 + α33α34 − α33α24))

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
, (5.5)

x2 =
α11(α23α34 − α24α33)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
x4

+
α11(α21α22α33 + α12(α23α31 − α21α33)− α23(α31α32 + α33α34 − α33α24))

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
, (5.6)

x3 =
α12(α21α34 − α24α31) + α11(α24α32 − α22α34)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
x4

+
α11((−α23α24 − α22α21 + α22α31)α32 + α12(α21α32 − α22α31) + α22α33α34)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)

+
α12(α23α24α31 + α21(α31α22 − α31α32 − α33α34))

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
, (5.7)

and

y2 = β11

(
1− y1

β12

)
. (5.8)

Now we consider the remaining three equations. Firstly the equation D0 = 0 becomes

a quadratic equation of x4 and we always have 2 solutions xΓ1
4 , xΓ2

4 in C-plane. There is

no intersection between these two solutions, so the variety has been split into two separate

branches parameterized by xΓ4 . Remaining two equations are

D̃0 = β11

(
1− y1

β12

)
y1 + y3y4 = 0 , (5.9)

D̂0 = 0 =

(
xΓ2 + γ11 − (xΓ1 + γ12)

β11
β12

)
y1 + (xΓ4 + γ13)y3 + (xΓ3 + γ14)y4

+(xΓ1 + γ12)β11 + γ11x
Γ
1 + γ12x

Γ
2 + γ13x

Γ
3 + γ14x

Γ
4 + γ11γ12 + γ13γ14 . (5.10)
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Knowing the ideal generated by these four ISPs, we can use the Gröbner basis method

with ordering (x4, y1, y4, y3) to find integrand basis under constraints on the powers of

monomial x
d(x4)
4 y

d(y1)
1 y

d(y3)
3 y

d(y4)
4

∑

all ISPs of x

d(xi) ≤ 5 ,
∑

all ISPs of y

d(yi) ≤ 3 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 6 . (5.11)

Elements of integrand basis will be different depending on actual kinematic configurations.

In this case, there are three kinds of integrand basis depending on if K4 is massless or if

K5,K6 are absent. For all kinematic configurations with K4 massive, the integrand basis

contains 14 elements given by

BI
B42 = {1, x4, y1, y3, x4y3, y1y3, y23, y33, y4, y3y4, y23y4, y24, y3y24, y34} . (5.12)

For kinematic configurations with K4 massless but at most one of K5,K6 absent, the

integrand basis contains 14 elements given by

BII
B42 = {1, x4, y1, y3, x4y3, y1y3, y23, y1y23, y33, y4, y1y4, y24, y1y24, y34} . (5.13)

For kinematic configurations with K4 massless and both K5 = K6 = 0, the integrand basis

has 20 elements given by

BIII
B42 = {1, x4, y1, x4y1, y21, x4y21, y31, x4y31, y3, y1y3,

y21y3, y
2
3, y1y

2
3, y

3
3, y4, y1y4, y

2
1y4, y

2
4, y1y

2
4, y

3
4} . (5.14)

Note that elements of integrand basis generated from different ordering of ISPs will possibly

be different, but after choosing one ordering, there will always be three kinds of integrand

basis depending on kinematic configurations.

After given integrand basis, we need to discuss how to get their coefficients from

integrand coming from Feynman diagrams or unitarity cut method. As in the one-loop

case, either algebraic geometry method or parametrization method can be used.

The algebraic geometry method is illustrated as follows. Firstly we should get integrand

F(ℓ1, ℓ2) from Feynman diagrams or unitarity cut method after subtracting contributions

from higher topologies. After expanding ℓ1, ℓ2 into momentum basis and substituting RSPs

with expressions of ISPs, we can rewrite F(ℓ1, ℓ2) as polynomials of ISPs. For example,

in this example F(x4, y1, y3, y4). Then we can divide F(x4, y1, y3, y4) by Gröbner basis

generated from ideal I ≡
〈
D0, D̃0, D̂0

〉
with ordering (x4, y1, y4, y3). The remainder of

division is linear combinations of all terms in integrand basis with wanted coefficients.

All coefficients can be found at the same time using above algebraic geometry method,

but it may take long time to do so if the number of elements is large. Instead we can

use branch-by-branch polynomial fitting method (see reference [35]) to simplify problem,

by finding a smaller set of coefficients at one time. The idea can be illustrated as follows.

Because D0 = α(x4−xΓ1
4 )(x4−xΓ2

4 ), we can divide polynomials F(x4, y1, y3, y4) by Gröbner

basis generated from I1 ≡
〈
(x4 − xΓ1

4 ), D̃0, D̂0

〉
with ISPs ordering (x4, y1, y4, y3). After

the division F(x4, y1, y3, y4)/I1, we will get remainder

R(F(x4, y1, y3, y4)/I1) = f1 + f2y3 + f3y
2
3 + f4y

3
3 + f5y4 + f6y3y4 + f7y

2
3y4 , (5.15)
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with seven known coefficients fi. It is easy to see that the remainder of 14 integrand basis

over I1 is given by

(1)/I1 → 1 , (x4)/I1 → d2 , (y1)/I1 → d31y4 + d32y3 + d33 , (y3)/I1 → y3 ,

(x4y3)/I1 → d5y3 , (y1y3)/I1 → d61y3y4 + d62y
2
3 + d63y3 , (y23)/I1 → y23 , (y33)/I1 → y33 ,

(y4)/I1 → y4 , (y3y4)/I1 → y3y4 , (y23y4)/I1 → y23y4 ,

(y24)/I1 → d12,1y3y4 + d12,2y4 + d12,3y
2
3 + d12,4y3 + d12,5 ,

(y3y
2
4)/I1 → d13,1y

2
3y4 + d13,2y3y4 + d13,3y

3
3 + d13,4y

2
3 + d13,5y3 ,

(y34)/I1 → d14,1y
2
3y4 + d14,2y3y4 + d14,3y4 + d14,4y

3
3 + d14,5y

2
3 + d14,6y3 + d14,7 , (5.16)

with known coefficients d. Thus by comparing both sides we obtain following seven equa-

tions of 14 unknown coefficients ci from one branch

f1 = c1 + c2d2 + c3d33 + c12d12,5 + c14d14,7 ,

f2 = c3d32 + c4 + c5d5 + c6d63 + c12d12,4 + c13d13,5 + c14d14,6 ,

f3 = c6d62 + c7 + c12d12,3 + c13d13,4 + c14d14,5 ,

f4 = c8 + c13d13,3 + c14d14,4 ,

f5 = c3d51 + c9 + c12d12,2 + c14d14,3 ,

f6 = c6d61 + c10 + c12d12,1 + c13d13,2 + c14d14,2 ,

f7 = c11 + c13d13,1 + c14d14,1 . (5.17)

Similarly, we can divide polynomials F(x4, y1, y3, y4) by Gröbner basis generated from

another branch I2 ≡
〈
(x4 − xΓ2

4 ), D̃0, D̂0

〉
with the same ISPs ordering (x4, y1, y4, y3).

After that we can get another seven equations relating f̃i to ci with other known coefficients

d̃. With this modified algebraic method, we can get a smaller set of coefficients in each

branch. In this example each branch can be used to write down seven equations (we will

say that this branch can detect seven coefficients). Combining results of both branches we

get 14 independent equations, and they can be used to solve 14 coefficients of ci.

Besides algebraic geometry method, it is also possible to find coefficients by

parametrization method. This method is tightly related to the branch-by-branch fitting

method. In this example, we can use D0 to solve x4 and get two solutions. Then we put

one solution xΓi

4 to D̃0, D̂0, and use one variable, for example, y4 to express y1, y3. Finally

we put y1(y4), y3(y4) back to the identity

F(xΓi

4 , y1(y4), y3(y4), y4) =
14∑

k=1

ckBB42,k(y4) , (5.18)

and find coefficients ci by comparing both sides. This method is very useful to evaluate

coefficients analytically or numerically. In this example, we only need to take arbitrary 7

values of y4 to produce seven equations from each branch, and solve 14 linear equations by

combining two branches to find all coefficients.
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5.1 Structure of variety under various kinematic configurations

For some kinematic configurations, for instance, some of external momenta being massless

or absent, the variety will split into different branches. In this example, as we have men-

tioned, no matter what kinematic configuration is, we always have two solutions xΓ1
4 , xΓ2

4

from equation ℓ21 = 0. Thus we will focus on the two remaining equations D̃0, D̂0 with x4
replaced by two solutions xΓ1

4 , xΓ2
4 . Since in general xΓ1

4 6= xΓ2
4 , branches parameterized by

different xΓi

4 will not intersect with each other.

WhenK4 is massive, β11 6= 0, the on-shell equation D̃0 = 0 is not degenerate. If we take

y1 = τ as free parameter, D̃0 = 0 becomes non-degenerate conic section of variables y3, y4,

while D̂0 = 0 becomes linear equation of variables y3, y4. Using following two equations

D̃0 = 0 : y3y4 + F (τ) = 0 , D̂0 = 0 : ay3 + by4 + c(τ) = 0 , (5.19)

where a, b are some constants, F (τ) is second order function of τ , and c(τ) is linear function

of τ , we can solve

y4 =
ac(τ)±

√
a2[c(τ)2 + 4abF (τ)]

−2ab
. (5.20)

y4 is a rational function of τ if c(τ)2 + 4abF (τ) inside the square root is a perfect square.

Using the explicit expressions of F (τ), c(τ) and a, b we find the discriminant of quadratic

function c(τ)2 + 4abF (τ) to be

(xΓ1x
Γ
2+xΓ3x

Γ
4 )

(
β11−

Ξ

β12

)
+
(xΓ2+γ11+β11)(x

Γ
1+γ12+β12)+(xΓ4 + γ13)(x

Γ
3 + γ14)

β12
Ξ , (5.21)

where

Ξ = γ11x
Γ
1 + γ12x

Γ
2 + γ13x

Γ
3 + γ14x

Γ
4 + γ11γ12 + γ13γ14 , (5.22)

and xΓi denotes the solution of xi with x4 = xΓ4 . The first term in above result vanishes

because D0 = xΓ1x
Γ
2 +xΓ3x

Γ
4 = 0. Generally the second term will not be zero, but if K5 = 0,

i.e., γ1i = 0, we have Ξ = 0. Similarly, if K5 6= 0 but K6 = 0, using γ11 = −β11 − α31,

γ12 = −β12 − α32, γ13 = −α33 and γ14 = −α34, the second term becomes

−xΓ1α31 − xΓ2α32 − xΓ3α33 − xΓ4α34 + α31α32 + α33α34

β12
Ξ =

D3 −D0

2β12
Ξ , (5.23)

which vanishes by on-shell equation D3 = D0 = 0. In these cases, c(τ)2 + 4abF (τ) is a

perfect square, and we can get two solutions which are rational functions of free parameter

y1 for each solution xΓ4 . In other words, each original irreducible branch will split into two

branches in these specific kinematic configurations. In total we get four branches denoted

by V Γ1,Π1 , V Γ1,Π2 and V Γ2,Π1 , V Γ2,Π2 . Each branch can detect 4 coefficients. Two branches

V Γ1,Π1 , V Γ1,Π2 intersect at a single point. Similarly, the two branches V Γ2,Π1 , V Γ2,Π2 inter-

sect at another point. There is no intersection among other combination of branches. This

matches the number of integrand basis since 4× 4− 2 = 14.
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K1 K1 K1

K1
K2

K2 K2K3

K5K6
K6

K7

K4K5

K7
K3

K4

K5 K3K4

K6

K4

K5

K2
K3

L1

L1

L1
L1L2 L2 L2 L2

(C42) (C33) (C22)(C32)

Figure 6. The type (C) contains all 4 topologies with n3 = 2. Every topology is denoted by (Cnm)

where n,m are the numbers of propagators containing only ℓ1 or ℓ2 respectively. The diagrams are

drawn in most general form, thus some external momenta, for instance K6,K7 in (C42), could be

absent. All external momenta are out-going while convention of loop momenta is labeled by arrows

in each diagram.

IfK4 is massless, i.e., β11 = 0, but at most one ofK5,K6 is absent, then D̃0 = 0 = y3y4.

There are two branches parameterized by y3 = 0 with y4 free parameter or y4 = 0 with

y3 free parameter. Considering the remaining linear equation D̂0 = 0 of (y1, y3, y4), it is

easy to see there are also four branches V Γ1,Π1 , V Γ1,Π2 and V Γ2,Π1 , V Γ2,Π2 . The intersection

pattern of these four branches is the same as in previous paragraph.9

For specific kinematic configuration where K4 is massless and both K5,K6 are absent,

the dimension of variety will increase from one to two, and the integrand basis is given by

20 elements as shown in (5.14) instead of 14 elements. This can be explained by noticing

that y1 disappears from the three equations

D0 = −α24

α23
x24 +

α23α24 − α12α21 + α21α22

α23
x4 , D̃0 = y3y4 ,

D̂0 = x4y3 −
α24

α23
x4y4 +

α21α22 − α21α12 + α23α24

α23
y4 (5.24)

in this specific kinematic configuration. The variety is given by two branches. One branch

is parameterized by x4 = 0, y4 = 0 with y1, y3 free parameters, and the other branch, by

x4 = (α21α22 −α12α21 +α23α24)/α24, y3 = 0 with y1, y4 free parameters. Each branch can

detect 10 coefficients and there is no intersection between them, so adding them up we can

detect all 20 coefficients.

6 Example two: non-planar crossed double-triangle

Our second example will be non-planar crossed double-triangle topology (C22) as shown in

figure 6. Different from planar penta-triangle topology (B42), the variety of (C22) is two-

dimensional, so the intersection between different branches could be one-dimensional vari-

ety instead of single points. Topology (C22) also has symmetry of relabeling (K1,K2,K3)

as well as symmetry of relabeling (K4,K5). Discussion of different kinematic configurations

can be simplified by using these symmetries.

9Besides branch structure of variety, the integrand basis (5.12) need to be modified too. The reason is

that in the case K2
4 = 0, we have D̃0 = y3y4, thus elements such as y3y4, y

2
3y4, y3y

2
4 could be divided by D̃0.

They should be excluded from integrand basis. The modified integrand basis is given by (5.13).
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For this topology, we use K1,K2 to construct momentum basis ei and use them to

expand external and loop momenta as

K1 = α11e1 + α12e2 , K2 = β11e1 + β12e2 , K4 =
4∑

i=1

γ1iei , K3 +K4 =
4∑

i=1

γ2iei ,

ℓ1 = x2e1 + x1e2 + x4e3 + x3e4 , ℓ2 = y2e1 + y1e2 + y4e3 + y3e4 . (6.1)

With this expansion, 6 propagators can be rewritten as functions of 8 variables. The two

propagators containing only xi variables are given by

D0 = ℓ21 = 2(x1x2 + x3x4) , D1 = (ℓ1 −K1)
2 = D0 + 2α11α12 − 2(α11x1 + α12x2) . (6.2)

The two propagators containing only yi variables are given by

D̃0 = ℓ22 = 2(y1y2 + y3y4) , D̃1 = (ℓ2 −K2)
2 = D̃0 + 2β11β12 − 2(β11y1 + β12y2) . (6.3)

The remaining two propagators contain both xi, yi variables

D̂0 = (ℓ1 + ℓ2 +K4)
2 = D0 + D̃0 + 2(γ11γ12 + γ13γ14) + 2(x1y2 + x2y1 + x3y4 + x4y3)

+2(γ11(x1 + y1) + γ12(x2 + y2) + γ13(x3 + y3) + γ14(x4 + y4)) ,

D̂1 = (ℓ1 + ℓ2 +K4 +K3)
2=D0+D̃0+2(γ21γ22 + γ23γ24) + 2(x1y2 + x2y1 + x3y4 + x4y3)

+2(γ21(x1 + y1) + γ22(x2 + y2) + γ23(x3 + y3) + γ24(x4 + y4)) . (6.4)

From three linear equations D1 − D0 = 0, D̃1 − D̃0 = 0 and D̂1 − D̂0 = 0 we can solve

x1, y2, x2 as functions of five ISPs (x3, x4, y1, y3, y4). Substituting these solutions back into

D0, D̃0, D̂0 we get three polynomial equations, which define the variety of this topology.

We will consider various kinematic configurations where K4,K5 could be absent, or

some of K1,K2,K3 are massless. In order to make the kinematic configuration clear, we use

the notation C22
(L,N,R)
(U,P ) , where each L,N,R could be eitherM orm representing massive or

massless limit of K1,K3,K2 respectively. U,P could be either K4,K5 if they are non-zero

or ⊘ if they are absent. In this notation, for example, C22
(M,M,m)
(K4,⊘) represents kinematic

configuration with K1,K3 massive, K2 massless, K4 non-zero and K5 absent.

6.1 The integrand basis

To determine the integrand basis, we take all possible monomials x
d(x3)
3 x

d(x4)
4 y

d(y1)
1

y
d(y3)
3 y

d(y4)
4 under conditions

∑

all ISPs of x

d(xi) ≤ 4 ,
∑

all ISPs of y

d(yi) ≤ 4 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 5 , (6.5)

and divide them by Gröbner basis generated from D0, D̃0, D̂0 with ISPs’ ordering x3 >

y3 > x4 > y4 > y1 (we will use the same ordering through this example). For different

kinematic configurations, the number and elements of integrand basis can be different as

demonstrated in previous example.

After checking all 24 different kinematic configurations, we find that there are in total

6 different kinds of integrand basis. For kinematic configurations where at least one of
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K4,K5 are non-zero and K1,K2 are massive, the integrand basis contains 100 elements

given by

BI
C22 =

{1, x3, x4, x3x4, x
2
4, x3x

2
4, x

3
4, x3x

3
4, x

4
4, y1, x3y1, x4y1, x3x4y1, x

2
4y1, x3x

2
4y1, x

3
4y1, x3x

3
4y1, x

4
4y1, y

2
1 ,

x3y
2
1 , x4y

2
1 , x

2
4y

2
1 , x

3
4y

2
1 , y

3
1 , x3y

3
1 , x4y

3
1 , x

2
4y

3
1 , y

4
1 , x3y

4
1 , x4y

4
1 , y

5
1 , y3, x3y3, x4y3, x

2
4y3, x

3
4y3, x

4
4y3, y1y3,

x4y1y3, x
2
4y1y3, x

3
4y1y3, y

2
1y3, x4y

2
1y3, y

3
1y3, x4y

3
1y3, y

4
1y3, y

2
3 , x3y

2
3 , x4y

2
3 , y1y

2
3 , x4y1y

2
3 , y

2
1y

2
3 , x4y

2
1y

2
3 ,

y31y
2
3 , y

3
3 , x3y

3
3 , x4y

3
3 , y1y

3
3 , x4y1y

3
3 , y

2
1y

3
3 , y

4
3 , x3y

4
3 , x4y

4
3 , y1y

4
3 , y

5
3 , y4, x4y4, x

2
4y4, x

3
4y4, x

4
4y4, y1y4,

x4y1y4, x
2
4y1y4, x

3
4y1y4, y

2
1y4, x4y

2
1y4, x

2
4y

2
1y4, y

3
1y4, x4y

3
1y4, y

4
1y4, y

2
4 , x4y

2
4 , x

2
4y

2
4 , x

3
4y

2
4 , y1y

2
4 , x4y1y

2
4 ,

x2
4y1y

2
4 , y

2
1y

2
4 , x4y

2
1y

2
4 , y

3
1y

2
4 , y

3
4 , x4y

3
4 , x

2
4y

3
4 , y1y

3
4 , x4y1y

3
4 , y

2
1y

3
4 , y

4
4 , x4y

4
4 , y1y

4
4 , y

5
4} . (6.6)

For kinematic configurations where at least one of K4,K5 are non-zero and K1 is massive,

K2 is massless, the integrand basis still contains 100 elements, and is given by replacing

one element from (6.6)

BII
C22 = BI

C22 − {x24y34}+ {x24y21y3} . (6.7)

For kinematic configurations where at least one of K4,K5 are non-zero and K1 is massless,

the integrand basis contains 98 elements, and is given by removing 17 elements from (6.6)

while adding another 15 elements:

BIII
C22 = BI

C22−{x3x4, x3x24, x3x34, x3x4y1, x3x24y1, x3x34y1, x24y3, x34y3, x44y3, x24y1y3, x34y1y3,
y53, x

2
4y1y4, x

3
4y1y4, x

2
4y

2
1y4, x

2
4y1y

2
4, y

5
4}+{x23, x33, x43, x23y1, x33y1, x43y1, x23y21, x33y21,

x23y
3
1, x

2
3y3, x

3
3y3, x

4
3y3, x

2
3y

2
3, x

3
3y

2
3, x

2
3y

3
3} . (6.8)

If both K4,K5 are absent and K2 is massive, the integrand basis contains 96 elements, and

is given by removing 22 elements from (6.6) while adding another 18 elements

BIV
C22 = BI

C22−{x3x4, x3x
2
4, x3x

3
4, x3x4y1, x3x

2
4y1, x3x

3
4y1, x3y

2
1 , x

2
4y

2
1 , x

3
4y

2
1 , x3y

3
1 , x

2
4y

3
1 , x3y

4
1 ,

x2
4y3, x

3
4y3, x

4
4y3, x

2
4y1y3, x

3
4y1y3, y1y

4
3 , y

5
3 , x

2
4y

2
1y4, y1y

4
4 , y

5
4}+ {x2

3, x
3
3, x

4
3, x

2
3y1, x

3
3y1,

x4
3y1, x

2
3y3, x

3
3y3, x

4
3y3, x3y1y3, x

2
3y1y3, x

3
3y1y3, x

2
3y

2
3 , x

3
3y

2
3 , x3y1y

2
3 , x

2
3y1y

2
3 , x

2
3y

3
3 , x3y1y

3
3}.
(6.9)

If both K4,K5 are absent, K2 is massless, and at least one of K1,K3 are massive, the

integrand basis contains 96 elements, and is given by replacing 9 elements from (6.9)

BV
C22 = BIV

C22 − {x4y23, x4y1y23, x4y21y23, x4y33, x4y1y33, x4y43, x4y21y4, x4y31y4, x4y21y24}
+{x3y21, x23y21, x33y21, x24y21, x34y21, x3y31, x23y31, x24y31, x3y41} . (6.10)

Finally if both K4,K5 are absent, and all K1,K2,K3 are massless, the integrand basis
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contains 144 elements, which is given by

BV I
C22 =

{1, x1, x
2
1, x

3
1, x

4
1, x2, x1x2, x

2
1x2, x

3
1x2, x

2
2, x1x

2
2, x

2
1x

2
2, x

3
2, x1x

3
2, x

4
2, y1, x1y1, x

2
1y1, x

3
1y1, x

4
1y1,

x2y1, x1x2y1, x
2
1x2y1, x

3
1x2y1, x

2
2y1, x1x

2
2y1, x

2
1x

2
2y1, x

3
2y1, x1x

3
2y1, x

4
2y1, y

2
1 , x1y

2
1 , x

2
1y

2
1 , x

3
1y

2
1 ,

x2y
2
1 , x1x2y

2
1 , x

2
1x2y

2
1 , x

2
2y

2
1 , x1x

2
2y

2
1 , x

3
2y

2
1 , y

3
1 , x1y

3
1 , x

2
1y

3
1 , x2y

3
1 , x1x2y

3
1 , x

2
2y

3
1 , y

4
1 , x1y

4
1 , x2y

4
1 ,

y2, x1y2, x
2
1y2, x

3
1y2, x

4
1y2, x2y2, x1x2y2, x

2
1x2y2, x

3
1x2y2, x

2
2y2, x1x

2
2y2, x

2
1x

2
2y2, x

3
2y2, x1x

3
2y2,

x4
2y2, y1y2, x1y1y2, x

2
1y1y2, x

3
1y1y2, x2y1y2, x1x2y1y2, x

2
1x2y1y2, x

2
2y1y2, x1x

2
2y1y2, x

3
2y1y2,

y21y2, x1y
2
1y2, x

2
1y

2
1y2, x2y

2
1y2, x1x2y

2
1y2, x

2
2y

2
1y2, y

3
1y2, x1y

3
1y2, x2y

3
1y2, y

2
2 , x1y

2
2 , x

2
1y

2
2 , x

3
1y

2
2 ,

x2y
2
2 , x1x2y

2
2 , x

2
1x2y

2
2 , x

2
2y

2
2 , x1x

2
2y

2
2 , x

3
2y

2
2 , y1y

2
2 , x1y1y

2
2 , x

2
1y1y

2
2 , x2y1y

2
2 , x1x2y1y

2
2 , x

2
2y1y

2
2 ,

y21y
2
2 , x1y

2
1y

2
2 , x2y

2
1y

2
2 , y

3
2 , x1y

3
2 , x

2
1y

3
2 , x2y

3
2 , x1x2y

3
2 , x

2
2y

3
2 , y1y

3
2 , x1y1y

3
2 , x2y1y

3
2 , y

4
2 , x1y

4
2 , x2y

4
2 ,

y3, x1y3, x
2
1y3, x

3
1y3, x

4
1y3, y1y3, x1y1y3, x

2
1y1y3, x

3
1y1y3, y

2
1y3, x1y

2
1y3, x

2
1y

2
1y3, y

3
1y3, x1y

3
1y3, y

2
3 ,

x1y
2
3 , x

2
1y

2
3 , x

3
1y

2
3 , y1y

2
3 , x1y1y

2
3 , x

2
1y1y

2
3 , y

2
1y

2
3 , x1y

2
1y

2
3 , y

3
3 , x1y

3
3 , x

2
1y

3
3 , y1y

3
3 , x1y1y

3
3 , y

4
3 , x1y

4
3} . (6.11)

6.2 Structure of variety under various kinematic configurations

Having given the integrand basis we move to the discussion of variety determined by six

propagators under various kinematic configurations.

6.2.1 Kinematic configurations with K4,K5 non-zero

Given the integrand basis, the focus becomes finding their coefficients. As mentioned above,

the computation can be simplified using branch-by-branch method, thus it is important

to study the structure of variety in various kinematic configurations. For general case

where both K4,K5 are non-zero and K1,K2,K3 are massive, the variety defined by six

on-shell equations is irreducible, i.e., there is only one branch with dimension two. All

100 coefficients of integrand basis (6.6) should be determined at the same time using this

irreducible branch.

The variety will split into two branches when one of K1,K2,K3 is massless, this cor-

responds to kinematic configurations C22
(M,M,m)
(K4,K5)

, C22
(M,m,M)
(K4,K5)

and C22
(m,M,M)
(K4,K5)

. It is easy

to see that when K2
2 = 0, we have β11 = 0, thus D̃0 = y3y4. Similarly when K2

1 = 0,

we have α12 = 0, thus D0 = x3x4. For K2
3 = 0, we could use the massless condition

(γ21 − γ11)(γ22 − γ12) + (γ23 − γ13)(γ24 − γ14) = 0 to solve γ24, and substitute it back to

D̃0, D̂0 to solve y3, x4. After putting solutions of y3, x3 back to D0, the numerator of D0 is

factorized into two factors, i.e., there are two branches.

Above procedure, although straightforward, could be complicated and probably miss

some branches in certain kinematic configurations. An alternative and better way of finding

branches of variety is to use Macaulay2 [37].

Let us take kinematic configuration C22
(M,M,m)
(K4,K5)

as an example to illustrate the struc-

ture of these two branches. In this example, one branch is characterized by y3 = 0 and

the other branch by y4 = 0. For the first branch, only 65 elements are left after putting

y3 = 0 to integrand basis (6.7). Dividing these 65 monomials over Gröbner basis generated
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from equations defining this branch, we find that only 59 of them are independent. So

we can only find 59 coefficients of integrand basis (6.7). Similarly, for the second branch,

66 elements are left after putting y4 = 0, and only 59 are independent after dividing

them by Gröbner basis generated from definition equations of this branch. Both branches

are varieties of dimension two, and their intersection is an irreducible variety of dimen-

sion one. The one-dimensional intersection can detect 18 coefficients, thus we can find all

59 + 59− 18 = 100 coefficients using both branches.

If two of K1,K2,K3 are massless, i.e., kinematic configurations C22
(M,m,m)
(K4,K5)

,

C22
(m,m,M)
(K4,K5)

and C22
(m,M,m)
(K4,K5)

, the variety will further split into 4 branches. Take kine-

matic configuration C22
(m,M,m)
(K4,K5)

as an example, massless conditions of K1,K2 will reduce

D0 = x3x4 and D̃0 = y3y4. It is easy to see that there are 4 branches characterized by

V1 : (x3 = 0, y3 = 0), V2 : (x3 = 0, y4 = 0), V3 : (x4 = 0, y3 = 0) and V4 : (x4 = 0, y4 = 0).

Using algebraic or other methods, one can find that each branch can detect 34 coefficients.

A naive summation of these 4 branches gives 34×4 = 136 coefficients, which is larger than

the number of integrand basis. This means that there are intersections among 4 branches.

By analyzing intersections among all possible combinations of branches, we find that in-

tersections for pairs (V1, V2), (V1, V3), (V4, V3), (V4, V2) are irreducible one-dimensional va-

rieties,10 and intersections for pairs (V1, V4) and (V2, V3) are isolated points. Intersections

of three or four branches are again above two isolated points.

If we assume kinematic configuration to be C22
(m,m,m)
(K4,K5)

where all K1,K2,K3 are mass-

less, the variety is given by eight branches, i.e., each branch of previous paragraph has fur-

ther split into two branches. The first two branches V1, V2 characterized by x3 = y3 = 0 (or

the seventh and eighth branches V7, V8 characterized by x4 = y4 = 0) can detect 19 and 21

coefficients respectively, and 34 coefficients can be detected by using two branches. This can

be checked by noticing that the intersection of these two branches can detect 6 coefficients,

so 19 + 21 − 6 = 34. Similarly, each of the third and fourth branches V3, V4 characterized

by x3 = y4 = 0 (or the fifth and sixth branches V5, V6 characterized by x4 = y3 = 0)

can detect 20 coefficients, and 34 coefficients can be detected by using two branches.

This can also be checked by noticing that their intersection can detect 6 coefficients, so

20 + 20 − 6 = 34. We also need to clarify the intersection pattern among eight branches.

There are no intersections shared by five or more branches. The intersections of follow-

ing six pairs (V1, V2, V3, V4), (V5, V6, V7, V8), (V1, V2, V5, V6), (V3, V4, V7, V8), (V1, V3, V6, V8),

(V2, V4, V5, V7) are single points. Intersections of every three branches are also single points,

which are inherited from corresponding intersection of every four branches (for example,

intersection point of (V1, V2, V3) coming from intersection point of (V1, V2, V3, V4)). No new

intersecting points besides the ones of every four branches are found for intersections of

every three branches. The intersections of every two branches are possibly one-dimensional

10Each one-dimensional intersection can detect 10 coefficients for this example. With information of

other intersections, we can make following counting. Since intersection of three or four branches detects

2 coefficients, each intersection of two branches will detect 10 − 2 = 8 independent coefficients, thus each

branch will independently detect 34−8−8−2 = 16 coefficients that can not be detected by other branches.

Adding all together we have 16× 4 + 8× 4 + 2 = 98 coefficients as it should be.
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varieties or single points. In order to express the intersection pattern, we will use following

notation V1 ∩ V2 = (d|m) where d is the dimension of variety (so d = 1 for one-dimension

and d = 0 for points) and m is the number of coefficients detected by the intersection.

Thus all possible intersections between pairs (Vi, Vj) are given by

(1|6) = V1 ∩ V2 = V2 ∩ V4 = V2 ∩ V6 = V3 ∩ V4 = V3 ∩ V8 = V5 ∩ V6 = V6 ∩ V8 = V7 ∩ V8 ,

(1|5) = V1 ∩ V3 = V1 ∩ V6 = V4 ∩ V7 = V5 ∩ V7 ,

(0|1) = V1 ∩ V4 = V1 ∩ V5 = V1 ∩ V8 = V2 ∩ V3 = V2 ∩ V7 = V3 ∩ V6 = V3 ∩ V7 = V4 ∩ V5

= V4 ∩ V8 = V5 ∩ V8 = V6 ∩ V7 .

6.2.2 Kinematic configurations with one of K4,K5 absent

For C22K4,⊘ or C22K5,⊘, i.e., one of K4,K5 absent, the variety is given by two branches11

even without imposing massless conditions of Ki, i = 1, 2, 3. Each branch can detect 64 co-

efficients of integrand basis and their one-dimension intersection can detect 28 coefficients.

By using two branches all 64 + 64− 28 = 100 coefficients can be detected.

For kinematic configurations C22m,M,M
K4/K5,⊘

, C22M,m,M
K4/K5,⊘

and C22M,M,m
K4/K5,⊘

, the variety is

given by four branches. To illustrate the structure of branches, let us take C22M,M,m
K4/K5,⊘

as

an example. Each branch is 2-dimensional variety and can detect 21 coefficients. Let us use

V1, V2 to denote two branches characterized by y3 = 0, and V3, V4 to denote two branches

characterized by y4 = 0. We find that these four branches will intersect at a single point.

Among intersections of every three branches, non-trivial two intersecting points exist for

pair (V1, V2, V4) and (V2, V3, V4). Pair (V1, V3) intersects at a point, while intersections

of all other five pairs of every two branches are one-dimension varieties. Among them

V1∩V2, V3∩V4 can detect 11 coefficients while V1∩V4, V2∩V3 can detect 6 coefficients and

V2∩V4, 10 coefficients. It is also worth to mention that though having same four branches,

the intersection pattern of C22m,M,M
K4/K5,⊘

, C22M,m,M
K4/K5,⊘

and C22M,M,m
K4/K5,⊘

are different from

these of C22m,m,M
K4,K5

,C22m,M,m
K4,K5

, and C22M,m,m
K4,K5

.

Next let us discuss kinematic configurations C22m,m,M
K4/K5,⊘

, C22m,M,m
K4/K5,⊘

and C22M,m,m
K4/K5,⊘

.

For these cases, the variety is given by six branches. Taking C22m,M,m
K4/K5,⊘

as an example,

the first two branches V1, V2 characterized by x3 = y3 = 0 can detect 19 and 21 coefficients

respectively, and the intersection of these two branches can detect 6 coefficients, thus

we have 34 coefficients by using both branches. The third branch V3 characterized by

x3 = y4 = 0 can detect 34 coefficients. Similarly, the fourth branch V4 characterized by

x4 = y3 = 0 can also detect 34 coefficients. The last two branches V5, V6 characterized by

x4 = y4 = 0 can detect 19 and 21 coefficients respectively, and by using both branches one

can detect 34 coefficients. It is interesting to notice that these six branches are split from

corresponding 4 branches of C22m,M,m
K4,K5

. We will again clarify the intersection pattern of

these six branches. No intersections exist for every five or six branches. For intersections

of every four branches, pair (V1, V3, V4, V5) and (V2, V3, V4, V6) intersect at single points.

11This can be seen by solving y3, x3 using D̃0 = 0 and D̂0 = 0 equations and putting solutions back to

D0, which is factorized to two pieces. One can also use Macaulay2 to find branches. From now on, we will

not discuss how to get branches.
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Apart from the inherit intersecting points of four branches, there are also pairs of every

three branches (V1, V2, V3), (V4, V5, V6), (V1, V2, V4), (V3, V5, V6) that intersect at different

single points. For intersections of every two branches, (V1, V5), (V2, V6) intersect at one

single points, (V3, V4) intersects at two points, and (V3,4, V2,6), (V1, V2), (V5, V6) intersect

at one-dimensional variety which can detect 6 coefficients, while (V3,4, V1,5) also intersect

at one-dimensional variety which can detect 5 coefficients.

For kinematic configuration C22m,m,m
K4/K5,⊘

where all K1,K2,K3 are massless, the variety

splits to eight branches. The branch structure is the same as C22m,m,m
K4,K5

. Two branches

V1, V2 characterized by x3 = y3 = 0 as well as two branches V7, V8 characterized by

x4 = y4 = 0 can detect 19 and 21 coefficients respectively, while two branches V3, V4

characterized by x3 = y4 = 0 and two branches V5, V6 characterized by x4 = y3 = 0 can

detect 20 coefficients respectively. These eight branches intersect at a single point, while

all intersections among every seven, six, five, four or three branches are also located at the

same point. There are 28 possible intersecting pairs of two branches, among them 12 are

one-dimensional varieties, and intersections of the remaining 16 pairs are the same single

point as the intersection of eight branches. For the 12 one-dimensional variety, 8 of them

coming from (V2, V1,4,5), (V8, V3,6,7), (V3, V4) and (V5, V6) can detect 6 coefficients individ-

ually, while the other four coming from (V1, V3,6) and (V7, V4,5) can detect 5 coefficients.

6.2.3 Kinematic configurations with both K4,K5 absent

For kinematic configuration C22⊘,⊘, since K4 = K5 = 0, momentum conservation ensures

K3 = −K1−K2. K1,K2 are still independent, so we can use them to construct momentum

basis ei. For this simple case, we can write down analytic expressions and make discussion

more transparent.

Using parametrization K1 = α11e1+α12e2 and K2 = β11e1+β12e2, the three non-linear

cut equations can be given by

D0 = x3x4 +
α11α12

β12

(
1− y1

β12

)
y1 ,

D̃0 = y3y4 + β11

(
1− y1

β12

)
y1 ,

D̂0 = x4y3 + x3y4 +
α12β11 + α11β12

β12

(
1− y1

β12

)
y1 (6.12)

after eliminating all RSPs. If K1,K2,K3 are massive, the variety is given by following six

branches defined by ideals:

V
C22

(M,M,M)
(⊘,⊘)

1 = {y3, x3, y1} , V
C22

(M,M,M)
(⊘,⊘)

2 = {y3, x3, y1 − β12} ,

V
C22

(M,M,M)
(⊘,⊘)

3 = {y4, y1, x4} , V
C22

(M,M,M)
(⊘,⊘)

4 = {y4, y1 − β12, x4} ,

V
C22

(M,M,M)
(⊘,⊘)

5 = {y3y4 + β11(1− y1/β12)y1, y3α12 − x3β12, y4α11 − x4β11} ,

V
C22

(M,M,M)
(⊘,⊘)

6 = {y3y4 + β11(1− y1/β12)y1,−y3α11 + x3β11, y4α12 − x4β12} . (6.13)
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Among these six branches, four of them Vi, i = 1, 2, 3, 4 will detect 19 coefficients individ-

ually and two of them Vi, i = 5, 6, 36 coefficients. The physical picture is following. Each

branch of C22
(M,M,M)
(K4/K5,⊘) will split into three branches with two branches detecting 19 coef-

ficients and one branch detecting 36 coefficients. The intersection pattern of six branches

is following. No intersections exist for six or every five branches. Each combination of

(V2, V4, V5, V6) and (V1, V3, V5, V6) intersects at a single point. No new intersection points

exist for intersections of three branches. For intersections of 15 pairs (Vi, Vj), there are no

intersections among 4 pairs (V1,3, V2,4), while (V1, V3) intersects at one point, and (V5, V6)

intersects at two points. Intersections of remaining 9 pairs are one-dimensional variety.

If one or two momenta of K1,K2,K3 are massless, i.e., kinematic configurations

C22
(m,M,M)
(⊘,⊘) , C22

(M,m,M)
(⊘,⊘) , C22

(M,M,m)
(⊘,⊘) , C22

(m,m,M)
(⊘,⊘) , C22

(m,M,m)
(⊘,⊘) and C22

(M,m,n)
(⊘,⊘) , the vari-

ety still has six branches. Definition of branches are still the same as (6.13) for C22
(m,M,M)
(⊘,⊘) ,

C22
(M,m,M)
(⊘,⊘) , C22

(m,m,M)
(⊘,⊘) , but will be different for C22

(M,M,m)
(⊘,⊘) , C22

(m,M,m)
(⊘,⊘) , C22

(M,m,m)
(⊘,⊘)

where the first four branches are the same as (6.13), and the last two branches change to

V
C22(M,M,m),(m,M,m),(M,m,m)

(⊘,⊘)

5 = {y3,−y4α12 + x4β12, x3y4 + α11(1− y1/β12)y1} ,

V
C22(M,M,m),(m,M,m),(M,m,m)

(⊘,⊘)

6 = {y4, x4y3 + α11(1− y1/β12)y1,−y3α12 + x3β12} . (6.14)

For the last kinematic configuration C22
(m,m,m)
(⊘,⊘) , the external momenta are extremely

degenerated since we must either have λ1 ∼ λ2 ∼ λ3 or λ̃1 ∼ λ̃2 ∼ λ̃3. In other words, we

can not use K1,K2 to construct momentum basis ei. One possible choice of momentum

basis is the massless momenta K1,K2, e3, e4 satisfying12

K1 ·K2 = K1 · e3 = K2 · e4 = e3 · e4 = 0 , K1 · e4 = K2 · e3 = 1 . (6.15)

With this momentum basis we can expand loop momentum ℓ1 as

ℓ1 = (ℓ1 ·e4)K1+(ℓ1 ·e3)K2+(ℓ1 ·K2)e3+(ℓ1 ·K1)e4 ≡ x1K1+x2K2+x3e3+x4e4 , (6.16)

and similarly for ℓ2. Then the six propagators are given by

D0 = ℓ21 = 2(x1x4 + x2x3) , D1 = (ℓ1 −K1)
2 = D0 − 2x4 ,

D̃0 = ℓ22 = 2(y1y4 + y2y3) , D̃1 = (ℓ2 −K2)
2 = D̃0 − 2y4 ,

D̂0 = (ℓ1 + ℓ2)
2 = 2(x1 + y1)(x4 + y4) + 2(x2 + y2)(x3 + y3) ,

D̂1 = (ℓ1 + ℓ2 +K3)
2 = D̂0 − 2(x4 + y4)− 2(x3 + y3) . (6.17)

Solving these equations we find

x4 = 0 , y4 = 0 , x3 = −y3 , (6.18)

and there are only two non-linear equations left

D0 = x2y3 , D̃0 = y2y3 . (6.19)

12We can always have this choice. For example, if K1 = λ1λ̃1, K2 = λ1λ̃2 we can take e3 = c3λ2λ̃1 and

e4 = c4λ2λ̃2. Similarly if K1 = λ1λ̃1, K2 = λ2λ̃1, we can take e3 = c3λ1λ̃2, e4 = c4λ2λ̃2.
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Now we have five ISPs (x1, x2, y1, y2, y3) and two non-linear equations. The integrand basis

is given by 144 monomials of ISPs under degree conditions as already shown. The variety

is given by two branches. The first one characterized by y3 = 0 is dimension four variety,

and the second one characterized by x2 = y2 = 0 is dimension three. The first branch can

detect 114 coefficients while the second branch can detect 49 coefficients. Their intersection

is two-dimensional variety, which can detect 19 coefficients.

The splitting of branches of different kinematic configurations is summarized in figure 7.

7 Remaining two-loop topologies

After demonstrating methods and various properties with above planar penta-triangle and

non-planar crossed double-triangle examples, we will present results for the remaining two-

loop topologies in this section. We will omit many details but show only main results.

7.1 The topology (C32): non-planar crossed box-triangle

There is only one topology left for type (C), i.e., the crossed box-triangle topology (C32).

We use K1,K3 to construct momentum basis ei. From seven on-shell equations, we can

solve, for instance, x1, x2, y1, y2 as linear functions of four ISPs (x3, x4, y3, y4). The remain-

ing three propagators are quadratic functions of ISPs. For general kinematic configuration,

the expression and solution of cut equations are tedious, so we will not explicitly write them

down here.

Integrand basis. In general, the variety defined by these three remaining quadratic

cut equations is irreducible and dimension one. Using Gröbner basis method under ISPs

ordering (y4, y3, x4, x3) and the renormalization conditions

∑

all ISPs of x

d(xi) ≤ 5 ,
∑

all ISPs of y

d(yi) ≤ 4 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 6 , (7.1)

we can get integrand basis for various kinematic configurations. There are all together

four kinds of integrand basis depending on the massless limits of K1,K3 since we have

chosen K1,K3 to generate momentum basis. For all kinematic configurations with K1,K3

massive, the integrand basis contains 38 elements given by

BI
C32 = {1, x3, x23, x33, x43, x53, x63, x4, x3x4, x23x4, x33x4, x43x4, x53x4, y3, x3y3, x23y3, x33y3,

x43y3, x
5
3y3, x4y3, x3x4y3, x

2
3x4y3, x

3
3x4y3, x

4
3x4y3, y

2
3, x3y

2
3, x4y

2
3, y

3
3, x3y

3
3, x4y

3
3,

y43, x3y
4
3, x4y

4
3, y4, x3y4, y3y4, y

2
3y4, y

3
3y4} . (7.2)

For all kinematic configurations with K1 massless while K3 massive, the integrand basis

still contains 38 elements, and is given by replacing 9 elements in BI
C32

BII
C32 = BI

C32 − {x3x4, x23x4, x33x4, x43x4, x53x4, x3x4y3, x23x4y3x33x4y3, x43x4y3}
+{x24, x34, x44, x54, x64, x24y3, x34y3, x44y3, x54y3} . (7.3)
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C22
(M,M,M)
(K4,K5)

One branch

Two branches Two branches Two branches

Four branches Four branches

Six branches

Six branches

Eight branches

Eight branches

C22
(m,M,M)
(K4,K5)

C22
(M,m,M)
(K4,K5)

C22
(M,M,m)
(K4,K5)

C22
(M,m,m)
(K4,K5)

C22
(m,M,m)
(K4,K5)

C22
(m,m,M)
(K4,K5)

C22
(m,m,m)
(K4,K5)

C22
(M,M,M)
(K4/K5,⊘)

C22
(M,M,m)
(K4/K5,⊘)

C22
(M,m,M)
(K4/K5,⊘)

C22
(m,M,M)
(K4/K5,⊘)

C22
(m,M,m)
(K4/K5,⊘)

C22
(m,m,M)
(K4/K5,⊘)

C22
(M,m,m)
(K4/K5,⊘)

C22
(m,m,m)
(K4/K5,⊘)

C22
(m,m,m)
(⊘,⊘)

C22
(M,M,M)
(⊘,⊘)

C22
(M,m,M)
(⊘,⊘)

C22
(m,m,M)
(⊘,⊘)

C22
(M,M,m)
(⊘,⊘)

C22
(m,M,M)
(⊘,⊘)

C22
(m,M,m)
(⊘,⊘)

C22
(M,m,m)
(⊘,⊘)

Figure 7. The splitting of variety into branches under different kinematic configurations. All

branches are dimension two varieties, except the most degenerated case C22
(m,m,m)
(⊘,⊘) where one

branch is dimension four and the other, dimension three. The arrows indicate how branches split

when one more specific kinematic condition is imposed.

For all kinematic configurations with K1 massive while K3 massless, the integrand basis

contains 38 elements, and is given by replacing 6 elements in BI
C32

BIII
C32 = BI

C32 − {x4y23, x4y33, x4y43, y3y4, y23y4, y33y4}+ {y24, x3y24, y34, x3y34, y44, x3y44} . (7.4)

Finally for all kinematic configurations with both K1,K3 massless, the 38 elements of

integrand basis are given by replacing fifteen elements in BI
C32

BIV
C32 = BI

C32 − {x3x4, x23x4, x33x4, x43x4, x53x4, x3x4y3, x23x4y3, x33x4y3, x43x4y3,
x4y

2
3, x4y

3
3, x4y

4
3, y3y4, y

2
3y4, y

3
3y4}+ {x24, x34, x44, x54, x64, x24y3, x34y3, x44y3,

x54y3, y
2
4, x3y

2
4, y

3
4, x3y

3
4, y

4
4, x3y

4
4} . (7.5)

To discuss the structure of variety, we again use the notation C32
(L,N,R)
(U,P ) where now

U,P could either be K5,K6 or ⊘ representing corresponding K5,K6 absent. L will be m

if at least one momentum of K1,K2 is massless, and R will be m if K3 is massless, while

N will be m if K4 is massless. Otherwise they will be M .

The number of branches under various kinematic configurations is summarized in

table 1. For each kinematic configuration, one should use all branches to find all 38
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❳
❳

❳
❳
❳

❳
❳
❳
❳

❳
❳
❳

(L,N,R)

(U,P )
(K5,K6) (K5/K6,⊘) (⊘,⊘)

(M,M,M) 1 2 4

(m,M,M), (M,m,M), (M,M,m) 2 4 6

(m,m,M), (m,M,m), (M,m,m) 4 6 6 for (M,m,m)/8

(m,m,m) 8 8 8

Table 1. Number of branches of various kinematic configurations for non-planar crossed box-

triangle topology. The kinematic configurations are denoted by C32
(L,N,R)
(U,P ) .

Figure 8. Intersections of branches for various kinematic configurations of non-planar crossed box-

triangle topology (C32). Each branch Vi is represented by a closed loop and denoted by i, while

black dot is the intersecting point. Kinematic configurations for each pattern are listed below each

diagram.

coefficients of integrand basis. We can also use branch-by-branch polynomial fitting

method to simplify calculations.

Variety with one branch. For the most general kinematics C32
(M,M,M)
(K5,K6)

, the variety is

irreducible with dimension one. All 38 coefficients should be found using this branch.
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Variety with two branches. For kinematic configurations

C32
(M,M,m)
(K5,K6)

, C32
(M,m,M)
(K5,K6)

, C32
(m,M,M)
(K5,K6)

, C32
(M,M,M)
(K5/K6,⊘) , (7.6)

the variety is given by two branches with dimension one. These branches will intersect

at points. More explicitly, for C32
(m,M,M)
(K5,K6)

, two branches intersect at two isolated points,

while for C32
(M,M,m)
(K5,K6)

, C32
(M,m,M)
(K5,K6)

and C32
(M,M,M)
(K5/K6,⊘), two branches intersect at four points.

Variety with four branches. For kinematic configurations

C32
(m,m,M)
(K5,K6)

, C32
(m,M,m)
(K5,K6)

, C32
(M,M,m)
(K5/K6,⊘) , C32

(M,m,M)
(K5/K6,⊘) , C32

(m,M,M)
(K5/K6,⊘) , (7.7)

the variety is given by four branches with dimension one. The intersection pattern among

four branches V1, V2, V3, V4 can be shown as follows. For C32
(m,m,M)
(K5,K6)

, C32
(m,M,m)
(K5,K6)

and

C32
(m,M,M)
(K5/K6,⊘), the only non-zero intersections are given by V1 ∩ V2 = V3 ∩ V4 = (0|2),

V1 ∩ V3 = V2 ∩ V4 = (0|1). For C32
(M,M,m)
(K5/K6,⊘) and C32

(M,m,M)
(K5/K6,⊘), non-zero intersections are

given by V1 ∩ V4 = (0|2), V1 ∩ V2 = V2 ∩ V4 = (0|1), V1 ∩ V3 = V3 ∩ V4 = (0|1).

Variety with six branches. For kinematic configurations

C32
(M,m,m)
(K5,K6)

, C32
(M,M,M)
(⊘,⊘) , C32

(m,M,m)
(K5/K6,⊘) , C32

(m,m,M)
(K5/K6,⊘) ,

C32
(M,m,m)
(K5/K6,⊘) , C32

(M,M,m)
(⊘,⊘) , C32

(M,m,M)
(⊘,⊘) , C32

(M,m,m)
(⊘,⊘) , (7.8)

the variety is given by six branches with dimension one. These branches again intersect

at points. For C32
(m,M,m)
(K5/K6,⊘) and C32

(m,m,M)
(K5/K6,⊘), each pair of (V1, V2), (V2, V4), (V4, V1),

(V5, V6), (V6, V3), (V3, V5), (V1, V5), (V4, V6) intersects at one single point. For C32
(M,m,m)
(K5,K6)

,

C32
(M,M,M)
(⊘,⊘) , C32

(M,m,m)
(K5/K6,⊘), C32

(M,M,m)
(⊘,⊘) , C32

(M,m,M)
(⊘,⊘) and C32

(M,m,m)
(⊘,⊘) , each pair of (V1, Vi)

and (V4, Vi) for i = 2, 3, 5, 6 intersects at one single point.

Variety with eight branches. For kinematic configurations

C32
(m,m,m)
(K5,K6)

, C32
(m,m,m)
(K5/K6,⊘) , C32

(m,M,m)
(⊘,⊘) , C32

(m,m,M)
(⊘,⊘) , C32

(m,m,m)
(⊘,⊘) , C32

(m,M,M)
(⊘,⊘) , (7.9)

the variety is given by eight branches with dimension one. There will be single intersect-

ing point for each pair of following ten combinations: (V1, V2), (V1, V3), (V1, V5), (V2, V4),

(V3, V4), (V4, V8), (V5, V6), (V5, V7), (V6, V8) and (V7, V8).

The intersection pattern of branches for each kinematic configurations is shown

in figure 8.

7.2 The topology (B41): planar penta-bubble

From on-shell equations of six propagators we can get three linear equations for pure ℓ1,

and reduce four RSPs (x1, x2, x3, x4) to one. Exception happens when K4 = K5 = 0,

D4 = (ℓ1−K1−K2−K3)
2 = ℓ21 from momentum conservation, and the independent linear

equations containing pure ℓ1 reduce to two. In this case we get two ISPs from xi. There is
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no linear equation for pure ℓ2, so all four yi are ISPs. Adding them together there will be

5 ISPs (or 6 ISPs for the case K4 = K5 = 0).

We use K1,K3 to construct momentum basis ei. After solving linear equations we

can express remaining three quadratic equations with ISPs. Using Gröbner basis method

with ISPs’ ordering (x4, y1, y2, y3, y4) for kinematic configurations B41(K4,K5), B41(K4/K5,⊘)

under renormalization conditions

∑

all ISPs of x

d(xi) ≤ 5 ,
∑

all ISPs of y

d(yi) ≤ 2 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 5 . (7.10)

we can get integrand basis with 18 elements. We have three kinds of integrand basis

for kinematic configurations B41(K4,K5), B41(K4/K5,⊘) according to kinematics of K1,K3

since we have chose K1,K3 to generate momentum basis. The first kind is suitable for all

kinematic configurations of B41(K4,K5), or K3 massive while others arbitrary for B41(K4,⊘),

or K1 massive while others arbitrary for B41(K5,⊘). It is given by 18 elements

BI
B41={1, x4, y1, y2, x4y2, y22, y3, y1y3, y2y3, y23, y4, x4y4, y1y4, y2y4, x4y2y4, y3y4, y24, x4y24} .

(7.11)

The second kind is suitable for kinematic configurations with K1 massless while others

arbitrary for B41(K5,⊘). The 18 elements of integrand basis are given by replacing one

element in BI
B41

BII
B41 = BI

B4 − {x4y2y4}+ {x4y22} . (7.12)

The third kind is suitable for kinematic configurations with K3 massless while others ar-

bitrary for B41(K4,⊘). The 18 elements of integrand basis are given by replacing three

elements in BI
B41

BIII
B41 = BI

B41 − {x4y2, y22, x4y2y4}+ {x4y1, y21, x4y21} . (7.13)

For all kinematic configurations of B41(⊘,⊘) where ISPs are given by six variables with

ordering (x3, x4, y1, y2, y3, y4), we get 83 elements for integrand basis

BIV
B41={1, x3, x23, x33, x43, x53, x4, x24, x34, x44, x54, y1, x3y1, x23y1, x33y1, x43y1, x4y1, x24y1, x34y1, x44y1,

y21, x3y
2
1, x

2
3y

2
1, x

3
3y

2
1, x4y

2
1, x

2
4y

2
1, x

3
4y

2
1, y2, x3y2, x

2
3y2, x

3
3y2, x

4
3y2, x4y2, x

2
4y2, x

3
4y2, x

4
4y2,

y22, x3y
2
2, x

2
3y

2
2, x

3
3y

2
2, x4y

2
2, x

2
4y

2
2, x

3
4y

2
2, y3, x3y3, x

2
3y3, x

3
3y3, x

4
3y3, x4y3, y1y3, x3y1y3,

x23y1y3, x
3
3y1y3, x4y1y3, y2y3, x3y2y3, x

2
3y2y3, x

3
3y2y3, x4y2y3, y

2
3, x3y

2
3, x

2
3y

2
3, x

3
3y

2
3, x4y

2
3,

y4, x4y4, x
2
4y4, x

3
4y4, x

4
4y4, y1y4, x4y1y4, x

2
4y1y4, x

3
4y1y4, y2y4, x4y2y4, x

2
4y2y4, x

3
4y2y4,

y3y4, x4y3y4, y
2
4, x4y

2
4, x

2
4y

2
4, x

3
4y

2
4} . (7.14)

The reason we have 83 elements instead of 18 is that, for B41(K4,K5) and B41(K4/K5,⊘),

x4 is determined by quadratic equation, i.e., the maximal power of x4 is two, while for

B41(⊘,⊘) we can have d(x3) + d(x4) ≤ 5.

In order to simplify the calculations of coefficients, we need to discuss the branch

structure of variety. For B41(K4,K5) and B41(K4/K5,⊘), there is a quadratic equation of
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single variable x4, and we can always get two solutions of x4 in C-plane no matter what

the momentum configuration of K1,K2,K3 is. Thus there will always be two separate

branches characterized by two solutions xΓ1
4 , xΓ2

4 . For B41(K4,K5), these two branches with

dimension two will not split further. Using each branch we can detect 9 coefficients of

integrand basis, and since there is no intersection between two branches, we can detect

all 9 + 9 = 18 coefficients using both branches. For B41(K4/K5,⊘), each branch will split

further into two branches, so there will be in total four branches: V1, V2 characterized

by xΓ1
4 and V3, V4 characterized by xΓ2

4 . Each branch can detect 6 coefficients. The two

branches characterized by xΓi

4 will intersect at one-dimensional variety with intersection

pattern (1|3) = V1 ∩ V2 and (1|3) = V3 ∩ V4. So using two branches of each xΓi

4 we can

detect 6 + 6− 3 = 9 coefficients, and in total 9 + 9 = 18 coefficients using all 4 branches.

For kinematic configurations B41(⊘,⊘), x3, x4 are both ISPs, so the quadratic equation

of (x3, x4) could not be factorized into two separate pieces in general. If all K1,K2,K3 are

massive, the variety is given by two branches. Each branch is 3-dimensional, and the inter-

section of these two branches is 2-dimensional. Each branch can detect 58 coefficients, while

the intersection of them is (2|33) = V1∩V2. If at least one momentum of K1,K3 is massive,

the variety will split into four 3-dimensional branches V1, V2 and V3, V4. Using V1 or V3 we

can detect 28 coefficients of integrand basis, while using V2 or V4 we can detect 36 coeffi-

cients. The intersection of these four branches is 1-dimensional, and it can detect 3 coeffi-

cients. Intersections of every three branches are also the same 1-dimensional variety as the

one given by intersection of four branches. For intersections of every two branches, (V1, V3)

and (V2, V4) are inherited from the intersection of four branches, which is 1-dimensional

variety. The intersections of (V1, V4) and (V2, V3) are 2-dimensional. Their intersection

pattern is (2|6) = V1 ∩ V4, (2|6) = V2 ∩ V3. The intersections of (V1, V2) and (V3, V4) are

also 2-dimensional, from which 18 coefficients can be detected using each intersection.

For the special kinematic configuration of B41(⊘,⊘) with both K1,K3 massless, the

three quadratic on-shell equations reduce to

x3x4 = 0 , y1y2 + y3y4 = 0 , x3y4 + x4y3 = 0 . (7.15)

Besides the ordinary four branches

V1 : x3 = 0 , y2 = 0 , y3 = 0 , x4 , y1 , y4 , free parameters ,

V2 : x3 = 0 , y1 = 0 , y3 = 0 , x4 , y2 , y4 , free parameters ,

V3 : x4 = 0 , y2 = 0 , y4 = 0 , x3 , y1 , y3 , free parameters ,

V4 : x4 = 0 , y1 = 0 , y4 = 0 , x3 , y2 , y3 , free parameters , (7.16)

there is also another embedded branch given by the ideal

V5 : {x4y3 + x3y4, y1y2 + y3y4, x
2
4, x3x4, x

2
3} . (7.17)

Each of the ordinary branches can detect 28 coefficients, while V5 can detect 37 coefficients.

These five branches intersect at one single point, and intersections of every four branches are

also the same point. For intersections of every three branches, we have (1|6) = (V1, V2, V5),
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(1|6) = (V3, V4, V5), (1|3) = (V1, V3, V5), (1|3) = (V2, V4, V5), and they are all different 1-

dimensional varieties. The other intersections of every three branches are inherited from

the same point of intersection of five branches. For intersections of every two branches,

(V1, V4), (V2, V3) are at the same point of intersection of five branches, while (V1, V3),

(V2, V4) are the same 1-dimensional varieties of intersections of (V1, V3, V5) and (V2, V4, V5)

respectively. Intersections of other combinations of pairs are 2-dimensional and we have

(2|12) = V1 ∩ V5, (2|12) = V2 ∩ V5, (2|12) = V3 ∩ V5, (2|12) = V4 ∩ V5, (2|15) = V1 ∩ V2,

(2|15) = V3 ∩ V4. They are all different 2-dimensional varieties.

7.3 The topology (B33): planar double-box

This topology has been discussed in details in many other papers [27–30], here we will briefly

summarize some results. We use K1,K4 to construct momentum basis ei, i = 1, 2, 3, 4 and

all kinematics can be expanded by this basis. The seven on-shell equations can be reduced

to three quadratic equations with four variables after solving four linear equations. Since

there are two linear equations for xi variables and two for yi, by solving them we can get 4

ISPs (x2, x4, y1, y4) for instance. Then D0 = 0 becomes a conic section of (x2, x4), D̃0 = 0

becomes a conic section of (y1, y4) and D̂0 = 0 is a quadratic equation of (x2, x4, y1, y4).

Variety defined by these three quadratic equations will be reducible if any of K1,K2,K3,K4

is massless, or any of K5,K6 is zero.

The renormalization conditions

∑

all ISPs of x

d(xi) ≤ 4 ,
∑

all ISPs of y

d(yi) ≤ 4 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 6 (7.18)

constrain all possible monomials x
d(x2)
2 x

d(x4)
4 y

d(y1)
1 y

d(y4)
4 . We can get 32 elements for inte-

grand basis after dividing them by Gröbner basis generated from three quadratic equations

with ISPs’ ordering (x2, x4, y1, y4). Integrand basis for different kinematic configurations

can be arranged to four kinds according to the kinematics of K1,K4, which we have chosen

to generate momentum basis ei. If K1,K4 are massive, integrand basis is given by following

32 elements

BI
B33= {1, x2, x4, x2x4, x24, x2x24, x34, x2x34, x44, y1, x4y1, x24y1, x34y1, x44y1, y4, x2y4, x4y4, x24y4,

x34y4, x
4
4y4, y1y4, x4y1y4, y

2
4, x4y

2
4, y1y

2
4, x4y1y

2
4, y

3
4, x4y

3
4, y1y

3
4, x4y1y

3
4, y

4
4, x4y

4
4}. (7.19)

If K1 is massless while K4 is massive, integrand basis is given by replacing 6 elements in

BI
B33 as follows

BII
B33 = BI

B33 − {x2x4, x2x24, x2x34, x24y1, x34y1, x44y1}+ {x22, x32, x42, x22y4, x32y4, x42y4} . (7.20)

If K4 is massless while K1 is massive, integrand basis is given by replacing 6 elements in

BI
B33 as follows

BIII
B33 = BI

B33 − {y1y4, x4y1y4, y1y24, x4y1y24, y1y34, x4y1y34}+ {y21, x4y21, y31, x4y31, y41, x4y41}.
(7.21)
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Finally if both K1,K4 are massless, integrand basis is given by replacing 12 elements in

BI
B33, which are exactly 6 elements from the second kind of integrand basis plus the other

6 elements from the third kind of integrand basis

BIV
B33 = {1, x2, x22, x32, x42, x4, x24, x34, x44, y1, x4y1, y21, x4y21, y31, x4y31, y41, x4y41, y4,

x2y4, x
2
2y4, x

3
2y4, x

4
2y4, x4y4, x

2
4y4, x

3
4y4, x

4
4y4, y

2
4, x4y

2
4, y

3
4, x4y

3
4, y

4
4, x4y

4
4} . (7.22)

We use notation B33
(L,R)
(U,P ) to denote different kinematic configurations, where again

U,P could be either K5,K6 or ⊘, and L is denoted by m if at least one momentum of

K1,K2 (or K3,K4 for R) is massless, otherwise it will be denoted by M .

For general kinematic configuration B33
(M,M)
(K5,K6)

, the variety is irreducible with dimen-

sion one. For kinematic configurations B33
(m,M)
(K5,K6)

, B33
(M,m)
(K5,K6)

, B33
(M,M)
(K5/K6,⊘) and B33

(M,M)
(⊘,⊘) ,

the variety splits into two branches. Each branch can detect 17 coefficients of integrand

basis, and two branches intersect at two points, which exactly gives 17 + 17 − 2 = 32

coefficients when using both two branches.

For B33
(m,m)
(K5,K6)

, the variety is given by four branches. Each branch can detect 9 co-

efficients. There is no intersection for four branches or every three branches, while each

of following pairs (V1, V2), (V2, V3), (V3, V4) and (V4, V1) intersects at a single point. Thus

when combining them together we can find 9×4−4 = 32 coefficients. For kinematic config-

urations B33
(m,M)
(K5/K6,⊘) , B33

(M,m)
(K5/K6,⊘), B33

(m,M)
(⊘,⊘) and B33

(M,m)
(⊘,⊘) , the variety is also given by

four branches. Branches V1, V3 can detect 5 coefficients individually while branches V2, V4

can detect 13 coefficients individually. The non-zero intersections among branches are still

single points between following pairs (V1, V2), (V2, V3), (V3, V4), (V4, V1).

For kinematic configurations B33
(m,m)
(K5/K6,⊘) and B33

(m,m)
(⊘,⊘) , the variety is given by six

branches. Among these six branches, V1, V4 can detect 9 coefficients while V2, V3, V5, V6 can

detect 5 coefficients. Non-zero intersections exist only for following pairs (V1, V2), (V2, V3),

(V3, V4), (V4, V5), (V5, V6) and (V6, V1), and each intersection is a single point. So using all

six branches we can detect 2× 9 + 4× 5− 6 = 32 coefficients.

Results presented here are consistent with those found in [27–30]. In our discussion,

the variety will be reducible for kinematic configurations that any of K1,K2,K3 K4 is

massless, or any of K5,K6 is zero. These configurations correspond to the existence of

three-vertex ⊕ or ⊖. The distribution of ⊕ and ⊖ will generate different kinematical

solutions to the heptacut constraints, which, in our language, are irreducible branches of

the variety after primary decomposition. Each irreducible branch can be seen as a Riemann

sphere, and the intersecting points between two branches is precisely the poles of heptacut

Jacobian. According to these mapping, we can reconstruct the global structures of double-

box topology shown in the references from irreducible branches and their intersections.

The 32 elements of integrand basis are sufficient to expand double-box amplitude at the

integrand-level, yet they are still redundant after loop integration. Only after eliminating

the redundancy using IBP method for instance can we get integral basis shown in [27].

7.4 The topology (B32): planar box-triangle

For this topology, we can get two linear equations for (x1, x2, x3, x4) and one linear equa-

tion for (y1, y2, y3, y4), and reduce 8 RSPs to 5 ISPs (x3, x4, y1, y3, y4). We use K1,K3 to
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construct momentum basis ei. Under the renormalization conditions

∑

all ISPs of x

d(xi) ≤ 4 ,
∑

all ISPs of y

d(yi) ≤ 3 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 5 (7.23)

we can get integrand basis using the Gröbner basis with ordering (x3, x4, y1, y3, y4). For

B32(K4,K5) and B32(K4/K5,⊘), we get 69 elements for integrand basis, but these elements

may be different. The difference can be classified by the kinematics of K1,K3, and there

are in total 4 kinds of integrand basis. The first kind is for all configurations with K1,K3

massive, and the 69 elements are given by

BI
B32 = {1, x3, x4, x3x4, x24, x3x24, x34, x3x34, x44, y1, x4y1, x24y1, x34y1, x44y1, y3, x3y3, x4y3, x24y3,

x34y3, x
4
4y3, y1y3, x4y1y3, y

2
3, x3y

2
3, x4y

2
3, x

2
4y

2
3, x

3
4y

2
3, y1y

2
3, x4y1y

2
3, y

3
3, x3y

3
3, x4y

3
3, x

2
4y

3
3,

y4, x3y4, x4y4, x3x4y4, x
2
4y4, x3x

2
4y4, x

3
4y4, x3x

3
4y4, x

4
4y4, y1y4, x4y1y4, x

2
4y1y4, x

3
4y1y4,

y3y4, x4y3y4, x
2
4y3y4, x

3
4y3y4, y1y3y4, x4y1y3y4, y

2
3y4, x4y

2
3y4, x

2
4y

2
3y4, y

2
4, x3y

2
4, x4y

2
4,

x24y
2
4, x

3
4y

2
4, y1y

2
4, x4y1y

2
4, y3y

2
4, x4y3y

2
4, x

2
4y3y

2
4, y

3
4, x3y

3
4, x4y

3
4, x

2
4y

3
4} . (7.24)

The second kind is for configurations with K1 massless while K3 massive, and the 69

elements are given by replacing 15 elements in BI
B32

BII
B32 = BI

B32 − {x3x4, x3x24, x3x34, x24y1, x34y1, x44y1, x24y23, x34y23, x24y33, x3x4y4, x3x24y4,
x3x

3
4y4, x

2
4y1y4, x

3
4y1y4, x

2
4y

2
3y4}+ {x23, x33, x43, x23y3, x33y3, x43y3, x23y23, x33y23,

x23y
3
3, x

2
3y4, x

3
3y4, x

4
3y4, x

2
3y

2
4, x

3
3y

2
4, x

2
3y

3
4} . (7.25)

The third kind is for configurations withK3 massless whileK1 massive, and the 69 elements

are given by replacing 12 elements in BI
B32

BIII
B32 = BI

B32 − {y3y4, x4y3y4, x24y3y4, x34y3y4, y1y3y4, x4y1y3y4, y23y4, x4y23y4, x24y23y4,
y3y

2
4, x4y3y

2
4, x

2
4y3y

2
4}+ {y21, x4y21, y31, x4y31, x24y1y3, x34y1y3, y21y3, x4y21y3,

x24y1y
2
3, y

2
1y4, x4y

2
1y4, x

2
4y1y

2
4} . (7.26)

The last kind of integrand basis is for configurations with K1,K3 massless, and the 69

elements are given by replacing 23 elements in BI
B32

BIV
B32 = BI

B32 − {x3x4, x3x24, x3x34, x24y1, x34y1, x44y1, x3x4y4, x3x24y4, x3x34y4, x24y1y4, x34y1y4,
y3y4, x4y3y4, x

2
4y3y4, x

3
4y3y4, y1y3y4, x4y1y3y4, y

2
3y4, x4y

2
3y4, x

2
4y

2
3y4, y3y

2
4, x4y3y

2
4,

x24y3y
2
4}+ {x23, x33, x43, y21, x4y21, y31, x4y31, x23y3, x33y3, x43y3, y21y3, x4y21y3, x23y23, x33y23,

x23y
3
3, x

2
3y4, x

3
3y4, x

4
3y4, y

2
1y4, x4y

2
1y4, x

2
3y

2
4, x

3
3y

2
4, x

2
3y

3
4} . (7.27)

The integrand basis for B32(⊘,⊘) can be distinguished by kinematics of K3. If K3 is

massive, we still get 69 elements, while if K3 is massless, we can get 77 elements instead

of 69. The number of elements changes because in the specific momentum configuration,

the sub-triangle-loop is 0m-triangle, so variety is 3-dimensional, while in other momentum
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P
P
P
P

P
P
P
P
P

(U,P )

(L,R)
(K4,K5) (K4/K5,⊘) (⊘,⊘)

(M,M) 1 2 2

(m,M), (M,m) 2 4 4 for (m,M); 2+1 for (M,m)

(m,m) 4 6 2+1

Table 2. Number of branches of some kinematic configurations for planar box-triangle topology

(B32). Generally each branch is 2-dimensional variety, but for momentum configurations B32
(M,m)
(⊘,⊘)

and B32
(m,m)
(⊘,⊘) , there is an extra branch of dimension one. We write it as 2 + 1 to emphasize the

difference.

configurations the variety is 2-dimensional. The 69 elements for K3 massive case are

given by

BV
B32 = {1, x3, x23, x33, x43, x4, x24, x34, x44, y1, x3y1, x23y1, x33y1, x43y1, x4y1, x24y1, x34y1, x44y1, y3,

x3y3, x
2
3y3, x

3
3y3, x

4
3y3, x4y3, y1y3, x3y1y3, x

2
3y1y3, x

3
3y1y3, x4y1y3, y

2
3, x3y

2
3, x

2
3y

2
3, x

3
3y

2
3,

x4y
2
3, y1y

2
3, x3y1y

2
3, x

2
3y1y

2
3, x4y1y

2
3, y

3
3, x3y

3
3, x

2
3y

3
3, x4y

3
3, y4, x4y4, x

2
4y4, x

3
4y4, x

4
4y4,

y1y4, x4y1y4, x
2
4y1y4, x

3
4y1y4, y3y4, x4y3y4, y1y3y4, x4y1y3y4, y

2
3y4, x4y

2
3y4, y

2
4, x4y

2
4,

x24y
2
4, x

3
4y

2
4, y1y

2
4, x4y1y

2
4, x

2
4y1y

2
4, y3y

2
4, x4y3y

2
4, y

3
4, x4y

3
4, x

2
4y

3
4} , (7.28)

which is different from the previous four kinds of B32(K4,K5) and B32(K4/K5,⊘). For con-

figurations with K3 massless, the 77 elements are given by

BV I
B32 = {1, x3, x23, x33, x43, x4, x24, x34, x44, y1, x3y1, x23y1, x33y1, x43y1, x4y1, x24y1, x34y1,

x44y1, y
2
1, x3y

2
1, x

2
3y

2
1, x

3
3y

2
1, x4y

2
1, x

2
4y

2
1, x

3
4y

2
1, y

3
1, x3y

3
1, x

2
3y

3
1, x4y

3
1, x

2
4y

3
1, y3,

x3y3, x
2
3y3, x

3
3y3, x

4
3y3, x4y3, y1y3, x3y1y3, x

2
3y1y3, x

3
3y1y3, x4y1y3, y

2
1y3, x3y

2
1y3,

x23y
2
1y3, x4y

2
1y3, y

2
3, x3y

2
3, x

2
3y

2
3, x

3
3y

2
3, y1y

2
3, x3y1y

2
3, x

2
3y1y

2
3, y

3
3, x3y

3
3, x

2
3y

3
3, y4,

x4y4, x
2
4y4, x

3
4y4, x

4
4y4, y1y4, x4y1y4, x

2
4y1y4, x

3
4y1y4, y

2
1y4, x4y

2
1y4, x

2
4y

2
1y4, y

2
4,

x4y
2
4, x

2
4y

2
4, x

3
4y

2
4, y1y

2
4, x4y1y

2
4, x

2
4y1y

2
4, y

3
4, x4y

3
4, x

2
4y

3
4} . (7.29)

After obtained integrand basis, we move to the discussions of branch structure of vari-

ety. For the most general momentum configuration B32(K4,K5) with all external momenta

massive, the variety has only one irreducible branch, but for some kinematic configurations

it will split into many branches. We will use the notation B32
(L,R)
(U,P ), where as usual U,P

could be K4,K5 or ⊘, while L is denoted by m if at least one momentum of K1,K2 (or K3

for R) is massless, otherwise it is denoted by M . The number of branches of variety can

be summarized in table 2.

Variety with one branch. For kinematic configuration B32
(M,M)
(K4,K5)

, the variety is irre-

ducible with dimension two. All 69 coefficients should be calculated using this branch.

Variety with two branches. For kinematic configurations

B32
(m,M)
(K4,K5)

, B32
(M,m)
(K4,K5)

, B32
(M,M)
(K4/K5,⊘) , B32

(M,M)
(⊘,⊘) ,
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the variety has two branches. For B32
(m,M)
(K4,K5)

, each branch can detect 38 coefficients, and

intersection of these two branches is 1-dimensional with intersection pattern (1|7) = V1∩V2.

For B32
(M,m)
(K4,K5)

, B32
(M,M)
(K4/K5,⊘) and B32

(M,M)
(⊘,⊘) , each branch can detect 42 coefficients, and

intersection pattern of these two branches is (1|15) = V1 ∩ V2.

Variety with four branches. For kinematic configurations

B32
(m,m)
(K4,K5)

, B32
(m,M)
(K4/K5,⊘) , B32

(M,m)
(K4/K5,⊘) , B32

(m,M)
(⊘,⊘) ,

the variety has four branches. For B32
(m,m)
(K4,K5)

, each branch can detect 23 coefficients indi-

vidually, while for B32
(m,M)
(K4/K5,⊘) and B32

(m,M)
(⊘,⊘) , each of V1 and V4 can detect 17 coefficients,

and each of V2 and V3 can detect 29 coefficients. The intersections of branches for these

kinematic configurations are following. These four branches will intersect at a single point,

while intersections of every three branches are also the same point. For intersections of ev-

ery two branches, (V1, V4) and (V2, V3) intersect at the same single point, and intersections

for other pairs are (1|4) = V1 ∩ V3, (1|4) = V2 ∩ V4, (1|8) = V1 ∩ V2, (1|8) = V3 ∩ V4. They

are four different 1-dimensional varieties. For B32
(M,m)
(K4/K5,⊘), each of V1 and V3 can detect

10 coefficients, while each of V2 and V4 can detect 36 coefficients. There is no intersection

for four branches, while (V1, V2, V4) intersects at a single point, and (V2, V3, V4) intersects

at another single point. There is no intersection between (V1, V3), while the intersection

of (V2, V4) is 1-dimensional (1|9) = V2 ∩ V4. For other intersections of every two branches,

we have (1|4) = V1 ∩ V2, (1|4) = V1 ∩ V4, (1|4) = V2 ∩ V3 and (1|4) = V3 ∩ V4. They are

different 1-dimensional varieties.

Variety with six branches. For kinematic configurations

B32
(m,m)
(K4/K5,⊘) ,

the variety has six branches V1, V2, V3, V4, V5, V6. Each of V1 and V4 can detect 10 coeffi-

cients, and each of V2 and V5 can detect 17 coefficients, while each of V3 and V6 can detect

23 coefficients. There are no intersections among six branches and every five branches. The

only non-zero intersection of every four branches is (V2, V3, V5, V6), and they intersect at a

single point. For intersections of every three branches, (V2, V3, V5), (V2, V3, V6), (V2, V5, V6)

and (V3, V5, V6) will intersect at the same point as intersection of (V2, V3, V5, V6). (V1, V2, V3)

will intersect at different single point, and (V4, V5, V6) will intersect at another different sin-

gle point. For intersections of every two branches, (V2, V5) and (V3, V6) will intersect at the

same point as intersection of (V2, V3, V5, V6), while intersection pattern of other pairs are

(1|4) = V1∩V2, (1|4) = V1∩V3, (1|4) = V2∩V6, (1|4) = V3∩V5, (1|4) = V4∩V5, (1|4) = V4∩V6

and (1|5) = V2 ∩ V3, (1|5) = V5 ∩ V6. They are all different 1-dimensional varieties.

Variety with 2+1 branches. For kinematic configurations

B32
(m,m)
(⊘,⊘) , B32

(M,m)
(⊘,⊘) , (7.30)

the integrand basis contains 77 elements, and the three quadratic equations reduce to

x3x4 = 0 , y3y4 = 0 , x4y3 + x3y4 = 0 . (7.31)
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There will be three branches. Two branches V1, V2 are given by x3 = 0, y3 = 0 with

y1, x4, y4 as free parameters and x4 = 0, y4 = 0 with y1, x3, y3 as free parameters. These

two branches are 3-dimensional. The third branch V3 is embedded in these two branches,

and it is given by the ideal

V3 : {x23, x3x4, x24, y23, y3y4, y24, x3y4 + y3x4} . (7.32)

Geometrically it is just the 1-dimensional variety x3 = x4 = y3 = y4 = 0 with y1 as free

parameter. Although the third branch is the intersection of V1, V2 geometrically, from the

point of algebraic geometry, it is an independent branch. Each V1 or V2 can detect 39

coefficients, while V3 can detect 27 coefficients. Since geometrically V3 is the intersection

of V1, V2, it is clear that intersections of these three branches or every two branches are

the same 1-dimensional variety, thus we have (1|4) = V1 ∩ V2, (1|14) = V1 ∩ V3 = V2 ∩ V3,

(1|4) = V1 ∩ V2 ∩ V3.

7.5 The topology (B31): planar box-bubble

This topology contains a sub-loop of bubble structure. When K3 = K4 = 0, there is no

difference between propagators D0 = ℓ20 and D2 = (ℓ0 −K1 −K2)
2 because of momentum

conservation. This will effectively eliminate one on-shell equation. For B31(K3,K4) and

B31(K3/K4,⊘) there are five independent on-shell equations, and from which we can get

two linear equations for (x1, x2, x3, x4). By solving these linear equations we can reduce 8

variables to 6 ISPs. For B31(⊘,⊘), we have four independent on-shell equations, thus we

can only construct one linear equation for (x1, x2, x3, x4). In this case we get 7 ISPs.

For B31(K3,K4) and B31(K3/K4,⊘) we can use K1,K2 to construct momentum basis ei,

while for B31(⊘,⊘) there are only two external legs, we should choose another auxiliary

momentum together with one of K1,K2 to construct momentum basis ei. By expand all

momenta with this basis, we get, for instance, 6 ISPs (x3, x4, y1, y2, y3, y4) for B31(K3,K4),

B31(K3/K4,⊘), and 7 ISPs (x2, x3, x4, y1, y2, y3, y4) for B31(⊘,⊘). Under the renormaliza-

tion conditions

∑

all ISPs of x

d(xi) ≤ 4 ,
∑

all ISPs of y

d(yi) ≤ 2 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 4 (7.33)

we can get integrand basis using Gröbner basis method with ordering (x3, x4, y1, y2, y3, y4)

for B31(K3,K4), B31(K3/K4,⊘) and (x2, x3, x4, y1, y2, y3, y4) for B31(⊘,⊘). For all possible

momentum configurations of B31(K3,K4) and B31(K3/K4,⊘), the integrand basis contains 65

elements given by

BI
B31 = {1, x3, x23, x33, x43, x4, x24, x34, x44, y1, x3y1, x23y1, x33y1, x4y1, x24y1, x34y1, y21, x3y21,

x23y
2
1, x4y

2
1, x

2
4y

2
1, y2, x3y2, x

2
3y2, x

3
3y2, x4y2, x

2
4y2, x

3
4y2, y

2
2, x3y

2
2, x

2
3y

2
2, x4y

2
2, x

2
4y

2
2,

y3, x3y3, x
2
3y3, x

3
3y3, x4y3, y1y3, x3y1y3, x

2
3y1y3, x4y1y3, y2y3, x3y2y3, x

2
3y2y3,

x4y2y3, y
2
3, x3y

2
3, x

2
3y

2
3, x4y

2
3, y4, x4y4, x

2
4y4, x

3
4y4, y1y4, x4y1y4, x

2
4y1y4, y2y4,

x4y2y4, x
2
4y2y4, y3y4, x4y3y4, y

2
4, x4y

2
4, x

2
4y

2
4} . (7.34)
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For all possible momentum configurations of B31(⊘,⊘), the integrand basis contains 145

elements given by

BII
B31 = {1, x2, x3, x2x3, x23, x2x23, x33, x2x33, x43, x4, x2x4, x3x4, x2x3x4, x23x4, x2x23x4, x33x4,

x24, x2x
2
4, x3x

2
4, x2x3x

2
4, x

2
3x

2
4, x

3
4, x2x

3
4, x3x

3
4, x

4
4, y1, x3y1, x

2
3y1, x

3
3y1, x4y1, x3x4y1,

x23x4y1, x
2
4y1, x3x

2
4y1, x

3
4y1, y

2
1, x3y

2
1, x

2
3y

2
1, x4y

2
1, x3x4y

2
1, x

2
4y

2
1, y2, x2y2, x3y2, x2x3y2,

x23y2, x2x
2
3y2, x

3
3y2, x4y2, x2x4y2, x3x4y2, x2x3x4y2, x

2
3x4y2, x

2
4y2, x2x

2
4y2, x3x

2
4y2,

x34y2, y
2
2, x3y

2
2, x

2
3y

2
2, x4y

2
2, x3x4y

2
2, x

2
4y

2
2, y3, x2y3, x3y3, x2x3y3, x

2
3y3, x2x

2
3y3, x

3
3y3,

x4y3, x2x4y3, x3x4y3, x2x3x4y3, x
2
3x4y3, x

2
4y3, x2x

2
4y3, x3x

2
4y3, x

3
4y3, y1y3, x3y1y3,

x23y1y3, x4y1y3, x3x4y1y3, x
2
4y1y3, y2y3, x2y2y3, x3y2y3, x2x3y2y3, x

2
3y2y3, x4y2y3,

x2x4y2y3, x3x4y2y3, x
2
4y2y3, y

2
3, x2y

2
3, x3y

2
3, x2x3y

2
3, x

2
3y

2
3, x4y

2
3, x2x4y

2
3, x3x4y

2
3, x

2
4y

2
3,

y4, x2y4, x3y4, x
2
3y4, x

3
3y4, x4y4, x2x4y4, x3x4y4, x

2
3x4y4, x

2
4y4, x2x

2
4y4, x3x

2
4y4, x

3
4y4,

y1y4, x3y1y4, x
2
3y1y4, x4y1y4, x3x4y1y4, x

2
4y1y4, y2y4, x2y2y4, x3y2y4, x

2
3y2y4, x4y2y4,

x2x4y2y4, x3x4y2y4, x
2
4y2y4, y3y4, x2y3y4, x3y3y4, x

2
3y3y4, x4y3y4, x2x4y3y4, x3x4y3y4,

x24y3y4, y
2
4, x2y

2
4, x3y

2
4, x4y

2
4, x2x4y

2
4, x3x4y

2
4, x

2
4y

2
4} . (7.35)

After obtained the integrand basis, we analyze branch structure of variety.

Branches of B31(K3,K4). The variety will split into two branches V1, V2 when at least

one momentum of K1,K2 is massless. These two branches are 3-dimensional, and their

intersection is 2-dimensional. Each branch can detect 37 coefficients, while 9 coefficients

can be detected by their intersection. So using both branches we can detect 37+37−9 = 65

coefficients.

Branches of B31(K3/K4,⊘). There are two 3-dimensional branches if both K1,K2 are

massive. Each branch can detect 46 coefficients, and 27 coefficients can be detected by

their 2-dimensional intersection. When at least one momentum of K1,K2 is massless,

generally the variety will split into four branches V1, V2, V3, V4. Each of V1 and V3 can

detect 22 coefficients, while each of V2 and V4 can detect 30 coefficients. Intersection of

all four branches is 1-dimensional, and we have (1|3) = V1 ∩ V2 ∩ V3 ∩ V4. Intersection

of every three branches is the same 1-dimensional variety as intersection of four branches.

For intersections of every two branches, (V1, V3) and (V2, V4) will intersect at the same

1-dimensional variety as intersection of four branches, and all other intersections are 2-

dimensional. The intersection pattern is (2|6) = V1∩V4, (2|6) = V2∩V3 and (2|15) = V1∩V2,

(2|15) = V3 ∩ V4. They are different 2-dimensional varieties. However, for the specific

momentum configurations with B31(K3,⊘) where both K2,K3 are massless, or B31(K4,⊘)

where both K1,K4 are massless, the three quadratic equations reduce to

x3x4 = 0 , y1y2 + y3y4 = 0 , x4y3 + x3y4 = 0 . (7.36)
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There are in total five branches. Four ordinary branches are given by

V1 : y3 = 0 , y1 = 0 , x3 = 0 , x4 , y2 , y4 , free parameters ,

V2 : y3 = 0 , y2 = 0 , x3 = 0 , x4 , y1 , y4 , free parameters ,

V3 : y4 = 0 , y1 = 0 , x4 = 0 , x3 , y2 , y3 , free parameters ,

V4 : y4 = 0 , y2 = 0 , x4 = 0 , x3 , y1 , y3 , free parameters . (7.37)

The fifth branch is given by the ideal

V5 : {x4y3 + x3y4, y1y2 + y3y4, x
2
4, x3x4, x

2
3} . (7.38)

All these branches are 3-dimensional, and each V1, V2, V3, V4 can detect 22 coefficients while

V5 can detect 37 coefficients. All five branches intersect at a single point. Intersection of

every four branches is also the same single point. For intersections of every three branches,

it is (1|6) = V1∩V2∩V5, (1|6) = V3∩V4∩V5, (1|3) = V1∩V3∩V5 and (1|3) = V2∩V4∩V5, and

they are different 1-dimensional variety. For intersections of every two branches, (V1, V4)

and (V2, V3) are still the same single point, (V1, V3) is the same 1-dimensional variety as

intersection of (V1, V3, V5), and (V2, V4) is the same 1-dimensional variety as intersection of

(V2, V4, V5). The intersections of all other pairs are 2-dimensional, and we have (2|12) =

V1∩V2, (2|12) = V3∩V4, (2|12) = V1∩V5, (2|12) = V2∩V5, (2|12) = V3∩V5, (2|12) = V4∩V5.

They are all different 2-dimensional varieties. Using these five branches, we can detect 65

coefficients of integrand basis.

Branches of B31(⊘,⊘). There are only two external legs, and none of them can be

massless, so we have only one momentum configuration with both K1,K2 massive. The

integrand basis contains 145 elements. There are two branches of dimension four, and

110 coefficients can be detected by each of them. Intersection of these 2 branches is 3-

dimensional, and using it we can detect 75 coefficients. So all 145 coefficients can be

detected using these two branches.

7.6 The topology (B22): planar double-triangle

For the double-triangle topology (B22), we can use K1,K2 to construct momentum basis.

When K3 = K4 = 0, K1 and K2 are not independent, and we use K1 and another auxil-

iary momentum to construct momentum basis. There are five propagators and using two

linear equations D0 − D1 = 0, D̃0 − D̃1 = 0, we can solve x1, y2. So there are six ISPs

(x2, x3, x4, y1, y3, y4) and three quadratic equations left.

This topology has Z2 symmetry between K1,K2 and Z2 symmetry between K3,K4,

we will take the notation B22
(L,R)
(U,P ) where U,P could be K3,K4 or ⊘, and L is denoted by

m if K1 (or K2 for R) is massless, otherwise it is denoted by M . It is worth to notice

when K3 = K4 = 0, we have K1 = −K2, thus to get non-zero contribution, K1,K2 should

be massive. In other words, we do not need to consider kinematic configurations B22m,M
⊘,⊘ ,

B22M,m
⊘,⊘ and B22m,m

⊘,⊘ .
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Using Gröbner basis defined from three quadratic equations with ordering

(x2, x3, x4, y1, y3, y4), under the renormalization conditions of monomials
∑

all ISPs of x

d(xi) ≤ 3 ,
∑

all ISPs of y

d(yi) ≤ 3 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 4 , (7.39)

we can get 111 elements for integrand basis. The explicit form of these elements depends on

the kinematics of K1,K2, which we have chosen to generate momentum basis ei. There are

in total four kinds of integrand basis. For momentum configurations with K1,K2 massive,

the 111 elements are given by

BI
B22 = {1, x2, x3, x2x3, x23, x2x23, x33, x4, x2x4, x3x4, x2x3x4, x23x4, x24, x2x24, x3x24, x34, y1,

x3y1, x
2
3y1, x

3
3y1, x4y1, x3x4y1, x

2
3x4y1, x

2
4y1, x3x

2
4y1, x

3
4y1, y3, x2y3, x3y3, x2x3y3,

x23y3, x2x
2
3y3, x

3
3y3, x4y3, x2x4y3, x3x4y3, x2x3x4y3, x

2
3x4y3, x

2
4y3, x2x

2
4y3, x3x

2
4y3,

x34y3, y1y3, x3y1y3, x
2
3y1y3, x4y1y3, x3x4y1y3, x

2
4y1y3, y

2
3, x2y

2
3, x3y

2
3, x2x3y

2
3, x

2
3y

2
3,

x4y
2
3, x3x4y

2
3, x

2
4y

2
3, y1y

2
3, x3y1y

2
3, x4y1y

2
3, y

3
3, x2y

3
3, x3y

3
3, x4y

3
3, y4, x2y4, x3y4, x

2
3y4,

x33y4, x4y4, x2x4y4, x3x4y4, x
2
3x4y4, x

2
4y4, x2x

2
4y4, x3x

2
4y4, x

3
4y4, y1y4, x3y1y4, x

2
3y1y4,

x4y1y4, x3x4y1y4, x
2
4y1y4, y3y4, x3y3y4, x

2
3y3y4, x4y3y4, x3x4y3y4, x

2
4y3y4, y1y3y4,

x3y1y3y4, x4y1y3y4, y
2
3y4, x3y

2
3y4, x4y

2
3y4, y

2
4, x2y

2
4, x3y

2
4, x4y

2
4, x2x4y

2
4, x3x4y

2
4, x

2
4y

2
4,

y1y
2
4, x3y1y

2
4, x4y1y

2
4, y3y

2
4, x3y3y

2
4, x4y3y

2
4, y

3
4, x2y

3
4, x3y

3
4, x4y

3
4} . (7.40)

The second kind of integrand basis is for configurations with K1 massless and K2 massive,

and the 111 elements are given by replacing 19 elements in BI
B22

BII
B22 = BI

B22 − {x3x4, x2x3x4, x23x4, x3x24, x3x4y1, x23x4y1, x3x24y1, x3x4y3, x2x3x4y3,
x23x4y3, x3x

2
4y3, x3x4y1y3, x3x4y

2
3, x3x4y4, x

2
3x4y4, x3x

2
4y4, x3x4y1y4, x3x4y3y4,

x3x4y
2
4}+ {x22, x32, x22x3, x22x4, x22y3, x32y3, x22x3y3, x22x4y3, x22y23, x2x4y23, x22y4,

x32y4, x2x3y4, x
2
2x3y4, x2x

2
3y4, x

2
2x4y4, x

2
2y

2
4, x2x3y

2
4, x

2
3y

2
4} . (7.41)

The third kind of integrand basis is for configurations with K2 massless and K1 massive,

and 111 elements are given by replacing 15 elements in BI
B22

BIII
B22 = BI

B22 − {y3y4, x3y3y4, x23y3y4, x4y3y4, x3x4y3y4, x24y3y4, y1y3y4, x3y1y3y4, x4y1y3y4,
y23y4, x3y

2
3y4, x4y

2
3y4, y3y

2
4, x3y3y

2
4, x4y3y

2
4}+ {y21, x3y21, x23y21, x4y21, x3x4y21, x24y21,

y31, x3y
3
1, x4y

3
1, y

2
1y3, x3y

2
1y3, x4y

2
1y3, y

2
1y4, x3y

2
1y4, x4y

2
1y4} . (7.42)

Finally the fourth kind of integrand basis is for configurations with K1,K2 massless, and

111 elements are given by replacing 33 elements in BI
B22

BIV
B22 = BI

B22−{x3x4, x2x3x4, x23x4, x3x24, x3x4y1, x23x4y1, x3x24y1, x3x4y3, x2x3x4y3, x23x4y3,
x3x

2
4y3, x3x4y1y3, x3x4y

2
3, x3x4y4, x

2
3x4y4, x3x

2
4y4, x3x4y1y4, y3y4, x3y3y4, x

2
3y3y4,

x4y3y4, x3x4y3y4, x
2
4y3y4, y1y3y4, x3y1y3y4, x4y1y3y4, y

2
3y4, x3y

2
3y4, x4y

2
3y4, x3x4y

2
4,

y3y
2
4, x3y3y

2
4, x4y3y

2
4}+ {x22, x32, x22x3, x22x4, y21, x3y21, x23y21, x4y21, x24y21, y31, x3y31, x4y31,

x22y3, x
3
2y3, x

2
2x3y3, x

2
2x4y3, y

2
1y3, x3y

2
1y3, x4y

2
1y3, x

2
2y

2
3, x2x4y

2
3, x

2
2y4, x

3
2y4, x2x3y4,

x22x3y4, x2x
2
3y4, x

2
2x4y4, y

2
1y4, x3y

2
1y4, x4y

2
1y4, x

2
2y

2
4, x2x3y

2
4, x

2
3y

2
4} . (7.43)
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P
P
P
P

P
P
P
P
P

(U,P )

(L,R)
(K3,K4) (K3/K4,⊘) (⊘,⊘)

(M,M) 1 2 2

(m,M), (M,m) 2 4

(m,m) 4 6

Table 3. Number of branches for some kinematic configurations of planar double-triangle topology

(B22). Each branch is 3-dimensional variety.

After obtained integrand basis, we discuss the branch structure of variety. The number

of branches for different kinematic configurations is summarized in table 3.

Variety with one branch. For general kinematic configuration B22
(M,M)
(K3,K4)

, the variety

is irreducible with dimension three. All 111 coefficients of integrand basis can be detected

by this branch.

Variety with two branches. For kinematic configurations

B22
(m,M)
(K3,K4)

, B22
(M,m)
(K3,K4)

, B22
(M,M)
(K3/K4,⊘) , B22

(M,M)
(⊘,⊘) , (7.44)

the variety is given by two branches V1, V2. For B22
(m,M)
(K3,K4)

and B22
(M,m)
(K3,K4)

, each branch

can detect 71 coefficients, and their intersection is 2-dimensional variety which can detect

31 coefficients. For B22
(M,M)
(K4/K5,⊘) and B22

(M,M)
(⊘,⊘) , each branch can detect 77 coefficients, and

their two-dimensional intersection can detect 43 coefficients.

Variety with four branches. For kinematic configurations

B22
(m,m)
(K3,K4)

, B22
(m,M)
(K3/K4,⊘) , B22

(M,m)
(K3/K4,⊘) , (7.45)

the variety is given by four branches. Intersections of branches is expressed by figure 9.

Variety with six branches. For kinematic configuration

B22
(m,m)
(K3/K4,⊘) , (7.46)

the variety is given by six branches V1, V2, V3, V4, V5, V6. Among these six branches, four

Vi, i = 1, 2, 3, 4 can detect 29 coefficients and the other two V5, V6 can detect 45 coeffi-

cients. All six branches intersect at a single point, and intersection of every five branches

is also the same single point. For intersections of every four branches, most of them are

the same single point inherit from intersections of every five branches except for the fol-

lowing two combinations of branches (V1, V3, V5, V6) and (V2, V4, V5, V6), which intersect at

1-dimensional variety detecting 4 coefficients. For intersections of every three branches,

besides the ones that are inherited from intersections of four branches, there are also four

pairs (V1, V2, V5), (V1, V2, V6) and (V3, V4, V5), (V3, V4, V6) that intersect at one-dimensional

variety detecting 4 coefficients. Intersections of every two branches could be 2-dimensional,
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(1|3)(1|3)
(2|6)

(2|6)(1|4)

(3|24) (3|24)

(2|12) (2|12)

(3|13) (3|13)

(2|9)

0

0 0

V1
V4

V2 V3

(a) (b)

00

0
0

(1|7)

(3|14) (3|14)

(2|12) (2|12)

(3|14) (3|14)

(2|12)

(2|12)

0 0

V1
V4

V2 V3

Figure 9. Venn diagrams for intersections of four branches, where each ellipse represents

one branch. Venn diagram (a) is for B22
(m,m)
(K3,K4)

, and Venn diagram (b) is for B22
(m,M)
(K3/K4,⊘),

B22
(M,m)
(K3/K4,⊘). Number 0 means that there is no intersection and (d|n) represents that the di-

mension of that intersection is d and the number of coefficients detected in that intersection is n.

1-dimensional, or single point, and they are summarized as

(2|13) = V1 ∩ V2 = V1 ∩ V5 = V2 ∩ V6 = V3 ∩ V4 = V3 ∩ V6 = V4 ∩ V5 ,

(2|10) = V2 ∩ V5 = V1 ∩ V6 = V4 ∩ V6 = V3 ∩ V5 ,

(1|4) = V1 ∩ V3 = V2 ∩ V4 , (0|1) = V1 ∩ V4 = V2 ∩ V3 , (12|7) = V5 ∩ V6 . (7.47)

One interesting point is that intersection of (V5, V6) is two 1-dimensional varieties, and to

emphasize this subtlety we have used (12) notation.

7.7 The topology (B21): planar triangle-bubble

For this topology we could have two cases B21(K2,K3) and B21(K2/K3,⊘). For B21(K2,K3),

since there are three external momenta, we can use K1,K3 to construct momentum basis.

For B21(K2/K3,⊘), there are only two external legs, and only one of them is independent.

So we need another auxiliary momentum together with K1 to construct momentum basis.

We do not consider B21(⊘,⊘) since it requires K1 = 0, which is tadpole-like structure. For

B21(K2/K3,⊘) we also assume that both external momenta are massive for non-vanishing

result and do not consider the kinematic configurations where any momentum is massless.

From four propagators we can reduce 8 variables to 7 ISPs, for example,

(x2, x3, x4, y1, y2, y3, y4). Using Gröbner basis that generated from the three quadratic

equations with ordering (y1, x2, y2, x3, y3, x4, y4), under the renormalization conditions

for monomials
∑

all ISPs of x

d(xi) ≤ 3 ,
∑

all ISPs of y

d(yi) ≤ 2 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 3 , (7.48)

we can get integrand basis for different kinematic configurations. The elements of

integrand basis depends on the kinematics of K1. For B21(K2,K3) and B21(K2/K3,⊘), if K1
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is massive, the integrand basis contains 80 elements given by

BI
B21 = {1, x2, x3, x2x3, x23, x2x23, x33, x4, x2x4, x3x4, x2x3x4, x23x4, x24, x2x24, x3x24, x34, y1,

x3y1, x
2
3y1, x4y1, x

2
4y1, y

2
1, x3y

2
1, x4y

2
1, y2, x2y2, x3y2, x2x3y2, x

2
3y2, x4y2, x2x4y2,

x3x4y2, x
2
4y2, y

2
2, x3y

2
2, x4y

2
2, y3, x2y3, x3y3, x2x3y3, x

2
3y3, x4y3, x2x4y3, x3x4y3,

x24y3, y1y3, x3y1y3, x4y1y3, y2y3, x2y2y3, x3y2y3, x4y2y3, y
2
3, x2y

2
3, x3y

2
3, x4y

2
3, y4,

x2y4, x3y4, x2x3y4, x
2
3y4, x4y4, x2x4y4, x3x4y4, x

2
4y4, y1y4, x3y1y4, x4y1y4, y2y4,

x2y2y4, x3y2y4, x4y2y4, y3y4, x2y3y4, x3y3y4, x4y3y4, y
2
4, x2y

2
4, x3y

2
4, x4y

2
4} . (7.49)

If K1 is massless for B21(K2,K3), integrand basis is given by replacing 8 elements from BI
B21

BII
B21 = BI

B21 − {x3x4, x2x3x4, x23x4, x3x24, x3x4y2, x3x4y3, x3x4y4, x2 y3y4}
+{x22, x32, x22x3, x22x4, x22y2, x2y22, x22y3, x22y4} . (7.50)

The variety defined by the three quadratic equations is irreducible with dimension

four for B21(K2,K3) with K1 massive. If K1 is massless, the variety will split into two

branches, and each branch can detect 54 coefficients. Intersection of these two branches

is an irreducible 3-dimensional variety, and it can detect 28 coefficients. So using both

branches, we can detect 54 + 54 − 28 = 80 coefficients. For B21(K2/K3,⊘), K1 should be

massive, and the variety has two branches. Each branch can detect 64 coefficients, and

intersection of these two branches is an irreducible 3-dimensional variety, which can detect

48 coefficients. Using these two branches we can detect 64 + 64 − 48 = 80 coefficients of

integrand basis.

7.8 The topology (B11): planar sun-set

For this topology, since K1 = −K2, we use K1 and another auxiliary momentum to con-

struct momentum basis. The only possible kinematic configuration is both K1,K2 massive.

There are only three propagators and we can not construct linear equation from on-shell

equations, thus there are 8 ISPs. The three quadratic equations can be expressed as

D0 = x1x2 + x3x4 , D̃0 = y1y2 + y3y4 ,

D̂0 = x2y1 + x1y2 + x4y3 + x3y4 + (x1 + y1)α11 + (x2 + y2)α12 + α11α12 . (7.51)

Using Gröbner basis with ordering (y4, y3, x4, x3, y2, y1, x2, x1), under the renormalization

conditions for monomials
∑

all ISPs of x

d(xi) ≤ 2 ,
∑

all ISPs of y

d(yi) ≤ 2 ,
∑

all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ 2 , (7.52)

we can get 42 elements for integrand basis as

BB11 = {1, x1, x21, x2, x1x2, x22, x3, x1x3, x2x3, x23, x4, x1x4, x2x4, x24, y1, x1y1, x2y1,
x3y1, x4y1, y

2
1, y2, x1y2, x2y2, x3y2, x4y2, y1y2, y

2
2, y3, x1y3, x2y3, x3y3, x4y3,

y1y3, y2y3, y
2
3, y4, x1y4, x2y4, x4y4, y1y4, y2y4, y

2
4} . (7.53)

The variety defined by the three quadratic equations is irreducible with dimension five.
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8 Conclusion

In this paper, we use the new technique developed in [33–35] to classify the two-loop

integrand basis in pure four dimension space-time. Although there are only small number

of topologies for planar and non-planar two-loop diagrams, the diverse external momentum

configurations greatly increase the number of integrand basis that we need to discuss.

Because the integrand basis and branch structure of variety will depend on the topology as

well as external kinematics, it is necessary to classify possible sets of integrand basis and

study the evolution of variety under various kinematic limits.

The algebraic geometry methods, such as Gröbner basis method and multivariate

polynomial division, play a crucial role in our discussion. Using these methods, we are

able to present explicit form of integrand basis as well as detailed study of varieties, such

as branch structures and their intersections. The same methods also allow us to determine

coefficients of integrand basis.

We must emphasize that our result is only a small step towards the practical evaluation

of general two-loop amplitudes. As we have mentioned in the introduction, the number

of two-loop integrand basis is much more than the number of two-loop integral basis and

it is highly desirable to reduce integrand basis further. One way to do so is to use the

IBP-method [21–24]. However, with the time consuming, it is not feasible at this moment.

Although our results are for two-loop diagrams in pure four-dimension space-time, the

same analysis can be applied to (4−2ǫ)-dimension for complete answer, or three and higher

loop amplitudes as demonstrated in [35]. It is also an interesting problem to apply these

general analysis to real processes.
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A Some mathematical backgrounds

In this section, we present several mathematical facts that may be useful for determin-

ing branch structure of non-linear on-shell equations. First let us consider the quadratic

equation of two variables defined by equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 , (A.1)

with A,B,C not all zero. This equation is usually called conic section. In general, the conic

is an irreducible one-dimensional variety, however, when the determinant ∆ of following
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3× 3 matrix

∆ = det




A B/2 D/2

B/2 C E/2

D/2 E/2 F


 =

−(B2 − 4AC)F +BDE − CD2 −AE2

4
(A.2)

is zero, the conic splits to two branches.

Next let us consider the roots of a polynomial

f(z) =
n∑

i=0

aiz
i . (A.3)

One can use discriminant to determine whether if this polynomial has repeated roots or

not. If discriminant equals to zero, then there are repeated roots. The simplest example is

quadratic equation a2z
2 + a1z + a0 = 0 whose discriminant is D = a21 − 4a0a2. If D = 0,

then this equation has double roots, and the polynomial can be written as a perfect square

of one factor. The discriminant of n = 2, 3 can be found in many other references, and

using it we can tell the properties of roots just from coefficients of variable. A special

interesting example is the quartic function

f(z) = Az4 +Bz3 + Cz2 +Dz + E , (A.4)

which can be factorized as

f(z) ∼ (z − z(+,+))(z − z(+,−))(z − z(−,+))(z − z(−,+)) , (A.5)

where z±,± are four roots. We want to know if it can be expressed as perfect square terms

such as

f(z) = (az + b)2(cz + d)2 . (A.6)

In other words, we want to know if there are repeated roots or not. Defining

A = −3B2

8A2
+

C

A
, B =

B3

8A3
− BC

2A2
+

D

A
, C = − 3B4

256A4
+

CB2

16A3
− BD

4A2
+

E

A
, (A.7)

then when B = 0, the quartic equation has following solution

z = − B

4A
±s

√
−A±t

√
A2 − 4C
2

, (A.8)

where ±s and ±t can take plus and minus sign independently. If the coefficients further

satisfy A2 − 4C = 0, then x(s,+) = x(s,−), and f(x) can be expressed as products of two

perfect squares.

Using above results, we can check whether variety defined by following equations is

reducible

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 , (A.9)

a(τ)x+ b(τ)y + c(τ) = 0 , (A.10)
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where a(τ), b(τ), c(τ) are linear functions of (possible free parameter) τ . After solving the

linear equation of x, y and substituting the result into quadratic equation we get

(a2C − abB + b2A)y2 + (a2E − abD − acB + 2bcA)y + (a2F − acD + c2A) = 0 , (A.11)

where the coefficients A′(τ) = (a2C − abB+ b2A), B′(τ) = (a2E− abD− acB+2bcA) and

C ′(τ) = (a2F − acD+ c2A) are now quadratic functions of τ . The solution of y is given by

y =
−B′(τ)±

√
B′(τ)2 − 4A′(τ)C ′(τ)

2A′(τ)
, (A.12)

thus y is a rational function of τ when and only when terms inside the square root is perfect

square, i.e., the quartic function (B′(τ)2 − 4A′(τ)C ′(τ)) of τ is a perfect square.
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