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1 Introduction

The AdS/CFT correspondence [1–3] provides a new method of studying strongly coupled

field theories by constructing the corresponding gravitational duals which are classical and

relatively simpler. In particular, the Green’s functions in the dual field theories can be

derived by studying the wave equations of the corresponding bulk fields such as the scalar

or spinor fields. One of the most studied class of gravitational backgrounds is the charged

black holes that are asymptotic to anti-de Sitter spacetimes (AdS) whose bulk vectors are

dual to the currents in the boundary field theories. Such bulk geometry allows one to

investigate properties of some strongly coupled fermionic system at finite charge density

such as non-Fermi liquids [4]. Analogous to those of the scalar operators, the fermionic

Green’s function can be obtained by analysing and solving the bulk Dirac equation.

The procedure of obtaining Fermi surfaces from the AdS/CFT correspondence was

spelled out in detail in [5, 6]. (See also the review [7].) In general, for an electrically-charged
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black hole background, one can write down the Dirac equation for a charged spinor. The

mass of the spinor is typically chosen to be zero in practice except for analyzing the qual-

itative properties. If one knows how to solve the equation, one can read off the Green’s

function in the momentum space from the asymptotic behaviour of the wave solution after

imposing some appropriate horizon boundary condition. The Green’s function is expressed

in terms of the black hole parameters and the electric charge q of the spinor, as well as

ω, the frequency and k, the wave number. The poles of the Green’s function indicate the

existence of quasi particles. A Fermi surface kF is defined as a pole of the Green’s function

in the momentum space with vanishing ω.

Since the Fermi surfaces are determined by the ω = 0 Green’s function, it is not nec-

essary to know the Green’s function for general (ω, k). It appears sufficient to obtain wave

solutions with ω = 0 and the associated Green’s function G(ω = 0, k).1 Nevertheless, it is

of great interest to study the behaviour of the Green’s function for small ω on or near the

Fermi surface. For extremal solution with zero temperature, a procedure was developed

in [5, 6] to calculate such a Green’s function. The Green’s function for small ω can always

be determined using a matching procedure provided that G(0, k) is known. Near the Fermi

surface, it takes the form [5, 6]

G(ω, k) = − h1

(k − kF )− v−1
F ω − h2e

iγkF ω2νkF
, (1.1)

where h1, vF , h2 and νkF are constants that can be determined. In particular, vF here is

the Fermi velocity. It was known in the condensed matter physics that a Landau-Fermi

surface of Fermi liquids is given by νF = 1. The Green’s function with ν > 1
2 shares the

same characteristics of that near the Landau-Fermi surface. The situation with νF <
1
2 is

very different and the Green’s function is associated with some non-Fermi liquids.

In practice, the Dirac equations typically cannot be solved analytically. In [5, 6], the

extremal Reissner-Nordström AdS (RN) black holes in general dimensions were used as

gravitational backgrounds. It turns out that the Dirac equation cannot be solved even for

ω = 0, except for D = 4 [8]. The above procedure were performed numerically. Neverthe-

less, it shows that Fermi surfaces can arise from the extremal RN AdS black holes, and

Green’s functions for small ω near the Fermi surfaces indeed take the form (1.1). Further-

more it was shown in [5, 6] that Fermi surfaces for non-Fermi liquids can also arise, which

are characterised by νF <
1
2 .

Although a physical system can be adequately analysed numerically, it is more satis-

fying if one has analytic results. RN black holes in D = 5 and D = 4 are special cases of

charged AdS black holes in gauged supergravities. The more general solutions are the three-

charged [9] and four-charged black holes [10] respectively, and their type IIB and M-theory

embedding were given in [11]. In [12], the five-dimensional black hole was considered and

reduced by setting two charges equal while turning off the third charge. Taking a certain

suitable extremal limit, Fermi surfaces of the resulting G(0, k) can be read off analytically.

This enables one to construct an analytical expression for the constants h1, vF , h2 and νkF
1As we shall see later, the situation is subtler for non-extremal backgrounds, where there is no criterium

to impose the horizon boundary condition on the ω = 0 solutions alone.
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in (1.1). However, the extremal black hole suffers from a curvature singularity that is on

the horizon. The general G(ω, k) is unknown for this example. Moreover, such a Green’s

function associated with a general non-extremal charged black hole is hitherto unknown.

(Dirac fermions in non-zero temperature AdS RN black holes were first studied in [13].) On

the other hand, the examples considered in [5, 6] and [12] are already among the simplest

black holes in the usual two-derivative theories of gravity or supergravity. It is unlikely

to find new black holes in these theories without exotic matter so that the Dirac equation

becomes exactly solvable.

Charged black holes can also arise in conformal gravity. In four dimensions, the Weyl-

squared gravity is conformally invariant. Its minimum coupling to the Maxwell field pre-

serves the conformal symmetry. Conformal gravity has attracted renewed interest recently.

It was shown that the Einstein-Weyl gravity has a critical point [14] for which the seemingly

inevitable ghost massive spin-2 excitations are replaced by modes that fall off logarithmi-

cally. It was proposed that Einstein gravity can emerge from conformal gravity in the

infrared region [15]. Furthermore, conformal gravity can be supersymmetrised in the off-

shell formalism [16].

The allowance of a vector field in conformal gravity implies that the theory should have

a variety application in the AdS/CFT correspondence. It can provide the gravitational

dual description of certain strongly interacting fermionic system at finite charge density,

on which we focus in this paper. Furthermore, the system of (charged) massless Dirac

spinor in the bulk is also conformally invariant, it is thus very natural to consider the

minimally coupled spinor in conformal gravity. The most general spherically-symmetric

black holes carrying electric charges, up to an overall conformal factor, were obtained

in [17]. For our purpose in this paper, we construct the analogous solution with the torus

(T 2) topology. We study the charged Dirac equation in this background and find that it

can be solved exactly for general (ω, k). This enables us to construct the general Green’s

function G(ω, k) for non-extremal black holes as well as their extremal limits. The results

are expressed in terms of general Heun’s functions, whose properties are less known. We

thus consider some special sub-classes of the black holes for which the wave solutions are

reduced to hypergeometric functions. This enables us to study the Green’s functions in

greater details, not only for extremal black holes but also for non-extremal ones.

The paper is organised as follows. In section 2, we review conformal gravity and the

spherically-symmetric black holes. We then construct the static black holes with torus

T 2 and hyperbolic H2 horizons. The most general solutions contain three non-trivial pa-

rameters, in addition to the cosmological constant. We study the global structure and

analyse the thermodynamics. We then consider two special subclasses of solutions with

two parameters. One was obtained previously in [18] and it can be viewed as the pseudo-

supersymmetric solution in the corresponding conformal off-shell supergravity. The two-

parameter solution has both inner and outer horizons. The solution is in general non-

extremal, and it becomes extremal when the two horizons coalesce. The other class is

the general extremal solution which has also two non-trivial parameters. In section 3, we

consider Dirac equations for a charged massless spinor in the black hole backgrounds and

review the formalism of [6]. For the “BPS” black holes, the wave equation can be solved
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exactly. We thus obtain the analytic Green’s function for general (ω, k); it can be expressed

in terms of hypergeometric functions. We also obtain the Green’s function in the extremal

limit, and it turns out to be expressible in terms of confluent hypergeometric functions.

We study the Green’s functions G(0, k) and obtain the Fermi surfaces. The results allow

us to study the intrinsic differences on the boundary field theory between the extremal and

non-extremal backgrounds. We accomplish the above in section 4.

In section 5, we consider the two-parameter family of extremal black holes, and we find

that G(0, k) can be expressed in terms of hypergeometric functions. This allows us to deter-

mine the Fermi surfaces. In section 6, we demonstrate that the Dirac equation can be solved

even in the most general black hole backgrounds. However, the resulting Green’s function

G(ω, k) is expressed in terms of the general Heun’s functions. We discuss how the result can

be reduced to the previous simpler examples. Owing to the complication of the Heun’s func-

tion, it is difficult to discuss many subtle properties of the Green’s function; nevertheless,

we are able to find many examples of Fermi surfaces. The Green’s function has a fascinating

rich structure of spiked maxima in the (ω, k) plane. We conclude our paper in section 7.

2 Charged black hole in conformal gravity

2.1 Review of conformal gravity

Analytical charged AdS black holes also arise in conformal gravity in four dimensions. Con-

formal pure gravity is constructed from the Weyl-squared term. Its conformal symmetry

is preserved when it couples minimally to the Maxwell field. The Lagrangian is given by

e−1L =
1

2
αCµνρσCµνρσ +

1

3
αF 2 , (2.1)

where e =
√
−g, F = dA and Cµνρσ is the Weyl tensor. Note that the absolute value

of the coupling of the Maxwell field can be arbitrary defined by a constant scaling of A.

However its sign choice is non-trivial. We have made this selection with the following two

considerations. The first is inspired by critical gravity [14]. If we add an cosmological

Einstein Hilbert term e (R + 6) to the Lagrangian, the critical point is precisely α = −1
2 ,

in which case, the vector A is non-ghost-like for our choice. The second is the consider-

ation that Einstein gravity may emerge from conformal gravity in the infrared limit [15].

The conformal gravity with α = −1
2 can give rise to Einstein gravity e (R + 6). Having

determined the theory, it is straightforward to derive the equations of motion, given by

∇µFµν = 0 , −α
(

2∇ρ∇σ +Rρσ
)
Cµρσν −

2

3
α(F 2

µν −
1

4
F 2gµν) = 0 . (2.2)

It is worth pointing out that conformal gravity can be supresymmetrized in the off-

shell formalism. In N = 1, D = 4 off-shell supergravity, the bosonic fields consist of

the metric, a vector and a complex scalar S + iP . The fermionic field involves only the

off-shell gravitino ψµ. Up to and including the quadratic order in curvature, the theory

allows four independent super-invariants. These comprise a “cosmological term [19],” the

Einstein-Hilbert term [20, 21], and two quadratic-curvature terms [16], one formed using
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the square of the Weyl tensor, and the other formed using the square of the Ricci scalar.

Supersymmetric solutions in these higher-derivative off-shell supergravities were obtained

including Lifshitz, Schrödinger, gyratons [18, 22–24].

The Lagrangian (2.1) turns out to be the bosonic part of the super invariant, except

that an analytical continuation of A → iA was performed. The resulting theory is called

pseudo-supergravity with the Killing spinor equation [18, 24]:

δψµ = −Dµε+
1

6
(2Aµ − ΓµνA

ν)Γ5ε−
1

6
Γµ(S + Γ5P )ε = 0 . (2.3)

2.2 General black holes and thermodynamics

Up to an overall conformal factor, we find that conformal gravity admits the following

static charged black hole solution,2

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2,ε , A = −Q
r
dt ,

f = −1

3
Λr2 + c1r + c0 +

d

r
, 3c1d+ ε2 +Q2 = c2

0 , (2.4)

where ε = 1, 0,−1 for dΩ2
2,ε being the metric for the unit sphere S2 , torus T 2 and hyper-

bolic H2. The solution for ε = 1 was given in [17]. Note that although (2.4) contains the

Schwarzschild black hole as a special solution, it does not contain the RN black hole. This

is important for this paper since the Dirac equation in the RN black hole is not analytically

solvable.

We now study the global structure and thermodynamics of the general black hole.

(The thermodynamical properties for Q = 0 were given in [25].) Let r0 > 0 denote the

largest real root of f(r). The metric on and outside the horizon runs from r = r0 to the

asymptotic AdS boundary at r = ∞. It is advantageous to express Q in terms of the

remaining parameters and r0, given by

Q =

√
c2

0 − ε2 +
3d2

r2
0

+
3c0d

r0
− Λr0d . (2.5)

The temperature can be obtained by the standard method of Euclideanising the metric

and demanding the regularity on the horizon. The entropy can be calculated directly from

the Ward formula. They are given by

T = −6d+ 3c0r0 + Λr3
0

12πr2
0

, S =
1

6
αεω2 −

α(3d+ c0r0)ω2

6r0
. (2.6)

The electric potential and charge are

Φ = −Q
r0
, Qe =

αω2Q

12π
. (2.7)

2As we shall see later, the wave equation of a massless spinor is invariant under the conformal transfor-

mation that is r-dependent only. It follows that the Green’s function and Fermi surfaces are independent

of the T 2-symmetric conformal transformation.
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As discussed in [25], it is also necessary to introduce a pair of thermodynamical quantities

that can be viewed as the massive spin-2 hair:

Ψ =
α(c0 − ε)ω2

24π
, Ξ = c1 . (2.8)

The free-energy can be obtained from the Euclidean action, given by

F = −ω2α

16π

∫ ∞
r0

r2dr

(
1

2
|Weyl|2 +

1

3
F 2

)
=
α
(

2(c0 − ε)εr0 + (3ε− Λr2
0)d
)

24πr2
0

. (2.9)

Note that for the T 2 topology ε = 0, the sign of the free energy is determined by the sign

of the parameter d. We can also treat the cosmological constant Λ as a thermodynamical

variable, since it is an integration constant in the solution. Its thermodynamical conjugate

is given by

Θ =
αω2d

24π
. (2.10)

The energy calculation is more subtle. It was shown [25] that both the ADT [26, 27] and

AMD [28–31] methods would give rise to divergent results for this type of black holes. It

can however be calculated using the method outlined in [25] by employing the Noether

charge associated with the time-like Killing vector. We find

E =
α(c0 − ε)(Λr2

0 − 3c0)

72πr0
+
α(2Λr2

0 − c0 + ε)d

24πr2
0

. (2.11)

It is then straightforward to verify that the following thermodynamical relations are satis-

fied:

dE = TdS + ΦdQe + ΨdΞ + ΘdΛ , F = E − TS − ΦQe . (2.12)

It is worth pointing out that the Smarr formula now becomes

E = 2ΘΛ + ΨΞ . (2.13)

2.3 Comments on the massive spin-2 hair

One characteristic of the black hole in conformal gravity is that there is a linear-r term in

the function f . This term is sometime referred in the literature as the acceleration term,

which is a misnomer. Indeed, the analogous term appears in the Plebanski-Diemenienski

solution that has a physical interpretation as the acceleration parameter. However, in the

Pebanski-Diemenienski solution, there is an overall conformal factor and the solution is sta-

tionary rather than static. The asymptotic region of the Plebanski-Diemenienski solution

is not at r = ∞, but where the conformal factor diverges. A static solution like ours can

have no acceleration, and the linear-r term should be interpreted as the massive spin-2 hair

associated with the thermodynamic pair (Ψ,Ξ) discussed earlier. If we consider linearized

gravity around the AdS4 vacuum, the spin-2 modes hµν in conformal gravity satisfy the

following equation

(� + 2)(� + 4)hµν = 0 . (2.14)

– 6 –
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Here, without loss of generality, we set Λ = −3. The first bracket gives rise to the (massless)

graviton whilst the second bracket give rise to the massive spin-2 mode with M2 = −2.

The solutions of these modes in AdS were obtained in [32] and the results were generalized

to arbitrary dimensions and arbitrary integer spins [33, 34]. The falloff of a spin-2 mode

is given by

hµν ∼
1

rE−2
, (2.15)

where E(E − 3) = M2. Thus, although the massive spin-2 mode has a negative mass

square, it satisfies the Breitenlohner-Freedman type of bound M2 ≥ −9/2. Indeed, for the

massive spin-2 modes with M2 = −2, we have either E = 2 or E = 1, corresponding to

the linear and constant “falloffs”. The effect of these modes appearing in the static black

hole was discussed in the previous subsection.

It should be emphasized that although the black holes we considered in the previous

subsection have terms with slower falloffs than the usual Schwarzschild AdS black holes,

the asymptotic region is nevertheless the AdS4 and hence the AdS/CFT correspondence

applies in conformal gravity on the AdS4 background. The massive spin-2 modes are dual

to some relevant spin-2 operators whose conformal dimensions can be read off from the

asymptotic falloffs, namely ∆ = 2 or ∆ = 1, which are less than the dimensions of the

boundary field theory. The appearance of the massive spin-2 hairs in the black hole implies

that the corresponding operators in the dual field theory take some non-vanishing expecta-

tion values. The exact boundary conformal field theory is however unknown. The purpose

of this paper is to study the Green’s function of the fermionic operator associated with the

charged massless bulk spinor.

2.4 A class of “BPS” black holes

The general solution (2.4) has a total of four parameters. In this paper, we shall concentrate

only on the solutions that are asymptotic to the AdS. It follows that the parameter Λ is

trivial and can always be set to a fixed negative constant. We shall let it be Λ = −3 so that

the AdS has the unit radius. The general solution has then three non-trivial parameters,

associated with the mass, charge and the massive spin-2 hair.

As discussed in section 2.1, conformal gravity can be supersymmetrised in the N = 1

off-shell formalism. Although in our Lagrangian (2.1) the vector field has changed from A

to iA compared to the supergravity theory, the resulting Killing spinor equation (2.3) is

still valid. It was shown in [18] that for the static black hole configuration, the existence

of a Killing spinor requires that ε = 0, i.e. the topology of the black hole horizon is T 2.

Furthermore, we must have d = 0 in (2.4). Thus the “BPS” solutions take the form [18]:

ds2 = −fdt2 +
dr2

f
+ r2(dx2 + dy2) , A = adt , (2.16)

where f , φ are functions of r only:

f = r2 − µr +Q , a = −Q
r
, (2.17)
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The solution has a local Killing spinor of (2.3) provided that

S =
42− 5µr + 6r2

2r
√
f

, P = 0 . (2.18)

It is convenient to parameterise the solution as follows

f = (r− r−)(r− r+) , Q = r−r+ , µ = r−+ r+ , r+ > 0 , r+ ≥ r− . (2.19)

Thus, in general the solution describes an asymptotic AdS charged black hole with the

outer horizon at r = r+; r = r− is the inner horizon. The thermodynamical quantities are

T =
r+ − r−

4π
, S = −1

6
αr−r+ω2 ,

Φ = r− , Qe = −αr−r+ω2

12π
,

Ξ = r− + r+ , Ψ = −αr−r+ω2

24π
,

E = −αr−r+(r− + r+)ω2

24π
, F = 0 . (2.20)

They satisfy the following thermodynamical relationship

dE = TdS + ΦdQe + ΨdΞ , F = E − TS − ΦQe . (2.21)

For this subclass of solutions, the free energy F vanishes identically. As we may see from

the expression of the free energy (2.9) that for ε = 0, the sign choice of the parameter d

dictates the sign of F . Thus the above “BPS” black hole sits in the critical point of the

Hawking-Page global phase transition. The internal energy at this phase transition point

is E = TS + ΦQe.

It is worth pointing out that although there exists a local Killing spinor for general

parameters, the function S blows up on the horizon r = r+, implying that the solution

is not truly supersymmetric. However, this defect disappears in the extremal limit with

r+ = r− ≡ r0, giving

ds2 = −(r − r0)2dt2 +
dr2

(r − r0)2
+ r2(dx2 + dy2) , A =

r0(r − r0)

r
dt . (2.22)

In this limit, we have T = 0 = F and E = ΦQe. Note that if we require that S be constant,

there exists an alternative extremal solution:

ds2 = −(r − r0)6

r4
dt2 +

dr2

(r − r0)2
+ r2(dx2 + dy2) , A =

3r0(r − r0)3

r3
dt . (2.23)

Both extremal solutions run from the AdS2 × T 2 horizon at r = r0 to AdS4 at r = ∞.

It was shown that these two extremal solutions are related one to another by an overall

conformal scaling [18]. A priori, they should be treated different solutions; however, as

we shall see later, Fermi surfaces are invariant under the conformal transformations that

preserve the T 2 isometry.
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2.5 Classes of non-BPS black holes

The general solution (2.4), which has three non-trivial parameters, is rather complicated

for our purpose of studying the dual conformal field theory in some detail. The previous

“BPS” limit is a way of simplifying the solution, corresponding to setting d = 0. We

consider three more simplified cases with non-vanishing charge. The first corresponds to

c1 = 0, the second corresponds to c0 = 0 and the third is the general extremal solution.

In all these three cases, there are two non-trivial parameters, one of which is the electric

charge. For our purpose later, we shall consider only the T 2 topology, namely ε = 0.

Without loss of generality, we set Λ = −3.

Case 1: c1 = 0. Setting the parameter c1 = 0 has the effect of turning off the thermo-

dynamical quantity Ξ. The solution is given by

f = r2 +Q+
d

r
, a = −Q

r
. (2.24)

It admits an extremal limit, for which f has a double zero at the horizon r = r0. The

parameters and the solution are given by

Q = −3r2
0 , d = 2r3

0 , f =
(r − r0)2(r + 2r0)

r
, a = −3r0(r − r0)

r
. (2.25)

Note that we have made a gauge choice so that a vanishes at r = r0. It is of interest to

note that the same local metric also describe a non-extremal black hole when r is negative.

(The horizon is at r = −2r0 and the asymptotic AdS arises as r → −∞.) Alternatively,

we can take a view that non-extremal black holes arise when r0 becomes negative. Thus

the solution describes a black hole for any real and non-vanishing r0.

Case 2: c0 = 0. Setting the parameter c0 = 0 has the effect of turning off the thermo-

dynamical quantity Ψ. The solution is given by

f = r2 + c1r −
Q2

3c1r
, a = −Q

r
. (2.26)

It also admits an extremal limit. The corresponding parameters and the solution are given

by

Q = −3

2
r2

0 , c1 = −3

2
r0 , f =

(r − r0)2(2r + r0)

2r
, a = −3r0(r − r0)

2r
. (2.27)

As usual, we have made a gauge choice so that a vanishes at r = r0. As in the case 1,

the same local metric also describes a non-extremal black hole when r is negative. (The

horizon is at r = −r0/2 and the asymptotic AdS arises as r → −∞.)

Case 3: general extremal solution. It follows from (2.4) that the function f for the

general extremal solution must take the form f = (r − r0)2(r − r1)/r with r0 > 0 and

r0 > r1. This implies that

c0 = r0(r0 + 2r1) , c1 = −2r0 − r1 , d = −r2
0r1 , Q = r0(r0 − r1) . (2.28)
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This leads to the general extremal solution

f =
(r − r0)2(r − r1)

r
, a =

(r − r0)(r0 − r1)

r
. (2.29)

(Note that if we let r1 > r0, the solution becomes non-extremal black hole with horizon lo-

cated at r = r1.) If we set r1 = 0, the solution becomes the “BPS” extremal solution (2.22).

If instead we let r1 = 2r0 or r1 = 1
2r0, we obtain the extremal solutions (2.25) and (2.27)

respectively.

3 Charged spinor and the Green’s function

In the previous section, we have constructed a variety of charged black holes in conformal

gravity that are asymptotically AdS. In this section, we review and discuss the formalism

of deriving the Green’s function from a charged spinor satisfying the Dirac equation [5, 6].

The Dirac equation for a charged massless spinor ψ in a generic gravitational background

is given by

γµ(∂µ +
1

4
ωabµ Γab − iqAµ)Ψ = 0 . (3.1)

Massive charged Dirac fermions were also considered in [5, 6]; we shall not consider them in

this paper, since they break the conformal symmetry. To derive the formalism, we consider

a more general background in the form of

ds2 = −fdt2 +
dr2

h
+ r2(dx2 + dy2) , A = a dt . (3.2)

Note that the vector has a gauge symmetry A→ A+dΛ. In the Dirac equation, this gauge

symmetry has the effect of creating a phase factor in the fermion field ψ. In particular, the

constant shift in At implies a constant shift in ω. Thus in this paper, we shall always make

a gauge choice such that A vanishes on the horizon by an appropriate constant shift in At.

This gauge choice makes the boundary condition of the wave solution on the horizon easier

to define.

The vielbein and the corresponding spin connection for (3.2) are given by

e0 = f
1
2 dt , e1 = rdx , e2 = rdy , e3 =

dr√
h
,

ω0
3 =

1

2
h

1
2 f ′f−1e0 , ω1

3 = h
1
2 r−1e1 , ω2

3 = h
1
2 r−1e2 . (3.3)

The contribution of the spin connection to the Dirac equation (3.1) can be absorbed by

the scaling of the field Ψ̃ = (−ggrr)
1
4 Ψ. In general a wave function involves the frequency

ω and the wave numbers kx and ky. Owing to the symmetry in the (x, y) plane, we can set

ky = 0 without loss of generality. In the Fourier mode Ψ̃ ∼ e−iωt+ikxΨ̂ with the momentum

lying in the x direction only, the Dirac equation becomes(
− if−

1
2 (ω + qφ)γ0 + h

1
2γ3∂r + ir−1kγ1

)
Ψ̂ = 0 . (3.4)
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Adopting the following conventions for the gamma matrices

γ0 =

(
iσ1 0

0 iσ1

)
γ1 =

(
−σ2 0

0 σ2

)
γ2 =

(
0 −σ2

−σ2 0

)

γ3 =

(
σ3 0

0 σ3

)
γ5 =

(
0 iσ2

−iσ2 0

)
,

the Dirac equation reduces to two decoupled equations[
f−

1
2 (ω + qφ)σ1 + h

1
2σ3∂r + (−1)αr−1ikσ2

]
ψ̂α = 0 , (3.5)

where α = 1, 2. Note that only three gamma matrices (γ0, γ3, γ1) appear in the wave

equation (3.4). The detail gamma matrix decomposition above is unnecessary except for

the three. Thus, it is rather straightforward to generalise the formalism to arbitrary di-

mensions [6].

The equation for ψ2 is related to the equation for ψ1 by k → −k. Each ψα is a

two-component spinor. Let ψ̂1 = (u1, u2)T and u± = u1 ± iu2, we find that

u′+ + λ̄1(r)u+ = λ̄2(r)u− , u′− + λ1(r)u− = λ2(r)u+ , (3.6)

where

λ1(r) =
i(ω + qa)√

fh
, λ2(r) = − ik

r
√
h
. (3.7)

(Note that if we had considered the massive Dirac equation, we would have instead λ2(r) =
m√
h
− ik

r
√
h

.) Here the bar denotes the complex conjugation. It follows that

u′′+ + p̄1(r)u′+ + p̄2(r)u+ = 0 , (3.8)

u′′− + p1(r)u′− + p2(r)u− = 0 , (3.9)

where

p1(r) = −λ
′
2

λ2
, p2(r) = |λ1|2 − |λ2|2 + p1(r)λ1 + λ′1. (3.10)

The advantage of writing the decoupled equations for u± instead of ui is that these equa-

tions now involve only the metric functions rather than their square roots. In this paper,

we opt to solve for u− first from the second-order differential equation (3.9). We then

obtain u+ from (3.6), namely

u+ =
u′− + λ1u−

λ2
. (3.11)

Note that although from (3.8) u+ simply takes the form that is complex conjugate of u−,

the integration constants can only be determined through (3.11), so that the full set of

solutions for (u+, u−) have two independent integration constants rather than four.

As we shall see in the next section, for the “BPS” solutions (2.19), the wave functions

u+ and u− can be solved analytically for general ω and k, in terms of hypergeometric

functions. (The analysis on the general black hole is given in section 6.) By choosing the

appropriate boundary condition on the horizon such that the waves are in-falling only, we
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can then read off the Green’s function by studying the behaviour of the wave functions at

AdS boundary, namely

G1 = −G−1
2 = lim

r→∞

u2

u1
= −i lim

r→∞

u+ − u−
u+ + u−

. (3.12)

Here, G1 and G2 are diagonal entries of the 2 by 2 matrix of the Green’s function associated

with the massless spinor [5, 6, 12]. In particular G1 corresponds to the right-handed spino-

rial operator and the G2 corresponds to the left, which we shall not consider in this paper.

In this “standard” quantization, the function u1 is treated as source and u2 is the response.

It is clear that u1 and u2 are symmetric from the point of view of the wave function. This

leads to an alternative quantization in which the roles of u1 and u2 are reversed. In this

case, the Green’s function of the right-handed spinor is given by −G2 instead.

For a generic black hole of the form (3.2), if we could obtain the general wave solution

and hence the Green’s function, we could then determine the Fermi surfaces k = kF which

are defined as poles of the Green’s function of vanishing ω. In practice, however, the Dirac

equation cannot be solved exactly for generic (ω, k) in most backgrounds. One can then

try to solve the Dirac equation for simpler case with ω = 0. This is enough for obtaining

G(0, k) and determining a Fermi surface. It is still of interest to study the behaviour of

the Green’s function for small ω on or near the Fermi surface. In order to derive such

properties on the Fermi surface, a procedure was developed in [5, 6] for the extremal RN

black holes in general dimensions. In fact the formalism applies for general extremal black

holes, where the near-horizon geometry has an AdS2 factor. This enables one to get the

Green’s functions in the small-ω limit as long as one knows the solution at ω = 0. Unfor-

tunately, there was no analytic solution even for ω = 0, except for D = 4 [8]. The above

procedure was only proceeded numerically. Although the Green’s function (1.1) can be

reproduced numerically even for non-Fermi liquids, it is more satisfying to obtain some

analytic expression for such a Green’s function.

In [12], an example of extremal background was discussed in which G(0, k) and hence

the Fermi surfaces could be obtained exactly. This gives rise to an analytical expression

for the Green’s function of small ω, namely (1.1). However, the general expression of

G(ω, k) is still unknown. In addition, an analytic expression of the Green’s function for a

non-extremal black hole is also lacking in the literature. This story changes if we use in-

stead the black hole backgrounds of conformal gravity: the Dirac equations become exactly

solvable! We shall proceed in the next section.

To end this section, we would like to comment on the effect of the conformal symmetry

on the Fermi surfaces. If a conformal transformation does not alter the global structure

such as the asymptotic infinity and the horizon, the resulting new solution can be viewed

as equivalent to the original one. Since the Dirac equation is covariant under the conformal

transformation, the Green’s function G(ω, k) and hence the Fermi surfaces are invariant

under the conformal transformations.
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4 Exact Green’s function from the “BPS” black holes

As we shall demonstrate in section 6, the Dirac equation (3.1) on the general T 2-symmetric

background (2.4) with ε = 0 can be solved exactly, and the analytic Green’s function for

general (ω, k) can be obtained. However, the results are expressed in terms of the general

Heun’s functions, which are less studied. In fact there is no Heun’s function defined in

Mathematica, and very limited properties of these functions are coded in Maple. In this

section, we study the Dirac equation in the simpler “BPS” backgrounds, given in section

2.2, namely, the black holes given by (2.16) with (2.19). We make a gauge choice

A =

(
r− −

r+r−
r

)
dt , (4.1)

so that it vanishes on the horizon r = r+.

4.1 Green’s function from non-extremal black holes

Let us first consider the general solution (2.19) with two parameters (r+, r−). We have

λ1(r) = i
(ω + qr−)r − qr+r−
r(r − r+)(r − r−)

, λ2(r) = − ik

r
√

(r − r+)(r − r−)
, (4.2)

It turns out that the wave equations for u+ and u− are exactly solvable. We organize the so-

lutions as in-falling and outgoing modes on the horizon. The in-falling solutions are given by

uin
+ = − 2k

4ω + i(r+ − r−)
r−1+iq(r − r+)

1
2
−iΩ(r − r−)

1
2
−iq+iΩ×

×2F1

[
1− iq + ν, 1− iq − ν;

3

2
− 2iΩ; −r−(r − r−)

r(r+ − r−)

]
,

uin
− = riq(r − r+)−iΩ(r − r−)−iq+iΩ×

×2F1

[
− iq + ν, −iq − ν;

1

2
− 2iΩ; −r−(r − r+)

r(r+ − r−)

]
, (4.3)

where

Ω =
ω

r+ − r−
=

ω

4πT
, ν =

√
k2

r+r−
− q2 =

√
k2

Q
− q2 . (4.4)

Note that T is the temperature of the background black hole, given in (2.20). These

solutions are called in-falling since near the horizon, the wave function behaves like

ψ ∼ exp

(
− iωt+ iΩ log

(
r − r+

4πT

))
. (4.5)

The outgoing wave functions are given by

uout
+ ∼ (uin

−)∗ , uout
− ∼ (uin

+)∗ , (4.6)

where ∗ denotes the complex conjugate. The outgoing solution should be discarded for

the black hole background. To be precise, the outgoing solution gives rise to the advanced

Green’s function which we shall not consider in this paper.
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Following the discussion in section 3, we find that the Green’s function for general ω

and k is given by

G(ω, k) = i
1− 2i(γ + 2Ω)

1 + 2i(γ − 2Ω)
, (4.7)

where

γ =
2F1[1− ν − iq, 1 + ν − iq; 3

2 + iΩ; − r−
r+−r− ] k

2F1[−ν − iq, ν − iq; 1
2 + iΩ; − r−

r+−r− ] (r+ − r−)

=
2F1[1− ν − iq, 1 + ν − iq; 3

2 + iΩ; − r−
4πT ] k

2F1[−ν − iq, ν − iq; 1
2 + iΩ; − r−

4πT ] (4πT )
, (4.8)

The Green’s function for ω = 0 is then simply given by (4.7) and (4.8) with Ω set to zero.

It is clear that the general Green’s function G(ω, k) is complex and it remains complex

for ω = 0. By contrast, as we shall see in the next subsection, G(0, k) for extremal black

hole becomes real. Interestingly, in non-extremal backgrounds, the quantity ν does not

have any particular physical importance and there is no requirement that it be real. The

situation is changed in the extremal limit, where ν has to be real for stability.

We find that for some special parameter choices, the hypergeometric functions in the

Green’s function degenerate. For example, if we let q = 0 = ω, we have

G = i

i + tanh

(
2k√
r+r−

arcsinh r−
r+−r−

)
i− tanh

(
2k√
r+r−

arcsinh r−
r+−r−

) . (4.9)

For ν = 1
4 and ω = 0, we have

G = i
2− i

√
(1 + 16q2)r+r− γ

2 + i
√

(1 + 16q2)r+r− γ
(4.10)

where

γ = − 2i

(1− 4iq)
√
r−(r+ − r−)

(
1− i

√
r−

r+−r−

)− 1
2

+2iq
−
(

1 + i
√

r−
r+−r−

)− 1
2

+2iq

(
1− i

√
r−

r+−r−

) 1
2

+2iq
+
(

1 + i
√

r−
r+−r−

) 1
2

+2iq
. (4.11)

4.2 Green’s function from the extremal black hole

We now consider the extremal case with r− = r+ ≡ r0. This case was discussed in some de-

tail in [35]. Although the results in this case can be obtained by taking a subtle extremal

limit on the hypergeometric functions in the previous subsection, (further discussion is

given in section 4.6,) it is of interest to study the extremal case on its own and we shall

discuss this example independently. In this case, we have

λ1 = i
(ω + qr0)r − qr2

0

r(r − r0)2
, λ2 = − ik

r(r − r0)
. (4.12)
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The in-falling solutions of u± can be obtained, given by

u−(r) = z−
1
2Wκ,ν(z) , u+(r) =

ik

r0
z−

1
2W−κ∗,ν(z) , (4.13)

where Wκ,ν(z) denotes the Whittaker function. The new notations above are specified as

follows

κ =
1

2
+ iq , ν =

√
k2

r2
0

− q2 , z = − 2iω r

r0(r − r0)
, (4.14)

and κ∗ is the complex conjugate of κ. As we shall discuss at the beginning of subsection

4.4, the quantity ν has to be real in this extremal limit, which implies that |k| ≥ |qr0|.
The sign choice of ν is however conventional, and it has an effect on defining which mode

is in-falling. The following identities are useful

zW ′κ,ν(z) =

(
κ− 1

2
z

)
Wκ,ν(z)−

(
ν2 −

(
κ− 1

2

)2
)
Wκ−1,ν(z)

= −
(
κ− 1

2
z

)
Wκ,ν −Wκ+1,ν(z) . (4.15)

As r approaches the horizon r = r0, we have z →∞, and the Whittaker function behaves as

Wκ,ν → e−
1
2
zzκ(1 +O(z−1)) . (4.16)

It is then straightforward to recognise that ψ is in-falling only. The retarded Green’s func-

tion, associated with the in-falling modes, can now be read off straightforwardly, given by

G1 = −G−1
2 = i

1− γ
1 + γ

, (4.17)

where

γ =
ik U(1− iq + ν, 1 + 2ν,−2iω

r0
)

r0 U(−iq + ν, 1 + 2ν,−2iω
r0

)
. (4.18)

Here we have used the identity

Wκ,ν(z) = exp

(
− 1

2
z

)
zν+ 1

2U

(
ν − k +

1

2
, 1 + 2ν; z

)
, (4.19)

where U is the confluent hypergeometric function of the second kind, defined by

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
1F1(a; b; z) +

Γ(b− 1)

Γ(a)
z1−b

1F1(a− b+ 1; 2− b; z) . (4.20)

We can also obtain the result directly from (4.7) and (4.8) by taking a limit of

r− → r+ ≡ r0. Since the last argument in the hypergeometric function in (4.8) blows

in this limit, it is convenient to use the following identity

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1(a, 1 + a− c; 1 + a− b; z−1)
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+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1(b, 1 + b− c; 1 + b− a; z−1) , (4.21)

for z 6∈ (0, 1).

It is worth emphasizing an important difference between the wave functions in the

extremal and non-extremal black holes. In the extremal background, the general wave

solution for the u− with ω = 0 is reduced to

u− = c1

(
1− r0

r

)ν
+ c2

(
1− r0

r

)−ν
. (4.22)

(u+ is analogous.) This implies that for ν > 0, the wave function is well defined on the

horizon only when c2 = 0. This allows one to pick the correct mode even when we do

not have the more general solution with non-vanishing ω, in which case, the concept of in-

falling and outgoing becomes irrelevant. This implies that in the extremal case, the Green’s

function can be determined without any knowledge with ω 6= 0. Furthermore, when the

near-horizon geometry has AdS2 × T 2, the matching procedure of [6] is always applicable

with the same expression of the self-energy term. This enables one to get the Green’s

functions in the small-ω limit as long as one knows the solution at ω = 0. The situation

is very different in the general non-extremal solution. As we can saw in section 4.1, when

ω = 0, both solutions of u− are well defined on the horizon. We are able to select the right

mode only because we have the general solution with non-vanishing ω, which allows us to

separate the in-falling mode from the outgoing mode. If we can solve the Dirac equation

only for ω = 0 in the non-extremal background, we shall not be able to fix the boundary

condition of the ω = 0 solution alone on the horizon. Further distinguishing features of

extremal and non-extremal backgrounds will be addressed in subsections 4.4, 4.5 and 4.6.

4.3 Fermi surface from the extremal black hole

Having obtained the Green’s function in the momentum space for general ω and k, we can

now study the Fermi surfaces. They are characterised by the poles of the Green’s function

for vanishing ω. Since we have 1F1[a, b, 0] = 1 for generic a and b, it follows that for any

positive ν, the second term in the confluent hypergeometric function (4.20) dominates.

Thus in the ω → 0 limit, we have

G(0, k) = i +
2k

νr0 + i(k − qr0)
=

√
k + qr0

k − qr0
, (4.23)

which is a real quantity provided that ν is real. Note that for half integer ν, the iden-

tity (4.20) diverges. However, the ratio γ (4.18) remains finite and the resulting Green’s

function takes the same form as the above. Thus for a given extremal black hole with r0

and the given charge q of the spinor, there is only one Fermi surface: k = qr0 > 0 for the

standard quantization or k = −qr0 < 0 for the alternative quantization, both correspond

to the vanishing of ν.

Since the Fermi surface in this case occurs at ν = 0 only, there is a delicate limiting

procedure for investigating the Green’s function at the vicinity of the Fermi surface. Let us
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first examine the standard quantization case whose Fermi surface occurs at k = kF ≡ qr0.

If ω/r0 approaches zero much faster than (k − kF ), we find that

G1 ∼
√

2kF (k − kF )

(k − kF ) + q
√

2(k−kF )
kF

ω + 2(k − kF )(−2iω
r0

)

√
2(k−kF )

kF

. (4.24)

Comparing with the general formula of the Green’s function near the Fermi surface (1.1),

we find that

v−1
F = 0− q

√
2(k − kF )

kF
+ · · · ,

h1 = 0−
√

2kF (k − kF ) + · · · , h2 = 0− 2(k − kF ) + · · · . (4.25)

For the alternative quantization, the Fermi surface occurs at k = kF ≡ −qr0 < 0.

Again in the limit where ω/r0 approaches zero much faster than (k − kF ), we have

G2 = −
√

2kF (k − kF )

(k − kF )− q
√

2(k−kF )
kF

ω + 2(k − kF )(−2iω
r0

)

√
2(k−kF )

kF

. (4.26)

Comparing with the general formula (1.1), we have

v−1
F = 0 + q

√
2(k − kF )

kF
+ · · · ,

h1 = 0 +
√

2kF (k − kF ) + · · · , h2 = 0− 2(k − kF ) + · · · . (4.27)

It is instructive also to consider how the Green’s function behaves with small ω, after

we have literally fixed k = kF . We find

k = qr0 : G1 = −i + 2q

(
log

(
− 2iω

r0

)
− 2γ − χ(iq)

)
,

k = −qr0 : G2 = −i + 2q

(
log

(
− 2iω

r0

)
− 2γ − χ(iq)

)
, (4.28)

where γ is the Euler number and χ is the digamma function. In both cases, the divergences

are logarithmic in small ω. This is different from the general formula (1.1) with k = kF .

The ν = 0 Fermi surface describes an extreme situation of some Non-Fermi liquids. It

was shown to exist in the extremal RN black hole [5, 6]. As we shall see later, it can also

arise in the more general two-parameter extremal solutions. The example discussed in this

subsection is somewhat unusual in that this is the only Fermi surface.

4.4 Imaginary ν and Fermi surfaces from non-extremal black holes

In the above discussion of extremal background, we have considered the case where ν,

whose expression is given by (4.14), is a real number. The general expression of ν for

the non-extremal solutions is given by (4.4). Naively, one would expect that this quantity
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continues to be real, in which case, we find that there is no sign of Fermi surfaces in the

non-extremal background.

We now consider the possibility that ν is pure imaginary. There are two situations

that this can arise. The first is when r− is also positive. In this case, ν becomes imaginary

if we have

q2 >
k2

r+r−
. (4.29)

The second situation is when r− is negative. In this case, ν is pure imaginary for any (k, q)

that do not vanish simultaneously. In either case, we shall define ν = iµ where

µ =

√
q2 − k2

r+r−
. (4.30)

For the extremal black hole, the solution for the wave function u− with ω = 0 is given by

u− = c1

(
1− r0

r

)ν
+ c2

(
1− r0

r

)−ν
=

(
1− r0

r

)iµ

+ c2

(
1− r0

r

)−iµ

. (4.31)

Thus, we see that if ν is real and positive, the wave function is well-defined on the horizon

by setting c2 = 0. This is in fact exactly the near-horizon behaviour of the general in-falling

solution (4.13) in the ω → 0 limit. If on the other hand, ν = iµ is pure imaginary, the

wave function becomes oscillatory on the horizon. The oscillatory mode with ω = 0 on

the horizon makes it impossible to fix the horizon boundary condition. It was argued that

this corresponds to an infinite number of particle creation and suggests that the geometry

becomes unstable [6]. Further discussion will be given later.

This instability does not occur in the non-extremal solutions. It is clear that the hy-

pergeometric functions in (4.3) are well behaved when r → r+. It follows that the fermionic

wave function in the near-horizon behaves simply as (4.5) and there is no oscillatory be-

haviour when ω = 0. Thus as long as the black hole is non-extremal, imaginary ν does not

imply instability and hence should be considered. It is worth drawing attention that for an

extremal black hole, there usually exists a decoupling limit in which the metric becomes

its near-horizon geometry AdS2 × T 2. The quantity ν has a clear physical interpretation

that it measures the conformal weights of the dual operators in the boundary field the-

ory of the AdS2. This implies that ν must be real. Such a decoupling limit is absent in

non-extremal solutions and ν has no apparent physical significance and it could be real or

imaginary. In fact, as we see in section 6, in the wave solution and the Green’s function

for the most general black holes, there is no parameter combination that can be recognised

as ν at all. Only in the extremal limit, such a combination appears. The appearance of

the ν-like quantity in this non-extremal case is accidental. As we have mentioned, there is

no Fermi surface at all for real ν in non-extremal solutions. Interestingly, Fermi surfaces

emerge quite frequently when ν is taken to be pure imaginary. In other words, there is a

restriction on the parameter space (k, q) such as |k| ≥ |qr0| in the extremal black hole, but

such a restriction disappears in the non-extremal background.
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For ω = 0 and ν = iµ, the Green’s function is given by

G(0, k) = i
1− 2iγ

1 + 2iγ
, γ =

2F1[1− i(µ+ q), 1 + i(µ− q); 3
2 ; r−

r−−r+ ] k

2F1[−i(µ+ q), i(µ− q); 1
2 ; r−

r−−r+ ] (r+ − r−)
. (4.32)

Note an important distinguishing feature that the Green’s function G(0, k) above is not

real, whilst it is always real in the extremal limit. This is related to the fact that in the

non-extremal case, both wave functions are well defined on the horizon when ω = 0, and

the wave functions u+ and u− are organized in terms as in-falling or outgoing modes. This

implies that u+ and u− are not complex conjugate to each other, and the resulting Green’s

function is therefore not real, even when ω = 0.

Fermi surfaces can then emerge when G(0, k) diverges or vanishes (for alternative quan-

tization) for certain choice of (k, q). Since G(0, k) is complex, it is unlikely that it diverges

literally, since it would demand the vanishing of the real and complex parts of the inverse

of the Green’s function simultaneously. Our explicit examples however demonstrate that

there exist values of k for which |G(0, k)| becomes large in many orders of magnitude. These

can be regarded as Fermi surfaces in all practical purpose. Since an analytical expression

for such conditions of (k, q) is unlikely to exist, we shall present two illustrative examples.

In both examples we examine the denominator of the Green’s function (4.32), namely

D = 1 + 2iγ . (4.33)

The “zeros” of D signal the Fermi surfaces. Note that in general D is a complex number.

For a given black hole with r± fixed, and given q, we have only one real variable k to

vary. It is hence rather unlikely that both the real and imaginary parts of D approach zero

simultaneously for certain values of k. We are looking for surfaces for which the minimum

of |1 + 2iγ| is smaller in many orders of magnitude.

We first consider an example with both r± being positive. To be specific, let us choose

r+ = 2 and r− = 1
2 . Thus the we have µ =

√
q2 − k2. For a given q, k runs from 0 to q.

For small q, we find that there is no Fermi surface at all. The left plot of figure 1 shows

both the real and imaginary parts of D, as a function of k, for q = 5. It is clear that

although the imaginary part of D passes through a zero, the real part is never particularly

small. The situation changes for larger q. The right plot of figure 1 has q = 10, and an

approximate Fermi surface emerges at k = 3.633657.

Let us increase the value of q, and we find that more and more Fermi surfaces emerge.

In figure 2, we present the plots for q = 30 and 50.

It is worth remarking in the above graphs, when the imaginary (red) lines cross zeros,

the real (blue) lines some times approaches a local minimum which is very small, but not

necessarily zero literally. For example, for q = 10, the Fermi surface occurs at k ∼ 3.633657

and we have Re(D) ∼ 0.0058. For q = 50, at k1, we have Re(D) ∼ 0.0022; at k2, we

have Re(D) ∼ 2.5 × 10−6; at k3, we have Re(D) ∼ 3 × 10−10; around at k4, we have

D ∼ −2.2 × 10−16 + 1.9 × 10−13i. Note that in this case, both real and imaginary parts

cross zero around k4. Thus owing to the fact that D is complex, the |D| is not going to hit

zero literally; however, the local minimums of |D| can be so small that these points should be

viewed as Fermi surfaces. In figure 3, we plot the absolute value |D| for the q = 50 example.
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Figure 1. These are plots of real (blue line) and imaginary (red line) part of D as functions of k

for some fixed q. In the left figure, we have chosen q = 5; in the right figure, we have q = 10 and a

Fermi surface emerges at k = 3.633657. The black hole parameters are r+ = 2 and r− = 1/2.
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k
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Im(D)
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Figure 2. These are plots of real (blue line) and imaginary (red line) part of D as functions of

k for some fixed q. In the left plot, we have chosen q = 30; in the right plot, we have q = 50

and four Fermi surfaces occur at k1 = 9.5042069087, k2 = 13.8418437, k3 = 17.998011219, and

k4 = 22.945804499291. The black hole parameters are r+ = 2 and r− = 1/2.

10 20 30 40 50

0.5

1.0

1.5

2.0 |D|

k

Figure 3. This is a plot of |D| with respect to k, for q = 50. The black hole parameters are r+ = 2

and r− = 1/2.

We have presented the effective Fermi surfaces so far for the given q’s. It is instructive

to present the pictures when k is fixed and let q run from k to infinity. In the left plot of

figure 4, we have k = 1, and we see that the minimal value of |D| is above 0.3 and hence

there is no Fermi surface, even in the approximate sense. In the right plot of figure 4, we

let k = 9, and we find that multiple but finite number of Fermi surfaces emerge.
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Figure 4. These are plots of |D| with respect to q, for some fixed k. The left plot has k = 1 and

there is no Fermi surface. In the right plot, we have k = 9. Multiple Fermi surfaces arise. The

black hole parameters are r+ = 2 and r− = 1/2.
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Figure 5. These are two plots of |D| with respect to k, for some fixed q. The left one has q = 4

and the values of |D| lie roughly in the range of (0.7, 2). The right one has q = 20, and multiple

Fermi surfaces indeed emerge. The black hole parameters are r+ = 1 = −r−.

We now consider the second major case with r− < 0. As a concrete example, we choose

r+ = 1 and r− = −1, and hence we have ν = i
√
k2 + q2. Thus the parameters k and q can

now run independently. We find that for small k or small q, there can be no Fermi surface.

In figure 5, we give such an example with q = 4 and the plot clearly shows the absence of

a minimum that is close to zero. When k and q are both sufficiently large, Fermi surfaces

emerge, as can be seen in figure 5.

So far we have studied the Green’s function with vanishing ω, which allows us to

determine the Fermi surfaces. It is also of great interest to study how the Green’s function

behaves when we change ω. Our analytic expression for general (ω, k) makes the task easy.

In figure 6, we present a graph on how the Green’s function behaves under ω on a given

Fermi surface k = kF . We see that multiple but finite maxima arise for |G(ω, kF )|.

4.5 Near-extremal limit

As we have discussed in the previous subsections, there is only one Fermi surface in the

extreme limit, corresponding to ν = 0. For a non-extremal black hole, multiple Fermi

surfaces emerge for sufficiently large q. It is of interest to study the near-extremal region.

Let us redefine the variables r+ = r0 and r− = r0 − δ. The near extremal solution can be

defined as having non-zero δ but with δ/r0 � 1.
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Figure 6. This is the plot of |G(ω, kF )| with respect to ω on a Fermi surface. The black hole

is specified by r+ = 2 and r− = 1/2. The spinor charge is q = 50. The Fermi surface is at

kF = 17.998011219, for which the Green’s function has a maximum around 109. Multiple and finite

number of maxima arise as we change ω. The maximum in the left is of 1010, the maximum in the

middle with ω = 0 is of order 109, whilst the maximum at the right is much smaller of 500.

In the literatures, there have been discussions on obtaining decoupling limit of the

near-extremal black holes. For the black hole (2.16) with (2.19), this can be achieved first

by the following scalings and redefinitions:

r+ = r0 + ερ0 , r− = r0 − ερ− , r = r0 + ερ , t→ t

ε
. (4.34)

Then sending the parameter ε→ 0 yields the following charged AdS2 × T 2:

ds2 =
dρ2

ρ2 − ρ2
0

− (ρ2 − ρ2
0)dt2 + r2

0(dx2 + dy2) , A = (ρ− ρ0)dt . (4.35)

The first two terms appear to describe a two dimensional non-extremal black hole; how-

ever, it is the AdS2 metric. In order to achieve this AdS2 “black hole”, the decoupling limit

ε→ 0 has to be taken so that the topology R2×T 2 of the non-extremal black hole becomes

AdS2 × T 2. In this limit, we have r+ − r− = 2ερ0 → 0, and hence the solution should

really be viewed as the extremal limit, rather than the near-extremal solution. In fact, in

this topology-changing decoupling limit, all the thermodynamical quantities are identical

to those of the extremal solution. Thus the solution (4.35) should be really viewed as a

special slice of the AdS2×T 2 in the extremal limit. In other words, as long as the solution

is not extremal, no matter how near, the decoupling limit described above does not exist

and the topology of the black hole remains R2 × T 2.

Now let us examine how the Green’s function (4.7) behaves in the near-extremal region

for the ω = 0 case. Let us consider a concrete example, with r+ = 1, δ = 1/104 and q = 1.

For ν to be real, we must have k ≥ k0 = 3
√

1111/100. We find that the absolute value

|G(k)| lies in between 16.0425 and 1 as k runs from k0 to ∞, suggesting that there is no

Fermi surface for real ν, as we see in the left figure in figure 7. On the other hand, If we let

k be less than k0 such that ν becomes pure imaginary, Fermi surfaces emerge, as we can see

from the right figure in figure 7. Thus we see that the characteristics of the Fermi surface

structure of near-extremal black holes is more or less the same as the generic non-extremal
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Figure 7. In both figures, we have ω = 0, r+ = 1, r− = 1−10−4 and q = 1. In the left figure, we plot

|G1| vs. k, with k ≥ k0. In this case ν is real and consequently there is no Fermi surface. In the right

figure, we plot |G1| vs. k, with 0 ≤ k ≤ k0. We have pure imaginary ν and Fermi surfaces emerge.

black holes. This is consistent with the fact that the topology of the near-extremal solution

is still a R2 × T 2, rather than the extremal AdS2 × T 2. It is worth pointing out that when

δ is smaller so that the temperature is lower, the allowed the value of q for the existence

of a Fermi surface becomes smaller, as one would have expected.

Let us examine the Taylor expansion of the Green’s function in terms of δ. Let r+ = r0

and r− = r0(1−δ) with δ � 1, and we keep the linear-order term in δ. Let us first consider

ν is real.

Case 1: ν > 1
2 and ν 6= half integers:

G =

√
k + qr0

k − qr0
+
kqr0

(
r2

0 − 8(k2 − q2r2
0)− 2r0

√
k2 − q2r2

0

)
2(k − qr0)

3
2
√
k + qr0

(
4k2 − (1 + 4q2)r2

0

) δ +O(δ2) . (4.36)

It is advantageous to express the result in terms of ν and q variables, given by

G =
q ±

√
ν2 + q2

ν
+
qr0(ν2 + q2 ± q

√
ν2 + q2)

ν2(1− 2ν)r0
δ +O(δ2) . (4.37)

Case 2: 0 < ν < 1
2 :

G =

√
k + qr0

k − qr0
+

k

k − qr0
δ2ν0×(

i +
2−4ν0Γ(−2ν0)Γ(1 + 2ν0 − 2iq)Γ(2ν0 + 2iq)(sin(2πq)− i sin(2ν0π))

2πΓ(2ν0)

)
,(4.38)

where ν0 =
√
k2 − q2r2

0/r0.

If instead, we consider ν to be imaginary. For a given q, no matter how small, as δ

becomes smaller, there will be always a Fermi surface. In fact there is an oscillatory factor

δν0 in the Green’s function, implies that as δ becomes smaller and smaller, more and more

Fermi surfaces emerge for k lying between 0 and qr0. The maximum value of k for the

Fermi surfaces becomes k = qr0 in the extremal limit. As δ approaches zero, the number
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Figure 8. Here we plot |G1| verse log(1/δ). It is clear that |G1| alternates between 0 and ∞
periodically in terms of log(1/δ) as δ approaches zero. The parameters of the black hole are chosen

to be r+ = 1, r− = 1 − δ. The Dirac fermion is chosen to have q = 1 and k = 9/10 so that ν is

pure imaginary as δ becomes small.

of Fermi surfaces for k < qr0 becomes infinite, signalling instability. This is the physical

origin of the earlier observation that the wave function near the horizon of the extremal

black hole for imaginary ν has an infinite number of oscillations, as we saw in (4.31). In

figure 8, we use an explicit example to plot this behaviour.

4.6 Extracting the IR contributions

Having obtained the Green’s function for general ω and k, it is of interest to investigate

the infrared (IR) and the ultra violet (UV) contributions. For the extremal (or “near-

extremal”) solutions, the horizon geometry is AdS2 × T 2, the IR contribution is governed

by the boundary field theory associated with the AdS2. This makes it easier to extract the

IR contribution. The situation is much subtler for the general non-extremal backgrounds.

As demonstrated in [6], for extremal black holes with AdS2 × T 2 horizon, the Green’s

function for small ω can always be determined as long as G(0, k) is known. The wave

functions determined by the matching procedure take the form [6]

Ψ = η+ + G (ω)η− , (4.39)

η± = η
(0)
± + ωη

(1)
± + ω2η

(2)
± + · · · , (4.40)

where G (ω) ∼ ω2νk is the Green’s function in the IR AdS2 region and the near-horizon

asymptotic form of η± is given by nothing but the regular and singular solutions (4.22) at

ω = 0, namely

η
(0)
± → v±(r − r0)±νk . (4.41)

A procedure of determining η± order by order was developed in [6], which is applicable for

a general class of extremal or near extremal black holes.

The wave function for our extremal black hole was given in (4.13). We find that they

can indeed be expressed in the form (4.39), but with η± given in close form in terms of ω:

u1 =
Γ (−2ν0) Γ (1− iq + ν0)

Γ (2ν0) Γ (1− iq − ν0)

(
−2iω

r0

)2ν0 (
1− r0

r

)−ν0
e

iω
r−r0×
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×
[

ik

r0
1F1 (1− iq + ν0; 1 + 2ν0;−z) + (−iq − ν0) 1F1 (−iq + ν0; 1 + 2ν0;−z)

]
+
(

1− r0

r

)ν0
e

iω
r−r0×

×
[

ik

r0
1F1 (1− iq − ν0; 1− 2ν0;−z) + (−iq + ν0) 1F1 (−iq − ν0; 1− 2ν0;−z)

]
,

u2 = −i
Γ (−2ν0) Γ (1− iq + ν0)

Γ (2ν0) Γ (1− iq − ν0)

(
−2iω

r0

)2ν0 (
1− r0

r

)−ν0
e

iω
r−r0×

×
[

ik

r0
1F1 (1− iq + ν0; 1 + 2ν0;−z)− (−iq − ν0) 1F1 (−iq + ν0; 1 + 2ν0;−z)

]
−i
(

1− r0

r

)ν0
e

iω
r−r0×

×
[

ik

r0
1F1 (1−iq−ν0; 1−2ν0;−z)−(−iq+ν0) 1F1 (−iq−ν0; 1−2ν0;−z)

]
, (4.42)

where z = 2iωr
r0(r−r0) and ν0 =

√
k2/r2

0 − q2. This provides a separation of the IR and UV

contributions not only for small ω, but also for general ω as well.

The situation is far subtler for the general non-extremal solutions, since the IR region

now is not the AdS2 × T 2, but R2 × T 2. Nevertheless, our analytic results for general ω

and k allow us to “recreate” the yet unknown perturbative approach and extract the IR

contribution. For simplicity, we present the recreation of the wave function for u− only.

The analogous result for u+ follows straightforwardly. We find the in-falling solution (4.3)

can be split into two terms

u− =
Γ(1

2 − 2iΩ)Γ(−2ν)

Γ(−iq − ν)Γ(1
2 + iq + ν − 2iΩ)

(
r+

r−
− 1

)−iq+ν (
1− r+

r

)iq−ν−iΩ
×

×
(

1− r−
r

)−iq+iΩ

2F1(−iq + ν;
1

2
− iq + ν + iΩ; 1 + 2ν; z)

+
Γ(1

2 − 2iΩ)Γ(2ν)

Γ(−iq + ν)Γ(1
2 + iq − ν − 2iΩ)

(
r+

r−
− 1

)−iq−ν (
1− r+

r

)iq+ν−iΩ
×

×
(

1− r−
r

)−iq+iΩ

2F1(−iq − ν;
1

2
− iq − ν + iΩ; 1− 2ν; z) , (4.43)

where Ω and ν are given by (4.4) and z = r(r− − r+)/(r−(r − r+)). It is then a straight-

forward exercise to obtain the extremal limit r+ = r0, r− = r0− ε with ε→ 0, and the two

terms correspond to η± respectively. Thus we expect that the Green’s function in the IR

region is given by the ratio of the above two terms, namely

G(ω) ∼
Γ(−2ν)Γ(−iq + ν)Γ(1

2 + iq − ν − 2iΩ)

Γ(2ν)Γ(−iq − ν)Γ(1
2 + iq + ν − 2iΩ)

(
r+

r−
− 1

)2ν

. (4.44)

We find that this indeed gives rise to the same extremal result G(ω) ∼ ω2ν . In fact, we

verify that this reproduces the Green’s function of the IR region of the near-extremal limit

of the RN black hole [36]. It should be cautioned however that in non-extremal case, the

ω-dependence in the wave function appears in the parameters of the hypergeometric func-

tions rather than in the variable z. This makes it very difficult to extract the coefficients

in the series expansion of ω. By contrast, such a dependence in the extremal case appears
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in the variable z of the confluent hypergeometric function. In obtaining the above result,

we have assumed that there is no contribution to G(ω) from the hypergeometric functions.

If this conjecture is correct, we obtain the Green’s function of the IR region in the general

non-extremal case. The result may also provide some clue as how to set the boundary

condition for the ω = 0 wave solutions in the non-extremal background.

5 Fermi surfaces from the general extremal black holes

As we shall show in section 6, the wave solution for the most general black hole is a Hern

function whose properties are not conducive for discussing the Green’s functions and Fermi

surfaces in fine detail. In this section we discuss the general extremal black hole (2.29).

The wave functions for general (ω, k) are still of complicated confluent Hern’s functions;

however, they reduce to hypergeometric functions when ω = 0. This is enough to study

the existence of Fermi surfaces. We find that the general solution of u− is given by

u− = c1

(
1− r0

r

)ν(
1− r1

r

)iq

2F1

[
ν + iq,

1

2
+ ν + iq; 1 + 2ν;−r1(r − r0)

(r0 − r1)r

]
+c2

(
1− r0

r

)−ν(
1− r1

r

)iq

2F1

[
− ν + iq,

1

2
− ν + iq; 1− 2ν;−r1(r − r0)

(r0 − r1)r

]
. (5.1)

where

ν =

√
k2

r0(r0 − r1)
− q2 . (5.2)

It is clear that for positive ν, regularity of the wave function on the horizon r = r0 requires

that c2 = 0. As we discussed in section 4, the ability to fix the boundary condition for u−
on the horizon with ω = 0 is the property enjoyed only by the extremal solutions. If ν is

imaginary, the wave function becomes oscillatory when r → r0 and we shall not consider

such a case for the reasons that we have discussed in section 4.

Having obtained u−, we can easily obtain u+ and hence the Green’s function, following

the procedure spelled out in section 3. We have

G1 = −G−1
2 = i

1− iγ

1 + iγ
, (5.3)

where

γ =
(ν + iq)r0 2F1[1

2 + ν + iq, 1 + ν + iq; 1 + 2ν;− r1
r0−r1 ]

k 2F1[ν + iq, 1
2 + ν + iq; 1 + 2ν,− r1

r0−r ]
. (5.4)

This expression follows the same form of the Green’s function in the earlier examples. In

fact, the Green’s function with ω = 0 for the extremal solution is always real, provided

that ν is real. This is because in the extremal black hole, the solutions for wave func-

tions with real ν have two branches: one diverges on the horizon and the other converges.

The boundary condition selects the converging branch for both u+ and u−, which has a

consequence that they are complex conjugate to each other. For a generic non-extremal

solutions, both branches for ω = 0 wave solutions converge, and we have to use the ω 6= 0

solutions to separate in-falling or outgoing branches and the in-falling solution should be
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chosen. This has a consequence, as we have seen in the non-extremal example discussed

in the previous section, that u± are not complex conjugate to each other and the Green’s

function G(0, k) is hence not real.

The manifestly real expression for the Green’s function (5.1) is given by

G1 = −G−1
2 =

Im(Z)

Re(Z)
, (5.5)

where

Z = (1− i)

(
ν − k√

r0(r0 − r1)
+ iq

)
2F1

[
ν − iq,

1

2
+ ν − iq; 1 + 2ν;− r1

r0 − r1

]
. (5.6)

It is easy to verify that when q = 0, the Green’s function becomes the identity, and hence

there is no Fermi surface for q = 0. When r1 = 0, we recover the Green’s function given

in (4.23), for which there is only one Fermi surface.

It is of interest to note that when ν = 1/4, the function Z becomes simpler, giving

Z = (1− i)(1− 4iq)(−1− 4iq +
√

1 + 16q2) sin

(
1

2
(1 + 4iq) arctan

√
r1

r0 − r1

)
, (5.7)

where we have dropped some inessential real multiplying factors and we have also cho-

sen k = 1
4

√
(1 + 16q2)r0(r0 − r1) for solving ν = 1

4 . Since ν = 1/4 corresponds to some

Non-Fermi liquids, let us analyse the case further. For r1 > 0, there appears to be no

Fermi surface. However, when r1 < 0, Fermi surfaces emerge. Let us consider a concrete

example by choosing r1 = −1 and r0 = 16/9. For this choice of parameters, we have

k = 5
√

1 + 16q2/9. The Green’s function is now given by

(G1)2 = G−2
2 =

1− γ
4(1 + γ)

, γ =
4q(4− 5 cos(4q log 2)) + 3 sin(4q log 2)√

16q2 + 1(5− cos(q log 16))
. (5.8)

Note that 1−γ2 is a perfect square and the Green’s function is manifestly real. We present

the plot of the Green’s function as a function of q in figure 9. It oscillates between ∞
and zero, corresponding to Fermi surfaces in the standard and alternative quantization

respectively.

Thus we see that for some appropriately chosen q as indicated in figure 9, there exists

a Fermi surface with ν = 1/4. For either the standard or alternative quantization, q must

satisfy 1− γ2 = 0, implying

12q sin(4q log 2) + 5 cos(4q log 2)− 4 = 0 . (5.9)

Unfortunately, there appears to be no analytical solution to this equation, albeit it is rather

a simple equation. The extreme case of the Non-Fermi liquids corresponds to ν = 0. For

the same black hole, this corresponds to k = 20q/9. We can see in figure 9 that such

extreme situation of Non-Fermi liquids can also arise in this extremal black hole.

In the above we discussed a special case with ν = 1
4 , corresponding to some non-Fermi

liquids. We also saw that the extreme non-Fermi liquids with ν = 0 can also arise. By
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Figure 9. For both graphs, we have the extremal black hole with r1 = −1 and r0 = 16/9. In the

left figure, we fix ν = 1/4, so that k = 5
√

1 + 16q2/9. The plot describes G1 with respect to q,

and we see it oscillates between infinity and zero, corresponding to Fermi surfaces in standard and

alternative quantisation respectively. In the right plot, we consider the extreme non-Fermi liquids

with ν = 0, corresponding to k = 20q/9. Fermi surfaces emerge also.

k

q

Figure 10. The black hole parameters are r1 = −1 and r0 = 16/9. This is the 3D plot of G in the

(k, q)-plane, viewed from the top. (k runs from 0 to 20 and q runs from 0 to 10.) Interestingly the

Fermi surfaces seem to lie naturally in the linear line of k of q, with the diagonal line corresponding

to ν = 0.

numerating examples, we find that it appears that Fermi surfaces with all possible ν can

arise in the (k, q) plane. For the black hole with r1 = −1 and r0 = 16/9, we present the 3D

plot in figure 10. Comparing to the similar plot in the non-extremal case, we find that the

Green’s function in the extremal background is much simpler than that in the non-extremal

background.

The situation for the general case is similar. We find no evidence for Fermi surfaces

when r1 is positive. However, when r1 is none positive, Fermi surfaces emerge. When

r1 = 0, it reduces to the extremal solution discussed in section 4. In this case, there is

only one Fermi surface, with k = qr0 for the standard quantization and k = −qr0 for the

alternative quantization. When (−r1)/r0 � 1, there is still only one Fermi surface in each

quantization, with k ∼ ±q(r0 − 1
2r1). The more negative r1 is, the more number of Fermi

surfaces we can have for each given q.

For a given black hole with r0 and a negative r1, the existence of Fermi surfaces favors

a larger q. We find that there is always at least one Fermi surface and the number of

the Fermi surfaces increases when q becomes larger. We demonstrate this with a concrete

– 28 –



J
H
E
P
0
2
(
2
0
1
3
)
1
0
9

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-0.5

0.5

1.0

1.5

2.0

k

Re(Z)

15 16 17 18 19

-0.10

-0.05

0.05

Re(Z)

k

Figure 11. In both graphs, we have r0 = 1 and r1 = −1. The plots are Re(Z) with respect to k

whose minimum value is
√

2q for real ν. The zeros of the plots indicate the Fermi surfaces. The

left figure corresponds to q = 1, which only gives rise to a single Fermi surface. The right figure

corresponds to q = 10, and six Fermi surfaces emerge. For this extremal black hole, we find that

the minimum Fermi surface has ν < 1
2 .

example. Let us consider r0 = 1 and r0 = −1. The figure 11 shows two plots of Re(Z) with

respect to k which runs from
√

2q to ∞. It is clear that for smaller q = 1 in the left figure,

there is only one Fermi surface and for larger q = 10, there are six Fermi surfaces arising.

As we mentioned earlier, when −r1/r0 → 0+, there is only one Fermi surface with

ν → 0. If we increase the value of −r1/r0, more Fermi surface will arise. For fixed q, the

minimum ν increases and can eventually pass ν = 1
2 . However, for such black holes, we

can always lower the q value so that the minimal ν is less than 1
2 .

6 Green’s function from the most general black holes

In this section, we study the Dirac equation (3.1) on the most general black hole (2.4) with

T 2 topology (ε = 0). It is advantageous to use the three roots r1, r2 and r3 ≡ r0 of f as

the parameters of the solution. In this parametrisation, the solution is given by

f =
1

r
(r − r1)(r − r2)(r − r0) , A = Q

(
1

r0
− 1

r

)
dt ,

Q2 = (r1r2)2 + (r0r1)2 + (r0r2)2 − r1r2r0(r1 + r2 + r0) . (6.1)

Note that without loss of generality, we have chosen r0 > 0 to represent the horizon radius.

If both r1 and r2 are complex numbers, they must be conjugate to each other; if they are

real, neither of them is bigger than r0. Following the procedure in section 3, we find that

λ1(r) = i
(ω + qQ/r0)r − qQ

(r − r1)(r − r2)(r − r0)
, λ2(r) = − ik

r
√
r(r − r1)(r − r2)(r − r0)

. (6.2)

Note that qQ appears in the Dirac equation together, implying that the complicated ex-

pression for Q in (6.1) can be absorbed in q such that qQ remains a simple expression. Let

us first solve for u−. In order to simplify the equation, we let

u− = (r − r1)−i(Q̃+Ω1)(r − r2)i(Q̃−Ω2)(r − r0)−iΩ0v(z) , (6.3)
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where

z =
r1(r − r0)

r(r0 − r1)
, Q̃ =

qQ

r0(r1 − r2)
, Ω1 =

ωr1

(r1 − r0)(r1 − r2)
,

Ω2 =
ωr2

(r2 − r0)(r2 − r1)
, Ω0 =

ωr0

(r0 − r1)(r0 − r2)
=

ω

4πT
. (6.4)

Here T is the temperature of the black hole, whose thermodynamics was analysed in section

2. Note that we have the identity Ω1 + Ω2 + Ω0 = 0. Thus the three factors (r − ri) with

(i = 0, 1, 2) in (6.3) can be simultaneously replaced by (1 − ri/r). Substituting (6.3) into

the wave equation of u−, we find that v(z) satisfies the following Heun’s equation

v′′(z) +

[
1
2 − 2iΩ0

z
+

1
2 − 2i(Q̃+ Ω1)

z − 1
+

1
2 + 2i(Q̃− Ω2)

z − a

]
v′(z)− b

z(z − 1)(z − a)
v(z) = 0 ,

(6.5)

with

a =
(r0 − r2)r1

(r0 − r1)r2
, b = − k2

(r0 − r1)r2
. (6.6)

Therefore, the wave function u− can be solved in terms of the following general Heun’s

function H`:

u− = c1(r − r1)−i(Q̃+Ω1)(r − r2)i(Q̃−Ω2)(r − r0)−iΩ0×

×H`
(
a, b; 0,

1

2
,
1

2
− 2iΩ0,

1

2
− 2i(Q̃+ Ω1);−z

)
+c2r

− 1
2
−2iΩ0(r − r1)−i(Q̃+Ω1)(r − r2)i(Q̃−Ω2)(r − r0)

1
2

+iΩ0×

×H`
(
a, β;

1

2
+ 2iΩ0, 1 + 2iΩ0,

3

2
+ 2iΩ0,

1

2
− 2i(Q̃+ Ω1);−z

)
, (6.7)

where

β = b− (
1

2
+ 2iΩ0)

(
2iqQ

r2(r0 − r1)
+

2r1r2 − (r1 + r2)r0

2r2(r0 − r1)
(1 + 4iΩ0)

)
. (6.8)

As we have mentioned in section 4.4, the parameter combination ν, which plays an impor-

tant role in extremal solutions, has no apparent physical significance in the non-extremal

backgrounds. In fact it does not appear in the above wave solutions at all. Comparing

to (5.2) for the general extremal case corresponding to having r2 = r0, we expect that the

ν may arise in the following combination

ν2
∣∣∣
→extremal

= −(b+ Q̃2)
∣∣∣
r2→r0

. (6.9)

Thus we see clearly that in the non-extremal background, such a combination does not

appear in the solution and hence it should play no particular role. There is no physical

reason to impose the reality condition. It follows that there is no constraint on (k, q) in the

non-extremal case. The emergence of the ν-like quantity in the subclass of non-extremal

black holes discussed in section 4 was pure accidental.

On the horizon r = r0, corresponding to z = 0, the Heun’s functions in (6.7) all reduce

to identity, and hence the c1 term corresponds to the in-falling mode and the c2 term is
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the outgoing mode. For the black hole background, it is necessary to choose the in-falling

solution only, and hence we set c2 = 0. Having obtained the in-falling solution for u−, the

function u+ can then be read off from (3.11). (It actually requires some derivative identity

given presently.) Thus the full set of in-falling solutions are

u− =

(
1− r1

r

)−i(Q̃+Ω1)(
1− r2

r

)i(Q̃−Ω2)(
1− r0

r

)−iΩ0

×

×H`
(
a, b; 0,

1

2
,
1

2
− 2iΩ0,

1

2
− 2i(Q̃+ Ω1);−z

)
,

u+ = c

(
r − r1

r

)i(Q̃+Ω1)(
1− r2

r

)−i(Q̃−Ω2)(
1− r0

r

) 1
2
−iΩ0

×

×H`
(
a, β∗;

1

2
− 2iΩ0, 1− 2iΩ0,

3

2
− 2iΩ0,

1

2
+ 2i(Q̃+ Ω1);−z

)
, (6.10)

where β∗ is the complex conjugate of β given in (6.8) and c is a complex constant:

c =
i

k

(
1− r1

r0

) 1
2
−2i(Q̃+Ω1)(

1− r2

r0

) 1
2

+2i(Q̃−Ω2)

. (6.11)

This constant coefficient can only be obtained from evaluating (3.11), even though the

structure of the solution for u+ can be obtained right away by the fact that u+ takes the

complex conjugate form of u−. It follows from (3.12) that the Green’s function can now

be obtained straightforwardly:

G(ω, k) = i
1− γ(ω, k)

1 + γ(ω, k)
, (6.12)

where

γ(ω, k) =
cH`

(
a, β∗; 1

2 − 2iΩ0, 1− 2iΩ0,
3
2 − 2iΩ0,

1
2 + 2i(Q̃+ Ω1);− r1

r0−r1

)
H`
(
a, b; 0, 1

2 ,
1
2 − 2iΩ0,

1
2 − 2i(Q̃+ Ω1);− r1

r0−r1

) . (6.13)

Compared to the hypergeometric functions, Heun’s functions are much less studied. In

particular, in the Mathematica package, the Heun’s functions are not yet coded. In the

Maple package, although the function is built in, very limited properties are coded. Note

that when r1 or r2 vanishes, the Heun’s functions are reduced to hypergeometric functions

and we obtain the results for the “BPS” black holes, discussed in section 4. If we let r1 or

r2 to be r0, we obtain the results for the most general extremal solution. The limit is rather

subtle since several arguments in the Heun’s function diverge. We find that the Heun’s

functions become some confluent Heun’s functions H`c in this limit. The proper procedure

requires the identity (6.17) with precise coefficients which are yet unknown in the literature.

We present the general solution for u− for general extremal solution for which r2 = r0:

u− = c2

(
1− r1

r

)− 1
2

+i(Q̂−Ω̂)(
1− r0

r

)−i(Q̂−Ω̂)

H`c

(
− 2iΩ̂,−1

2
,−1

2
+ 2i(Q̂− Ω̂), δ, η;−ẑ

)
+c1

(
1− r1

r

)i(Q̂−Ω̂)(
1− r0

r

)−i(Q̂−Ω̂)

H`c

(
− 2iΩ̂,−1

2
,−1

2
+2i(Q̂−Ω̂), δ, η;−ẑ

)
, (6.14)
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where

Q̂ =
qQ

r0(r0 − r1)
, Ω̂ =

ωr1

(r0 − r1)2
, z =

(r0 − r1)r

r1(r − r0)
,

δ = iΩ̂(1 + 2i(Q̂− Ω̂) , η =
3

8
− 1

2
iQ̂− k2

r0(r0 − r1)
, (6.15)

In order to proceed further, it is necessary to fix the horizon condition on this general wave

solution for the two-parameter extremal black hole. However, on the horizon, we have

z → ∞, it is thus necessary to change the variable z to 1/z. Unfortunately, we have not

found in the literature the necessary identities to perform this transformation. We leave

this problem open for future investigation.

In order to determine the Fermi surfaces from (6.12), we set ω = 0, and the Green’s

function becomes

G(0, k) = i
1− γ(k)

1 + γ(k)
,

γ(k) =
i(r0 − r1)

1
2
−2iQ̃ (r0 − r2)

1
2

+2iQ̃H`
(
a, β∗; 1

2 , 1,
3
2 ,

1
2 + 2iQ̃;− r1

r0−r1

)
kr0H`

(
a, b; 0, 1

2 ,
1
2 ,

1
2 − 2iQ̃;− r1

r0−r1

) , (6.16)

where β is given in (6.8) with ω = 0. Analogous to the simpler non-extremal example

discussed in section 4, G(0, k) is not real and there is no literal divergence . However, there

are effective divergencies corresponding large spiked maxima of |G(0, k)|. To demonstrate

that the above Green’s function can indeed produce effective Fermi surfaces, let us consider

a concrete example. Let us consider r0 = 3, r1 = 1 and r2 = −2. A fermi surface occurs at

qQ = 11.75535749 and kF = 0.7903492261. The absolute value of the Green’s function at

this point is of order 109. We present some graphs of |G(0, k)| in figure 12. It is easy to see

that the maxima associated with the effective Fermi surface is “spiked”, in that for δk ∼ 1

around the kF , we have δ|G| ∼ 109. We also consider the black hole with r0 = 3, r1 = 1 and

r2 = 2. In other words, all the roots are positive. We find a Fermi surface at qQ = 5.3042024

and kF = 0.264110954. In this case, the spiked maximum of G1 is also in the order of 109.

The final example is provided in figure 13 on the black hole r0 = 3, r1 = 1 + i and

r2 = 1−i. In this case, f has only one real root, and hence there is no inner horizon. Again,

the 3D figure of |G| in the (k, qQ)-plane shows a fascinating rich structure of spiked maxima.

To end this section, We are obliged to acknowledge that we have used extensively the

properties of the general Heun’s functions listed in [37, 38]. For our purpose, we find that

the following identities are particularly useful.

(1) The Heun’s function H`(a, b;α, β, γ, δ; z) can be written as the linear combination of

the following two Heun’s functions:

z−αH`

(
1

a
, α(ε− β) +

α

a
(δ − β) +

b

a
;α, α− γ + 1, α− β + 1, δ;

1

z

)
,

z−βH`

(
1

a
, β(ε− β) +

β

a
(δ − β) +

b

a
;β, β − γ + 1, β − α+ 1, δ;

1

z

)
. (6.17)
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|G1|

|G1|

Figure 12. For both plots, the black hole parameters are r0 = 3, r1 = 1 and r2 = −2. The left is the

plot of |G1| with respect to k, with qQ = 11.75535749. The maximum occurs at kF = 0.7903492261

and it is of order 109. The minimum is of order 10−8. The right is the three-dimensional plot of

|G1| with both k and qQ variables. Many spiked maxima arise.

|G|

Figure 13. The 3D plot of |G| in the (k, qQ)-plane shows a fascinating rich structure of spiked

maxima. The black hole is specified by r0 = 3, r1 = 1 + i and r2 = 1− i.

Unfortunately, the precise coefficients are not yet known in the literature. Owing to

the lacking of this knowledge, we were unable to perform the subtle extremal limit of

the wave solutions and the Green’s function from those of most general non-extremal

backgrounds.

(2) The following is a derivative identity that we find useful to calculate u+ from u−:

d

dz
H`(a, b; 0, β, γ, δ; z) = H`(a, b+γ+(a−1)δ+β+1; 2, β+1, γ+1, δ+1, z). (6.18)

(3) We also used the following identity to put uin
+ in the form as the complex conjugate

of uout
− :

H`(a, b;α, β, γ, δ; z) = (1− z)1−δ
(

1− z

a

)−α−β+γ+δ

×

×H`
(
a, b−γ((δ−1)a+β−γ−δ); γ−β+1, γ−α+1, γ, 2−δ; z

)
. (6.19)
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7 Conclusions

In this paper, we have considered conformal gravity in four dimensions. It is constructed

from the Weyl-squared term together with the minimally-coupled Maxwell field. The most

general spherically-symmetric charged AdS black holes up to an arbitrary conformal fac-

tor was constructed in [17]. We generalize the result to the torus T 2 and hyperbolic H2

topologies. We analyze the global structure and obtain the full set of thermodynamical

quantities that satisfy the first law of thermodynamics.

Aside from the facts that conformal gravity plays an important role in critical grav-

ity and also in N = 1, D = 4 off-shell supergravity, the main reason that we construct

the T 2-symmetric charged AdS black holes is to use them as gravitational backgrounds to

study the properties of the boundary field theory. Charged AdS black holes such as the

extremal RN black holes in general dimensions were demonstrated to be dual to Fermi

and non-Fermi liquids and Fermi surfaces were determined. In the literature, the analytic

Green’s functions for general (ω, k) are lacking and properties of G(ω, k) were obtained

through numerical analysis. In this paper, we have demonstrated that the Dirac equation

for a charged massless spinor on the AdS black holes in conformal gravity can be solved

exactly. This allows us to obtain the exact Green’s function for all (ω, k). Since in confor-

mal gravity the black holes are given up to arbitrary conformal transformations, this leads

to the question how general our results are. We show that the Green’s function, and hence

the Fermi surfaces are invariant under the conformal transformations that preserve the T 2

isometry. Thus our results cover all the T 2-symmetric black holes. Some salient results of

this paper were reported earlier in [35].

The Green’s function from the general black hole is expressed in terms of the general

Heun’s functions. The Heun’s functions are much less studied and there is no package in

Mathematica and only a limited package in Maple. This makes it difficult to analyse the

Fermi surfaces and their properties in detail using these programs. Nevertheless, we made

numerical plots of G(0, k), which show fascinating rich structures of spiked maxima in the

plane spanned by (k, q).

The most general black hole solution contains three non-trivial parameters. We con-

sider some special subclasses of the black holes with two non-trivial parameters: the horizon

radius and the charge. The solution can be viewed as being pseudo-supersymmetric from

the point of view N = 1, D = 4 off-shell supergravity and was obtained in [18]. We find

that the Heun’s functions are reduced to hypergeometric functions. The Green’s function

for general (ω, k) becomes fully analysable. The Fermi surfaces are defined by the poles of

G(0, k). In the extremal limit of this subclass of backgrounds, we find that there can only

be one Fermi surface, corresponding to having ν = 0. We obtain the small ω behaviour

near the Fermi surface. When the background is non-extremal, there is no Fermi surface

at all for real ν. However, Fermi surfaces emerge when ν is pure imaginary.

It should be emphasized that qualitative features of the charged black holes in confor-

mal gravity are similar to the RN black holes. Although black holes in conformal gravity

can have slower falloffs associated with the massive spin-2 hair, the asymptotic spacetime

is nevertheless AdS4, the same as the RN black hole. Furthermore, the near-horizon ge-
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ometry in the extremal limit contains an AdS2 factor, the same as the RN black holes.

Thus our results are qualitatively similar to those of RN black holes. In the extremal

and near-extremal limits, we indeed reproduced the qualitative features obtained in the

extremal or near extremal RN black holes for small ω. Also as in the RN black holes, AdS2

metal can arise for small enough q for which no Fermi surface emerges. Of course, our

analytical results allow one to study the Green’s function for larger ω, and we expect that

these qualitative features may also apply in the RN black holes.

Our explicit results also demonstrate that there are qualitative differences between

the extremal background whose decoupling limit is AdS2×T 2 and the non-extremal back-

ground whose topology is R2 × T 2. For both extremal and non-extremal backgrounds, if

we have wave solutions for generic (ω, k), we can organise the general solution in terms of

in-falling and outgoing modes on the horizon. The boundary condition of a black hole hori-

zon selects the in-falling solution, which is associated with the retarded Green’s function.

Since the Fermi surfaces are determined by the Green’s function with ω = 0. It is thus

tempting to think that we only need solve for wave functions with ω = 0, in which case,

the equations tend to be reduced significantly. However, once ω is set to zero, we cannot

organise the solutions in terms of the in-falling and outgoing modes. In the extremal back-

ground, for real ν, the boundary condition on the horizon could still rule out one of the two

modes, since it diverges on the horizon. Furthermore, if ν is imaginary, the modes become

oscillatory in the near-horizon region. This signals instability of the system. In fact, as

demonstrated in [6], in the extremal or near-extremal limits with AdS2 × T 2 horizon, the

Green’s function for small ω can always be determined as long as G(0, k) is known.

The situation is quite different in the general non-extremal case. When ω is set to zero,

we find that both modes are finite on the horizon. Thus for non-extremal backgrounds,

there is no known procedure of selecting the correct mode if we have only solutions with

ω = 0. This implies that in order to obtain the Fermi surfaces, we have to obtain solutions

with non-vanishing ω, even though the Fermi surfaces are determined by the properties

of the Green’s function with vanishing ω. Another difference is that the in-falling wave

solution with ω = 0 is not oscillatory even when ν is imaginary. Thus there is no instability

associated with imaginary ν. Using our explicit example, we show that for imaginary ν,

the number of Fermi surfaces increases as the black hole approaches the extremality, and

the number becomes infinite in the extremal limit. This provides an explanation of the

origin of the instability associated with imaginary ν in the extremal backgrounds.

We also study the Green’s function for the general extremal solution with two non-

trivial parameters, characterised also by the horizon radius and the charge. The Green’s

function G(ω, k) is now expressed in terms of confluent Heun’s functions. However, G(0, k)

is given in some simpler hypergeometric functions. We find multiple numbers of Fermi

surfaces arising in this case. These Fermi surfaces can be ones for either Fermi liquids

(ν > 1/2) or non-Fermi liquids (ν < 1/2), including the extreme case ν = 0.

Our further analysis on the wave solutions and the Green’s function for the most gen-

eral black hole indicate the ν parameter that appears in the non-extremal “BPS” solution

is purely accidental. In the Green’s function and the wave solutions in the most general

black hole, there is no parameter combination that resembles ν. The reality condition on
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ν for the extremal background which implies k ≥ kmin(q) is relaxed in the non-extremal

case where (k, q) can take all real values. The numerical plots of the Green’s function in

the (k, q) plane show a fascinating rich structure of spiked maxima.

In this paper we focus on the study of the Green’s function on real frequency ω. It is

also of great interest and physically relevant to study the Green’s function on the complex

ω-plane. For the simpler “BPS” extremal black holes, this was done in [35]. The contour

plots of the Green’s function on the complex ω-plane were analysed, revealing a rich struc-

ture of zeros and poles. From the motions of the poles, we can determine a dispersion

relation that fits the data for a large (ω, k) region. The contour plots reveal that for the

extremal black holes, the poles of the Green’s function associated with the Fermi surfaces

lie exactly on the real axis of the complex ω-plane, whilst they lie below the real axis for

non-extremal black holes.

Conformal gravity that involves the Maxwell field is uniquely four dimensional and

the dual field theories have (2 + 1) dimensions. Although the exact conformal field theory

that is dual to conformal gravity on AdS is still unknown, our results show that conformal

gravity and its charged black holes provide useful playgrounds for investigating properties

in both Fermi and non-Fermi liquids on a two-dimensional plane, not only at zero temper-

ature but also at any finite temperature. The fact that the Dirac equation for a charged

massless fermion is invariant under the T 2-preserving conformal transformations implies

that conformal gravity is particularly suitable for studying such fermionic system.
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