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1 Introduction

In the past few years we have seen tremendous progresses for one-loop diagram com-

putations’

using Passrino-Veltman(PV) reduction method [3]. The newly developed re-
duction methods can be sorted into two categories: (a) the reduction performed at the
integral level, such as the unitarity cut method [4-11] and generalized unitarity cut
method [12, 13]; (b) the reduction performed at the integrand level, which was initiated by
Ossola-Papadopoulos-Pittau(OPP) in [14] and further generalized in [15-20]. Comparing
methods of these two categories, methods in the first one focus only on coefficients having
nonzero final contributions while methods in the second one must also include spurious co-
efficients. Although more coefficients must be calculated, methods in the second category
are still very useful because all manipulations are performed purely algebraically at the
integrand level, thus they can be easily programmed.

Encouraged by successful computations at one-loop level, it is natural to generalize
these methods to higher loops, partially because of our theoretical curiosity and partially
because of the precise prediction for modern collide experiments. However, the generaliza-
tion is not so trivial. The first difficulty is that in general we do not know much about
the basis for multi-loop amplitudes. In fact, now it is clear that we should distinguish
the integral basis and the integrand basis. Unlike the one-loop amplitude, the number of
integrand basis is much larger than the number of integral basis for multi-loop amplitudes.
Thus it is highly desirable to reduce integrand basis to integral basis further. One standard
method of doing so is the Integrate-by-Part (IBP) method [21-24]. The IBP can be carried
out in a reasonable short time if the amplitude involves only a few external particles, but it
becomes unpractical with time consuming when the number of external particles increases.
The second difficulty is how to extract coefficients of basis. For one-loop amplitudes, find-
ing coeflicients is separated from finding basis, while the frequently-used IBP reduction
method combines these two tasks together at the same time.

These computation difficulties for multi-loop amplitudes have been addressed in the
past few years by several groups [25-35]. The main focus of study is the reduction at inte-
grand level, which includes finding integrand basis and matching their coefficients. The step
towards this direction was first taken in [25], where four-dimensional constructive algorithm
for integrand has been applied to two-loop planar and non-planar contributions of four and
five-point Maximal-Helicity-Violating(MHV) amplitudes in N/ = 4 Super-Yang-Mills the-
ory. Using constraints from Gram matrix, similar determinant of monomials of numerators
was achieved in [26]. Besides reduction at the integrand level, reduction at the integral
level is discussed in [27-31], where in order to determine the physical contour for integral
basis, the variety defined by setting all propagators on-shell has been carefully analyzed.

Among these new developments, the application of computational algebraic geometry
method to multi-loop amplitude calculations is very intriguing [33, 34], where the Grébner
basis plays a central role. It is quite easy to determine integrand basis by Grébner basis
method, although different sets of integrand basis can be obtained with different orderings
in polynomial division. Besides the integrand basis, their coefficients can also be deter-

'See reports [1, 2] for references.



mined by the same method. The knowledge of variety, including its branch structure and
intersection pattern of branches, is very important in the application of this method. This
method has been tested by several examples in at two and three-loops [33, 35].2 Encour-
aged by the success, in this paper we will use algebraic geometry method to systematically
study all possible topologies of two-loop diagrams in pure four-dimension for any exter-
nal momentum configurations, not only restrict to double-box or penta-triangle studied in
various references.

The paper is organized as follows. In section 2 we classify all possible topologies for
two-loop diagrams. In section 3 the one-loop topologies are re-examined using algebraic
geometry method. Ideas from the reexamination will be used to analyze two-loop topolo-
gies. In section 4, as a warm-up, we present results of some trivial two-loop topologies.
In section 5, a careful analysis of planar penta-triangle topology has been given, while
in section 6, we give a detailed study of non-planar crossed double-triangle topology. In
section 7, we summarize results of all remaining topologies. In the last section, conclusions
and discussions are given. In appendix, we introduce some mathematical facts that can be
used to study the branch structure of variety.

2 An overview of general two-loop topologies

In this section, we give an overview of general two-loop topologies. Much of the results are
scattered in literatures, and we assemble them here to make the paper self-contained.

2.1 The two-loop topology

Since two-loop diagrams can always be reduced to one-loop diagrams by cutting an inner
propagator, we can inversely reconstruct two-loop ones by sewing two external legs of one-
loop diagrams. The topology of one-loop diagrams is very simple: we just attach various
tree structures along the loop at some vertices V; (see figure 1 ).

From one-loop topology we can reconstruct two-loop topology by connecting two ex-
ternal legs, and there are several ways of doing so, which give different two-loop topologies:

e (A) If the two to-be-connected external legs are attached to the same tree struc-
ture, we will get two-loop topology as drawn in figure 2. Explicit illustration shows
that there are two kinds of connections. In the first kind (A1), two one-loop sub-
topologies do not share the same vertex while in the second kind (A2), they do share

a common vertex.

e (B) If the two to-be-connected external legs are attached to two nearby vertices along
the loop, we will get two-loop topology as drawn in (B) of figure 3. All two-loop planar
topologies can be generated from this type.

e (C) If the two to-be-connected external legs are attached to two non-nearby tree
structures along the loop, we will get two-loop topology as drawn in (C) of figure 3.
All two-loop non-planar topologies can be generated from this type.

2The numeric algebraic geometry method [36] can also be used if we only want the number of irreducible
components.



Figure 1. The general topology of one-loop diagrams where various tree structures are attached

along the loop at some vertices.

(A1) (A2)

Figure 2. The two-loop topology generated from one-loop topology by connecting two external
legs attached to the same tree structure. The connection has been denoted by red color thick line.
In connection (A1), two one-loop sub-topologies do not share the same vertex while in connection

(A2), they do share a common vertex.

(B) ©)

Figure 3. The two-loop topologies of case (B) and case (C) obtained by connecting two external
legs attached to two different tree structures. For case (B), two tree structures are adjacent while

for case (C), not adjacent.



2.2 Classification of denominators of two-loop basis

Having understood the general two-loop topologies, the next step is to classify the basis
used to expand any two-loop amplitudes. This is similar to the classification of scalar basis
for one-loop diagrams, which includes box, triangle, bubble and tadpole. However, it is
necessary to distinguish the integrand basis and the integral basis. The integrand basis
is that used by OPP method to expand expressions coming from Feynman diagrams at
integrand level. However, after carrying out the integrations, some elements of integrand
basis will vanish, while others may have nontrivial linear relations. After excluded these
redundancies from integrand basis we obtain the integral basis. The integral basis is also
called the master integrals(MIs). The number of integral basis is much smaller than the
number of integrand basis, since after integration. The difference between these two kinds
of basis can be easily seen in the one-loop box topology: there is only one master integral

1 . . 1 e(,K1,K2,K3) .
DD,D3D5 but there are two integrand basis DD, D305 and DiDaDIDs - Numerator of €- ¢

with odd power will vanish after integration because of parity.

To find the integrand and integral basis, we can use the procedure called PV-reduction.
Among manipulations on expressions coming from Feynman diagrams, some are done at
the integrand level, such as rewriting 2K; - £ = —(¢ — K1)? + 2 + K?, while some manip-
ulations are carried out using properties of integral, such as IBP method. Pure algebraic
manipulations at the integrand level will produce the integrand basis, while combining
with operations such as IBP, will reduce integrand basis further to integral basis. Above
reduction has been discussed in many references, for example, [31] for details and reference.

For two-loop diagrams, denominators of expressions coming from Feynman diagrams
can always be written as products of three kinds of propagators

D = DDD, (2.1)
where
D =36y — Ka1)*(ly — Ka2)® ... (61 — Koy —1)%,
D = 03(y — Ky1)*(la — Kp2)? ... (b2 — Kpny—1)?,
D= (l4l+ K1) (4Ll + Keny)? (2.2)

Here ni, no are numbers of propagators containing only ¢; or ¢5, while ng is the number
of propagators containing both ¢1,/f5. By the freedom of relabeling ¢1, {2, we can always
restrict n; with condition

ny > ng > nNg . (2.3)

The up-bound of n1,n2, ng and their summation depend on the space-time dimension. For
example, if we consider physics in (4 — 2¢)-dimension, we would have

ny, no, n3 <5, ny+ne+ng <11. (2.4)
But if we constrain to pure four-dimension, the condition becomes

ni, ng, n3 <4, ni+nz+n3<8. (2.5)



By combining conditions (2.3) and (2.5) for 4-dimension case (or (2.3) and (2.4) for (4—2¢)-
dimension case), we can classify denominators of integrand and integral. For (4 — 2e¢)-
dimension, conditions (2.3) and (2.4) constrain n3 < 3. Thus if we arrange all possible
solutions of (n1,n2,n3) by value of n3, we have following 4 groups of solutions

ns=3: (53,3),(4,4,3),(4,3,3),(3,3,3) ;
ns=2:  (5,4,2),(5,3,2),(4,4,2),(5,2,2), (4,3,2), (4,2,2),(3,3,2),(3,2,2), (2,2,2) ;
ng=1: (55,1),(54,1),(53,1),(4,4,1),(5,2,1), (4,3,1), (5,1,1), (4,2, 1),
(3,3,1), (4,1,1),(3,2,1),(3,1,1),(2,2,1),(2,1,1), (1,1,1) ;
ns=0: (55,0),(5,4,0),(5,3,0), (4,4,0), (5,2,0), (4,3,0), (5,1,0), (4,2,0), (3,3,0),
(4,1,0),(3,2,0), (3,1,0),(2,2,0), (2,1,0), (1,1,0) . (2.6)

For pure four-dimension, the number of solutions decreases a lot, since now we have ng < 2.
The possible solutions of (ni,n2,n3) for (2.3) and (2.5) are listed into 3 groups:

ns=2: (4,2,2),(3,3,2),(3,2,2),(2,2,2); (2.7)
ng=1: (4,3,1),(4,2,1),(3,3,1),(4,1,1),(3,2,1),(3,1,1),(2,2,1), (2,1,1), (1,1, 1);
ns=0: (4,4,0), (4,3,0), (4,2,0),(3,3,0), (4,1,0), (3,2,0), (3,1,0), (2,2,0), (2,1,0), (1,1,0).

Solutions with ng = 0 contain two-loop topologies coming from sewing two one-loop topolo-
gies at a single vertex as shown in figure 4, while solutions with ns = 1 contain planar two-
loop topologies with one common propagator as shown in figure 5. All two-loop non-planar
topologies are included in solutions nz = 2 as shown in figure 6.

While two-loop topologies of basis have been classified by (n1,ng2,ns), to get the inte-
grand or integral basis, we still need to determine corresponding numerators. For two-loop
the so called ”scalar basis” is not enough to expand all amplitudes, we also need terms
with numerators containing Lorentz invariant scalar product having internal momenta.
The distinction between integrand and integral basis becomes important when discussing
the classification of numerators. In this paper, we will focus only on the integrand basis in
pure four-dimension.

3 The integrand basis of one-loop diagrams in pure four-dimension

As a warm-up, we take the one-loop integrand basis as a simple example to demonstrate
various ideas that we will meet in later part of this paper. All results in this section are
known in other references such as [14, 33, 34], however, we recall them here since these
results are also related to two-loop integrand basis with ns = 0.

In pure four-dimension, since each external or internal momentum has four compo-
nents, we need four independent momenta to expand all kinematics. One construction
of momentum basis is to take two arbitrary independent momenta K7, Ko and construct



following four null momenta e;, i = 1,2, 3,4 (assuming (K + K3)? # 0)

1 K} + Ky - Ky —sgn(Ky - Ko)|\/(K; - K2)2 — KIK3|
ep = — | K1 — Ko |,

12 (K1 + K»)?
I _K22+K1'Kz—SgD(Kl'K2)|\/(K1'K2)2—K12K22|K
(e1]7"]e2] (e2]7"|ed]
— — 3.1
€3 2 ) €4 2 ) ( )
where 2, = 2[(KE'§12+)2K_2§(212K22}. This momentum basis has following property: among all

inner products of e;-e;, the only non-zero ones are e;-e2 = 1 and e3-e4 = 1.3 Definition (3.1)
also makes massless limit smoothly, i.e., when K? — 0, e; — K; and when K22 — 0,
eo2 — K5. Using above momentum basis, we can expand any momentum, such as

K; = (Ki-ez)er + (K -er1)ea + (K; - es)es + (K; - e3)eq

0= (L-ex)er+ (L-e1)ea+ (£-eq)es + (£-e3)eq = xoe1 + x1e2 + x4e3 + 2364, (3.2)

and the Lorentz invariant scalar products are given by
4
2= r1Te + 1314, L K; = Zaijxj . (3.3)
j=1

The importance of above expansions (3.2) and (3.3) is that any integrand can be written
f(z1,m2,23,24)

II; Di(x1,22,23,24)°

finding following expansion of numerator

Flai) = colw) Dy(as) + (=) (3.4)

t

as a rational function and the PV-reduction procedure is equivalent to

where the remaining polynomial r(z;) is nothing but the integrand basis we are looking
for. In a more mathematical language, propagators D; generate an ideal I in polynomial
ring k[x1,x2, x3,x4], and the integrand basis is constructed by representative elements in
the quotient ring k/I under some physical constraints. One physical constraint is the
total degree ny of loop momentum ¢ in numerator. For renormalizable theory, we require
ny < np where np is the number of propagators in denominator.

Having these general preparations, we will discuss explicitly various one-loop integrand
basis, such as box, triangle, bubble and tadpole [14, 33, 34]. For simplicity, we will only
consider massless propagators, but the massive ones can be discussed in a similar way.

3.1 One-loop box topology

For box topology, four propagators are given by

Dy=0 D =({(—-K))? Dy=({—-K —Ky? Ds=({—-K —Koy—K3)?. (3.5)

3In fact, this property has not determined e; uniquely, since there is a freedom to rescale e; — we; and
es — w ™~ 'ep and similarly for es, e4 pair.



Without loss of generality, we can use Ki, Ko to construct momentum basis and use it
to expand all momenta. There are 4 variables (x1,x2,x3,z4) coming from loop momen-
tum expansion. All above propagators can be translated into following polynomials of
x; variables

Dy = xywo + 2324, Dy = Do —2(a1121 + apxs) + 2011012,
Dy = Dy — 2(ag121 + a2w2) + 2010002,

D3 = Dy — 2(a31x1 “+ 399 + (33,3 + 0434:U4) + 2ai31 30 + 233034 (3.6)

where we have used the parametrization K1 + ...+ K; = Zle a;rer. It is easy to see that
(Do — D1)/2 = aj1x1 + anawe — agiage belongs to the ideal generated by Dy, D1, Do, Ds.
However, the linearity of this equation means that in quotient ring k[x1, xo, x3, x4]/I, we can
always treat variable x; as combination aqo — g—ﬁxg. In other words, we can use equation
0 = aj121 + a12x2 — aj1aq2 to solve x1 and eliminate variable x1 from the quotient ring
k[z1,x2, 23, 24])/I. Similarly using other two linear equations (Dy — D2), (Dg — D3) we can
solve variables xs, x3

. ajag(arr — ag1) . ajrogr (a2 — ag2)
1 = 5 2 =
11029 — (V120021 12021 — (11022
—xg0i34 — Q21032 + aziaze ana(arr — ao1)(e1ase — aeas))
T3 = —+ + Qg . (37)
Q33 0433(C¥110422 - 04120621)

Since x1,x2,r3 have been solved as linear polynomial of x4, we will call them reducible
scalar products (RSP), while the remaining variable x4, irreducible scalar products (ISP).

After substituting solution (3.7) into Dy we get a quadratic polynomial of single vari-
able x4

[0
Do(z4) = —Ofiil’i +c1zq4 +co, (3.8)

where

o = Q120021 (31 (32 —22) +agziss) + a1 (12 (a0 —ao1asa) + s (o1 — a1 ) aze —azzaiza))
(04120421*06110422)0433 ,
_0111041206210422(0411 — 1) (12 — @i22) (3,9)

(12001 — a1 0022)?

Co —

The problem of finding integrand basis for box topology is then reduced to finding repre-
sentative elements in quotient ring k[z4]/ (Do(x4)). Since (3.8) is a quadratic polynomial,
the representative elements in quotient ring can take following two terms: 1 and x4. It is
worth to notice that although in this example the dimension of quotient ring is finite, it is
not true in general. In fact, if we consider the quotient ring as linear space, in general the
dimension of it will be infinity, i.e., there are infinite number of representative elements.
Only when some constraints are imposed we get finite number of representative elements.

There is another issue regarding to the ideal defined by (3.8). The quadratic polynomial
is reducible, i.e., it can be factorized as product of two factors a(x4 — z1)(x4 — 22) where



z1, z2 are two roots. This will split the solution space into two branches, which are obtained
by setting either factor to zero. The variety? defined by this polynomial is the union
of two branches (here is just two points). Both branches are needed to analytically (or
numerically) determine coefficients of two integrand basis m and 555,55, at the
integrand level. One of the main focus of this paper is varieties determined by setting all
propagators of a given topology to zero. Their branch structures as well as degeneracy
for specific kinematic configurations, such as massless limit of external momenta or some
attached momenta becoming zero, will be studied carefully.

3.2 One-loop triangle topology

The three propagators are given by Dg, D1, Dy as in (3.5), thus we can solve

_apaga(arn — azr) ~agagr (oo — ag2)
xTr = y Tro = . (310)
Q110022 — (x120021 11022 — (120021

For triangle, x1, o become RSPs, while x3, x4 are left as ISPs. Putting them back to Dy
we obtain

a11a19a91 99 (] — aoy) (e — a
1112021092(a11 — ao1)( 2 12) T (3.11)
(12021 — a110092)

Do(x3,24) =

The quotient ring is given by k[xs,x4]/ (Do(x3,x4)). Its representative elements can
be taken as 1,z3°,z)* with n3,ns > 1.5 Unlike the box topology, the dimension of
this quotient ring will be infinity. To select finite number of representative elements
from quotient ring, we constrain the power ngz,n4 to be no larger than three. This
corresponds to the condition that the power of ¢ in numerator is no more than three for
triangle topology. Under this constraint we get following seven representative elements
{1, 23, x4, 23, 23, 23, 23} as given in [14].

After getting the integrand basis, we need to find their coefficients in expansion of
amplitudes. For this purpose, understanding the variety defined by (3.11) becomes im-
portant. Assuming that the equation is given by xz3x4 + d = 0 with d # 0, we can solve
r3 = —d/xy4. Putting x3 back to integrand basis we get seven monomials of x4 only:
with t = —3,—-2,—-1,0,1,2,3. Thus to find coefficients of integrand basis, we just need to
substitute x1, z2, x3 as functions of x4 into integrand obtained by Feynman diagrams or
sewing three on-shell amplitudes using unitarity cut method. Having the monomial of x4,
we can identify corresponding coefficients for a each power of x4. For numerical analysis,
we can take seven arbitrary values of x4 to write down seven linear equations and by solving
them, find the seven unknown coefficients of integrand basis.

There is a technical issue regarding to the method we just described. To guarantee
that we will get exactly the form z:f_g cix!, we must first subtract all contributions from
box topologies. Similar manipulation should be taken when finding coefficients for bubble
and tadpole at one-loop. In other words, we should subtract contributions from all other
higher topologies which contain the same set of propagators in the problem.

“We call the solution space as wvariety following the terminology used in algebraic geometry.
Using (3.11) we can eliminate any product of x3,x4.



The procedure we have just described is called parametrization of variety. For the
simple example with d # 0, there is only one irreducible branch parameterized by x4. How-
ever, with some specific kinematic configurations, above branch can split to two branches.
This happens when K? = 0, so aj2 = 0 or K3 = 0, so (ag1 — a11)(ag2 — a19) = 0, or
K§ = (K3 —|—K2)2 = 0, so ag1g2 = 0. In other words, when at least one leg is massless, the
definition equation of variety is reduced to x3x4 = 0, and we get two irreducible branches.
The first branch is parameterized by setting x3 = 0 with x4 as free parameter, and the
second branch, by setting x4 = 0 with x3 as free parameter. Using the parametrization of
the first branch, integrand basis z% with n = 1,2, 3 will be zero and their coefficients can
not be detected by method described in previous paragraph. It means that the first branch
can only be used to find four coefficients of integrand basis 1,I4,$i,l‘i. Similarly, the
second branch can only be used to find coefficients of integrand basis 1, 3, :L'%, :U% These
two branches intersect at one point z3 = x4 = 0, thus we have 4 +4 — 1 = 7, i.e., both
branches are necessary to fully determine coefficients of integrand basis.

3.3 One-loop bubble topology

Because of momentum conservation there is only one external momentum. In this case, we
take K and another auxiliary momentum P to construct the momentum basis. With two
propagators Dg, D1 we can solve

L2

71 = ap <1 - ) , (3.12)

a11

and there are three ISPs (zg,x3,24). After eliminating 1, Dy becomes polynomial of
three ISPs

X
Do(x2, 3, x4) = T20012 <1 — Of) + x374 , (3.13)
11

which defines the variety in polynomial ring k[za, x3, x4]. Unlike box and triangle topolo-
gies, it is hard to find representative elements in the quotient ring

klxo, 23, 24])/ (Do(x2, 23, 24))

and we need a systematic way to do so. A good way is to use the Grobner basis of ideal.
Firstly we write down all possible monomials z5?z5%z)* with ng + n3 + ny < 2 required
by physical constraints. Then we divide each monomial z5?z5*xy* by Grobner basis and
collect all monomials in the remainder. These monomials collected from the remainder
times ﬁ give the integrand basis.

A technical issue of above algorithm is the ordering of ISPs in the constructing of
Grobner basis. Different ordering gives, in general, different Grébner basis and different
sets of representative elements, although they are equivalent to each other. Once a par-
ticular ordering is chosen, we should stick to it through the whole calculation to avoid
inconsistency. For instance, if the ordering is chosen as x3 > x4 > 22 we get 9 integrand

basis as

{1, 22, 2%, w3, wow3, ¥3°, w4, wow4, 24"} (3.14)

,10,



This integrand basis can be used to expand bubble topology. In order to get the coeffi-
cients of integrand basis analytically, we should first put ¢ = x9e1 + x1e2 + x4€3 + x3€4 back
into integrand after subtracting all box and triangle contributions. Then we can replace
z1 by (3.12), and get a polynomial A(xg,x3,24). The next step is to divide this polyno-
mial by Gronber basis and obtain the remainder. This algorithm, different from previous
parametrization method, ensures that the remainder is nothing but the linear combination
of monomials in integrand basis with coefficients we want to find.
o

If using the parametrization method, we can replace® x5 = _O‘l?%(l — a—u) in the

expression A(zg,x3,24) as well as integrand basis, and get

c(6)z2ta?y B 2c(6)r93a2y  c(5)radana n c(6)z22a2, n c(4)z22a12 B c(5)z22a12

z4%a r4200; r4001 x42 T40q1 T4
c(4)xoa
_()36212 + ¢(3)xa? + ¢(8)maxy + ¢(2)z2 + c(9) 4% + c(T)s + (1) .
4

Since we have already used the equation to reduce one variable further, remaining variables
X2, x4 are totally free variables. What we need to do is to compare each independent
monomial xZa:g (a, b could be negative integers) at both sides. The parametrization method
can also be used for numerical fitting. We only need to write down enough linear equations
to solve coefficients by taking sufficient numerical values (x2,x4) at both sides.

Similar to triangle topology, the variety defined by (3.13) is irreducible for general
kinematic configuration. However, when K? = 0,” we have aj2 = 0 by our construction,
thus equation (3.13) is reduced to xzz4 = 0. In other words, the variety is degenerated to
two branches: one with z3 = 0 and z2, x4 as free parameters, and another with x4 = 0 and
x2,x3 as free parameters. Each branch can detect six coefficients out of nine integrand
basis, while three basis {1,29,23} can be detected by both branches. Thus we have
64+ 6 —3 = 9, and both branches are necessary to find all coefficients of integrand basis
analytically or numerically.

3.4 One-loop tadpole topology

In this case, we choose arbitrary two independent momenta to construct the momentum
basis. Since there is only one propagator Dy, all four variables z;, 1 = 1,2, 3,4 are ISPs
and the variety is defined by equation

Dy = x129 + 2374 . (3.15)
Requiring the total dimension of monomials to be no larger than one, we get following basis
{1,$1,$2,(E3,IE4} . (316)

This variety is irreducible and we can parameterize it by solving x; = —%. Thus after

putting z; back to integrand after subtracted all contributions from boxes, triangles and

5This parametrization works for almost every value of x2 except 2 = 0 and x2 = @11 where the variety
is degenerate.

"For one-loop theory, bubble basis with K7 = 0 vanishes after integration, but it is necessary at the
integrand level.
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Figure 4. The type (A) contains 10 topologies with ny = 0. Every topology is denoted by (Anm)
where n, m are the numbers of propagators of the left and right one-loop sub-topologies respectively.
These diagrams are drawn in most general form, and some external momenta, for instance K7 in
(A44) diagram, could be absent. All external momenta are out-going while convention of loop
momenta is labeled by arrows in each diagram.

bubbles, we can read out coefficients of one-loop tadpole integrand basis by comparing

; a b .c
monomials of z§x3x].

4 A premiere: some trivial two-loop topologies

Starting from this section, we will discuss the integrand basis and variety of various two-
loop topologies classified in (2.7) using the same method presented in previous section for
one-loop topologies. Before we discuss non-trivial topologies, there are some topologies
whose integrand basis and structure of variety are quite simple. These include two cases.
The first case is all topologies of type (A), where two one-loop sub-structures share only
one single vertex. The second case is all topologies having maximal number of propagators,
i.e., 8 propagators for pure 4-dimensional two-loop diagrams.

4.1 Two-loop topologies of type (A)

All two-loop topologies of type (A) can be found in figure 4. Since there is no propagator
involving both ¢, 5, integrand basis and variety defined by propagators will be double copy
of corresponding two one-loop sub-topologies with minor modification. This modification
comes from constraints of total degree of monomials in integrand basis. Taking topology
(A33) as an example, for the left one-loop sub-topology, we can use K7, Ky to construct
momentum basis eq, €2, €3, €4, thus x3 = £1 - e3, x4 = {1 - e4 will become ISPs after solving
linear equations. Similarly for the right one-loop sub-topology, we can use K3, K4 to
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construct another momentum basis €1, €2, €3, €4, thus y3 = €5 - €3, y4 = {5 - €4 become
ISPs. The representative elements of integrand basis for (A33) can be given by monomial
z5txytys Sy . From the left one-loop sub-topology we have constraint nz+n4 < 3 because
along the loop there are only three vertices. Similarly we have ms + my < 3 from right
one-loop sub-topology. However, since there are only five vertices along whole two-loop
topology we should have ng + ng + mg + m4 < 5. Under these conditions z3y3 should be
excluded from integrand basis and we get 7 x 7 — 4 = 45 basis for (A33).

The variety is also the union of varieties of corresponding two one-loop sub-topologies,
so its structure can be easily inferred. To determine coefficients of integrand basis, similar
procedures as presented in previous section can be applied, such as Grobner basis method

or parametrization method.

4.2 Topologies with eight propagators

Besides topologies of type (A), there are three special topologies in type (B) and (C) which
have maximal number (eight) of propagators. Since there are eight components for two
loop momenta /1, ¢, putting eight propagators on-shell will completely freeze all eight
components, thus the variety will be fixed to isolated points. These three topologies are
planar penta-box (B43) as shown in figure 5, and non-planar crossed penta-triangle (C42),
crossed double-box (C33) as shown in figure 6.8

4.2.1 The topology (B43): planar penta-box

For (B43) topology, we take K1, K5 to construct momentum basis e;,7 = 1,2, 3,4 and use
them to expand both loop momenta ¢1, {5 with coefficients z; = ¢1 -¢; and y; = 5 -e;. Since
there are four propagators containing only #1, just like the one-loop box case, x1, x9, T3 can
be solved as linear functions of x4. After substituting these solutions, Dy = 3 becomes
quadratic function of single variable x4

Dy = ngz +c1z4 + o, (4.1)

where ¢; are some functions of external momenta, which may be complicated depending on
kinematic configurations, but not important here. Similarly, there are three propagators
containing only /o, so like the one-loop triangle case, y1,ys are solved as linear functions
of y3,y4. After substituting these solutions, Do = 23 becomes

Dy = C20Y3 + Co2y3 + C11Y3Y4 + C10Y3 + o194 + Coo - (4.2)

Propagator (1 + /3 + Kg)? can also be expressed as function of these ISPs as
Do =Y dyziyh+> diyaiyl. i.j=0,1, (4.3)
ij ij

where we have used the conditions (2 = (3 = 0.

8Topology (A44) also has eight propagators. The variety is simply given by four isolated points and
integrand basis has exactly four terms. These four points can be used to determine four coefficients of basis.
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The integrand basis is constructed by dividing monomials z}*y;"3y)"* with conditions

ng <5, mg+ my <4 and ng + m3 + my < 7 over Grobner basis of the ideal generated by
polynomials Dgy, Do, Dy. The result is

Bpaz = {1,24,y3, Y4} - (4.4)

The variety defined by Dy, l~?0, 150 has four branches and each branch has a single solution.
Thus using four branches, we can fit coefficients of four integrand basis analytically or
numerically by the method discussed in previous section.

Above results will not change for following specific kinematic configurations: (1) Kg
or Ky or both are absent; (2) some of K;, i =1,2,3,4,5 are massless.

4.2.2 The topology (C42): non-planar crossed penta-triangle

For (C42) topology, we take K7, K4 to construct momentum basis e;,7 = 1,2, 3,4 and use
them to expand both loop momenta ¢1, {5 with coefficients x; = ¢1-e; and y; = £ -e;. Since
there are four propagators containing only ¢, z1, 22, x3 can be solved as linear functions
of 74, and Dy = £? can be rewritten as a quadratic polynomial of x4

Dy = CQI’Z +cixg + g . (45)

Coefficients ¢; are again some functions of external momenta whose explicit expressions
are not important here. Similarly, there are two propagators containing only /2, and
1o can be solved as linear function of yi,ys,7y4. However, unlike the topologies of type
(B), here we have two propagators containing both /1, ¢s, i.e., Do = (61 + €5 + Kg)? and
131 = (b1 + 02+ K¢ + K7)2. We can get one more linear equation 131 — ZA)O and solve y;
as linear function of x4,ys,ys. Thus we have three ISPs (x4,ys3,y4) and three quadratic
polynomials. Using ideal generated by these three polynomials we find the integrand basis
is given by

Beas = {1, 24, y3,ya} . (4.6)

The variety defined by these three quadratic equations has four branches, and each branch
is given by a point. Thus using four branches we can find coefficients of four integrand
basis. Again above discussion does not change whether Kg, K7 are absent or not, or any
of other external momenta go to massless limit.

4.2.3 The topology (C33): non-planar crossed double-box

For (C33) topology, we take K1, K4 to construct momentum basis e;,7 = 1,2,3,4, and use
them expand both loop momenta ¢;, £5. We can get five linear equations from eight on-shell
equations, and solve, for instance, x1,z2,z3,y1,y2 as functions of three ISPs (z4,ys,v4).
After substituting all RSPs in the remaining three propagators we get three quadratic poly-
nomials. The variety defined by these three quadratic polynomials is given by eight points
(eight branches). By Grobner basis method, the integrand basis is given by 8 elements

Bess = {1, 24, Y3, T4Y3, Y3, Ys, Ya, Y3ya} - (4.7)
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Figure 5. The type (B) contains 9 togologies with ng = 1. Every topology is denoted by (Bnm)
where n, m are the numbers of propagators containing only ¢; or /5. The diagrams are drawn in
most general form, and some external momenta, for instance Kg, K7 in (B43), could be absent. All
external momenta are out-going while convention of loop momenta is labeled by arrows in each
diagram.

As usual, each branch of variety can detect one coefficient of integrand basis, and using all
8 branches, we can get all coefficients. Again above discussion does not rely on the explicit
kinematic configuration of external momenta.

5 Example one: planar penta-triangle

Having understood simple topologies of planar penta-box, non-planar crossed penta-
triangle and crossed double-box, we move to non-trivial topologies where varieties are given
by manifolds with dimension at least one, not just isolated points. For these topologies,
analysis becomes more complicated, so we will take two topologies as examples to illus-
trate various properties. The first example we will study is planar two-loop penta-triangle
topology (B42), as shown in figure 5.

The penta-triangle topology has 7 propagators. If we choose Ki, K4 to generate mo-
mentum basis e;,7 = 1,2, 3,4, all kinematics can be expanded as

{1 = xoe1 + w169 + T4€3 + 1364, Lo = Y21 + Y162 + Yse3 + Yseq,
K = ajie; + azes, K + Ko = agre1 + aggea + aazes + aaqeq
K1+ Ko+ K3 = agier + azzes + azzes + agaey,

Ky = Brier + Bizez, K5 = y11€1 + Y122 + Y13€3 + v1aeq, (5.1)

and Kg is constructed from momenta conservation. Above parameters are general if Kg is
arbitrary, but when Kg = 0 or Kjg is massless, there will be relations among parameters.
For example, when Kg = 0, we should have

Y1 =—Pfu—az, Y2=—Pfr2z—-a3, V3= —033, 4= —034, (5-2)
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and when K5 = K¢ = 0 we should have vy; = 0 and
az1 = —p11, azx=-PF2, azz=0, a3 =0. (5.3)

These relations will be important when discussing branch structure of variety under specific
kinematic configurations.
Using above expansion, we can expand all seven propagators

Do=10;, Di=(lh—K1)*, Dy=(l1—K —Ks)? Ds=(—K —K;—K3)?
Do=1(% Di=(ly—Ky)? Dy=(l1++Ks5)?, (5.4)

and use four linear equations D1 — Do =0, D9 — Dy = 0,D3 — Dy = 0 and Dy — Dy =0 to
solve x1,x9, x3,y2 as linear functions of four ISPs (4, y1,y3,y4). The results are given by
a12(4033 — p30i34)
xTrl = T4
0412(04230431 - 04210433) + 0411(04220433 - 04230432)
ai2(—agragaszs + o (a3 — agzasze) + aoz(aziase + azzass — azzng))

+ , (5.5)
0412(04230431 - a21a33) + 0411(04220433 - 04230432)
0411(04236134 - 04240433)
To = X4
alz(a23a31 - O1210433) + a11(a22a33 - a23a32)
+Oé11(042104220433 + a1a(e3a3r — asiais3) — aoz(asioe + a3g3ass — azzaeg)) (5.6)
, .

0412(0123(131 - 01210(33) + 0411(04220133 - 01230432)

_aip(agrazy — aggasy) + arn(aogase — anasg)
 ara(aazas — agiass) + agn(oeass — aezass)
a11((—oo3os — ageaar + aaast )z + apa(e1ase — a220i31) + 20330034
aqz(azas) — agrass) + a1 (aoss — azasg)
ai2(a3apsa3 + aor(azrage — aziaze — a330sy))

N , (5.7)
0512(05230431 - O[210433) + 0411(04220433 - 05230132)

—+

and

y2 = i <1 = g;) . (5.8)

Now we consider the remaining three equations. Firstly the equation Dy = 0 becomes
a quadratic equation of x4 and we always have 2 solutions xgl,x? in C-plane. There is
no intersection between these two solutions, so the variety has been split into two separate

branches parameterized by z}. Remaining two equations are

Do = Bu (1 - 5;) y1 +ysys =0, (5.9)
ﬁo =0= (905 + 711 — (561; + 712)?1;) Y1+ (935 +M13)y3 + (:Ug + Y14)Ya

+(@} + y12) 811 + Y112t + yi02h + 713565 + y1axy +y11v12 F 13714 - (5.10)
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Knowing the ideal generated by these four ISPs, we can use the Grobner basis method
with ordering (z4,y1,v4,y3) to find integrand basis under constraints on the powers of

monomial $Z($4)ylli(y1)yéi(y3)yi(y4)

> d(w) <5, > dy) <3, > od)+ Y. d(y) <6. (5.11)
all ISPs of x all ISPs of y all ISPs of x all ISPs of y
Elements of integrand basis will be different depending on actual kinematic configurations.
In this case, there are three kinds of integrand basis depending on if K, is massless or if
K5, K¢ are absent. For all kinematic configurations with K4 massive, the integrand basis
contains 14 elements given by

B o = {1, 24, Y1, U3, Tay3, Y1Y3, Ua, Ys, Y Y3Yas Y3 U4, Ys Y3Yas Ua } - (5.12)

For kinematic configurations with Ky massless but at most one of Kj, Kg absent, the
integrand basis contains 14 elements given by

B = {1, 24, y1, Y3, T4Y3, Y13, Y3, Y195, Ys» Y4, Y194, Y3 Y113, Vi } - (5.13)

For kinematic configurations with K4 massless and both K5 = Kg = 0, the integrand basis
has 20 elements given by

111 2 2 3 3
BB42 = {1a L4, Y1, XaY1, Y1, LaY1, Y1, TaY1, Y3, Y1Y3,

YEY3, U3, Y1Ya, Yy Yy Y1Yas YU, Yo Y1Y3, Ya ) - (5.14)

Note that elements of integrand basis generated from different ordering of ISPs will possibly
be different, but after choosing one ordering, there will always be three kinds of integrand
basis depending on kinematic configurations.

After given integrand basis, we need to discuss how to get their coefficients from
integrand coming from Feynman diagrams or unitarity cut method. As in the one-loop
case, either algebraic geometry method or parametrization method can be used.

The algebraic geometry method is illustrated as follows. Firstly we should get integrand
F(l1,03) from Feynman diagrams or unitarity cut method after subtracting contributions
from higher topologies. After expanding ¢1, f2 into momentum basis and substituting RSPs
with expressions of ISPs, we can rewrite F(¢1,/2) as polynomials of ISPs. For example,
in this example F(z4,y1,ys3,y4). Then we can divide F(x4,y1,¥y3,ys) by Grobner basis
generated from ideal I = Do,ﬁo,ﬁ0> with ordering (x4, 1, ¥y4,y3). The remainder of
division is linear combinations of all terms in integrand basis with wanted coefficients.

All coefficients can be found at the same time using above algebraic geometry method,
but it may take long time to do so if the number of elements is large. Instead we can
use branch-by-branch polynomial fitting method (see reference [35]) to simplify problem,
by finding a smaller set of coefficients at one time. The idea can be illustrated as follows.
Because Dy = (x4 —le)(m‘—x?), we can divide polynomials F (x4, y1, Y3, y4) by Grobner
basis generated from [} = <(x4 — 3:51),150,150> with ISPs ordering (x4, y1,y4,y3). After
the division F (x4, y1,ys3,y4)/I1, we will get remainder

R(F (24,91, y3,y4) /1) = f1 + foys + f3ys + fays + foya + foysya + fry3ya,  (5.15)
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with seven known coefficients f;. It is easy to see that the remainder of 14 integrand basis
over Iy is given by

/I =1, (w4)/Iy = do,  (y1)/I1 — ds31ya +dzoys +dsz,  (y3)/I1 — y3,
(zays)/Ir — dsys ., (y1ys)/Tn — derysys + de2y3 + desys , (y3)/1 — v3, (¥3)/Ii = v3
ya)/Ii = ya,  (ysya)/I1 — ysya, (y3ya)/T1 — Y3y,

yi)/ i — dia 1y3y4 + di2,2y4 + di2,3Y3 -l- d12,4Y3 -l- di25,

(y1)/I1 — d14,1y3y4 + d14,2y3y4 + d14,3y4 + d14,4y3 + d14,5y3 +diseys + diaz,  (5.16)

with known coefficients d. Thus by comparing both sides we obtain following seven equa-
tions of 14 unknown coefficients ¢; from one branch

f1 = c1 + cada + ¢3dss + ciadia s + cladia,

fo = e3d3a + ¢4 + cs5ds + cedes + c12di2.4 + c13d13 5 + c1adiae

f3 = cede2 + c7 + c12d12,3 + c13d134 + c1adiss

Ji = cs +c13dizs + cradiga,

f5 = c3ds1 + ¢cg + ciadi22 + cradia 3,

fe = cede1 + c10 + c12di2,1 + c13d13,2 + c1adia2

fr = c11 + ciadiz1 + cradia - (5.17)

Similarly, we can divide polynomials F(x4,y1,Y3,y4) by Grobner basis generated from

another branch I, = <(x4 —:Jc4 2), DO,D0> with the same ISPs ordering (z4,y1,y4,y3).

After that we can get another seven equations relating fz to ¢; with other known coefficients
d. With this modified algebraic method, we can get a smaller set of coefficients in each
branch. In this example each branch can be used to write down seven equations (we will
say that this branch can detect seven coefficients). Combining results of both branches we
get 14 independent equations, and they can be used to solve 14 coefficients of ¢;.

Besides algebraic geometry method, it is also possible to find coefficients by
parametrization method. This method is tightly related to the branch-by-branch fitting
method. In this example, we can use Dy to solve x4 and get two solutions. Then we put
one solution mgi to 50, lA)o, and use one variable, for example, y4 to express y1,y3. Finally
we put y1(y4),y3(ys) back to the identity

14

F(xy'y1(ya), ys(ya), ya) = Y cxBpaz(ya) (5.18)
k=1

and find coefficients ¢; by comparing both sides. This method is very useful to evaluate
coefficients analytically or numerically. In this example, we only need to take arbitrary 7
values of y4 to produce seven equations from each branch, and solve 14 linear equations by
combining two branches to find all coefficients.
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5.1 Structure of variety under various kinematic configurations

For some kinematic configurations, for instance, some of external momenta being massless
or absent, the variety will split into different branches. In this example, as we have men-
tioned, no matter what kinematic configuration is, we always have two solutions x};l,x?
from equation /2 = 0. Thus we will focus on the two remaining equations 150, lA?o with x4
replaced by two solutions mg L xgz. Since in general J:El #* $£2, branches parameterized by
different :cgi will not intersect with each other.

When K is massive, 811 # 0, the on-shell equation Dy = 0is not degenerate. If we take
y1 = 7 as free parameter, 50 = 0 becomes non-degenerate conic section of variables ys, 34,

while 130 = 0 becomes linear equation of variables ys3,y4. Using following two equations
Dy=0: ysys + F(1) =0, Dy=0: ays + bys + (1) =0, (5.19)

where a, b are some constants, F'(7) is second order function of 7, and ¢(7) is linear function

of 7, we can solve

_ ac(t) £ /a%[c(1)? + 4abF (7)] '

5.20
—2ab ( )

Ya

y4 is a rational function of 7 if ¢(7)? + 4abF(7) inside the square root is a perfect square.
Using the explicit expressions of F'(7), ¢(7) and a, b we find the discriminant of quadratic
function ¢(7)? + 4abF (1) to be

= r r r r
(ﬁazg—kxgxg)(ml—“) " (w3 +y11+B11) (27 +y12+P12) + (x5 + 713) (235 + 714)3’ (5.21)
B12 B12
where
= r r r T
= = Y1121 + Y1205 + Y13T3 + Y1424 + V11712 + V13714 (5.22)
and x{ denotes the solution of x; with x4 = x};. The first term in above result vanishes

because Dy = !z + 212} = 0. Generally the second term will not be zero, but if K5 = 0,

i.e., y1; = 0, we have Z = 0. Similarly, if K5 # 0 but K¢ = 0, using v11 = —0611 — as1,

Y12 = —f12 — @32, 713 = —33 and 714 = —34, the second term becomes
r r r r
—T7 Q31 — T gy — T3igz — T334 + g2 + agzaza . D3 — Do _ (5.23)
E= =, .
B2 2B12

which vanishes by on-shell equation D3 = Dy = 0. In these cases, ¢(7)? + 4abF(7) is a
perfect square, and we can get two solutions which are rational functions of free parameter
y1 for each solution LL{. In other words, each original irreducible branch will split into two
branches in these specific kinematic configurations. In total we get four branches denoted
by VIvth ylulle gng yl2dh etz - Fach branch can detect 4 coefficients. Two branches
Vil yTellz intersect at a single point. Similarly, the two branches V12t V202 jnter-
sect at another point. There is no intersection among other combination of branches. This
matches the number of integrand basis since 4 x 4 — 2 = 14.
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Figure 6. The type (C) contains all 4 topologies with ng = 2. Every topology is denoted by (Cnm)
where n, m are the numbers of propagators containing only ¢; or ¢5 respectively. The diagrams are
drawn in most general form, thus some external momenta, for instance Kg, K7 in (C42), could be
absent. All external momenta are out-going while convention of loop momenta is labeled by arrows
in each diagram.

If K4 is massless, i.e., 511 = 0, but at most one of K5, Kg is absent, then l~?0 =0 = y3y4.
There are two branches parameterized by y3 = 0 with y4 free parameter or y4 = 0 with
y3 free parameter. Considering the remaining linear equation Do = 0 of (y1,Y3,94), it is
easy to see there are also four branches VI YTl ang yT20h /T2l The intersection
pattern of these four branches is the same as in previous paragraph.”

For specific kinematic configuration where K4 is massless and both K5, Kg are absent,
the dimension of variety will increase from one to two, and the integrand basis is given by
20 elements as shown in (5.14) instead of 14 elements. This can be explained by noticing
that y; disappears from the three equations

Q24 o (30024 — 1120021 + 21 (022 ~
Dy = ——uxzj + g, Do =ysys,
Q23 Q23
=~ Q24 Q2122 — (2112 + (a30i24
Dy = x4ys — —x4ys + Ya (5.24)
23 23

in this specific kinematic configuration. The variety is given by two branches. One branch
is parameterized by x4 = 0,y4 = 0 with y;,ys free parameters, and the other branch, by
xg = (210099 — 12091 + Qoging) /aaa, y3 = 0 with y1,y4 free parameters. Each branch can
detect 10 coefficients and there is no intersection between them, so adding them up we can
detect all 20 coefficients.

6 Example two: non-planar crossed double-triangle

Our second example will be non-planar crossed double-triangle topology (C22) as shown in
figure 6. Different from planar penta-triangle topology (B42), the variety of (C22) is two-
dimensional, so the intersection between different branches could be one-dimensional vari-
ety instead of single points. Topology (C22) also has symmetry of relabeling (K7, K, K3)
as well as symmetry of relabeling (K4, K5). Discussion of different kinematic configurations
can be simplified by using these symmetries.

9Besides branch structure of variety, the integrand basis (5.12) need to be modified too. The reason is
that in the case K = 0, we have Dy = y3y4, thus elements such as y3ya, y3ya, y3y; could be divided by Do.
They should be excluded from integrand basis. The modified integrand basis is given by (5.13).
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For this topology, we use K, Ko to construct momentum basis e; and use them to
expand external and loop momenta as

4 4
Ky = aner + oanzey, Ky =Buer+ Baea, Ki=» quei, Ks+Ki=>» e,
=1 =1
{1 = xoeq + x1€9 + 1463 + X364 , ly = yoe1 + y1e9 + yses + yseq . (6.1)

With this expansion, 6 propagators can be rewritten as functions of 8 variables. The two
propagators containing only x; variables are given by

Dy = f% = 2(1‘1.’1’;2 + $3.’E4) , D= (61 — K1)2 = Do+ 201119 — 2(&11&71 + 0[12332) . (62)
The two propagators containing only y; variables are given by

Do = 12 =2(y1ya + y3ya), D1 = (la — K2)* = Do + 2611812 — 2(Brays + Praya) - (6.3)

The remaining two propagators contain both x;,y; variables

Dy = (£1 + b2 + K4)* = Do + Do + 2(y11m2 + v13714) + 2(x192 + 2291 + 394 + 24Y3)
+2(711(z1 + y1) + 11222 + y2) + 113(z3 + y3) +714(za + 94)),

Dy = (01 + b3 + Ky + K3)? = Do+ Do+2(721722 + 723724) + 2(2192 + Toy1 + T3y + Tays)
+2(v21 (21 + y1) + v22(22 + y2) + Y23(23 + ¥3) + Yy24(T4 +v4)) - (6.4)

From three linear equations D; — Dy = O,l~)1 - ]50 = 0 and ]31 — ﬁo = 0 we can solve
x1,Y2, x2 as functions of five ISPs (x3, x4, Y1, Y3, y4). Substituting these solutions back into
Dy, 150, 130 we get three polynomial equations, which define the variety of this topology.
We will consider various kinematic configurations where Ky, K5 could be absent, or
some of K1, Ko, K3 are massless. In order to make the kinematic configuration clear, we use
the notation CQZE[L]:%’R) , where each L, N, R could be either M or m representing massive or
massless limit of K7, K3, Ky respectively. U, P could be either K4, K5 if they are non-zero
or @ if they are absent. In this notation, for example, C22§AK/[j\é’)m) represents kinematic

configuration with K, K3 massive, Ko massless, K4 non-zero and K5 absent.

6.1 The integrand basis

To determine the integrand basis, we take all possible monomials xg(m)xi(“)yf(yl)

yg(%)yj(y“) under conditions

Yood@) <4, ) dy) <4, D) d@)+ Y dy) <5, (65)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

and divide them by Groébner basis generated from Do,ﬁg,f)o with ISPs’ ordering x3 >
ys > x4 > yq > y1 (we will use the same ordering through this example). For different
kinematic configurations, the number and elements of integrand basis can be different as
demonstrated in previous example.

After checking all 24 different kinematic configurations, we find that there are in total
6 different kinds of integrand basis. For kinematic configurations where at least one of
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Ky, K5 are non-zero and K, Ko are massive, the integrand basis contains 100 elements
given by

8522 =

{1, 23, 24, 324, %21, l”sffi» xia 3535”?1» xia Y1, T3Y1, T4Y1, T3T4Y1, 35421111, 5839542;1/1, xiyh xSxiylv xiylv y%v
z3yt, vayl, vyt 2yt vt wsyt, wayt, 23yS vt wayt, 2ayl, yT L vs, 233, Tays, T3Ys, ThYs, THY3 Y13,
TAY1Y3, TIY1Y3 TIYLY3: Y3 Y3 TaYTY3, VY3 TaYsys, YiYs, U3, T3Ys. Tals, Y15, TaY1Y3, Y1Ys . T4y v,
YLY3, U3, T3S, TaYs, YIS, TaY1Ys YTYSs U3 T3YS, TaY3, Y1Y3, Ys s Yd, TaYa, TYa, ToYs, T4Yas Y1Ya,
TAY1Y4, T3Y1Yas TIY1Yas VY, TaYT YL, TIYTY, YiYa, TaYYa, Y1y, U3, Tayd, T3Y5, T1Y5, Y13 Tay1yd,

2 2 2,2 2,2 3.2 3 3 .23 3 3,23 4 4 4
9:4y1y4,y1y4,z4y1y4,y1y4,y4,:r4y4,x4y4,y1y4,9:4y1y4,y1y4,y4,z4y4,y1y4,y2}. (6_6)

For kinematic configurations where at least one of Ky, K5 are non-zero and K7 is massive,
K is massless, the integrand basis still contains 100 elements, and is given by replacing
one element from (6.6)

Bl = Bloy — {21yi} + {ziyiys} - (6.7)

For kinematic configurations where at least one of K4, K5 are non-zero and K7 is massless,
the integrand basis contains 98 elements, and is given by removing 17 elements from (6.6)
while adding another 15 elements:

17 I 2 3 2 3 2 3 4 9 3
Biiog = Brog — {324, x3x%, 3%y, x3T4Y1, L3TIY1, TITIY1, TLY3, T1Y3, T4Y3, TLY1Y3, TAY1Y3,

5 2 3 2.2 2 2 5 2 3 .4 2 3 4 2.2 3 2
Y3, TyY1Y4, TyY1Y4, ToY1Y4, TyY1Y4, y4}+{$3a T3, T3, T3Y1,T3Y1,T3Y1,T3Y1,T3Y7,

2.3 2 3 4 2.2 3 2 2.3
T3YT, T3Y3, T3Y3, T3Y3, T3Y3, T3Y3, T3Y3 | - (6.8)

If both K4, K5 are absent and K> is massive, the integrand basis contains 96 elements, and
is given by removing 22 elements from (6.6) while adding another 18 elements

IV pal 2 3 2 3 2 2 2 3 2 3 2.3 4

Biog = Bios—{xsxa, x327, £3T5, TaTayY1, T3TIY1, TITLY1, T3YT, T1YTs TIYT, T3YT, TIYT, T3YT
2 3 4 2 3 4 5 2 2 4 5 2 3 4 2 3

TIY3, T4Y3, T4Y3, TIY1Y3, TY1Y3, Y1Y35 Y3, ToY1 Y4, V1Y, Ya b + {23, 23, T3, 2391, 2391,

4 2 3 4 2 3 2.2 3 2 2 .2 2 .23 3
$3y1755393717393a1’3937$391937933yly37x3ylySa1'3937x3y37I3y1y3ax3yly3amgygvxi‘ayly:a}-

(6.9)

If both K4, K5 are absent, K5 is massless, and at least one of Ki, K3 are massive, the
integrand basis contains 96 elements, and is given by replacing 9 elements from (6.9)

\% IV 2 2 2 2 3 3 4 2 3 2 2
Blos = Biag — {xays, Tay1y3, TaYiY3, TaYs, TaY1Y3, TaY3, TaYTYd, TaY1Ya, TaYi1Ys b

+{z3yi, 235, 35, 23yt , 2yt 2y, 23yl 23yl wayl ) (6.10)

Finally if both K4, K5 are absent, and all K;, Ko, K3 are massless, the integrand basis
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contains 144 elements, which is given by

Vi __
8022 -

{1, T, l’%, xi’, 1'1117 To,X1X2, x%x27 .’L'?xQ, 1’%7 l'lfl:%, x%m%, 1'27 .’L'lxg, .’L'%7 Y1, T1Y1, .T%y17 .’L'?yl, xéllyl,
T2Y1, T1T2Y1, x%fmyh CE?fUzyl, x§y1, xlff%yl, m?fcﬁyl, x§y1, xlxi’yl, mé‘yl, y%, xlyf, IE%Z/% x?y%,
ny%v JﬁlIgy%, x%f‘@y%’ xgy%v z1x§yf, :ng%’ y%’ xly:lsv z%yi ny%v xlmQy%? x%yi”, yilv xly%v 5627!41;’
Y2, T1Y2, T1Y2, TTY2, T1Y2, TaYa, T1T2Y2, T1T2Y2, T3T2Y2, T3Y2, T1T5Y2, T35Y2, T3Y2, T125Y2,
T5Y2, Y1Y2, T1Y1Y2, TIY1Y2, TY1Y2, T2Y1Y2s T1T2Y1Y2, T1T2Y1Y25 T3Y1Y2, T1T3Y1Y2, TaY1Y2,
YTy, T1YTY2, TTYTY2, T2YT Y2, TLT2YT Y2, TIYT Y2, Y5 Y2, T1YL Y2, T2V Y2, Y, T1Y3, TTYS, TV,
Tols, T1ToY3, T3 oY, T3Y3, T1T3Y5 TaYs, Y1, TIY1Y, TTY1Y T2Y1 Y3 T1T2Y1Y5, TY1Y3
YU, TIYTYS, TYTYS s Us s T1Ys, T Y Tl T1T2Ys, T5Ys Y1Ya, T1Y1 Y T2Y1Ys, Ya T1Ys T2Ys,
Y3, T1Y3, T1Y3, TIYs, T1Y3, Y1Y3, T1Y1Y3, T3 Y1Y3, TIY1Y3, Y13 T1YTY3: TIYTY3, YiYs, T1Y5 Y3, U3,

T1Y3, TTY3, TIY3, YLYS, TLYLYS TTYLYS, YTV T1YTYS . VS T1YS, T3S, Y15, T1y1ys, yss T1ys . (6.11)

6.2 Structure of variety under various kinematic configurations

Having given the integrand basis we move to the discussion of variety determined by six
propagators under various kinematic configurations.

6.2.1 Kinematic configurations with K4, K5 non-zero

Given the integrand basis, the focus becomes finding their coefficients. As mentioned above,
the computation can be simplified using branch-by-branch method, thus it is important
to study the structure of variety in various kinematic configurations. For general case
where both Ky, K5 are non-zero and Ki, Ko, K3 are massive, the variety defined by six
on-shell equations is irreducible, i.e., there is only one branch with dimension two. All
100 coefficients of integrand basis (6.6) should be determined at the same time using this
irreducible branch.

The variety will split into two branches when one of K7, Ko, K3 is massless, this cor-

(M,M,m) (M,m,M) (m,M,M) )
(K Ks) + CO22(ks 1) and G227 207 Tt is easy

to see that when K22 = 0, we have 511 = 0, thus l~)0 = y3y4. Similarly when K12 = 0,

responds to kinematic configurations C22

we have a1s = 0, thus Dy = x3x4. For K% = 0, we could use the massless condition
(721 — 711) (722 — 712) + (723 — 713) (724 — 714) = 0 to solve 794, and substitute it back to
50, lA)o to solve y3, x4. After putting solutions of y3, x3 back to Dy, the numerator of Dy is
factorized into two factors, i.e., there are two branches.

Above procedure, although straightforward, could be complicated and probably miss
some branches in certain kinematic configurations. An alternative and better way of finding

branches of variety is to use Macaulay2 [37].

(M,M,m)
(K4,K5)
ture of these two branches. In this example, one branch is characterized by y3 = 0 and

Let us take kinematic configuration C22 as an example to illustrate the struc-

the other branch by y4 = 0. For the first branch, only 65 elements are left after putting
y3 = 0 to integrand basis (6.7). Dividing these 65 monomials over Grobner basis generated
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from equations defining this branch, we find that only 59 of them are independent. So
we can only find 59 coefficients of integrand basis (6.7). Similarly, for the second branch,
66 elements are left after putting y4 = 0, and only 59 are independent after dividing
them by Grobner basis generated from definition equations of this branch. Both branches
are varieties of dimension two, and their intersection is an irreducible variety of dimen-
sion one. The one-dimensional intersection can detect 18 coefficients, thus we can find all
59 4+ 59 — 18 = 100 coefficients using both branches.

If two of Ki, K5, K3 are massless, i.e., kinematic configurations CQQEAK/Z%S),
02257;;7:;’{]:)[) and C22Ez:ﬁ(’$), the variety will further split into 4 branches. Take kine-

(m,M,m)
(K47K5)

Dy = x3x4 and Dy = y3y,. It is easy to see that there are 4 branches characterized by
Vii(ws3=0,y3=0), Va: (23 =0,y4=0), V3: (24 =0,y3 =0) and Vy : (4 = 0,y4 = 0).
Using algebraic or other methods, one can find that each branch can detect 34 coefficients.

matic configuration C22 as an example, massless conditions of K7, Ko will reduce

A naive summation of these 4 branches gives 34 x 4 = 136 coefficients, which is larger than
the number of integrand basis. This means that there are intersections among 4 branches.
By analyzing intersections among all possible combinations of branches, we find that in-
tersections for pairs (Vi,Va), (V1,V3), (Va, V3), (Va4, Vo) are irreducible one-dimensional va-
rieties,'% and intersections for pairs (Vi, V4) and (Va, V3) are isolated points. Intersections

of three or four branches are again above two isolated points.
(m,m,m)
(K4,Ks)
less, the variety is given by eight branches, i.e., each branch of previous paragraph has fur-

If we assume kinematic configuration to be C22 where all K1, K9, K3 are mass-
ther split into two branches. The first two branches V1, V; characterized by z3 = y3 = 0 (or
the seventh and eighth branches V7, Vg characterized by x4 = y4 = 0) can detect 19 and 21
coeflicients respectively, and 34 coefficients can be detected by using two branches. This can
be checked by noticing that the intersection of these two branches can detect 6 coefficients,
so 19 + 21 — 6 = 34. Similarly, each of the third and fourth branches V3, V; characterized
by z3 = ys = 0 (or the fifth and sixth branches V;, Vi characterized by z4 = y3 = 0)
can detect 20 coefficients, and 34 coefficients can be detected by using two branches.
This can also be checked by noticing that their intersection can detect 6 coefficients, so
20 4+ 20 — 6 = 34. We also need to clarify the intersection pattern among eight branches.
There are no intersections shared by five or more branches. The intersections of follow-
ing six pairs (V1, Va2, V3, Vy), (Vs, Ve, V7, W8), (Vi1, Vo, Vs, Vi), (V3, Vi, Va, Vg), (V1, V3, Ve, Va),
(Va, Vi, Vi, V7) are single points. Intersections of every three branches are also single points,
which are inherited from corresponding intersection of every four branches (for example,
intersection point of (V1, Vo, V3) coming from intersection point of (Vi, Va, V3, Vy)). No new
intersecting points besides the ones of every four branches are found for intersections of
every three branches. The intersections of every two branches are possibly one-dimensional

Fach one-dimensional intersection can detect 10 coefficients for this example. With information of
other intersections, we can make following counting. Since intersection of three or four branches detects
2 coeflicients, each intersection of two branches will detect 10 — 2 = 8 independent coefficients, thus each
branch will independently detect 34 —8 —8 —2 = 16 coeflicients that can not be detected by other branches.
Adding all together we have 16 x 4 + 8 x 4 + 2 = 98 coefficients as it should be.
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varieties or single points. In order to express the intersection pattern, we will use following
notation V4 NV, = (d|m) where d is the dimension of variety (so d = 1 for one-dimension
and d = 0 for points) and m is the number of coefficients detected by the intersection.
Thus all possible intersections between pairs (V;, V;) are given by

(16) =VinVa=VanVy =VanNVe =VanNVy=VsNV=VsN Ve =Vs N Vg = Vs Nk,

(1) =VinVs=VinVe=VainV; = V5N V7,

O =VinVa=VinVs=VinW=VnNV=VnV;=WmnNV=3nNVk=V,NnV
=VinVe=VsnVa=VeN V5.

6.2.2 Kinematic configurations with one of K, K5 absent

For C22k, o or C22k; ¢, i.e., one of K4, K5 absent, the variety is given by two branches!!
even without imposing massless conditions of K;,7 = 1,2,3. Each branch can detect 64 co-
efficients of integrand basis and their one-dimension intersection can detect 28 coefficients.

By using two branches all 64 + 64 — 28 = 100 coefficients can be detected.

m, M, M M ,m, M M, M,m . .
Ko/ K5, C22K4/K5,® and C22K4/K57®, the variety is

given by four branches. To illustrate the structure of branches, let us take C22%;%’;:®

an example. Each branch is 2-dimensional variety and can detect 21 coefficients. Let us use

For kinematic configurations C22

as

V1, Vs to denote two branches characterized by ys3 = 0, and V3, V4 to denote two branches
characterized by y4 = 0. We find that these four branches will intersect at a single point.
Among intersections of every three branches, non-trivial two intersecting points exist for
pair (V1,Va,Vy) and (Va, V3, Vy). Pair (V4,V3) intersects at a point, while intersections
of all other five pairs of every two branches are one-dimension varieties. Among them
VinV,, VanVy can detect 11 coefficients while V4 NV, Vo N V3 can detect 6 coefficients and
VonVy, 10 coefficients. It is also worth to mention that though having same four branches,

m MM - cooMm M oM AMm

the intersection pattern of C22 are different from

Ki1/K5,0’ K4/Ks,® K4/K5,0
m,m,M m,M,m M,m,m
these of 022K47K5 ’022K4,K5 , and 022K4,K5 .
. . . . ’I’)’LJ)’L,M m’M’m M7m7m
Next let us discuss kinematic configurations CQ2K4/K5?®7 022;(4/1(5,@ and C2217(4/1(5@‘

For these cases, the variety is given by six branches. Taking C22T(;%’(? ., as an example,

the first two branches V7, Vs characterized by x3 = y3 = 0 can detect 19 and 21 coefficients
respectively, and the intersection of these two branches can detect 6 coefficients, thus
we have 34 coefficients by using both branches. The third branch V3 characterized by
x3 = y4 = 0 can detect 34 coefficients. Similarly, the fourth branch V, characterized by
x4 = y3 = 0 can also detect 34 coefficients. The last two branches V3, V5 characterized by
x4 = ys4 = 0 can detect 19 and 21 coefficients respectively, and by using both branches one
can detect 34 coefficients. It is interesting to notice that these six branches are split from
corresponding 4 branches of C22%’ﬁ<’?. We will again clarify the intersection pattern of
these six branches. No intersections exist for every five or six branches. For intersections

of every four branches, pair (V1, Vs, Vy, V;) and (Va, V3, Vi, Vi) intersect at single points.

"This can be seen by solving ys, x3 using Do =0and Dy =0 equations and putting solutions back to
Dy, which is factorized to two pieces. One can also use Macaulay?2 to find branches. From now on, we will
not discuss how to get branches.

— 25 —



Apart from the inherit intersecting points of four branches, there are also pairs of every
three branches (Vq, Vo, V3), (Va, Vs, Vi), (V1,Va, Vy), (V3, Vs, V) that intersect at different
single points. For intersections of every two branches, (V1,V3), (Va, V) intersect at one
single points, (V3,Vy) intersects at two points, and (V34,V26), (V1,V2), (Vs, Vi) intersect
at one-dimensional variety which can detect 6 coefficients, while (V3 4, V] 5) also intersect
at one-dimensional variety which can detect 5 coefficients.

"I where all K1, Ko, K3 are massless, the variety

Ki/Ks5,0
splits to eight branches. The branch structure is the same as C223"2™. Two branches

For kinematic configuration C22

V1, Vo characterized by x3 = y3 = 0 as well as two branches V7, Vg characterized by
x4 = y4 = 0 can detect 19 and 21 coeflicients respectively, while two branches V3, Vj
characterized by z3 = y4 = 0 and two branches V5, Vi characterized by x4 = y3 = 0 can
detect 20 coefficients respectively. These eight branches intersect at a single point, while
all intersections among every seven, six, five, four or three branches are also located at the
same point. There are 28 possible intersecting pairs of two branches, among them 12 are
one-dimensional varieties, and intersections of the remaining 16 pairs are the same single
point as the intersection of eight branches. For the 12 one-dimensional variety, 8 of them
coming from (Va,Vi45), (Vs,V36,7), (V3,Va) and (Vs, Vi) can detect 6 coefficients individ-
ually, while the other four coming from (Vi, V3) and (V7, Vi 5) can detect 5 coefficients.

6.2.3 Kinematic configurations with both K, K5 absent

For kinematic configuration C22 ¢, since K4 = K5 = 0, momentum conservation ensures
K3 = —K1— Ks. K1, Ky are still independent, so we can use them to construct momentum
basis e;. For this simple case, we can write down analytic expressions and make discussion
more transparent.

Using parametrization K1 = ai1e1+aq2e0 and Ko = 1161+ S12€9, the three non-linear
cut equations can be given by

a1
Do = w314 + —— (1_3/1)%7

B2 B12
Do = y3ya + Bu1 <1 - y1> Y1,
P12
Do = zays + T3y + iz oo (1 - y1> y1 (6.12)
B2 B2

after eliminating all RSPs. If K, K9, K3 are massive, the variety is given by following six
branches defined by ideals:

Co9(M.M,M) (99 (M. M,M)
‘/1 ©@) — {y3a xs3, yl} ) ‘/'2 (@) = {y37 €r3, Y1 — Bl?} )
Cio9(M.M,M) (99 (M. M,M)
Ve 99 =Aypynaad, Ve 99 ={ys,y1 — Biz, a4},
a0
Vs ’ = {ysya + B11(1 — y1/B12)y1, y3a12 — w3P12, yaarr — zafi1},
oM. M,M)
Vo 99 = {ysys+ Bui(l — y1/Br2)y1. —ysoan + 23Bi1, yac2 — z4Bia} . (6.13)

— 26 —



Among these six branches, four of them V;,i = 1,2, 3,4 will detect 19 coefficients individ-
ually and two of them V;,7 = 5,6, 36 coefficients. The physical picture is following. Each
(M, M, M)
branch of 022(K4/K5,®)
ficients and one branch detecting 36 coefficients. The intersection pattern of six branches

will split into three branches with two branches detecting 19 coef-

is following. No intersections exist for six or every five branches. Each combination of
(Va, Vi, V5, V) and (Vi, Vi, Vi, Vi) intersects at a single point. No new intersection points
exist for intersections of three branches. For intersections of 15 pairs (V;,V;), there are no
intersections among 4 pairs (V1 3, V24), while (Vi, V3) intersects at one point, and (Vs, Vi)
intersects at two points. Intersections of remaining 9 pairs are one-dimensional variety.

If one or two momenta of Ki, Ko, K3 are massless, i.e., kinematic configurations

(m,M,M) (M,m,M) (M,M,m) (m,m,M) (m,M,m) (M,m,n)
022(&@) , 022(@@) , 022(@@) , C22(®7®) , C22(®7®) and 022(@@)

ety still has six branches. Definition of branches are still the same as (6.13) for C22

(M,m,M) (m,m,M) . . (M,M,m) (m,M,m) (M,m,m)
(322(@@) , C22(®7®) , but will be different for C22(®7®) , C22(®’®) , C22(®’®)

where the first four branches are the same as (6.13), and the last two branches change to

, the vari-
(m7M?M)
(@)

C22(M7M,m),(m,M,m),(M,m,m)

v, e = {y3, —yaa12 + x4P12, v3ys + @11 (1 — y1/B12)1 },
022(M,]\/1,m),(m,]bf,m),(M,m,m)

Vg 09 = {ya, zays + c11(1 — y1/B12)y1, —ysar2 + x3Pi2} . (6.14)

For the last kinematic configuration CQZ(m’m’m), the external momenta are extremely

(©,0)
degenerated since we must either have A\; ~ Ay ~ A3 or A\ ~ Ao ~ A3. In other words, we

can not use K1, Ko to construct momentum basis e;. One possible choice of momentum
basis is the massless momenta K1, Ko, es, e4 satisfying!'?

K - Ko=Ki-e3=Kog-es=e3-e4=0, Kj-e4=Ko-e3=1. (6.15)
With this momentum basis we can expand loop momentum #; as
0= (l1-eq) K1+ (b1-e3) Ko+ (01-Ko)es+(01- Ky )es = 21 K1+ a9 Ko+ xses+x4eq, (6.16)
and similarly for /5. Then the six propagators are given by

Dy = 02 = 2(x1x4 + 2023), Dy = ({1 — K1)?> = Dy — 224,
Dy = 03 =2(y1ya +voy3), Di=(fo — K2)* = Do — 2y,
Do = (61 + £2)* = 2(x1 + 1) (w4 + ya) + 2(w2 + y2) (73 + v3) ,
Dy = (61 + by + K3)? = Do — 2(4 + ya) — 2(x3 + y3) - (6.17)

Solving these equations we find
$4:07’y4:035133:—y:3, (618)
and there are only two non-linear equations left

Do = 2y3, Do = 12y3 - (6.19)

2We can always have this choice. For example, if K; = )\1X1, Ko = /\1X2 we can take ez = 03)\2X1 and

€4 = 64)\2X2. Similarly if Kl = )\1X1, KQ = )\2}1, we can take €3 = C3)\1X27 €4 = C4)\2X2.
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Now we have five ISPs (21, x2,y1, Y2, y3) and two non-linear equations. The integrand basis
is given by 144 monomials of ISPs under degree conditions as already shown. The variety
is given by two branches. The first one characterized by y3 = 0 is dimension four variety,
and the second one characterized by xo = y2 = 0 is dimension three. The first branch can
detect 114 coefficients while the second branch can detect 49 coefficients. Their intersection
is two-dimensional variety, which can detect 19 coefficients.

The splitting of branches of different kinematic configurations is summarized in figure 7.

7 Remaining two-loop topologies

After demonstrating methods and various properties with above planar penta-triangle and
non-planar crossed double-triangle examples, we will present results for the remaining two-
loop topologies in this section. We will omit many details but show only main results.

7.1 The topology (C32): non-planar crossed box-triangle

There is only one topology left for type (C), i.e., the crossed box-triangle topology (C32).
We use K1, K3 to construct momentum basis e¢;. From seven on-shell equations, we can
solve, for instance, x1, x2, Y1, y2 as linear functions of four ISPs (3, x4, y3,v4). The remain-
ing three propagators are quadratic functions of ISPs. For general kinematic configuration,
the expression and solution of cut equations are tedious, so we will not explicitly write them
down here.

Integrand basis. In general, the variety defined by these three remaining quadratic
cut equations is irreducible and dimension one. Using Grobner basis method under ISPs
ordering (y4,ys, x4, x3) and the renormalization conditions

> od) <5, Y dy) <4, D d@)+ Y dy) <6, (T.1)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

we can get integrand basis for various kinematic configurations. There are all together
four kinds of integrand basis depending on the massless limits of K7, K3 since we have
chosen K1, K3 to generate momentum basis. For all kinematic configurations with K1, K3
massive, the integrand basis contains 38 elements given by

I 2 .3 .4 .5 .6 2 3 4 5 2 3
BC32 = {17 T3,T3, T3, T3, L3, T3, T4, L3LL, T3T4,T3T4, L3L4, T34, Y3, L3Y3, L3Y3, T3Y3,

4 5 2 3 4 2 2 2 3 3 3
T3Y3, L3Y3, L4Y3, LILLY3, L3T4Y3, L3L4Y3, T3L4Y3, Y3, L3Y3, L4Y3, Y3, L3Y3, L4Y3,

Y3, T3Y5, TAYS, Yd, T3Y4, Y3Ya, Y3Y4s Y3y} - (7.2)

For all kinematic configurations with K7 massless while K3 massive, the integrand basis
still contains 38 elements, and is given by replacing 9 elements in 8532

11 I 2 3 4 5 2 3 4
3032 = 5032 - {$311347 X3X4,X3X4,X3T4,T3L4, T3TLLY3, L3LAY3T3TL4Y3, x3x4y3}

2 .3 .4 .5 .6 2 3 4 5
+{$47 Ly Xgy Ly, Ly, TyY3, TyY3, L4Y3, l’4y3} . (73)
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Figure 7. The splitting of variety into branches under different kinematic configurations. All
branches are dimension two varieties, except the most degenerated case CQQEg”gL)’m)

branch is dimension four and the other, dimension three. The arrows indicate how branches split

where one

when one more specific kinematic condition is imposed.

For all kinematic configurations with K; massive while K3 massless, the integrand basis

contains 38 elements, and is given by replacing 6 elements in 8532

171 1 4 4
Bity = Blgy — {way3, xay3, w4y, ysva, v3ya, vy} + {ui, wsvi, v, syl vl wsui} . (7.4)
Finally for all kinematic configurations with both Kj, K3 massless, the 38 elements of
integrand basis are given by replacing fifteen elements in Bégz

A% I 2 3 4 5 2 3 4
8032 = 8032 - {$3ZE4, L3L4, X3L4,L3T4, X3L4,L3TLY3, L3L4Y3, T3X4Y3, L3L4Y3,

2 3 4 2 3 2 .3 .4 .5 .6 .2 3 4
T4Y3, X4aY3,T4Y3,Y3Y4, Y3Y4, y3y4} + {1’4, Ly Ty, Ly, Ty, TyY3, TyY3, L4Y3,
5 2 2 3 3 .4 4
334y3,y4,x3y4,y4,$3y4,y4,$3y4} : (75)

To discuss the structure of variety, we again use the notation C32E§’N’R)

U, P could either be K5, K¢ or @ representing corresponding K5, K¢ absent. L will be m
if at least one momentum of K7, K9 is massless, and R will be m if K3 is massless, while
N will be m if Ky is massless. Otherwise they will be M.

The number of branches under various kinematic configurations is summarized in
table 1.

where now

For each kinematic configuration, one should use all branches to find all 38
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(L N R) <U7P) (K57K6) (K5/K67®) (®7®)
(M, M, M) 1 2 4
(m, M, M), (M, m, M), (M, M, m) 2 4 6
(m,m, M), (m,M,m),(M,m,m) 4 6 6 for (M, m,m)/8
(m,m, m) 8 8 ]

Table 1. Number of branches of various kinematic configurations for non-planar crossed box-

triangle topology. The kinematic configurations are denoted by C32E5’g)’m

O

(M m, M) (AL M, m)
vy MM AT
G2k ito 0

1ol A M
Co2kvrey O3 CagpMMm)  ogo(Mmb) caplmmt). . igagimMm)

sl (Ke/Ke,2) (Ks /K@) (K5/Ke,@) (Ks/K6.@)
., 1
- (s fKe.@)
.A,, 09

(M, m,m) (M. M,m) (M ) Hlmmm)  run(momm) (m,M,m)
032(;(5“;;(2@} 032@‘@)’“ sz(x;;(;’; C32enny S35 picamy 32

(4 e, ) (A m,m) (MM M) (.M M) {m,m.AM) Hlm,m.m]
G268 CPoa o) C¥2Gm  ew  PUoe

Figure 8. Intersections of branches for various kinematic configurations of non-planar crossed box-
triangle topology (C32). Each branch V; is represented by a closed loop and denoted by ¢, while
black dot is the intersecting point. Kinematic configurations for each pattern are listed below each
diagram.

coefficients of integrand basis. We can also use branch-by-branch polynomial fitting
method to simplify calculations.

Variety with one branch. For the most general kinematics C32E%5’Af(’g), the variety is

irreducible with dimension one. All 38 coefficients should be found using this branch.
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Variety with two branches. For kinematic configurations

(M,M,m) (M,m,M) (m,M,M) (M,M,M)
C32(K57K6) , C32(K5,K6) , C32(K5,K6) , C32(K5/K67®)’ (7.6)

the variety is given by two branches with dimension one. These branches will intersect

at points. More explicitly, for C32E;?;Af(’é\;[), two branches intersect at two isolated points,

while for 032000 32000 anq c32(000M)

(Ko, Kg) * (Ko, Ks) (Ks/Ke,0)’ two branches intersect at four points.

Variety with four branches. For kinematic configurations

(mym,M) (m,M,m) (M,M,m) (M,m,M) (m,M,M)
032(1{5,1(6) , 032(1{5,[{6) , C32(K5/K6,®)’ 032(1{5/1{6,@)7 C32(K5/K6,®)’ (7.7)

the variety is given by four branches with dimension one. The intersection pattern among

four branches Vi, V5, V3, V4 can be shown as follows. For C32(m’m’M), c32(mMm) L4

(K5,Ks) (Ks,Ke)
032?1?:717(](\;[)@)’ the only non-zero intersections are given by Vi NV = V3NV, = (0[2),
VinVs=V,nNVy=(0|1). For Cg2MAMm) - and ¢32MmM) - onzero intersections are

(K5/Ks,0) (K5/Ke,0)’
given by Vi N Vi = (02), Vi N Vs = Vo N Vi = (0[1), Vi NV = Vi 1 Vs = (0]1).

Variety with six branches. For kinematic configurations

(M,m,m) (M,M,M) (m,M,m) (m,m,M)
C2ko k) C200) + O2(ki/ke0) C32(ks/ke2)
(M,m,m) (M,M,m) (M,m,M) (M,m,m)
C32(K5/K6»®)’ C32(@@) ) C32(®,®) J CgQ(@,@) ) (7.8)

the variety is given by six branches with dimension one. These branches again intersect
at points. For C32mMm) - and g2 ™M) each pair of (V1,Va), (Va, Vi), (Vy4, V1),

(K5/Ke,@) (Ks5/K6,0)’ o
<v5,(v6), (V)ﬁ, Va), ((v;»,, vs,)), (v, ‘fr», (v4), Ve) ir(ltersect)s at one szngle p)oint. For €320,
M,M,M M,m,m M,M,m M,m,M Mm,m .
C32(®’®) , C32(K5/K67®), 032(@@) , C32(®7®) and C32(®7®) , each pair of (V1,V;)

and (Vy,V;) for i = 2,3,5,6 intersects at one single point.
Variety with eight branches. For kinematic configurations

€ N O T 0GR €7 > e 0 RN € el

(K5,Kg) (K5/Ks,0) (0,2) (0,2) > (0,0) (0,0) ’ (7'9)

the variety is given by eight branches with dimension one. There will be single intersect-
ing point for each pair of following ten combinations: (Vi,Va), (V1,V3), (V1,Vs), (Va, Vi),
(Vs,Va), (Vi, Va), (V5,Vs), (V5,V7), (V, Vs) and (V7,Vs).

The intersection pattern of branches for each kinematic configurations is shown
in figure 8.

7.2 The topology (B41): planar penta-bubble

From on-shell equations of six propagators we can get three linear equations for pure /1,
and reduce four RSPs (z1,z9,23,24) to one. Exception happens when Ky = K5 = 0,
Dy=(l;— K| —Ky—K3)? = E% from momentum conservation, and the independent linear
equations containing pure £1 reduce to two. In this case we get two ISPs from x;. There is
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no linear equation for pure fo, so all four y; are ISPs. Adding them together there will be
5 ISPs (or 6 ISPs for the case Ky = K5 = 0).

We use K1, K3 to construct momentum basis e;. After solving linear equations we
can express remaining three quadratic equations with ISPs. Using Grobner basis method
with ISPs’ ordering (4, Y1, y2,y3, ya) for kinematic configurations B41 x, k), B4l (k, /k;.0)
under renormalization conditions

> d(w) <5, > dw) <2, o od)+ Y. d(y) <5. (T.10)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

we can get integrand basis with 18 elements. We have three kinds of integrand basis
for kinematic configurations B41 (g, r), B41(k,/K;5,0) according to kinematics of K7y, K3
since we have chose K1, K3 to generate momentum basis. The first kind is suitable for all
kinematic configurations of B41 g, k), or K3 massive while others arbitrary for B41 g, o),
or K massive while others arbitrary for B4l g, ). It is given by 18 elements

Bhui = {1, 24, Y1, Y2, T4y, Ya, Y3+ Y1Y3: Y2U3s Y3 Yy TaY4, Y1Yas Y2Yds TaY2Yd, Y3Yas Ui, TaYs } -
(7.11)

The second kind is suitable for kinematic configurations with K7 massless while others
arbitrary for B4l (g, ). The 18 elements of integrand basis are given by replacing one
element in BL,,

Bifn = By — {zavoya} + {zar3} . (7.12)

The third kind is suitable for kinematic configurations with K3 massless while others ar-
bitrary for B4l(k, ). The 18 elements of integrand basis are given by replacing three
elements in 811941

31131411 = 311341 - {m4y2,y§,x4ygy4} + {$4y17y%aw4y%} . (7‘13)

For all kinematic configurations of B41(, ) where ISPs are given by six variables with
ordering (xs, x4, Y1, Y2,Y3, Y1), we get 83 elements for integrand basis

BIB‘A/HZ{L 3, xiz’n l‘g, x%? J}g, Iy, 'T?l: J?i, .%i, .%i, Y1, Z3Y1, $§y1, l’gyl, xgyla LaY1, xiylv xiylv xiylv
yt, w3yt 23T, w3yt wayt, 23yt 2RYT, v2, w3y2, T3y, TRY2, T3y, Tay2, T3y, TY2, T4y,
y%, $3y%: x%y%, x%y%, 3«"4y§, xiy%, xiyi Y3, L3Y3, %‘:%,y?n x%yg, 90%1/3, L4Y3, Y1Y3, T3Y1Y3,
T3Y1Y3, TY1Y3: TAYLY3, Y2U3, T3Y2Y3, T3Y2Y3, TaY2Y3, TaY2ys, Y3, T3Y5, T35, T5Y5, T4Y3,
Y, TaYa, TIY4, ThYs, TYL, Y1Y4, TAYIYL, TIY1YAs TIY1YA, Y2Yas TaY2Y4, T3Y2Yd, THY2Ya,
Y3Y4, T4Y3Y4, Y3, TaYs, T3Y3, THY} - (7.14)
The reason we have 83 elements instead of 18 is that, for B4l g, ) and B4l(k, /K o),
x4 is determined by quadratic equation, i.e., the maximal power of x4 is two, while for
B41 (g, o) we can have d(x3) + d(z4) < 5.

In order to simplify the calculations of coefficients, we need to discuss the branch
structure of variety. For B4l g, k) and B4l g, /k; ), there is a quadratic equation of
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single variable z4, and we can always get two solutions of x4 in C-plane no matter what
the momentum configuration of Ki, K5, K3 is. Thus there will always be two separate
branches characterized by two solutions :L‘El , x};"’. For B41 g, ), these two branches with
dimension two will not split further. Using each branch we can detect 9 coefficients of
integrand basis, and since there is no intersection between two branches, we can detect
all 9 + 9 = 18 coefficients using both branches. For B4l g, x; o), each branch will split
further into two branches, so there will be in total four branches: Vi, Vs characterized
by le and Vs, Vy characterized by x?. Each branch can detect 6 coefficients. The two
branches characterized by xii will intersect at one-dimensional variety with intersection
pattern (1/3) = Vi NV, and (1]3) = V3N V4. So using two branches of each xgi we can
detect 6 + 6 — 3 = 9 coeflicients, and in total 9 + 9 = 18 coefficients using all 4 branches.

For kinematic configurations B41 (g, o), =3, x4 are both ISPs, so the quadratic equation
of (x3,z4) could not be factorized into two separate pieces in general. If all K1, Ky, K3 are
massive, the variety is given by two branches. Each branch is 3-dimensional, and the inter-
section of these two branches is 2-dimensional. Each branch can detect 58 coefficients, while
the intersection of them is (2|33) = ViNVa. If at least one momentum of K, K3 is massive,
the variety will split into four 3-dimensional branches Vi, V5 and V3, V. Using V; or V3 we
can detect 28 coefficients of integrand basis, while using V5 or V4 we can detect 36 coeffi-
cients. The intersection of these four branches is 1-dimensional, and it can detect 3 coeffi-
cients. Intersections of every three branches are also the same 1-dimensional variety as the
one given by intersection of four branches. For intersections of every two branches, (V1, V3)
and (Va,Vy) are inherited from the intersection of four branches, which is 1-dimensional
variety. The intersections of (Vi,Vy) and (Va,V3) are 2-dimensional. Their intersection
pattern is (2|6) = Vi N Vy, (2|6) = Vo N V3. The intersections of (Vi, V2) and (V3, V) are
also 2-dimensional, from which 18 coefficients can be detected using each intersection.

For the special kinematic configuration of B4l o) with both Kj, K3 massless, the
three quadratic on-shell equations reduce to

z3x4 =0, yiy2 +ysys =0, x3ys+x4y3=0. (7.15)
Besides the ordinary four branches

Vi: x23=0, 4y2=0, y3=0, x4, y1, ys4, free parameters,
‘/2 : xr3 = 07 Y1 = 07 Ys = O, T4, Y25 Y4, free parametersa
‘/E‘] : Ty = 07 Y2 = 07 Ys = 07 T3, Y1, Y3, free parameters,

Vi: x24=0,vy1=0, y4=0, 23, y2, y3, {ree parameters, (7.16)
there is also another embedded branch given by the ideal
Vs {aays + 3ya, 1y + Yaya, T3, T334, T3} - (7.17)

Each of the ordinary branches can detect 28 coefficients, while V5 can detect 37 coefficients.
These five branches intersect at one single point, and intersections of every four branches are
also the same point. For intersections of every three branches, we have (1|6) = (V1, V2, V5),
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(116) = (V3,Vy, V), (113) = (V1, Vs, V5), (1]13) = (Va, V4, V), and they are all different 1-
dimensional varieties. The other intersections of every three branches are inherited from
the same point of intersection of five branches. For intersections of every two branches,
(V1, Vi), (Va,V3) are at the same point of intersection of five branches, while (V7,V3),
(Va, Vy) are the same 1-dimensional varieties of intersections of (Vi, V3, Vi) and (Va, Vi, Vs)
respectively. Intersections of other combinations of pairs are 2-dimensional and we have
(2]12) = ViNVs, (2]12) = Vo nVs, (2]12) = V3N Vs, (2112) = VaN Vs, (2|115) = Vi NV,
(2]15) = V3 N V4. They are all different 2-dimensional varieties.

7.3 The topology (B33): planar double-box

This topology has been discussed in details in many other papers [27-30], here we will briefly
summarize some results. We use K1, K, to construct momentum basis e;,7 = 1,2, 3,4 and
all kinematics can be expanded by this basis. The seven on-shell equations can be reduced
to three quadratic equations with four variables after solving four linear equations. Since
there are two linear equations for x; variables and two for y;, by solving them we can get 4
ISPs (2, x4,y1,y4) for instance. Then Dy = 0 becomes a conic section of (z2,x4), Dy =0
becomes a conic section of (y1,y4) and 130 = 0 is a quadratic equation of (x9, x4, y1,Y4).
Variety defined by these three quadratic equations will be reducible if any of K1, Ko, K3, K4
is massless, or any of K5, Kg is zero.

The renormalization conditions

>ood) <4, D dy) <4, Y d@)+ > dy) <6 (T.18)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

(m)xz(u)yi«yl)yi(y‘l). We can get 32 elements for inte-

constrain all possible monomials mg
grand basis after dividing them by Grobner basis generated from three quadratic equations
with ISPs’ ordering (2, x4, y1,y4). Integrand basis for different kinematic configurations
can be arranged to four kinds according to the kinematics of K7, Ky, which we have chosen
to generate momentum basis e;. If K1, K4 are massive, integrand basis is given by following

32 elements
I 2 2 3 3 4 2 3 4 2
3333: {1, X2, X4, X2T4, Ty, L2LY, T gy X2L Yy X gy Y15 TAYL, TYyY1, TyY1, TyY1, Y4, T2Y4, T4Y4, Ty Y4,

3 4 2 2 2 2 3 3 3 3 4 4

T4Y4, TyYa, Y1Y4, TaY1Y4s Y1 TaYds Y1V TAYIYL, Vi TaYis> Y1V, TaY1Ys, Y, Tayy b (7.19)

If K7 is massless while K4 is massive, integrand basis is given by replacing 6 elements in
B{%g as follows

11 I 2 3 .2 3 4 2 .3 .4 2 3 4
8333 = 8333 - {332354, L2Xyy 2L Yy TyY1, T4Y1, $4y1} + {$27 Loy Lo, LolY4, L4, 33294} . (7-20)

If K4 is massless while K is massive, integrand basis is given by replacing 6 elements in
811933 as follows
Bgslzs = 811933 —{Y194, Tay1Y1, ylyi 334y1yz7 ywi’, x4y1yi} + {yi uy%, y:fa 3349?7 yila 5642/%}-
(7.21)
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Finally if both K7, K, are massless, integrand basis is given by replacing 12 elements in
8{333, which are exactly 6 elements from the second kind of integrand basis plus the other
6 elements from the third kind of integrand basis

2 .3 .4 2 3 .4 2 2 .3 3 .4 4
8333 - {17 X2, L9y Loy Loy Lhy L gyXyy Ly, Y1, TAY1, Y1, T4Y1,Y1,T4aY1, Y1, T4Y1, Y4,

2 3 4 2 3 4 2 2 3 3 4 4
T2Ya, ToY4s ToYd, ToYa, TaYd, TYd, TIY4, T4Y4s Yd» TaYL, Yi> TaYs, Vs, Tayyy - (7.22)

We use notation B33§5’§§ to denote different kinematic configurations, where again
U, P could be either K5, K¢ or @, and L is denoted by m if at least one momentum of
K1, Ky (or K3, K4 for R) is massless, otherwise it will be denoted by M.

(M, M)
(K5,K6)’

. : : ; (m ) (M,m) (M, M) (M, M)
sion one. For kinematic configurations B33( Ko)? B33(K Ke)’ B33(K /Ke,0) and B33(® 2)

the variety splits into two branches. Fach branch can detect 17 coefficients of integrand

For general kinematic configuration B33 the variety is irreducible with dimen-

basis, and two branches intersect at two points, which exactly gives 17 4+ 17 — 2 = 32
coefficients when using both two branches.

For B33EZ mfz ) the variety is given by four branches. Each branch can detect 9 co-
efficients. There is no intersection for four branches or every three branches, while each
of following pairs (Vi,V2), (Va, V), (V3,Vy) and (Vy, V1) intersects at a single point. Thus
when combining them together we can find 9 x4—4 = 32 coefficients. For kinematic config-
urations B33ET;;]>/[I){67®) B33EK /I){ o)’ B33§® ®)) and B33g® ®)), the variety is also given by
four branches. Branches Vi, V3 can detect 5 coefficients individually while branches V5, Vy
can detect 13 coefficients individually. The non-zero intersections among branches are still
single points between following pairs (Vl, Va), (Va, V3), (Va, Vi), (Va, V7).

For kinematic configurations B33§ and B33™™ | the variety is given by six

K5/ Ke,0) (©,0)°
branches. Among these six branches, V7, V4 can detect 9 coefficients while V5, V3, Vs, Vg can
detect 5 coefficients. Non-zero intersections exist only for following pairs (V1, V3), (Va, V3),
(Va, V), (V4, V5), (V5, V) and (Vg, V1), and each intersection is a single point. So using all
six branches we can detect 2 x 9+ 4 x 5 — 6 = 32 coefficients.

Results presented here are consistent with those found in [27-30]. In our discussion,
the variety will be reducible for kinematic configurations that any of Ki, Ko, K3 Ky is
massless, or any of K5, Kg is zero. These configurations correspond to the existence of
three-vertex @ or ©. The distribution of ® and © will generate different kinematical
solutions to the heptacut constraints, which, in our language, are irreducible branches of
the variety after primary decomposition. Each irreducible branch can be seen as a Riemann
sphere, and the intersecting points between two branches is precisely the poles of heptacut
Jacobian. According to these mapping, we can reconstruct the global structures of double-
box topology shown in the references from irreducible branches and their intersections.
The 32 elements of integrand basis are sufficient to expand double-box amplitude at the
integrand-level, yet they are still redundant after loop integration. Only after eliminating
the redundancy using IBP method for instance can we get integral basis shown in [27].

7.4 The topology (B32): planar box-triangle

For this topology, we can get two linear equations for (z1,x2,x3,x4) and one linear equa-
tion for (y1,v2,vs3,y4), and reduce 8 RSPs to 5 ISPs (x3, 24, y1,¥y3,y4). We use K1, K3 to
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construct momentum basis e;. Under the renormalization conditions

dood@) <4, ) d) <3, Y d@)+ > dy) <5 (T.23)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

we can get integrand basis using the Grobner basis with ordering (3, 24, y1,¥ys3, y4). For
B32(k, k5) and B32(g, /x5 0), we get 69 elements for integrand basis, but these elements
may be different. The difference can be classified by the kinematics of K7, K3, and there
are in total 4 kinds of integrand basis. The first kind is for all configurations with Ky, K3
massive, and the 69 elements are given by

By = {1, 23, 24, 2374, 25, x325, 25, 2325, ¥, y1, Tay1, T3Y1, Thy1, TIY1, Y3, T3Y3, TaYs, T3Y3,
T3Y3, T1Y3, Y1Y3, TAY1Y3, Y3, T3Y3, TaY3, T3Y3, THY3, Y13, TaY1Y3, U5, T3Y5, TaY3, T3Y3,
Yd, T3Y4, TaY4, TITAY, TY4, TITTY, TaY4, TITFYL, THY4, Y14, TAY1Y4, TIY1Y4, TY1Y4,
Y3y, TAY3YL, TIY3YA, THY3YA, Y1Y3Y4s TAYIY3Yd, Y3Y4, TaY3YL, TIY3Y4, Yd» T3Y3, T4V,

w3y, eyd, 13, T3, Ysyd, Taysyd, wiysyd, vi, 3y, vy, 3yl ) (7.24)

The second kind is for configurations with K; massless while K3 massive, and the 69
elements are given by replacing 15 elements in Bé?)z

11 I 2 3 .2 3 4 2,2 3.2 2 3 2
Bpss = Bpss — {374, 2321, T375, TYY1, TYY1, TyY1, T1Y3, T4Y3, T1Y3, T3T4Y4, T3TIY4,

3 2 3 2, 2 2 3 .4 2 3 4 2.2 3 2

L3X Y4y Ly¥Y1Y4, TyY1Y4, 9543/394} + {5537 L3, T3, T3Y3, L3Y3, L3Y3,L3Y3, L3Y3,

23ys, 23ya, wya, w5y, 23y3, 2yl 23yi ) (7.25)

The third kind is for configurations with K3 massless while K7 massive, and the 69 elements
are given by replacing 12 elements in 811332

11
B3y = Bhay — {y3y4, Taysya, TIY3y4, THY3Y4, Y1Y3Yas TAY1Y3Y4, Y3Y4, TAY3Y4, TIY3Y,

Y3y, TaY3Ya, T1YsYi b + (YT T4yt Ui Tyl T3, TY1Y3, YT Y3, TAYTYs,

why3, yiva, vayiya, iy} - (7.26)

The last kind of integrand basis is for configurations with Kp, K3 massless, and the 69
elements are given by replacing 23 elements in 811332

By = Bhsy — {wswa, w3}, waa, wiyr, wiyr, wiy1, wawaya, w3eiys, w3aiys, 2iyiya, 25010a,
Y3Y4, TaY3Y4, 3312193% fﬁiy3y4, Y1Y3Ya, TaY1Y3ya, y§y4, $4y§y47 xiy:%% y3y§, x4y3yi,
wiysyi} + {a3, @3, 23,07, wayi, o7, wayi, 3ys, 13ys, w33, Y1z, TayTys, 1393, w33,
2393, T3y, ©3ya, T3y, Y1y, waytya, 23y3, w393, 431} (7.27)

The integrand basis for B32(, ) can be distinguished by kinematics of Kj. If K3 is
massive, we still get 69 elements, while if K3 is massless, we can get 77 elements instead

of 69. The number of elements changes because in the specific momentum configuration,
the sub-triangle-loop is Om-triangle, so variety is 3-dimensional, while in other momentum
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(U, P) (& B) (K4, K5) | (K4/K5,0) (2,2)
(M’ M) 1 2 9

(m, M), (Mym) | 2 4| Afor (m, M); 241 for (M,m)
(m, m) 4 6 2+1

Table 2. Number of branches of some kinematic configurations for planar box-triangle topology

(B32). Generally each branch is 2-dimensional variety, but for momentum configurations BSQ%I’@";)

and B32§g.’g)), there is an extra branch of dimension one. We write it as 2 + 1 to emphasize the

difference.

configurations the variety is 2-dimensional. The 69 elements for K3 massive case are
given by

ZS,gi’)Q = {17 €3, x%, x%? x§7 I, xzzb 93?1, -T?p Y1,T3Y1, x?iyla fE%yl, $§y1a T4Y1, x?lylv xiyb xﬁiyh Y3,
T3Ys, 17%937 56%937 $§y3, T4Y3,Y1Y3, T3Y1Y3, x§y1y37 x§y1y3a L4Y1Y3, 932,7 x3y§7 563932,7 x%y%,
T4Y3, Y1Ys, T3Y1Ya, T3Y1YS, TAY1YS, Ys T3Ys, T3YS, TaYS, Yd, TaY4, T3Y4, T3Ya, T1Ya,
YLY4, TAY1Y4, TIYLY4s TRYLYA, Y3YA, TaY3Y4, Y1Y3Y4r TAYLY3Yas Y3Yar TaY3Yd, Uz TaYs

23y, oyd, s, s s, e YE, Ysyd, Taysyd, Ui Tayl, wys ) (7.28)

which is different from the previous four kinds of B32g, ) and B32g, /k; o). For con-
figurations with K3 massless, the 77 elements are given by

Bg§2 = {17 3, x?’n x%? xév Iy, xi? l‘i, xia Y1, X3Y1, l%yh mgyl? xgylv T4y, xzzlyla wiylv
LYY, YL 3T, 3T, TRYT, Tayt, T3YT, TAYT UYL sy, A3YE, 2ayt, 23y, Us,
T3Y3, TRY3, THY3, T3Y3, TaY3, Y1Y3, T3Y1Y3, T3Y1Y3, TY1Y3, TAY1Y3, Y1 Y3, T3YTY3,
T3YT Y3, TaYTYs, Y3, T3Y3. T3Y3, TRYS, Y1Y3, T3Y1Y5, T3Y1Y3, Yss T35, T3Y5, Ya,
T4Y4, TIY4, THYar T4Yas Y1Ya, TaY1Yas TIY1Yar THY1Y4, YTY4, TaYTYar TIYTY4, V3

T4y3, T3Y3, T3YE, i, T i, T3 s, vs, Tays, w3y} (7.29)

After obtained integrand basis, we move to the discussions of branch structure of vari-
ety. For the most general momentum configuration B32 (g, g with all external momenta
massive, the variety has only one irreducible branch, but for some kinematic configurations
it will split into many branches. We will use the notation B32Eg;§;, where as usual U, P
could be Ky, K5 or @, while L is denoted by m if at least one momentum of K1, Ky (or K3
for R) is massless, otherwise it is denoted by M. The number of branches of variety can

be summarized in table 2.

(M, M)
(K4,K5)?
ducible with dimension two. All 69 coefficients should be calculated using this branch.

Variety with one branch. For kinematic configuration B32 the variety is irre-
Variety with two branches. For kinematic configurations

(M,m)
(K4,K5)

(m, M) (M, M)
B32 , B32 (K4/K5,0)

(K1, K5) , B32

(M, M)
, B3z

(©,0) 7
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(

the variety has two branches. For B32( M)

m7
K4,K5)
intersection of these two branches is 1-dimensional with intersection pattern (1|7) = ViNVa.

(M,m) (M,M) (M,M)
For B32(K4,K5)7 B32(K4/K5,®) and B32(®’®

intersection pattern of these two branches is (1]15) = V; N V.

, each branch can detect 38 coefficients, and

, each branch can detect 42 coefficients, and

Variety with four branches. For kinematic configurations

(m, M)
(K4/K5,0)°
the variety has four branches. For B32E7;;m&5), each branch can detect 23 coeflicients indi-
. . m,M m,M
vidually, while for B32§K4/I)(5’®) and B32§®7®))
and each of V5 and V3 can detect 29 coeflicients. The intersections of branches for these

(M,m)

(m, M)
(Ka/Ks,0) " B32

(m, m
B32 (©.0)

m,m)
(K1, Ks) * B32 B32

, each of V7 and Vj can detect 17 coefficients,

kinematic configurations are following. These four branches will intersect at a single point,
while intersections of every three branches are also the same point. For intersections of ev-
ery two branches, (V1,Vy) and (V3, V3) intersect at the same single point, and intersections
for other pairs are (1]4) = Vi NV3, (114) = VanVy, (118) = ViNVa, (118) = V3N Vy. They
are four different 1-dimensional varieties. For BSZ(%;TK& o) each of V; and V3 can detect
10 coefficients, while each of V5 and V4 can detect 36 coefficients. There is no intersection
for four branches, while (V1, Vs, V4) intersects at a single point, and (Va, V3, V}) intersects
at another single point. There is no intersection between (V7,V3), while the intersection
of (Va,Vy) is 1-dimensional (1|9) = V5 N Vj. For other intersections of every two branches,
we have (1|4) = ViNVa, (1]4) = ViNVy, (1]14) = Van Vs and (1|4) = V3N V4. They are

different 1-dimensional varieties.
Variety with six branches. For kinematic configurations

(m,m)
B32(K4/K57®) ,

the variety has six branches V7, Vs, V3, Vy, Vs, V. Each of V; and V4 can detect 10 coeffi-
cients, and each of V5 and V5 can detect 17 coefficients, while each of V3 and V can detect
23 coefficients. There are no intersections among six branches and every five branches. The
only non-zero intersection of every four branches is (Va, V3, V5, Vs), and they intersect at a
single point. For intersections of every three branches, (Va, Vs, Vs), (Va, V3, Vi), (Va, Vs, Vi)
and (V3, V5, V) will intersect at the same point as intersection of (Va, Vi, Vs, V). (V1, Va, V3)
will intersect at different single point, and (Vy, Vs, Vi) will intersect at another different sin-
gle point. For intersections of every two branches, (Va, V5) and (V3, Vi) will intersect at the
same point as intersection of (Va, V3, Vs, Vi), while intersection pattern of other pairs are
(114) = VinVa, (1]4) = VirVa, (114) = VaVe, (LJ4) = VsV, (1]4) = VariVa, (1]14) = ViV
and (1]5) = Vo N V3, (1]5) = V5 N Vg. They are all different 1-dimensional varieties.

Variety with 241 branches. For kinematic configurations

(M,m)

(m.m)
B32 ,B32 0

(g; o) (7.30)

the integrand basis contains 77 elements, and the three quadratic equations reduce to

2324 =0, y3ys =0, x4y3+23ys=0. (7.31)
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There will be three branches. Two branches Vi, V5 are given by z3 = 0,y3 = 0 with
Y1, T4, Y4 as free parameters and z4 = 0,y4 = 0 with y1,z3,y3 as free parameters. These
two branches are 3-dimensional. The third branch V3 is embedded in these two branches,
and it is given by the ideal

Vé : {:U?Mx3x47xiay§>y3y4ayz7'x3y4 + y3$4} . (732)

Geometrically it is just the 1-dimensional variety x5 = x4 = y3 = y4 = 0 with y; as free
parameter. Although the third branch is the intersection of Vi, Vo geometrically, from the
point of algebraic geometry, it is an independent branch. Each Vi or V5 can detect 39
coefficients, while V3 can detect 27 coefficients. Since geometrically V3 is the intersection
of V1, Vs, it is clear that intersections of these three branches or every two branches are
the same 1-dimensional variety, thus we have (1/4) = Vi N Vs, (1]14) = ViN Vs = Van Vs,
(1]4) =VinVanVs.

7.5 The topology (B31): planar box-bubble

This topology contains a sub-loop of bubble structure. When K3 = K, = 0, there is no
difference between propagators Dg = E% and Dy = ({yp — K1 — K2)2 because of momentum
conservation. This will effectively eliminate one on-shell equation. For B31 (g, ,) and
B31(k,/K,,0) there are five independent on-shell equations, and from which we can get
two linear equations for (x1,x9, x3,x4). By solving these linear equations we can reduce 8
variables to 6 ISPs. For B3l ), we have four independent on-shell equations, thus we
can only construct one linear equation for (x1,xe,xs,z4). In this case we get 7 ISPs.

For B31(k, k,) and B31(x, /K, ») We can use Ky, K3 to construct momentum basis e;,
while for B31, ) there are only two external legs, we should choose another auxiliary
momentum together with one of Ky, K5 to construct momentum basis e;. By expand all
momenta with this basis, we get, for instance, 6 ISPs (w3, 24, 1,2, y3,y4) for B31(x, i)
B31(k,/Kk4,0), and 7 ISPs (z2, 73, 74,91, Y2, Y3, y4) for B31(y o). Under the renormaliza-
tion conditions

doodx) <4, ) dw) <2, > od(x)+ ) dy) <4 (7.33)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

we can get integrand basis using Grobner basis method with ordering (z3, x4, Y1, Y2, Y3, y4)
for B31(K3,K4)7 B31(K3/K4,®) and (:cg,ajg,a:4,y1,y2,y3,y4) for B31(®’®). For all pOSSible
momentum configurations of B31 (g, k,) and B31 (g, /k, ), the integrand basis contains 65

elements given by

811331 = {L x3, x%? xg? ‘Té, Ly, ‘%217 $?la lelv Y1,T3Y1, $%yla $§y1, T4Y1, -73421?/1, x?ﬂ/l, y%, wgy%,
(Egy%, (L‘4y%, xi@/%? Y2, L3Y2, l’%yg, l’gyg, T4Y2, xiy% xzy% yg? Qfgy%, :C%y%, x4y%7 xiyga
Y3, T3Y3s T3Y3: TY3, TaY3, Y1Y3: TIY1Y3, TIY1Y3, TAY1Y3: Y2U3, T3Y2Y3, T3Y2Y3,
TaY2Y3, Y3 T3Y3, T3Y3, TAY3, Y4, TaYd, TIY4, T3Y4, Y194, TAY1Y4, TIY1Y4, Y2Ya

T4Y2Ya, T3Y2Yd, Y3Yd, TaY3Y4s Yas TaYT, TIY3 } - (7.34)

-39 —



For all possible momentum configurations of B31(, o), the integrand basis contains 145
elements given by

Bigz = {1, %0, &3, xow3, 43, 0203, 3, £003, 45, L4, £224, T3T4, To3Ta, T3L, T2T5Ta, T304,
T3, ToT], T3T], ToT3TT, TZTT, TY, ToTY, T3TT, T, Y1, T3Y1, T3Y1, TAY1, TaY1, T3TAYL,
T3TAY1, TIY1, TITIYL, THYL, YT, T3YL, T3YL, TaYT, TITAYL, TIYL, Y2, T2y, T3Y2, T2T3Y2,
x%?/% I2$§y27 $§y2, T4Y2, T2X4Y2, T3T4Y2, T2XL3T4Y2, x§$4y2, xiyg, 562334213/2, fsﬁ;yz,
xiyz, yS, 96'31/%, UC%y%, x4y§, 9635349%, %%ZJ%: Y3, 2Y3, L3Y3, T2X3Y3, 90?,1/3, 96236%,@3, 33%?;37
T4Y3, ToTaY3, T3TAY3, T2TITAY3, TITAY3, T3Y3, T2TTY3, T3T1Y3, ThY3, Y1Y3, T3Y1Y3,
55%9193, T4Y1Y3, T3T4Y1Y3, 37?;3/13/37 Y2Y3, L2Y2Y3, L3Y2Y3, T2T3Y2Y3, $§y2y3, T4Y2Y3,
ToTAY2Y3, TITAY2Y3, T1Y2Y3, Y3, T2Y3, T3Y3, TaT3Y3, T3Y3, T4Y3, TaTaY3, T3T4Y5, T1Y3,
Y4, ToY4, T3Y4, T3Y4s TAYA, TaY4, T2TAY4, TITAYA, T3T4Y4, T1Y4, TOTIY4, TITTY4, ToY4,
Y1Y4, T3Y1Y4, T3Y1Y4, TAY1Y4, TITAY1Y4, TIY1Y4, Y2Yd, T2Y2Yd, T3Y2Yd, T3Y2Ya, TaY2Yd,
T2T4Y2Y4, T3T4Y2Y4, xiy2y4, Y3Y4, X2Y3Y4, T3Y3Y4, x§y3y4, T4Y3Ya, L2T4Y3Y4, L3X4Y3Y4,

2 2 9 9 9 2 2 929
TIY3Y4, Y1 T2Yy, LYY, TaYY, T2T4YY, T3T4YY, TiYL ) - (7.35)

After obtained the integrand basis, we analyze branch structure of variety.

Branches of B31 g, k,). The variety will split into two branches V1, V2 when at least
one momentum of Ki, Ky is massless. These two branches are 3-dimensional, and their
intersection is 2-dimensional. Each branch can detect 37 coefficients, while 9 coefficients
can be detected by their intersection. So using both branches we can detect 37+37—9 = 65
coefficients.

Branches of B31(k,/Kk,,0)- There are two 3-dimensional branches if both K7y, Ky are
massive. Each branch can detect 46 coefficients, and 27 coefficients can be detected by
their 2-dimensional intersection. When at least one momentum of Ki, Ko is massless,
generally the variety will split into four branches Vi, Vo, V3, V. Each of Vi and V3 can
detect 22 coefficients, while each of V5 and V4 can detect 30 coefficients. Intersection of
all four branches is 1-dimensional, and we have (1|3) = V1 N Vo N Va3 N V,. Intersection
of every three branches is the same 1-dimensional variety as intersection of four branches.
For intersections of every two branches, (Vi,V3) and (Va,Vs) will intersect at the same
1-dimensional variety as intersection of four branches, and all other intersections are 2-
dimensional. The intersection pattern is (2|6) = ViNV4, (2|6) = VanVs and (2|15) = ViNVa,
(2]15) = V3N V4. They are different 2-dimensional varieties. However, for the specific
momentum configurations with B31 (g, ) where both Ky, K3 are massless, or B31 g, o)
where both K7, K, are massless, the three quadratic equations reduce to

2304 =0, yiy2+y3ya =0, x4y3 +x3y4 =0 (7.36)
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There are in total five branches. Four ordinary branches are given by

‘/1 Y3 = 07 Y1 = 07 T3 = 07 T4, Y2, Y4, free parameters ,
‘/2 LS 07 Y2 = 07 T3 = 07 Ta, Y1, Ya, free parametersa
Vs: y4=0, y1 =0, z4 =0, z3, y2, y3, free parameters,

Vi: ys=0, y2=0, 24 =0, 23, y1, Y3, free parameters . (7.37)
The fifth branch is given by the ideal

Vs i {ways + T3ys, y192 + Ysya, T3, 324, 73} . (7.38)

All these branches are 3-dimensional, and each V7, V5, V3, V, can detect 22 coefficients while
V5 can detect 37 coefficients. All five branches intersect at a single point. Intersection of
every four branches is also the same single point. For intersections of every three branches,
itis (1/6) = ViNnVanVs, (1]6) = VaNnVynVs, (1]13) = ViNVaNVs and (1]3) = VaNVyNVs, and
they are different 1-dimensional variety. For intersections of every two branches, (V7,Vy)
and (Va, V3) are still the same single point, (V7,V3) is the same 1-dimensional variety as
intersection of (V1, V3, Vs), and (Va, Vy) is the same 1-dimensional variety as intersection of
(Va, V4, Vs). The intersections of all other pairs are 2-dimensional, and we have (2|12) =
VinVa, (2]12) = VaNVy, (212) = ViNVs, (212) = VanVs, (212) = VanVs, (2/12) = VanVs.
They are all different 2-dimensional varieties. Using these five branches, we can detect 65
coefficients of integrand basis.

Branches of B31(p ). There are only two external legs, and none of them can be
massless, so we have only one momentum configuration with both K, Ko massive. The
integrand basis contains 145 elements. There are two branches of dimension four, and
110 coefficients can be detected by each of them. Intersection of these 2 branches is 3-
dimensional, and using it we can detect 75 coefficients. So all 145 coefficients can be
detected using these two branches.

7.6 The topology (B22): planar double-triangle

For the double-triangle topology (B22), we can use K1, K2 to construct momentum basis.
When K3 = K4 = 0, K1 and K> are not independent, and we use K; and another auxil-
iary momentum to construct momentum basis. There are five propagators and using two
linear equations Dy — Dy = 0, 150 - l~?1 = 0, we can solve x1,y2. So there are six ISPs
(2, x3,24,Y1,Y3,ys) and three quadratic equations left.

This topology has Zs symmetry between K, Ko and Z, symmetry between K3, Ky,
we will take the notation B22§5:§; where U, P could be K3, K4 or @, and L is denoted by
m if K; (or Ky for R) is massless, otherwise it is denoted by M. It is worth to notice
when K3 = K4 =0, we have K1 = — K>, thus to get non-zero contribution, K7, Ky should
be massive. In other words, we do not need to consider kinematic configurations B22g”é/[ ,

B22) 7" and B227°7
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Using Grobner basis defined from three quadratic equations with ordering
(x2,x3,4,Y1,Y3,Y4), under the renormalization conditions of monomials

S od@) <3, Y dw) <3, > d)+ Y. dy) <4, (7.39)
all ISPs of x all ISPs of y all ISPs of x all ISPs of y
we can get 111 elements for integrand basis. The explicit form of these elements depends on
the kinematics of K1, Ko, which we have chosen to generate momentum basis e;. There are
in total four kinds of integrand basis. For momentum configurations with K7, K5 massive,
the 111 elements are given by
BIB22 = {1, ro,x3,T2x3, :L‘%, :L'Ql'%, :L'%, L4y X2T4,T3T4, T2X3T4, ZE§£B4, l’i, IL’QJJi, l‘gl’i, l’i, Y1,
r3Y1, $§y1, x%yl, T4Y1,T3T4Y1, x§$4y17 xiyh x3x421y17 xiylv Y3, T2Y3, L3Y3, T2X3Y3,
96%93, 90233;233/3, l‘gy?,, L4Y3, L2X4Y3, T3T4Y3, L2T3X4Y3, 55:21,9543/3, 95?;1/3, xzﬂﬁiy?), 903334213/3,
T3Y3, Y1Y3, TIYLY3, TRYLYS, TAY1Y3, TITAYLY3, TIYLY3, U3, T2Y3, T3Y3, To3Y3, 1303,
$4y?2)a x3x4y§, l‘iyg, yly?%: x3y1y§? x4y1y32,, y§> -TUzyg?,’, x3y§> :1:43/3?,’, Y4, X2Y4, T3Y4, x§y4,
T3Y4, TaYs, ToTaYs, TITAYL, TITAYA, TIYar T2TGYa, TITIY4, T3Y4, Y1Y4, TIY1Y4, T3Y1Y4,
TAYLY4, TITAY1Ya, TAYLYA, Y3Y4, T3Y3Y4, T3Y3Y4, TaY3Yd, TITAY3Y4, T1Y3Y, Y1Y3Y4,
TIYLY3Ya, TAY1Y3Y4, Y3 Y, T3Y3Y4, TAY3Y4, Y3, T2YT, T3YY, TaY], T2TaY], T3T4Y], T3YT,
YIYL, T3Y1YT T YT Y3YR, T3YsYd» Taysyd, U ooyl wayd, wayl) (7.40)
The second kind of integrand basis is for configurations with K7 massless and K5 massive,
and the 111 elements are given by replacing 19 elements in 811322
Blas = Bhoy — {w374, o324, 1334, 237, T3T4Y1, TIT4Y1, TITTY1, T3T4Y3, T2TIT4Y3,
T3TAY3, TITIY3, TITAY1Y3, TITAYS, T3TAYA, T3T4Y4, TITLYA, TITAY1Y4, TITAY3Y4,
w3wayi} + {23, 23, 0323, 3wa, ¥3ys, W33, ¥3T3Y3, TITAY3, T3Y3, TaTAYE, ToYa,
T3Y4, T2T3Y4, TITIYs, T2TZY4, TITAY4, TIY3, T2T3Y3, TIYS ) - (7.41)
The third kind of integrand basis is for configurations with Ko massless and K; massive,
and 111 elements are given by replacing 15 elements in Bfgm

31131212 = Bézz - {y3y4,:v3y3y4,x§y3y4, L4Y3Y4, x3x4y3y4,:viy;;y;;,y1y3y4,3:3y1y3y4,:r4y1y3y4,

Y3Y4, T3YSY4, TAY3Y4, Y3YS, T3YSYS, Taysys b + {5, w3yt a3YT, 2yt wsTayt, 3Y7
Yt w3yl wayt YT ys, w3y s, TayTYs, YTy, T3V Yas TayTYs} - (7.42)
Finally the fourth kind of integrand basis is for configurations with K7, Ko massless, and
111 elements are given by replacing 33 elements in 8{322
B = Bhoo — {324, Tom324, 2324, 1325, T3T4Y1, T3TAYL, TITIYL, T3TAY3, T2T3T4Y3, TT4Y3,
$39€421y3, T3T4Y1Y3, m3x4y§, T3T4Y4, x§x4y4, 9035'3121.@4, T3T4Y1Y4, Y3Y4, T3Y3Y4, 96‘%3/33/47
T4Y3Y4, T3T4Y3Y4, xiy3y4, Y1Y3Ya, T3Y1Y3Y4, T4Y1Y3Y4, y§y4, w3y§y4, x4y§y4, x3x4yi,
Y3y, T3ysyi, Taysyit + {23, 25, 23xs, 2324, yi, wsyi, 23yt wayi, iy, b, 2y, 2ayd,
1’393, $§y3, 1‘3563%7 $3x4y37 yfyg, x3y%y37 :134y%y3, x%yg, x2x4y§, 96%?44, $§y4, T2X3Y4,

2 2 2 2 2 2 2 9 2 29
ToX3Y4, L2X3Y4, ToXAYA, Y1 Y4, T3YT1Y4, TAY1 Y4, LYy, T2L3Yy, 953?44} . (7.43)
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(U, P) b (K3, Ka4) | (K3/K4,0) | (2,0)
(M7M) 1 2 2
(m,M),(M,m) 2 4
(m,m) 4 6

Table 3. Number of branches for some kinematic configurations of planar double-triangle topology
(B22). Each branch is 3-dimensional variety.

After obtained integrand basis, we discuss the branch structure of variety. The number
of branches for different kinematic configurations is summarized in table 3.

Variety with one branch. For general kinematic configuration B22§AK4;A;[<1), the variety

is irreducible with dimension three. All 111 coeflicients of integrand basis can be detected
by this branch.

Variety with two branches. For kinematic configurations

(m,M)
(K3,K4)

(M,m)
(K3,K4)

(M, M)
(K3/K41,0)

?M)

B22 e

. B22 . B22 B22%{ (7.44)

E%AQAL) and B222%37T;()4), each branch

can detect 71 coefficients, and their intersection is 2-dimensional variety which can detect

31 coefficients. For B22§AK/[;%257®) and BQQ%{’(%)

their two-dimensional intersection can detect 43 coefficients.

the variety is given by two branches Vi, V5. For B22

, each branch can detect 77 coefficients, and

Variety with four branches. For kinematic configurations

(m,M)
(K3/K4,@)

(M,m)

(m,m)
B22 , B22 (Ks/Ku,0)

(K, K1) , B22

(7.45)

the variety is given by four branches. Intersections of branches is expressed by figure 9.
Variety with six branches. For kinematic configuration

(m.m)
B2 (7.46)

the variety is given by six branches Vi, Vo, V3, Vy, V5, Vs. Among these six branches, four
Vi,i = 1,2,3,4 can detect 29 coefficients and the other two Vi, Vi can detect 45 coeffi-
cients. All six branches intersect at a single point, and intersection of every five branches
is also the same single point. For intersections of every four branches, most of them are
the same single point inherit from intersections of every five branches except for the fol-
lowing two combinations of branches (V1, V3, Vs, V) and (Va, Vi, Vs, Vi), which intersect at
1-dimensional variety detecting 4 coefficients. For intersections of every three branches,
besides the ones that are inherited from intersections of four branches, there are also four
pairs (V1, Va2, Vs), (V1, Vo, Vi) and (Va, Vi, Vi), (V3, Vi, Vi) that intersect at one-dimensional
variety detecting 4 coefficients. Intersections of every two branches could be 2-dimensional,
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»
SN

(a) (b)

Figure 9. Venn diagrams for intersections of four branches, where each ellipse represents

one branch. Venn diagram (a) is for BZQEQ;’m]A), and Venn diagram (b) is for B22§$;1>24 )’
B22(Mm) Number 0 means that there is no intersection and (d|n) represents that the di-

(K3/K4,0)"
mension of that intersection is d and the number of coefficients detected in that intersection is n.

1-dimensional, or single point, and they are summarized as

213) =VinVa=VinVe=VanVe=VaNVi=VaNVe=ViNVs,
(2]10) = VaNnVs=VinVe=VinVe = V3N Vs,
(14) =vinVa=VanVy, (0]1)=VinVi=VanVs, (1o7)=VsNVs. (7.47)

One interesting point is that intersection of (V5, V5) is two 1-dimensional varieties, and to
emphasize this subtlety we have used (12) notation.

7.7 The topology (B21): planar triangle-bubble

For this topology we could have two cases B21 (g, k) and B21(k, /i, o). For B21 (g, ),
since there are three external momenta, we can use K1, K3 to construct momentum basis.
For B21 (g, /k,0), there are only two external legs, and only one of them is independent.
So we need another auxiliary momentum together with K; to construct momentum basis.
We do not consider B21,, ) since it requires K = 0, which is tadpole-like structure. For
B21(x,/K;,0) We also assume that both external momenta are massive for non-vanishing
result and do not consider the kinematic configurations where any momentum is massless.

From four propagators we can reduce 8 variables to 7 ISPs, for example,
(x2,x3,X4,Y1,Y2,Y3,Y4). Using Grobner basis that generated from the three quadratic
equations with ordering (y1,z2,y2, 3, Y3, T4,y4), under the renormalization conditions
for monomials

S odwy<s, Y dw<z Y dw)t Y dw)<3. (149
all ISPs of x all ISPs of y all ISPs of x all ISPs of y

we can get integrand basis for different kinematic configurations. The elements of
integrand basis depends on the kinematics of K1. For B21(k, i) and B21(x, i, o), if K3
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is massive, the integrand basis contains 80 elements given by

BéQl = {1, r9,T3,T2x3, a?%, l’gl‘g, .CE%, L4, T2T4,L3TY, TALIT Y, IE§$4, 5171217 l’zl’?l, xgxi, .Ii, Y1,
T3Y1, TRYL, TAY1, TIYL, YT T3YTs TAYS, Y2, T2Y2, T3Y2, T2T3Y2, T3Y2, TaY2, T2T4Y2,
T3T4Y2, T1Y2, Ys, T35+ TaY3, Y3, T2Y3, T3Y3, ToT3Y3, T3Y3, T4Y3, TaT4Y3, TITLY3,
T3Y3, Y13, T3Y1Y3, T4Y1Y3, Y2U3, T2Y2Ys3, T3Y2Y3, T4Y2Y3, Y3, T2Y3, T3Y3, T4Y3, Ya,
T2Y4, T3Y4, L2X3Y4, $§y4, TaY4, T2T4Y4, T3T4Y4, 1‘4213/4, Y1Y4, T3Y1Y4, TaY1Y4, Y2Y4,

ToYoya, T3YaYa, TaY2Yd, Y3Yd, T2Y3Yd, T3Y3Y4, T4Y3Y4, Ys T2Ys, T3Y3, Tays} . (7.49)

If K is massless for B21 g, k), integrand basis is given by replacing 8 elements from BJIBQI

1 I 2 2
Bpor = Bpoy — {324, xax324, 524, T3], T3T4Y2, TIT4Y3, L3L4Y4, T2 Y3Y4 |
2 3 2 2 2 2 2 2
{23, T3, 1323, L5324, T3Y2, T2Y3, T3Y3, T34} - (7.50)

The variety defined by the three quadratic equations is irreducible with dimension
four for B21 (g, ;) with K massive. If K; is massless, the variety will split into two
branches, and each branch can detect 54 coeflicients. Intersection of these two branches
is an irreducible 3-dimensional variety, and it can detect 28 coefficients. So using both
branches, we can detect 54 + 54 — 28 = 80 coefficients. For B21(y, /x, ), K1 should be
massive, and the variety has two branches. Each branch can detect 64 coefficients, and
intersection of these two branches is an irreducible 3-dimensional variety, which can detect
48 coefficients. Using these two branches we can detect 64 + 64 — 48 = 80 coefficients of
integrand basis.

7.8 The topology (B11): planar sun-set

For this topology, since K1 = —K», we use K; and another auxiliary momentum to con-
struct momentum basis. The only possible kinematic configuration is both K7, K9 massive.
There are only three propagators and we can not construct linear equation from on-shell
equations, thus there are 8 ISPs. The three quadratic equations can be expressed as

Do = x129 + 2324, Do = Y192 + y3y4
Dy = xoy1 + x1y2 + T4ys + x3ys + (21 + y1)oar + (x2 + y2)arz + annare . (7.51)

Using Grobner basis with ordering (y4, y3, 4, 23, Y2, Y1, T2, 1), under the renormalization
conditions for monomials

Sood) <2, Y dw) <2, Y d@)+ Y dy) <2, (7.52)

all ISPs of x all ISPs of y all ISPs of x all ISPs of y

we can get 42 elements for integrand basis as

2 2 2 2
BBll — {]-7 L1, XL, X2, T1X2, XL, X3, L1X3, XL2X3, L3, L4, XL1T4, T2T4, Ty, Y1,T1Y1, T2Y1,
2 2
T3Y1,T4Y1,Y1, Y2, T1Y2, L2Y2, T3Y2, T4Y2, Y1Y2, Y2, Y3, L1Y3, T2Y3, L3Y3, T4Y3,

Y1Y35 Y2U3 Ya, Yd» T1Yd, ToYd, TaYd, Y14, Y2Yas Y3} - (7.53)

The variety defined by the three quadratic equations is irreducible with dimension five.

— 45 —



8 Conclusion

In this paper, we use the new technique developed in [33-35] to classify the two-loop
integrand basis in pure four dimension space-time. Although there are only small number
of topologies for planar and non-planar two-loop diagrams, the diverse external momentum
configurations greatly increase the number of integrand basis that we need to discuss.
Because the integrand basis and branch structure of variety will depend on the topology as
well as external kinematics, it is necessary to classify possible sets of integrand basis and
study the evolution of variety under various kinematic limits.

The algebraic geometry methods, such as Grébner basis method and multivariate
polynomial division, play a crucial role in our discussion. Using these methods, we are
able to present explicit form of integrand basis as well as detailed study of varieties, such
as branch structures and their intersections. The same methods also allow us to determine
coefficients of integrand basis.

We must emphasize that our result is only a small step towards the practical evaluation
of general two-loop amplitudes. As we have mentioned in the introduction, the number
of two-loop integrand basis is much more than the number of two-loop integral basis and
it is highly desirable to reduce integrand basis further. One way to do so is to use the
IBP-method [21-24]. However, with the time consuming, it is not feasible at this moment.

Although our results are for two-loop diagrams in pure four-dimension space-time, the
same analysis can be applied to (4 —2¢)-dimension for complete answer, or three and higher
loop amplitudes as demonstrated in [35]. It is also an interesting problem to apply these
general analysis to real processes.
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A Some mathematical backgrounds
In this section, we present several mathematical facts that may be useful for determin-
ing branch structure of non-linear on-shell equations. First let us consider the quadratic
equation of two variables defined by equation

Az? + By + Cy?> + Dx+ Ey+ F =0, (A.1)

with A, B, C not all zero. This equation is usually called conic section. In general, the conic
is an irreducible one-dimensional variety, however, when the determinant A of following
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3 X 3 matrix

A B2 D/ : -
—(B* - 4AC)F + BDE — CD* — AFE
A—det| B2 ¢ B2 | == ¢) +4 ¢ (A.2)
D/2 E/2 F

is zero, the conic splits to two branches.
Next let us consider the roots of a polynomial

flz) =) a2 (A.3)
=0

One can use discriminant to determine whether if this polynomial has repeated roots or
not. If discriminant equals to zero, then there are repeated roots. The simplest example is
quadratic equation asz? + a1z + ag = 0 whose discriminant is D = a3 — 4agag. If D = 0,
then this equation has double roots, and the polynomial can be written as a perfect square
of one factor. The discriminant of n = 2,3 can be found in many other references, and
using it we can tell the properties of roots just from coefficients of variable. A special
interesting example is the quartic function

f(2) = A+ B2 +C2*+ D2+ E, (A.4)
which can be factorized as

£2) o (2 = 20Dz = 20 (s — 20 (z - 200, (4.5)

4.4

where z are four roots. We want to know if it can be expressed as perfect square terms

such as
f(2) = (az + b)?*(cz + d)* . (A.6)

In other words, we want to know if there are repeated roots or not. Defining

A SB2+€ _E_ic+2 C__3B4+CB2_BD+§ (A7)
842 AY 843 242 AT T 25644 1643 442 0 AT VT
then when B = 0, the quartic equation has following solution
B — A+ VA2 — 4
z:—Mis\/ A t2“4 C, (A.8)

where +4 and 4; can take plus and minus sign independently. If the coefficients further
satisfy A2 — 4C = 0, then 21 = z(57) and f(x) can be expressed as products of two
perfect squares.

Using above results, we can check whether variety defined by following equations is
reducible

Az? + Bay+Cy? + Dz +Ey+F =0, (A.9)
a(t)z +b(7)y +c(1) =0, (A.10)
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where a(7),b(T), c(7) are linear functions of (possible free parameter) 7. After solving the

linear equation of x,y and substituting the result into quadratic equation we get
(a®C — abB + b2 A)y* + (a*E — abD — acB + 2bcA)y + (a*F — acD + ¢*A) =0, (A.11)

where the coefficients A’(7) = (a?C — abB + b*A), B'(7) = (a?E — abD — acB + 2bcA) and
C'(1) = (a®F — acD + c*A) are now quadratic functions of 7. The solution of y is given by

_ —-B'(1)+ \/B/(T)2 —4A"(T)C'(T)
y 2A'(T) ’

(A.12)

thus y is a rational function of 7 when and only when terms inside the square root is perfect
square, i.e., the quartic function (B'(7)? — 4A/(7)C’(7)) of T is a perfect square.
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