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1 Introduction

The usual starting point for discussing integrable strings in AdS5 × S5 is the Metsaev-

Tseytlin coset action [1, 2], where classical integrability follows from the fact that the coset

is a Riemannian symmetric space [3, 4]. This is the strong-coupling end of the best-studied

example of AdS/CFT, and the integrable structure now extends to all values of the ’t Hooft

coupling λ [5]. The same statements are true for the second-best-studied example, with

strings on AdS4 × CP 3 [6–10].

One of the challenges of studying integrability in backgrounds such as the AdS3 ×
S3 × T 4 arising from the D1-D5 system [11–14] is the presence of flat directions, and

hence massless modes, which are not captured by the coset action. This is also true of

the AdS3 × S3 × S3 × S1 background studied here, which has a parameter α = cos2 φ
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controlling the relative size of the two 3-spheres [15], and hence the masses of the modes in

these directions. One of the reasons this space is interesting is that in the limit α→ 1 one

S3 decompactifies to give (when combined with the S1) a T 4 factor. In this limit two more

bosonic modes become massless, and it is hoped that we may learn about how to handle

massless modes by studying this process.

There is no known CFT2 gauge theory dual for general α [16, 17], although at α = 1

there is a symmetric product-space CFT [18] as well as more recently a spin chain [19] and

some work on magnons [20, 21]. At α 6= 1 there is much recent work on integrability [22–

30] perhaps the highlight of which is a conjectured all-order Bethe ansatz for all α [25].

This similarly omits the massless modes (as well as the heavy modes, discussed below) but

has a good α → 1 limit. As we have learned from the AdS4 × CP 3 correspondence, the

Bethe equations give the spectrum in terms of a coupling h(λ) whose relationship to λ

(or more precisely here to R2/α′) must be found experimentally [31–35]. In this case the

strong-coupling expansion is

h = 2g + c+O
(
1

g

)
g =

R2

4πα′
=

√
λ

4π
≫ 1.

Here R is the radius of the AdS3 part of the spacetime, and the spheres’ R± are as follows:

ds2 = R2 ds2AdS3
+

R2

cos2 φ
ds2S3

+
+

R2

sin2 φ
ds2S3

−

+R2 dψ2. (1.1)

The BMN point particle (which is the spin chain vacuum) has momentum on both of the

spheres: the solution is ϑ++ϑ− = τ in terms of the two azimuthal angles. The two bosonic

massless modes are are fluctuations in ψ and in ϑ⊥ = tanφ ϑ+ + cotφ ϑ−. Both of these

are absent from the coset model D(1, 2;α)2/SU(1, 1)×SU(2)2. The algebraic curve for this

was introduced by Babichenko, Stefański and Zarembo in [22].

The goal of this paper is to use this to calculate (or to guide the calculation of) semi-

classical energy corrections for various classical string solutions. Such corrections have

played an important role in the past [36–39]. As in AdS4 × CP 3 there is a distinction be-

tween light modes, which are excitations of the Bethe equations, and heavy modes which

are in some senses composite objects, and because of this there are similar issues of reg-

ularisation [35, 40–48]. However (as we will see) in this case this choice cannot always be

absorbed into a modification of the coupling constant.

The two classical systems to be studied are long spinning strings in AdS3, and giant

magnons in S3. In both cases the classical solutions are identical to those in AdS5 × S5,

apart from momentum on some S1 factors.

• Giant magnons have [25, 49]

∆− J ′ =

√
m2
r + 4h2 sin2

p

2
(1.2)

= 4g sin
p

2
+ 2c sin

p

2
+O

(
1

g

)
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where the mass mr depends on which sphere the solution lives in:

m1 = sin2 φ = 1− α , m3 = cos2 φ = α .

Using the algebraic curve formalism of [22, 24] to calculate the one-loop correction

to the energy δE allows us to find c. As in AdS4 × CP 3 the result depends on the

regularisation used; with a cutoff on the physical energy it is

cphys =
α logα+ (1− α) log(1− α)

2π
. (4.5)

• Long spinning strings have [50, 51]

∆− S = f(λ) logS, f = 2h+ f1 +O
(
1

h

)
(1.3)

= 4g logS + δ∆+O
(
1

g

)
.

Mode frequencies for these strings were calculated by [26], and will be used here to

discuss the dependence of the one-loop term δ∆ on the regularisation prescription.

Unlike the giant magnons, the relevant term from integrability f1 depends on the

one-loop part of the dressing phase σHL [34, 52–56].

Comparing results from these two systems gives a prediction for f1 which indicates that the

dressing phase must be different to that seen in AdS5 × S5 and AdS4 ×CP 3. This predic-

tion appears to depend on the regularisation used, but demanding that it is well-behaved

as α→ 1 rules out the cutoff in the spectral plane.

The calculation of δE for the giant magnon can also easily be extended to include finite-

size corrections. The Lüscher F-terms calculated this way can normally be compared term-

by-term to certain (diagonal) elements of the S-matrix, which was until recently unknown.

However while this paper was being prepared for publication, two papers appeared

each aiming to derive the S-matrix for AdS3 × S3 × S3 × S1 [57, 58]. A preliminary com-

parison of our results shows agreement with the elements in both of these, modulo some

issues of phases.

1.1 Outline

Section 2 reviews the setup of the algebraic curve, and section 3 the various cutoff prescrip-

tions. Section 4 uses all of this for giant magnons. Section 5 looks at summing frequencies

for the spinning string, and what we can learn from the comparison. Section 6 has a

summary and 13 comments.

Appendix A looks at finite-size corrections (classical and one-loop) and the compar-

ison to the proposed S-matrices. Appendix B looks briefly at the algebraic curve for

AdS3 × S3 × T 4, and the matching of corrections in this limit. Appendix C deals with

classical giant magnons in the sigma-model.
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2 Algebraic curves for AdS3 × S3
× S3 sans S1

The algebraic curve, or finite-gap method, is a way of writing classical string solutions as

Riemann surfaces [59–62]. The Lax connection (which depends on the spectral parameter

x ∈ C) is integrated around the worldsheet, and the path-ordered exponential of this is the

monodromy matrix, whose eigenvalues are e±ipℓ with pℓ(x) called quasimomenta. These

contain essentially all the information about the solution.1 This formalism has been es-

pecially useful for semiclassical quantisation, where vibrational modes are represented by

small perturbations of the quasimomenta [64–66].

The setup described in this section is largely from [22], see also [24]. It starts from

the Cartan matrix for d(2, 1;α)2. Since this is a continuous family of distinct Lie super-

algebras, Aℓm has non-integer entries:

A =




4 sin2 φ −2 sin2 φ 0

−2 sin2 φ 0 −2 cos2 φ

0 −2 cos2 φ 4 cos2 φ


⊗ 12×2 . (2.1)

For each Cartan generator Λℓ there is a quasimomentum pℓ(x), where ℓ = 1, 2, 3, 1̄, 2̄, 3̄. In

addition to A, we also need to know the matrix S which gives the inversion symmetry (and

in general the effect of the Z4 symmetry). In this case it exchanges the left and right copies:

pℓ

(
1

x

)
= Sℓmpm(x), S = 13×3 ⊗

[
0 1

1 0

]
. (2.2)

The vacuum algebraic curve has poles at x = ±1, controlled by a vector κℓ:

pℓ =
κℓx

x2 − 1
, κ =

∆

2g
(0,−1, 0, 0, 1, 0) . (2.3)

This must satisfy Sℓmκm = −κℓ and κℓAℓmκm = 0; the particular solution is chosen by

explicitly calculating the monodromy matrix [24] for the BMN point particle [67].

Solutions above this vacuum are constructed by introducing various cuts. The crucial

equation here is that when crossing a cut C (of mode number n) in sheet ℓ, the change in

pℓ is given by

pℓ → pℓ −Aℓmpm + 2πn . (2.4)

When Aℓℓ = 2 this gives the change expected for a square root cut, but this is the more

general form. As we approach the branch point, the change must go to zero, since continu-

ity demands that it must agree with the result of walking around the end of the cut. This

gives an equation for the positions of branch points: 2πn = Aℓmpm(x).

1But see [63] for some important caveats.
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It will be useful to also write another set of quasimomenta qi, corresponding to the

basis directions in the following representation of the weight vectors:

Λ1 Λ2 Λ3 Λ1̄ Λ2̄ Λ3̄

i

−1 F 1

2 sin2 φ −1 2 cos2 φ B 3

− sin 2φ sin 2φ B 5

1 F 2

−2 sin2 φ 1 −2 cos2 φ B 4

sin 2φ − sin 2φ B 6

(2.5)

This is a solution to Λℓ · Λm = Aℓm which reduces to the vectors [24] gave for α = 1
2 at

least on the left (i.e for the unbarred ℓ = 1, 2, 3). I have inserted a minus into the right

half (barred ℓ) for later convenience. In terms of the qi(x), the algebraic curve with the

vacuum plus resolvents G1 and G3 turned on is:




q1

q2

q3

q4

q5

q6




=




∆
2g

x
x2−1

∆
2g

x
x2−1

∆
2g

x
x2−1

+ 2 sin2 φG1(x) + 2 cos2 φG3(x)
∆
2g

x
x2−1

− 2 sin2 φG1(
1
x)− 2 cos2 φG3(

1
x)

− sin 2φG1(x) + sin 2φG3(x)

+ sin 2φG1(
1
x)− sin 2φG3(

1
x)




→ 1

2gx




∆+ S

∆− S

J ′ −Q′

J ′ +Q′

Q5

Q6




+O
(

1

x2

)
.

(2.6)

This is reminiscent of AdS4×CP 3 in that the bosonic resolvents G1 and G3 each appear on

two sheets, one of them lacking the pole with ∆/g from the vacuum: we would call these

light modes. G1̄ and G3̄ are similar. The terms G( 1x) have been filled in by the inversion

symmetry, which now reads

q2(x) = −q1
(
1

x

)
, q4(x) = −q3

(
1

x

)
, q6(x) = −q5

(
1

x

)
.

The global charges of the string are given by the large-x behaviour of the quasimo-

menta. In general let us define Jℓ corresponding to the Cartan generators, and Qi = JℓΛℓi:

pℓ(x) →
1

2gx
Jℓ, qi(x) →

1

2gx
Qi +O

(
1

x

)
as x→ ∞.

The right hand side of (2.6) defines charges ∆, S from the AdS directions, and J ′, Q′ from

the spheres. In terms of Jℓ these are

∆ =
1

2
(−J2 + J2̄)

S =
1

2
(−J2 − J2̄)
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J ′ = sin2 φ (J1 − J1̄)−
1

2
(J2 − J2̄) + cos2 φ (J3 − J3̄)

Q′ = − sin2 φ (J1 + J1̄) +
1

2
(J2 + J2̄)− cos2 φ (J3 + J3̄) (2.7)

and we will also want J = J1 − J1̄ − J2 + J2̄ + J3 − J3̄

Q = −J1 − J1̄ + J2 + J2̄ − J3 − J3̄ . (2.8)

For solutions with nonzero worldsheet momentum (i.e. solutions which are not by them-

selves closed strings) we must allow the quasimomentum to have a constant term at infinity:

pℓ(x) → Pℓ +
1

2gx
Jℓ +O

(
1

x

)
.

The total momentum is given by

P = 2 sin2 φ (−P1 + P1̄) + 2 cos2 φ (−P3 + P3̄) . (2.9)

2.1 Constructing modes

The first fluctuation of the vacuum solution is given by turning on a new pole with canonical

residue −α(y) [68]:

G1(x) = − α(y)

x− y
+

1

2

α(y)

−y , α(y) =
1

2g

y2

y2 − 1
.

The perturbation may also alter the residues at±1, and at infinity it must behave as follows:




δq1

δq2

δq3

δq4

δq5

δq6




=




δK

δK

δK + 2 sin2 φ [α(y)x−y + α(y)
2y ]

δK − 2 sin2 φ [ α(y)1/x−y +
α(y)
2y ]

δK5 − sin 2φ [α(y)x−y + α(y)
2y ]

δK6 + sin 2φ [ α(y)1/x−y +
α(y)
2y ]




→ 1

2gx




δ∆

δ∆

2 sin2 φ

0

− sin 2φ

0




+O
(

1

x2

)
.

Here δK = δ∆
2g

x
x2−1

for the first four sheets, synchronised as in (2.3), and δK5 = δK6 =

b x
x2−1

.2 From the sheets connected by the new poles in δq(x) we might call this the (3, 5)

mode. Solving the conditions at infinity, we get off-shell frequency

δ∆ = Ω1(y) =
2 sin2 φ

y2 − 1
. (2.10)

The perturbation carries some momentum,3 and solving the inversion conditions gives

P1 = −P1̄ 6= 0 and

δP =
sin2 φ

g

y

y2 − 1
. (2.11)

2The pole δK5 = δK6 corresponds to κ′ = 1
2
b(− cotφ, 0, tanφ, cotφ, 0,− tanφ) which like (2.3) is a −1

eigenvector of S. The solution has b = sin 2φ

2g
1

1−y2 .
3This momentum is often avoided by considering a pair of fluctuations at ±y as in [45, 69], see also [46].

Doing so for the giant magnon, you would miss the second term in (4.3).
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Now to find the position of this mode in the spectral plane, we take (2.4) and demand

continuity as we approach the end of the infinitesimally short branch cut which we are

inserting. This gives4

2πn1 = A1kpk = 4 sin2 φ p1 − 2 sin2 φ p2 (2.12)

= 2 sin2 φ
∆

2g

x

x2 − 1

using the vacuum solution (2.3) on the second line. Solving for x, and choosing the solution

outside the unit circle, we get

xn =
∆sin2 φ

4π g n
±

√

1 +

(
∆sin2 φ

4π g n

)2

giving the desired on-shell frequency

ωn = Ω1(xn) = − sin2 φ+

√

sin4 φ+

(
4π g n

∆

)2

. (2.13)

The charges (2.7), (2.8) are

δJ = −1, δQ = +1, δJ ′ = − sin2 φ, δQ′ = sin2 φ

and the momentum (2.11) is δP = 2πn/∆, so that if ω = ∆− J ′ −Q′ this matches (1.2).

The construction of all the other modes is similar:

1f . A fermion of the same mass is obtained by turning on G1(x) = G2(x) =

−α(y)
x−y + 1

2
α(y)
−y . The equation for the perturbation can be written




δq1

δq3

δq5


 =




δK + [α(y)x−y + α(y)
2y ]

δK + (1− 2 sin2 φ) [α(y)x−y + α(y)
2y ]

δK5 + sin 2φ [α(y)x−y + α(y)
2y ]


→ 1

2gx




δ∆+ 1

1− 2 sin2 φ

sin 2φ


+ . . .

(with the rest filled in by inversion symmetry as before). At φ = π
4 this has new poles

on just two sheets and thus might be called the (1, 5) mode, but for general φ this

interpretation is not clear; let us call it “1f”. The resulting off-shell frequency is the

same, Ω1f (y) = Ω1(y). The positions of the poles come from

2πn1f =
∑

ℓ=1,2

Aℓkpk (2.14)

= 2 sin2 φ p1 − 2 sin2 φ p2 − 2 cos2 φ p3

= 2 sin2 φ
∆

2g

x

x2 − 1
(for the vacuum).

Thus we will get exactly the same frequencies ωn as for the boson.

4Compared to q3 − q5 = (2 sin2 φ + sin 2φ)p1 − p2 + (2 cos2 φ − sin 2φ)p3 we see that (2.12) reduces to

2πn = q3 − q5 as in [64] only at φ = π
4
. The same is true for the other modes.
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r mr 2πnr δJ δQ α = 1
2 i.e. φ = π

4

1, 1̄ sin2 φ A1kpk , or −A1̄kpk −1 1, −1 (3, 5), (4, 6)

1f , 1̄f sin2 φ (A1k +A2k)pk , or sim. 0 0 (1, 5), (2, 6)

3, 3̄ cos2 φ A3kpk −1 1, −1 (3,−5), (4,−6)

3f , 3̄f cos2 φ (A2k +A3k)pk 0 0 (1,−5), (2,−6)

4, 4̄ 1 (A1k + 2A2k +A3k)pk 0 0 (1,−1), (2,−2)

4f , 4̄f 1 (A1k +A2k +A3k)pk −1 1, −1 (1,−3), (2,−4)

Table 1. List of modes in the AdS3 × S3 × S3 algebraic curve. The colouring of the nodes is −kℓr
with = +1,−1 and = +2,−2, writing “left, right” everywhere.

3. We can treat the boson “3” (from G3 = −α(y)
x−y + 1

2
α(y)
−y ) and the fermion “3f” in

exactly the same way, obtaining

Ω3(y) = Ω3f (y) =
2 cos2 φ

y2 − 1

ωn = − cos2 φ+

√

cos4 φ+

(
4π g n

∆

)2

.

Note that δq5 has the opposite sign for these modes compared to 1, 1f above; at

φ = π
4 we might therefore call them (3,−5) and (1,−5), thinking of q−i = −qi as

another six sheets.

4. The heavy modes can be constructed by simply adding two light modes: 4 = 1f+3f ,

and 4f = 1 + 3f = 3 + 1f . This addition is at the level of δqi(x), and hence applies

to Ωr(y) too:

Ω4(y) = Ω4f (y) =
2

y2 − 1
.

For the mode numbers, we have5

2πn4 = (A1k + 2A2k +A3k)pk = 2πn1f + 2πn3f (2.15)

= −2p2 = 2
∆

2g

x

x2 − 1

and thus

ωn = −1 +

√

1 +

(
4π g n

∆

)2

.

For the heavy boson we must add two fermions, not two bosons: 4 6= 1 + 3. This

and 4̄ are the two transverse direction in AdS3; unlike the CP 3 case there are no

heavy bosons in the sphere directions.

5As in AdS4×CP 3 the heavy modes correspond to stacks of Bethe roots [70, 71]. In general few solutions

x here will make n1f and n3f integers, but in the thermodynamic limit ∆/g → ∞ this constraint disappears.
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1̄. Finally, the barred modes differ only by some minus signs: G1̄(x) = +α(y)
x−y − 1

2
α(y)
−y

and 2πn1̄ = −A1̄kpk, and δQ = −1. But (2.10) and (2.13) are the same.

The addition of modes used above is one half of [66]’s efficient procedure for

constructing off-shell frequencies, and these barred modes may be constructed by

the other half, namely the use of the inversion symmetry. Writing the perturbation

for mode r (with a pole at y) as δ
(y)
r pℓ(x), the new pole for the corresponding mode

on the right is given by δ
(y)
r pℓ(x) = −δ(1/y)r pℓ(x), exactly as in [66].

Table 1 summarises some properties of these modes. Another summary is as follows: the

perturbation δqi for Nr excitations of the mode r has a pole at y with residue kirNrα(y),

where kir are the coefficients inside the bracket below. This condition at infinity constrains

the perturbation sufficiently that we can read off Ω(y) = δ∆:




δq1

δq2

δq3

δq4

δq5

δq6




→ 1

2gx




δ∆+ 2N4 +N1f +N3f +N4f

δ∆+ 2N4̄ +N1̄f +N3̄f +N4̄f

−2 sin2 φ (N1 +N1f ) +N1f − 2 cos2 φ (N3 +N3f ) +N3f −N4f

−2 sin2 φ (N1̄ +N1̄f ) +N1̄f − 2 cos2 φ (N3̄ +N3̄f ) +N3̄f −N4̄f

sin 2φ (N1 +N1f −N3 −N3f )

sin 2φ (N1̄ +N1̄f −N3̄ −N3̄f )




+ . . .

(2.16)

The analogous equation in terms of pℓ has δpℓ → 1
2gx(−1

2 ,−1,−1
2 ,

1
2 , 1,

1
2)δ∆ + 1

2gxkℓrNr

as x→ ∞, with kℓr = ±1,±2 taken from the colouring in table 1.

3 Summation prescriptions

Semiclassical quantisation gives the one-loop correction to the energy of a soliton as

δE =
∑

r

∞∑

n=−∞

(−1)Fr
1

2
ωrn − δEvac . (3.1)

For us δEvac = 0. The sum for any one polarisation r will diverge quadratically, but for a

matched set of bosons and fermions cancellations typically tame this to a logarithmic diver-

gence. This still leaves some room for dependence on how we cut off the sum on n in the UV.

In terms of the spectral plane, a very high-energy mode is one located very close to

x = 1, with energy

ω = Ωr(1 + ǫ) =
2mr

ǫ(2 + ǫ)
=
mr

ǫ
+O(ǫ0).

In terms of mode numbers, instead

ωN = −mr +

√

m2
r +

(
4πgN

∆

)2

= N
4πg

∆
−mr +O

(
1

N

)
.

The principal options for how to regulate the modes of different masses follow from these:
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i. A cutoff at a fixed physical energy ω = Λ is a cutoff at the same mode number

for all polarisations (provided there are no divergences stronger than logN), but at

radius x = 1 +mr/Λ in the spectral plane for a mode of mass mr. It is what would

seem most natural to a resident of the target space ignorant of integrability, and is

sometimes referred to as the worldsheet prescription, although (as we showed in [46])

can quite easily be implemented in the algebraic curve description.6

ii. The alternative is a cutoff at fixed radius in the spectral plane, which corresponds

to a cutoff at mode number Nr = mr
∆
4πg

1
ǫ . This is certainly the easiest to imple-

ment in the algebraic curve language, although it can clearly also be used to add up

frequencies from a worldsheet calculation, as Gromov and Mikhaylov [43] did upon

introducing this idea for AdS4 ×CP 3. To do so however we still need to identify the

heavy modes, which for classical solutions far from the BMN vacuum is not neces-

sarily obvious. For this the algebraic curve is definitive: the heavy modes are those

whose off-shell perturbation is the sum of two light modes’.

In the present AdS3×S3×S3×S1 case this “new” prescription leads to three different

cutoffs in terms of energy, or mode number, and these clearly change as α = cos2 φ

is changed. It will be important below that as we approach α = 1, where one of the

spheres decompactifies, the cutoff for the mode which is becoming massless drops to

zero, completely excluding this mode from the sum. (See also the integral form (5.1)

below.)

One argument advanced in favour of the new prescription in AdS4×CP 3 involves the fact

that the total energy of a pair of light modes exactly at their cutoffs is the same as that

of the corresponding heavy mode at its cutoff [47, 48]. This is still true here as each heavy

mode is made of two light modes of opposite mass, and m1 +m3 = m4. There is a third

option which also has this property:

iii. We could simply cut off both light modes at half the energy of the heavy mode. In

terms of mode numbers and the spectral plane this means

N1 = N3 =
1

2
N4,

ǫ1 = 2m1ǫ4

ǫ3 = 2m3ǫ4 .
(3.2)

For α = 1
2 (and for AdS4) this is identical to the new prescription. It avoids turning

off the newly massless modes m1 as we approach α = 1, but once we get there still

treats the modes m3 = 1 and m4 = 1 differently. For this reason it seems undesirable,

and I will mention it only as an afterthought.

4 Giant magnons

Giant magnons are the macroscopic classical string solutions corresponding to elementary

excitations with momentum p of order 1 [49]. Bound states of a large number Q ∼ g of

6Observe also that this “physical” prescription corresponds also to a cutoff in worldsheet momentum,

to the precision required here. At x = 1 + ǫ we have from (2.11) and the equivalent for the m3 modes

P ∝ ω +O(ǫ0).
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magnons form dyonic giant magnons [72, 73]; from the algebraic point of view this is the

natural case, and they are described by a single log cut [74–76]. The branch points of this

are the Zhukovsky variables X±, which are defined here by [25]

X+ +
1

X+
−X− − 1

X−
= i

2mr

h
Q,

X+

X−
= eip

with Q = 1 for an elementary excitation. The exact dispersion relation is

E(p) = −ih
2

(
X+ − 1

X+
− c.c.

)
=

√
Q2m2

r + 4h2 sin2
p

2
. (4.1)

At strong coupling we can expand this using h = 2g+c+O(1/g) to get the classical energy

and one-loop correction E0 + δE + . . .. This is to be done holding p and Q fixed.

The classical solution for a magnon on the first sphere is (2.6) with

G1(x) =
1

2 sin2 φ

[
Gmag(x)−

1

2
Gmag(0)

]
, Gmag(x) = −i log

(
x−X+

x−X−

)
. (4.2)

The prefactor is needed to cancel the non-integer factor in (2.12), from (2.4), and also

in (2.9). The asymptotic charges (2.7), (2.8) for this are

J ′ = ∆+ ig

(
X+ − 1

X+
− c.c.

)

Q′ = sin2 φQ = −ig
(
X+ +

1

X+
− c.c.

)

and the momentum is P = Gmag(0) = p.

This clearly gives precisely the desired dispersion relation with E0 = ∆− J ′.

There is of course a similar magnon on the second sphere, with G3 =
1

2 cos2 φ
[Gmag(x)−

p
2 ], a giant version of the mode “3”. Note however that there is no analogue of the RP 3

giant magnon in AdS4 × CP 3, in which turning on magnons in two sectors led to a sim-

plification. That solution was was a giant version of the CP 3 heavy boson; here the only

heavy bosons are the AdS modes 4 and 4̄. (See however footnote 7 in the conclusions.)

4.1 One-loop correction

To calculate the one-loop correction to the energy we should begin by finding the off-shell

frequencies, by constructing the perturbations of the quasimomenta. The two differences

from the BMN modes above are that here is that we must allow the endpoints of the cut

to move, and that we do not allow the perturbation to alter the total momentum. For

instance for the 3f mode and the magnon (4.2), the perturbation must obey

δq=




δK

δK

δK+(1−2 cos2 φ) [α(y)x−y +
α(y)
2y ]+2 sin2 φ [H(x)− 1

2H(0)]

δK+(1−2 cos2 φ) [ α(y)1/x−y+
α(y)
2y ]−2 sin2 φ [H( 1x)− 1

2H(0)]

δK5 − sin 2φ [α(y)x−y + α(y)
2y ]− sin 2φ [H(x)− 1

2H(0)]

δK6 − sin 2φ [ α(y)1/x−y +
α(y)
2y ] + sin 2φ [H( 1x)− 1

2H(0)]




→ 1

2gx




δ∆

δ∆

1−2 cos2 φ

0

− sin 2φ

0




+ . . .
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where H(x) = A+

x−X+ + A−

x−X−
has been inserted wherever the classical solution has Gmag(x).

The resulting frequency is the r = 3f case of

Ωr(y) =
2mr

y2 − 1

(
1− y

X+ +X−

X+X− + 1

)
= mr Ωmag(y). (4.3)

The same formula applies to all light and heavy modes, and equally for the magnon in G3.

In fact it is the same as in S5 and CP 3, and as discussed in [77] the first term can be inter-

preted as the energy of the mode itself (2.10), and the second as the effect of adjusting the

magnon’s momentum to compensate for the momentum (2.11) carried by the perturbation.

While we cannot write the frequencies ωn in closed form, we can still compute the

one-loop correction. This is done by using [78]’s trick to write it as a contour integral in n:

δE =
∑

n,r

1

2
ωrn =

1

4i

∮
dn
∑

r

(−1)Fr cot(πn) Ωr(x
r
n).

For each r we can now use the relevant equation for the position of the pole to write this

as an integral in x, along a contour W enclosing poles along the real line at |x| > 1. Then

we deform this contour to the unit circle, −U counting orientation:

x

W

U(ǫ)

x = 1 + ǫ

Here we can approximate cot(πn) ≈ cot(mr
∆
g

x
x2−1

) ≈ ±i on the upper/lower semicircles

U±, whose contributions are equal, to write:

δE =
1

4i

∮

W
dx
∑

r

(−1)Fr cot(πnr) ∂xnr(x) Ωr(x) (4.4)

≈ −1

4π

∫

U+

∑

r

(−1)Fr2π∂xnr(x) Ωr(x).

Since Ωr = mrΩmag, let us deal with nr by considering the sum over polarisations one mass

at a time. For mr = sin2 φ we see
∑

r=1,1f,1̄,1̄f

(−1)Fr2πnr = 2 sin2 φ p1 + 2 cos2 φ p3 − 2 sin2 φ p1̄ − 2 cos2 φ p3̄

= Gmag(x)−Gmag

(
1

x

)
.

For the other masses, from table 1 it is clear that this sum for the mr = cos2 φ modes is

identical, while that for mr = 1 is exactly minus this. Finally we should allow a different

cutoff for each mass, giving us the same log-divergent integral thrice:

δE =
−1

4π

{
sin2 φ

∫

U+(ǫ1)
dx+cos2 φ

∫

U+(ǫ3)
dx−

∫

U+(ǫ4)
dx

}
∂x

[
Gmag(x)−Gmag

(
1

x

)]
Ωmag(x)

=
i

π

X+ −X−

X+X− + 1

[
sin2 φ log ǫ1 + cos2 φ log ǫ3 − log ǫ4

]
.
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Clearly this will vanish for the new prescription, with all ǫr the same. For the physical

prescription ǫr = mr/Λ and (taking the non-dyonic limit X± = e±ip/2) instead

δE =
1

π
sin

p

2

[
sin2 φ log(sin2 φ) + cos2 φ log(cos2 φ)

]
.

Since δE = 2 c sin p
2 this implies cnew = 0 and

cphys =
sin2 φ log(sin2 φ) + cos2 φ log(cos2 φ)

2π
(4.5)

=

{
− log 2

2π φ = π
4

0 φ = 0 .

Using the third prescription, (3.2), gives cthird = cphys+
log 2
2π ; as expected this matches cnew

at φ = π
4 .

For the dyonic case the calculation works equally well, provided we expand the disper-

sion relation holding fixed not X± but rather p and Q [46]:

δE = c
∂E0

∂h

∣∣∣
Q,p

= −2i
X+ −X−

X+X− + 1
c . (4.6)

5 Long spinning strings

The aim of this section is to do what Gromov and Mikhaylov [43] did for AdS4×CP 3, that

is, to classify the modes of long spinning strings as heavy or light based on the algebraic

curve description, and then to sum their frequencies using the “new” prescription suggested

by this formalism.

As reviewed in section 3, the new prescription cuts off at the same radius 1 + ǫ in the

spectral plane for all modes, which corresponds mode number Nr = mrN for modes of

mass mr. Given the explicit frequencies ωn (and since κ≫ 1) we can write the sum as the

following integral:

δ∆new =
∑

r

(−1)Fr

∫ mrN

−mrN
dn

1

2
ωrn =

∫ N

−N
dn
∑

r

(−1)Fr
1

2
mrω

r
mrn . (5.1)

The classical solution of interest is a folded string spinning in AdS3, stretched all the

way to the boundary, times a point particle with some momentum along the equators of

both spheres. (See (C.1) in appendix C.) For this solution Forini, Puletti and Ohlsson

Sax [26] calculated the mode frequencies from the Green-Schwartz action; these are listed

in table 2. Some comments:

• The parameter ν = J ′/4πg controls the momentum on the spheres, and we are

interested in two limits. First, setting ν = κ takes us to the BMN limit, and it is

here that the mass mr relevant for classifying the modes is literally the mass of the

excitation, as in (2.13). Second, sending ν → 0 gives us the simplest rotating string

entirely in AdS3, whose frequencies should be independent of α.
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“BMN” ν → κ : “AdS” ν → 0 : r, r̄

Bosons:

ωB1,2= |n| → |n| → |n| ×

ωB3,4=
√
n2 + α2ν2 →

√
n2 + α2κ2 → |n| 3

ωB5,6=
√
n2 + (1− α)2ν2 →

√
n2+(1−α)2κ2 → |n| 1

ωB7,8=

√
n2+2κ2∓2

√
n2ν2+κ4 → ±κ2 +

√
n2 + κ2 →

{
|n|
√
n2+4κ2

4

Fermions:

ωF1,2 = ±ν
2
+ |n| → ±κ

2
+ |n| → |n| ×

ωF5,6
∣∣
α=1/2

=

√

n2+
κ2

2
+

√
n2ν2+

κ4

4
→ κ

2
+

√
n2 +

κ2

4
→
√
n2 + κ2 1f, 3f

ωF7,8
∣∣
α=1/2

=

√

n2+
κ2

2
−
√
n2ν2+

κ4

4
→ −κ

2
+

√
n2 +

κ2

4
→ |n| 1f, 3f

ωF3,4 = ±ν
2
+
√
n2 + κ2 → ±κ

2
+
√
n2 + κ2 →

√
n2 + κ2 4f

Table 2. Modes of the folded spinning string in AdS3×S3×S3×S1, taken from [26]’s appendix C.

• In the first two columns only ωF5,6 and ωF7,8 assume α = 1
2 . We know that the

light fermions 5, 6 cannot both be r = 1f (or both r = 3f) as this would break the

symmetry between the two spheres; this explains the classification in the last column.

It is now very simple to put these modes into an integral like that above. Note that while

the frequencies here (at ν = 0) are independent of φ, the cutoffs are not. Allowing at first

three different cutoffs, the result is:

δ∆ =
∑

mr=sin2 φ

(−1)Fr

N1∑ 1

2
ωrn +

∑

mr=cos2 φ

(−1)Fr

N3∑ 1

2
ωrn +

∑

mr=1

(−1)Fr

N4∑ 1

2
ωrn

= κ

[
− log 4 + logN4 −

1

2
logN3 −

1

2
logN1

]

=





−κ log 4 using the physical prescription

−κ log(2 sin 2φ) new

−κ log 2 third .

(5.2)

where κ = 1
π logS. The result for the physical prescription is precisely that given in [26].

The result for the new sum prescription is not what we would expect based on the

giant magnon results, which is this:

δ∆ = δ∆phys + (cnew − cphys)
∂∆0

∂h
= −κ log 2
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writing ∆0 = 2h logS for the leading term in (1.3). Note also that there is a divergence at

φ = 0 i.e. at α = 1. The reason for this is that ωB5 and ωF5 are declared massless in this

limit, and hence omitted from (5.1). Unlike the unambiguously massless modes ωB1,2 and

ωF1,2 which clearly always cancel out, these do not. In fact the only difference between the

two sums (at α = 1) is that the new prescription omits these two modes’ contribution:

N1∑

n=−N1

ωB5 − ωF5 = − logN1 −
1

2
− log 2 +O

(
1

N1

)
. (5.3)

5.1 Consequences

In order to use these results to find c, we need to know the subleading term in the expansion

in h, i.e. f1 in (1.3):

δ∆ = (2c+ f1)κπ.

It was noted in [26] that the Bethe equations at α = 1 for the relevant sl(2) sector are

identical to those for AdS5 × S5, and if one then assumes that the dressing phase is also

identical, then f1 = −3 log 2
π as in [56]. This led them to c = log 2

4π . Likewise at α = 1
2 the

equations are the same as for AdS4×CP 3, where the dressing phase was identical, and f1 =

−3 log 2
2π [34]; carrying this over to the present AdS3 gave c = − log 2

4π . We can now attempt a

similar comparison for the new sum, where α = 1
2 (and still f1 = −3 log 2

2π ) leads to c = + log 2
2π .

These values for c are in all cases different to those from the giant magnon, (4.5). It

seems likely that what we are learning here is that the dressing phase is not the same as

it was for AdS5 × S5 and AdS4 × CP 3.

In this case we should instead use c from the giant magnon and δ∆ from the spinning

string to predict what f1 will be. The answers are

f1 =

{
− 1
π

[
log 4 + sin2 φ log(sin2 φ) + cos2 φ log(cos2 φ)

]
physical prescription

− 1
π

[
log 4 + log(2 sin 2φ)

]
new prescription.

These two agree at φ = π
4 , but away from this they disagree. Here is a graph:

f1

α = 1 i.e. φ = 0α = 1
2

“new” (6.3)

“physical” (6.2)
− log 2

π

− 2 log 2

π

This difference is quite unlike anything seen in the AdS4 × CP 3 case: the one-loop (i.e.

1/g) corrections to the spinning string obtained using these two prescriptions cannot both

follow from the same function of h. Thus we must conclude that at least one of them is
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incorrect. Given the divergence seen above at φ = 0, it seems reasonable to say that it is

the new prescription which is at fault.

Finally note that for the third cutoff (3.2), results both for the magnon and for the

spinning string differ from those for the physical cutoff only by a log 2 term. These cancel

out to give exactly the same prediction for f1 i.e. (6.2).

6 Comments and conclusions

The first paper to write down the subleading term of the interpolating function h(λ) for

AdS3 × S3 × S3 × S1 was [26], who gave

c =

{
− log 2

4π α = 1
2

log 2
4π α = 1

, assuming f1 =

{
−3 log 2

2π as for CP 3

−3 log 2
π as for S5.

These values for f1 come from [26]’s observation that the Bethe equations for this sl(2)

sector are the same as those for AdS4 × CP 3 or AdS5 × S5 at these two values of α, and

then tentatively assuming that the dressing phase is also the same as that for both previous

correspondences. As they note, there is no particular reason to think that this is true, and

comparison with the giant magnon results now shows it not to be so. For the same value

of α, the magnons give

c =

{
− log 2

2π α = 1
2

0 α = 1.
(6.1)

Turning this comparison around we can instead use the magnon calculation (4.5) to predict

the one-loop correction which should arise from the correct dressing phase, for all α. This

gives:

f1 = − 1

π

[
2 log 2 + α logα+ (1− α) log(1− α)

]
. (6.2)

The giant magnon calculation here uses the algebraic curve and thus omits massless modes.

This is a possible source of error, but see points 7, 8 below for evidence against this. The

spinning string calculation includes the massless modes, but they cancel among themselves.

This result is for the “physical” summation prescription, i.e. using a cutoff at the same

energy (or mode number) for all modes. One can instead consider the “new” prescription,

defined with a cutoff at fixed radius in the spectral plane. This is one possible generalisation

of the cutoff introduced by [43] for AdS4 × CP 3, but the story is a little different here:

1. If this prescription is equally valid, then adopting it should affect all one-loop results

in the same way, namely δEnew − δEphys = (cnew − cphys)∂E0/∂h
∣∣
h=2g

. However this

is not what happens. One way to say this is to use c = 0 from the giant magnon and

δE from the spinning string to predict f1. This gives

f1 = − 1

π

[
2 log 2 +

1

2
logα+

1

2
log(1− α)

]
(6.3)

disagreeing with (6.2) at α 6= 1
2 . However f1 is part of an expansion in h which should

be independent of the prescription.
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2. That there is something wrong with the new prescription is most clear at α = 1.

Here one of the modes it deems massless in the limit in fact plays an important role

(for the long spinning string), and the effect of changing to the new prescription is

simply to remove this from the sum, (5.3), producing a divergence. We would very

much like to have a smooth α→ 1 limit.

3. Instead of the new prescription we can consider a third prescription, (3.2), cutting off

both kinds of light modes at half the energy of the heavy modes. At α = 1
2 , and in

AdS4×CP 3, this is identical. In some way it may be closer to the spirit of [43], in that

it treats heavy modes with mode number 2n alongside light modes with mode number

n. However this cutoff seems unnatural since at α = 1 it doesn’t treat all of the mas-

sive modes on an equal footing. It leads to the same f1 as the physical prescription.

In the appendices I also work out some finite-J corrections to giant magnons, since this is

easily done with the algebraic curve. The main points to note are:

4. The exponent of the classical µ-term (A.3) depends on the “mass” of the giant

magnon. This is just a result of embedding the well-known solutions into this space-

time, (C.2).

5. The exponents of the one-loop F-terms depend on the masses of the virtual particles.

This can be thought of as being a consequence of the scaling of the AFS phase intro-

duced by [25], which itself may be thought of as a result of the scaling of the time delay

when magnon scattering happens on a sphere of smaller radius. Is has the effect that,

unlike the AdS4×CP 3 case, in general the bound-state and twice-wrapped contribu-

tions will not coincide [79]. Since each F-term depends only on one mass of virtual par-

ticle, these terms are unaffected by the choice of regularisation prescription [46, 80].

6. Taking the α→ 1 limit gives the same F-term corrections as those calculated directly

from the algebraic curve for AdS3 × S3, (B.3). This limit removes the trivial terms

(corresponding to an S-matrix element of 1) arising from the fact that giant magnons

on different spheres pass each other on the worldsheet without interacting.

6.1 Relation to other work

A recent paper by Sundin and Wulff [28] calculates, among other things, one-loop mass

corrections to string states in the near-BMN limit of AdS3×S3×S3×S1. It is interesting

to compare results since their paper works from the full Green-Schwartz action and thus

includes all of the massless modes.

7. For the light bosons these mass corrections should agree with the small-p limit of the

corrections to giant magnons [81], and indeed they match perfectly for both physical

(“WS”) and new (“AC”) prescriptions, (6.1). These are given for α = 1
2 and α = 1.

8. The correction for the heavy boson is computed by [28] at all α, and while using

the physical sum gives a result consistent with the giant magnon’s (4.5), using the
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new sum gives c = 1
2π sin

2 2φ log(sin2 2φ) rather than zero.7 This seems strange as c

should be universal.

Note however that (as in [82]) the new prescription can only be implemented for the

tadpole diagrams. For the bubbles the same loop momentum applies to two modes

of different masses, in this case one of each mass of light mode. (Thus there is no

issue at φ = π
4 , where this calculation gives c = 0.) The massless modes play no role

in this calculation.

9. Virtual massless modes do appear to play a role for the corrections to the light bosons.

However let me observe that simply deleting all diagrams containing them8 does not

change the result. This is an extremely näıve thing to do (since for instance the

cubic interaction L3, [28]’s equation (3.3), has terms linear in the massless boson)

but nevertheless perhaps interesting.9

There are some points of overlap with other papers studying integrability in AdS3 × S3 ×
S3 × S1 worth mentioning:

10. For the case α = 1 (i.e. AdS3 × S3) the energy corrections for giant magnons here

agree with those of [21], who also used the algebraic curve formalism. In particular

we agree that c = 0 in this limit.

11. As mentioned briefly in the introduction the recent papers [57] and [58] (which ap-

peared while this was in preparation) each propose an S-matrix for this system. This

should agree with terms in the F-term corrections calculated here, and a quick com-

parison shows agreement up to certain phases. See discussion in appendix A.

Finally, some comments on the closely related issues in AdS4 × CP 3. There, in all calcu-

lations to date one can use either the physical or the new prescription, and the change in

the results is always equivalent to

cphys = − log 2

2π
, cnew = 0

without running into the problems of points 1, 2 above. Nevertheless various arguments

have been advanced for choosing one or the other. Below is a very brief list of these; most

will also apply to the present AdS3 × S3 × S3 × S1 case.

12. In favour of the physical sum, in [82] pointed out that it is difficult to see how to

implement the new sum for Feynman diagrams containing modes of different masses

7While this mode is not a cromulent giant magnon, since it is in AdS, one can nevertheless attempt a

näıve treatment of a giant “4” mode by turning on G1 = −1

2 sin2 φ
Gmag, G2 = −Gmag and G3 = −1

2 cos2 φ
Gmag.

Then the calculation of δE looks very much the same as that in section 4 above, and in particular is zero

for the new sum.
8That is, delete all integrals Isn(. . .m4) in A

2
B above (4.22) and Isn(m4) in A

i
T (4.23), where m4 ≪

1 is [28]’s IR regulator for the massless modes. However for this to work we must use the canonical

dimensionally regulated integrals with measure
∫
ddk/(2π)d [83], rather than (4.10)’s

∫
ddk/(2π)2; this

does not seem to affect final results such as (4.25).
9I am grateful to Per Sundin for discussions on this point.
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in the same loop. (See also point 8.) More strongly, [84] uses a general condition

from [85] that the vacuum energy should not depend on the topology when the soliton

mass is zero. It would be interesting to see what this says about the present case.

13. In favour of the new sum, [47, 48] argue that unitarity requires that the energy of

two light modes near to their cutoff should correspond to that of a heavy mode near

its cutoff. (See also point 3.) Perhaps also under this heading it should be mentioned

that [86–88] conjecture an all-loop h(λ) consistent with their 4-loop weak-coupling

result; this gives c = 0. And lastly, [89] might also be included (see also [28, 82, 90])

on the grounds that questions of the position of the heavy mode’s pole vs. the

two-particle cut are only subtle when c = 0.
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A Finite-J corrections

While this is somewhat aside from the paper, the algebraic curve can also be used to com-

pute certain finite-size corrections. The classical µ-term is mostly just a check that things

are working well. The one-loop F-terms will perhaps teach us something about the α→ 1

limit.

A.1 Classical µ-term

The first class of finite-J corrections are µ-terms, suppressed by e−mr∆/E . The leading

µ-term is the classical correction away from J = ∞, and from the sigma-model point of

view we expect to get results almost identical to those for magnons in R × S2 [91, 92] or

dyonic magnons in R × S3 [93–95] since the same string solutions can be embedded into

this spacetime.10 Nevertheless it is a check of the algebraic curve description.

To work this out we must use a different algebraic curve solution, and following [94,

99, 101, 102] we can use the following (approximate) form for the magnon resolvent:

Gfinite(x) = −2i log

(√
x− a+

√
x− b

√
x− ā+

√
x− b̄

)
(A.1)

where the branch points are

a = X+

(
1 +

δ

2
eiψ
)
, b = X+

(
1− δ

2
eiψ
)

10By contrast, in AdS4 × CP 3 only the non-dyonic solutions are the same [96–98], the dyonic solutions

are new [99, 100] and known at finite J only in the algebraic curve language.
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and complex conjugates (with δ real). Recall that this arises from the two-cut solution,

reorganising the two square root cuts (drawn ) at the cost of producing a log cut

(drawn ) like this:

x

|x| = 1

a X+

b

ā
X−

b̄

=

a X+

b

Thus δ → 0 gives us the J = ∞ giant magnon (4.2) above [74–76].

To use this resolvent here, we should set G1(x) =
1

2 sin2 φ
[Gfinite(x)− 1

2Gfinite(0)] in (2.6).

Expanding the charges J ′, Q, and P in δ, the correction to the dispersion relation is ob-

tained as follows:

δEµ = ∆− J ′ −
√
Q2 sin4 φ+ 16g2 sin2

P

2

= δ2
g

4
cos(2ψ) sin

p

2
+O(δ4) (non-dyonic).

The factor cos(2ψ) gives the effect of the angle between subsequent magnons, as we dis-

cussed in [99]. Next we must fix δ by demanding matching across the cut. To do this,

use (2.4) in the form:

p1(X
+ − i0) = p1(X

+ + i0)−A1ℓpℓ(X
+ + i0) + 2πn (A.2)

i.e. Gfinite(X
+ − i0) = (1− 4 sin2 φ)Gfinite(X

+)− 4 sin4 φ
∆

2g

X+

X+2 − 1
− 2 sin2 φ 2πn.

Expanding and solving then gives

δ2 = −16(X+ −X−)2 exp−i
(
∆sin2 φ

g

X+

X+2 − 1
+ 2πn+ 2ψ +

π

2 sin2 φ

)

= 64 exp

(−∆sin2 φ

2g sin2 p2

)
sin2

p

2
(non-dyonic).

The second line assumes that δ is real, which imposes p + 2nπ + 2ψ + 1
2π cosec

2 φ = 0.

Then setting ψ = π
2 the correction is

δEµ = −16g e−∆sin2 φ
/
2g sin2 p

2 sin3
p

2
. (A.3)

This sin3 p2 behaviour matches what was given by AFZ [91]; the scaling of the exponent

comes from placing this into a spheres of a different radius — see appendix C.
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A.2 One-loop F-terms

The second class of finite-J corrections are F-terms, suppressed by both e−mr∆/g and 1/g

relative to the leading term E0. These can readily be computed using the one-loop mode

sum as above: they are simply the subsequent terms in the expansion of the cotangent

in (4.4), for which the integral can be evaluated using the saddle point at x = i. Similar

calculations were done by [77] in S5 and [44, 46, 80] in CP 3.

The expansion is as follows:

cot(πn)πn′ = ∂x log
(
sin(πn)

)

= ±iπn′ + ∂x log
(
1− e∓i 2πn

)

= ±i
[
πn′ + e∓i 2πn2πn′ +

e∓2i 2πn

2
2πn′ +

e∓3i 2πn

3
2πn′ + . . .

]
.

In (4.4) above, the first term gave the infinite-volume one-loop correction. Subsequent

terms can be written

δEF =
−i
2π

∫

U+

dx
∑

r

(−1)Fr

[
e−i2πnr(x) +

e−2i 2πnr(x)

2
+
e−3i 2πnr(x)

3
+ . . .

]
∂xΩr(x)

=
∑

ℓ=1,2,3,...

1

ℓ

∑

r=1,3,4.

√
mr

2πκ
F (ℓ)
mr

(i)

where we use the saddle point at x = i, and define F
(ℓ)
m (x) =∑

r:mr=m
(−1)Fr exp(−i ℓ 2πnr(x) ). This is the factor which in the Lüscher formula

is
∑

b(S
b1
b1)

ℓ [103, 104]. (The Ω′ factor is the Jacobian there.)

Here are some of the resulting integrands, taking as the classical solution the magnon

in G3 (i.e. the magnon in the sphere which survives at φ = 0). First from the light modes

1, 1f, 1̄, 1̄f (in that order) writing just the ℓ = 1 case:

F (1)
m1

= exp

(
− ∆sin2 φ

g

i x

x2 − 1

)[
1−

√
X−

X+

x−X+

x−X−
+ 1−

√
X+

X−

1− xX−

1− xX+

]
. (A.4)

Next from the corresponding modes of mass cos2 φ, the same as the giant magnon, namely

3, 3f, 3̄, 3̄f

F (1)
m3

=e
−∆cos2 φ

g
i x

x2−1

[
X+

X−

(
x−X−

x−X+

)2

−
√
X+

X−

x−X−

x−X+
+
X−

X+

(
1−xX+

1−xX−

)2

−
√
X−

X+

1−xX+

1−xX−

]
.

(A.5)

And finally from the heavy modes 4, 4f, 4̄, 4̄f :

F (1)
m4

= e
−∆

g
i x

x2−1

[
1−

√
X+

X−

x−X−

x−X+
+ 1−

√
X−

X+

1− xX+

1− xX−

]
. (A.6)

Two comments on these:
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• Note that as in AdS4×CP 3 the modes of different masses lead to different factors in

the exponential, but now there are three terms. These are separately finite and thus

the regulator used is irrelevant. These exponential factors can perhaps be thought

of as coming from the scaled σAFS as in (2.11) of [25].

• About the heavy modes, note also that their terms here are products of the con-

stituent light modes’, 4 = 1f+3f etc. This is what we would expect if the S-matrices

for these can be made by fusion, as in [79]. Unlike AdS4 ×CP 3, the ℓ = 2 term from

a light mode wrapping twice will not coincide with the ℓ = 1 heavy mode [79].

A.3 Comparison with S-matrices

The F-term formulae above should agree with certain diagonal elements of the recently

published S-matrices for this system. This section aims to make some quick comparisons.11

Comparing first to Ahn and Bombardelli’s [57], for the modes on the left the terms of

their equation (2.14) we need are

S(33)(p1, p2) = S0(p1, p2)Ŝ(p1, p2)

S(13)(p1, p2) = Ŝ(p1, p2)

where x±p1 ≈ x for the virtual particle, x±p2 = X± for the physical giant magnon, and the

matrix part is thus

Ŝ =




1, bose-bose

x−X+

x−X−
, fermi-bose.

For the scalar factor S0, only the classical AFS [105] term in the BES phase [54] matters,

giving

S0 = σ2AFS(p1, p2) e
−ip1+ip2 =

(
x− 1/X+

x− 1/X−

)2
X+

X−
e
−2i x

x2−1
E/h

+O
(
1

h

)
.

Then since X+ = 1/X− + O(1/g) we have agreement with the first two terms of (A.4)

and of (A.5), apart from phases e−ip2/2 =
√
X−/X+ for the fermions (1f and 3f) which

will arise from going to the string frame.

Note however that I have ignored here the phase e
−2i x

x2−1
E/h

which is part of σAFS.

In the more familiar AdS5 and AdS4 cases the same power of σAFS appears in all terms,

and changes the exponent e−iq⋆L from the Lüscher formula (with L = J) into e−∆/h from

the algebraic curve. The absence of such a phase for S(13) is a feature of [57]’s S-matrix

designed to match the Bethe equations of [25].

For the modes on the right, we need to look at

S(3̄3)(p1, p2) = S̃0(p1, p2)Ŝ(p1, p2)

S(1̄3)(p1, p2) = Ŝ(p1, p2).

11I am grateful to Diego Bombardelli and Olof Ohlsson Sax for discussing their results.
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Here S̃0(p1, p2) = σ−2
AFS(p1, p̄2) e

ip1+ip2 where the bar means x±p̄ = 1/x±p , and Ŝ is as before.

These match the last two terms of (A.4) and (A.5), up to the same two phase issues as

for the left-hand modes.

Next consider the S-matrix given by Borsato, Ohlsson Sax and Sfondrini in [58]. This

is written in terms of four unfixed phases, related by crossing relations. The coefficients

relevant for (A.5) are ALLpq , B
LL
pq , A

LR
pq , CLRpq , and we should use the string frame expressions

in appendix E. Then setting x±q = x + O(1/g) for the virtual particle, and x±p = X± for

the physical giant magnon, the unfixed phases are

SLLpq =

√
x+p

x−p

x− x−p

x− x+p
σ3(x, x

±
p ), τLRpq =

√
x+p

x−p

x− 1/x+p

x− 1/x−p
σ3(x, x

±
p ).

Here some phase σ3 is needed because the Lüscher formula gives e−imrq⋆L (with

q⋆ = 1
h

x
x2−1

) rather than the first factor in (A.5). If L = J ′ then this could be provided

(in this limit) by some power of the AFS phase.

In order to check crossing symmetry we need first (5.27):

SLRpq =
1

ζpq
τLRpq =

√
x+p

x−p

(
x− 1/x+p

x− 1/x−p

)3/2

σ3.

Then using x±q̄ = 1/x±q ≈ 1/x, we obtain

SLLpq S
LR
pq̄ =

√
x−p

x+p

√
x− x+p

x− x−p
σ3(x, x

±
p )σ3

(
1

x
, x±p

)
.

Provided σ3(x)σ3(
1
x) = 1 this is the inverse of the crossing relation (5.44).

For (A.4), where the virtual particle is of the opposite mass to the real particle, the

relevant terms are A
LL′

pq , BLL
′

pq , ALR
′

pq , CLR
′

pq , and the phases are

SLL
′

pq =

√
x−p

x+p
σ1, τLR

′

pq =
x− 1/x−p

x− 1/x+p

√
x−p

x+p
σ1.

SLR
′

pq =
1

ζLR′
τLR

′

pq =

√
x− 1/x−p

x− 1/x+p

√
x−p

x+p
σ1.

Then we obtain the inverse of the crossing relation (5.46), as long as σ1(x)σ1(
1
x) = 1:

SLL
′

pq SLR
′

pq̄ =

√
x− x−p

x− x+p

√
x−p

x+p
σ1(x)σ1

(
1

x

)
.

B Algebraic curves for AdS3 × S3 sans T 4

This appendix sets up the “T 4” case in exactly the same way as above, following [24]. The

main reason for doing so is in order to calculate F-term corrections, to illustrate the limit

α→ 1.
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The Cartan matrix is:

A =




0 −1 0

−1 2 −1

0 −1 0


⊗ 12×2 .

Here is the basis given by [24], with a minus inserted on the left-hand half this time, and

the order of the index i chosen so that the quasimomenta qi(x) match those in [66, 77]:

H1 H2 H3 H1̄ H2̄ H3̄ i

−1 F 1̂

−1 1 B 1̃

−1 1 B 4̃

1 F 4̂

1 F 2̂

1 −1 B 2̃

1 −1 B 3̃

−1 F 3̂

The inversion symmetry is the same as (2.2) above, or in terms of the qi:

q̂1

(
1

x

)
= −q̂2(x), q̂3

(
1

x

)
= −q̂4(x)

q̃1

(
1

x

)
= −q̃2(x), q̃3

(
1

x

)
= −q̃4(x).

The vacuum is given by

κ =
∆

2g

(
− 1, 0,−1, 1, 0, 1

)

qi(x) =
∆

2g

x

x2 − 1

(
1, 1,−1,−1, 1, 1,−1,−1

)
.

We can again make modes by colouring in, this time 2 and 2̄ are the momentum-

carrying nodes:

Bosons: (1̃, 4̃) (2̃, 3̃)

(1̂, 4̂) (2̂, 3̂)

Fermions: (1̂, 4̃) (2̂, 3̃)

(1̃, 4̂) (2̃, 3̂)

(B.1)
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where again = 1 on the left but = −1 on the right. Then the asymptotic behaviour

of the modes is 


δq̂1

δq̂2

δq̂3

δq̂4

δq̃1

δq̃2

δq̃3

δq̃4




→ 1

2gx




δ∆+N1̂4̂ +N1̂4̃

δ∆+N2̂3̂ +N2̂3̃

−δ∆−N2̂3̂ −N2̃3̂

−δ∆−N1̂4̂ −N1̃4̂

−N1̃4̃ −N1̃4̂

−N2̃3̃ −N2̃3̂

+N2̃3̃ +N2̂3̃

+N1̃4̃ −N1̂4̃




+ . . . (B.2)

which matches the 1st & 4th columns of [66]’s (A.9), apart from normalisation of ∆.

As expected this is very much like AdS5 × S5 with the modes connecting left and right

turned off. Comparing this with (2.16) at φ = 0, the bosons match up perfectly but for

the fermions things aren’t so simple.

B.1 F-term corrections

Using a giant magnon G2(x) = Gmag(x), i.e. a giant (1̃, 4̃) mode, here are some of the

integrands F (ℓ)(x) =
∑

ij(−1)Fij exp(−iℓ(qi − qj)), showing terms in the same order

as (B.1) above:

F
(1)
left = e

−∆
g

i x

x2−1

[
X+

X−

(
x−X−

x−X+

)2

+ 1− x−X−

x−X+

√
X+

X−
− x−X−

x−X+

√
X+

X−

]
(B.3)

F
(1)
right = e

−∆
g

i x

x2−1

[
X−

X+

(
1− xX+

1− xX−

)2

+ 1− 1− xX+

1− xX−

√
X−

X+
− 1− xX+

1− xX−

√
X−

X+

]

These line up with the AdS3 × S3 × S3 ones above, in total

F (1)
m3

∣∣∣
φ=π/2

+ F (1)
m4

= F
(1)
left + F

(1)
right

but also term by term.

C Worldsheet theory

The bosonic action in conformal gauge (and setting α′ = 1) is

S =

∫
dτdσ

4π

(
R2∂µZ̄ · ∂µZ +

R2

cos2 φ
∂µX̄ · ∂µX +

R2

sin2 φ
∂µȲ · ∂µY +R2∂µψ∂

µψ

)

where |Z|2 = −1 describes AdS3 embedded in C
1,1, and |X|2 = |Y |2 = 1 describe the two

spheres each in C
2. The equations of motion are

0 = ∂µ∂
µZ +

(
∂µZ̄ · ∂µZ

)
Z 0 = ∂µ∂

µY +
(
∂µȲ · ∂µY

)
Y
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0 = ∂µ∂
µX +

(
∂µX̄ · ∂µX

)
X 0 = ∂µ∂

µψ

with the four components coupled only through the Virasoro constraints

0 = ∂τ Z̄ · ∂τZ + ∂σZ̄ · ∂σZ +
1

cos2 φ

(
∂τ X̄ · ∂τX + ∂σX̄ · ∂σX

)

+
1

sin2 φ

(
∂τ Ȳ · ∂τY + ∂σȲ · ∂σY

)
+
(
∂τψ∂τψ + ∂σψ∂σψ

)

0 = ∂τ Z̄ · ∂σZ +
1

cos2 φ

(
∂τ X̄ · ∂σX

)
+

1

sin2 φ

(
∂τ Ȳ · ∂σY

)
+ c.c. + 2∂τψ∂σψ.

The global charges are

∆ = R2

∫ L

−L

dσ

2π
Im(Z̄0∂τZ0)

JX =
R2

cos2 φ

∫ L

−L

dσ

2π
Im(X̄1∂τX1), JY =

R2

sin2 φ

∫ L

−L

dσ

2π
Im(Ȳ1∂τY1)

J ′ = cos2 φ JX + sin2 φ JY

and P =

∫
dσ Im(∂σ logX1) +

∫
dσ Im(∂σ log Y1).

The spinning string solution studied by [26] is

Z0 = eiκτ cosh ρ(σ), Z1 = eiωτ sinh ρ(σ), X1 = eiν+τ , Y1 = eiν−τ (C.1)

for which the Virasoro constraint gives

0 = −κ2 cosh2 ρ+ ω2 sinh2 ρ+ ρ′2 +
1

cos2 φ
ν2+ +

1

sin2 φ
ν2− .

Here we consider only the case ν+ = cos2 φ ν, ν− = sin2 φ ν, giving JX = JY = νLR2/2π.

This reduces to the supersymmetric BMN point particle when ρ = 0, and κ = ν [67], see

also [106–110] for this background. At φ = 0 this is stationary on the Y sphere, and the

last term drops out of the Virasoro constraint.

Now consider placing magnons into this space. Treating immediately the finite-J case,

let Xfin(σ, τ) be a solution in R × S3 in conformal gauge and with t = τ : it satisfies

∂τ X̄ · ∂τX + ∂σX̄ · ∂σX = 1. Let 2Lfin be the periodicity in σ (i.e. the distance between

two cusps). Writing charges using this as ∆fin (and Jfin = J ′|φ=0) it has dispersion relation

∆fin − Jfin = 4g sin
p

2

(
1− 4 sin2

p

2
e−2∆fin

/
4g sin p

2 + . . .

)
.

The solution at general φ is

X(σ, τ) = Xfin(cos
2 φ σ, cos2 φ τ) (C.2)

Y1(σ, τ) = ei sin
2 φ τ , Y2 = 0

with cos2 φ L = Lfin, thus ∆ = 1
cos2 φ

∆fin. This has P = p and

∆− J ′ = ∆fin − Jfin = 4g sin
p

2

(
1− 4 sin2

p

2
e−2∆ cos2 φ

/
4g sin p

2 + . . .

)
. (C.3)
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The exponent in the finite-J correction is exactly what we saw in the algebraic curve calcu-

lation (A.3), apart from here considering a magnon in the other sphere i.e. a giant “3” mode.

Other solutions can be similarly embedded, in particular:

• we can use the same scattering solutions as usual, [111–113], within one sphere. The

time delay for scattering solutions is defined like this (initially on a unit sphere):

Xscat(σ, τ) =

{
Xmag(σ, τ), σ, τ → −∞
Xmag(σ, τ −∆τmag), σ, τ → +∞.

It is clear that embedding this solution into the S3
+ sphere via (C.2) will give us a

time delay ∆τ = 1
cos2 φ

tan p
2 log(cos

2 p
2) scaled from the usual (centre of mass frame)

delay [49].

• We can embed a different giant magnon into each sphere, and they don’t talk to

each other at all. Thus we would expect the relevant terms in the S-matrix to be 1,

and this is exactly what we saw in (A.4) above: the trivial entries there correspond

to a physical 3 mode and a virtual 1 or 1̄.
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[25] O. Ohlsson Sax and B. Stefański Jr., Integrability, spin-chains and the AdS3/CFT2
correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].

[26] V. Forini, V.G.M. Puletti and O. Ohlsson Sax, Generalized cusp in AdS4 × CP 3 and more

one-loop results from semiclassical strings, arXiv:1204.3302 [INSPIRE].

[27] N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS3 × S3 × S3 × S1

superstring, JHEP 07 (2012) 159 [arXiv:1204.4742] [INSPIRE].

[28] P. Sundin and L. Wulff, Classical integrability and quantum aspects of the

AdS3 × S3 × S3 × S1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].

[29] A. Cagnazzo and K. Zarembo, B-field in AdS3/CFT2 correspondence and integrability,

JHEP 11 (2012) 133 [arXiv:1209.4049] [INSPIRE].
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[66] N. Gromov, S. Schäfer-Nameki and P. Vieira, Efficient precision quantization in AdS/CFT,

JHEP 12 (2008) 013 [arXiv:0807.4752] [INSPIRE].

[67] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from

N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

[68] N. Beisert and L. Freyhult, Fluctuations and energy shifts in the Bethe ansatz,

Phys. Lett. B 622 (2005) 343 [hep-th/0506243] [INSPIRE].

[69] N. Gromov and P. Vieira, The AdS4/CFT3 algebraic curve, JHEP 02 (2009) 040

[arXiv:0807.0437] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/j.nuclphysb.2006.12.013
http://arxiv.org/abs/hep-th/0611269
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611269
http://dx.doi.org/10.1088/1126-6708/2006/07/004
http://arxiv.org/abs/hep-th/0603204
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603204
http://dx.doi.org/10.1088/1126-6708/2006/11/070
http://arxiv.org/abs/hep-th/0609044
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609044
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1007/s11005-011-0482-0
http://arxiv.org/abs/1012.3992
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3992
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.011
http://arxiv.org/abs/0705.0890
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0890
http://arxiv.org/abs/1211.4512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4512
http://arxiv.org/abs/1211.5119
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5119
http://dx.doi.org/10.1088/1126-6708/2004/05/024
http://arxiv.org/abs/hep-th/0402207
http://inspirehep.net/search?p=find+EPRINT+hep-th/0402207
http://dx.doi.org/10.1088/1126-6708/2004/10/060
http://arxiv.org/abs/hep-th/0410105
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410105
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.034
http://arxiv.org/abs/hep-th/0412254
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412254
http://dx.doi.org/10.1007/s00220-006-1529-4
http://arxiv.org/abs/hep-th/0502226
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502226
http://dx.doi.org/10.1016/j.nuclphysb.2012.03.018
http://arxiv.org/abs/1203.4246
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4246
http://dx.doi.org/10.1016/j.nuclphysb.2007.07.032
http://arxiv.org/abs/hep-th/0703191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703191
http://dx.doi.org/10.1088/1126-6708/2008/06/086
http://arxiv.org/abs/0803.1605
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1605
http://dx.doi.org/10.1088/1126-6708/2008/12/013
http://arxiv.org/abs/0807.4752
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4752
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://arxiv.org/abs/hep-th/0202021
http://inspirehep.net/search?p=find+EPRINT+hep-th/0202021
http://dx.doi.org/10.1016/j.physletb.2005.07.015
http://arxiv.org/abs/hep-th/0506243
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506243
http://dx.doi.org/10.1088/1126-6708/2009/02/040
http://arxiv.org/abs/0807.0437
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0437


J
H
E
P
0
2
(
2
0
1
3
)
1
0
2

[70] N. Beisert, V. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in

N = 4 SYM at one loop, JHEP 07 (2005) 030 [hep-th/0503200] [INSPIRE].

[71] N. Gromov and P. Vieira, Complete 1-loop test of AdS/CFT, JHEP 04 (2008) 046

[arXiv:0709.3487] [INSPIRE].

[72] N. Dorey, Magnon bound states and the AdS/CFT correspondence,

J. Phys. A 39 (2006) 13119 [hep-th/0604175] [INSPIRE].

[73] H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024

[hep-th/0605155] [INSPIRE].

[74] J. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states,

JHEP 08 (2006) 049 [hep-th/0606145] [INSPIRE].

[75] B. Vicedo, Giant magnons and singular curves, JHEP 12 (2007) 078 [hep-th/0703180]

[INSPIRE].

[76] H.-Y. Chen, N. Dorey and R.F. Lima Matos, Quantum scattering of giant magnons,

JHEP 09 (2007) 106 [arXiv:0707.0668] [INSPIRE].
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