
J
H
E
P
0
2
(
2
0
1
3
)
1
0
1

Published for SISSA by Springer

Received: November 16, 2012

Accepted: January 31, 2013

Published: February 18, 2013

Anomaly cancellation and abelian gauge symmetries

in F-theory
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Abstract: We study 4D F-theory compactifications on singular Calabi-Yau fourfolds with

fluxes. The resulting N = 1 effective theories can admit non-Abelian and U(1) gauge

groups as well as charged chiral matter. In these setups we analyze anomaly cancellation

and the generalized Green-Schwarz mechanism. This requires the study of 3D N = 2

theories obtained by a circle compactification and their M-theory duals. Reducing M-

theory on resolved Calabi-Yau fourfolds corresponds to considering the effective theory

on the 3D Coulomb branch in which certain massive states are integrated out. Both

4D gaugings and 3D one-loop corrections of these massive states induce Chern-Simons

terms. All 4D anomalies are captured by the one-loop terms. The ones corresponding

to the mixed gauge-gravitational anomalies depend on the Kaluza-Klein vector and are

induced by integrating out Kaluza-Klein modes of the U(1) charged matter. In M-theory all

Chern-Simons terms classically arise from G4-flux. We find that F-theory fluxes implement

automatically the 4D Green-Schwarz mechanism if non-trivial geometric relations for the

resolved Calabi-Yau fourfold are satisfied. We confirm these relations in various explicit

examples and elucidate the general construction of U(1) symmetries in F-theory. We also

compare anomaly cancellation in F-theory with its analog in Type IIB orientifold setups.
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1 Introduction and summary

Local symmetries are the guiding principle for formulating field theories as well as the

theory of gravity. While manifest in the classical theory these symmetries can, however,

be broken at the quantum level and lead to inconsistencies by the violation of essential

current conservation laws on the quantum level. Such inconsistencies manifest themselves

already at one-loop level and are known as anomalies [1–4]. In particular, four-dimensional

quantum field theories can admit anomalies which signal the breaking of the gauge sym-

metry transformations acting on chiral fermions. The cancellation of these anomalies is

thus crucial to determine consistent theories and imposes constraints on the spectrum and

couplings of the theory. Anomalous transformations of the chiral fermions either cancel

among each other or require the implementation of a generalized Green-Schwarz mecha-

nism [5, 6]. In the latter case the one-loop anomalies are canceled by a tree-level diagram

involving a U(1) gauged axion-like scalar. In this work we study the manifestation of the

anomaly cancellation mechanisms in four-dimensional F-theory compactifications.

To extract four-dimensional observed physics from string theory one is aiming to find

a compactification scenario that describes a very broad class of consistent string vacua and

naturally incorporates the ingredients of the Standard Model of particle physics and its

extensions. One promising scheme is to consider F-theory compactifications with space-

time filling seven-branes supporting non-Abelian gauge groups. F-theory geometrizes the

complexified coupling constant of Type IIB string theory as the complex structure modulus

of an additional two-torus. Much of the in general non-perturbative physics of seven-

branes is encoded in the singular geometry of a torus-fibered compact manifold. Requiring

N = 1 supersymmetry in the four-dimensional effective theory enforces this space to be an

elliptically fibered Calabi-Yau fourfold X4. The complex three-dimensional base B3 of X4

is the physical compactification space of Type IIB string theory. The singularities of this

fourfold along co-dimension one loci in the base signal the presence of non-Abelian gauge

groups, while additional sections of the elliptic fibration signal extra U(1) gauge group

factors [7, 8].

A non-trivial four-dimensional chiral spectrum is only induced if the seven-branes also

support gauge fluxes on their internal world volume. The interplay of geometry, fluxes and

the low-energy effective action of the four-dimensional gauge theory is crucial in the study

of anomaly cancellation. However, the fact that F-theory does not posses a low-energy

effective action in twelve dimensions prevents one from deriving the four-dimensional low-

energy effective theory directly. To nevertheless study F-theory effective physics one has to

use the M-theory dual description in one dimension lower. In fact, M-theory on the same

Calabi-Yau fourfold X4 is dual to F-theory on X4 × S1. The new modulus, the radius of

S1, is in this identification related to the inverse volume of the torus fiber in M-theory. In

this duality, the familiar F-theory limit of a shrinking volume of the torus-fiber maps to the

decompactification limit of the S1 in which one grows a large extra dimension and recovers

four dimensional F-theory physics. All F-theory objects can then be followed through this

three-dimensional duality and can be studied directly in the dual M-theory. In this work

we will mainly be interested in questions about the low energy physics of F-theory, most
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prominently anomalies, and it will be one of our results to reformulate and answer these

questions in M-theory.

At low energies the theory of interest is an effective three-dimensional (3D) N = 2

gauge theory with a number of chiral multiplets coupled to supergravity. An important

property of the 3D N = 2 gauge theories is that they admit, in contrast to a N = 1

gauge theory in four dimensions (4D), a Coulomb branch where the non-Abelian gauge

group G breaks to its maximal torus, G → U(1)r, with massless 3D gauge fields AΛ,

Λ = 1, . . . , r = rank(G). In this work we will mainly analyze the theory on this 3D

Coulomb branch and understand corrections to the effective action both from the F-theory

perspective and from the M-theory perspective.

There is one essential difference between the two descriptions of the 3D theory, that

is crucial for this discussion. By reducing F-theory from 4D to 3D we can describe the

3D N = 2 gauge theory also away from the Coulomb branch. The Coulomb branch is

understood purely field theoretically by giving a vacuum expectation value (vev) to the

scalars ζΛ along the Cartan generators of G in the 3D vector multiples coming from the

direction of the 4D vector along the S1. Fields become massive due to this vev and at low

energies have to be integrated out quantum mechanically correcting the effective theory

on the Coulomb branch. In contrast, although M-theory as a fundamental theory should

also describe the full 3D N = 2 gauge theory, it is only explicitly known how to describe

the 3D Coulomb branch. The description is given by M-theory on the smooth X̂4 fourfold

with all singularities in X4 resolved inducing shrinkable rational curves, i.e. two-spheres

P
1, in the geometry. Geometrically, the resolution process corresponds to giving a vev

in the field theory perspective with ζΛ being related to the volume of these shrinkable

P
1’s. Furthermore, at large volume of X̂4 it is consistent to consider the long wavelength

approximation of eleven-dimensional supergravity and dimensionally reduce it on X̂4 to

3D. In this description certain microscopic M-theory degrees of freedom corresponding to

certain wrapped M2-branes are massive. However, these states have already been integrated

out consistently in the eleven-dimensional supergravity, which follows from the validity

and consistency of the supergravity approximation at low energies. The corrections to

the 3D low-energy theory on the Coulomb branch are thus visible as classical effects in

the dimensional reduction on X̂4. Morally speaking, the information about the massless

microscopic states on X4 has been traded for the new shrinkable P
1’s on X̂4, that have

not been present on X4. These corrections are the same as those that arise quantum

mechanically in F-theory and it will be one key observation of this paper to map these

corrections in the M-/F-theory duality in 3D.

The geometrically massive modes that have to be integrated out on the 3D Coulomb

branch and are relevant for our discussion of anomalies are from an F- and M-theory point

of view

• massive 3D W-bosons in F-theory from the breaking G → U(1)r, or massive M2-

branes on shrinking P
1’s in X̂4 → X4 over co-dimension one in B3 in M-theory.

• charged 3D fermions massive on the 3D Coulomb branch in F-theory, or massive

M2-branes on P
1’s fibered over co-dimension two in B3, i.e. curves from intersections

of seven-branes in F-theory later denoted as matter curves, in M-theory.
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• massive Kaluza-Klein states of 4D charged fermions in the reduction of F-theory

from 4D to 3D, or M2-branes wrapping a shrinking P
1 over a matter curve once and

multiply the elliptic fiber of X̂4.

The 3D couplings that are corrected by integrating out these massive states and which

will be of most use for our discussion of 4D anomalies in F-theory are the 3D Chern-Simons

(CS) terms for the Abelian vector fields AΛ on the 3D Coulomb branch,

S
(3)
CS = −

1

2

∫
ΘΛΓA

Λ ∧ FΓ . (1.1)

Again, the crucial point is that from the F-theory perspective these CS-terms are purely

quantum mechanically and generated only at one-loop of massive fermions charged under

the vectors AΛ. In contrast on the M-theory side they are generated classically by G4-flux

on X̂4. Thus, the CS-terms still carry the signature of the states that have been integrated

out in F-theory but are efficiently calculated in M-theory. More precisely we will use in this

work as a tool to derive the chiral index χ(R) of 4D charged matter in a representation R

the observation of [9] that certain G4-fluxes induce particular classical M-theory CS-terms

which are induced in F-theory by one-loop diagrams of the 3D massive charged fermions

from the 4D chiral matter multiplets reduced on S1. The identification of classical M- and

one-loop F-theory CS-terms ΘM
ΛΣ respectively ΘF

ΛΣ we will employ takes the form

1

2
ΘM

ΛΣ =
1

4

∫

X̂4

G4 ∧ ωΛ ∧ ωΣ ≡ −
1

2

∑

R

χ(R)
∑

q∈R

qΛqΣ sign(q · ζ) = −ΘF
ΛΣ , (1.2)

where ωΛ, ωΣ denote (1, 1)-forms on X̂4 generated by resolving the singularities in X4

and the sum is taken over all 4D matter representations R with Dynkin labels q. The

sign-function is applied to the scalar product of the charges and the Coulomb branch

parameters, q · ζ = qΛ ζΛ. In general, M-theory G4-flux on the fully resolved Calabi-Yau

X̂4 that is consistent with the F-theory limit gives a description of seven-brane gauge flux

in F-theory. Thus, as is known that gauge fluxes on seven-branes induce chirality of 4D

matter in Type IIB G4-flux induces chirality in F-theory. The relation of such fluxes to

the 4D matter spectrum has been recently studied intensively [9–18].

Besides using the CS-terms in 3D as tools for determining 4D chirality we will discover

the intricate relations between different 3D CS-terms that are implied by 4D anomaly can-

cellation. Let us summarize our findings where we distinguish F-theory compactifications

without Abelian gauge symmetries and those with Abelian gauge factors. In the first case it

is required that the non-Abelian gauge anomaly vanishes which puts one constraint on the

spectrum for each gauge group factor G(I) in G whereas in the second case anomaly cancel-

lation is more involved due to mixed anomalies. The cancellation of these anomalies may

require a Green-Schwarz (GS) mechanism in F-theory. Then fluxes on space-time filling

seven-brane have to both induce a non-trivial chiral spectrum and corresponding gaugings

of the axions for a working GS-mechanism. Anomaly cancellation is then tightly linked

with tadpole cancellation that imposes constraints on the brane configuration and allowed

fluxes. For setups at weak string coupling this link has been discussed and reviewed, for

example, in [19–24].
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In contrast to the weakly coupled Type IIB theory, where brane fluxes are constrained

by tadpole conditions, for G4 fluxes lifting from M-theory to F-theory it is expected that

all anomalies are canceled and the Green-Schwarz mechanism is implemented automati-

cally. This can be anticipated since in M-theory no additional consistency conditions on

G4, apart from the for anomaly cancellation irrelevant M2-brane tadpole matching, have to

be imposed. In particular the seven-brane tadpole is canceled geometrically in F-theory by

considering a compact Calabi-Yau fourfold X4 and 5-brane tadpoles are canceled by con-

sidering closed fluxes dG4 = 0 signalling the absence of a net M5-brane charge. Therefore,

by consistency of the underlying M-theory compactification also the low-energy effective

action should be consistent.

From anomaly cancellation in combination with F-/M-theory duality in 3D we discover

the following constraints for and links to 3D CS-terms:

• Without U(1)-factors in 4D, the CS-terms for the vectors AΛ encoding chiralities have

to obey non-trivial relations such that the cubic non-Abelian anomalies are canceled.

• With U(1)-factors in 4D, the CS-terms for the 4D chiral indices have to be related to

the CS-terms determining the gaugings of the 4D axions so that all mixed anomalies

are canceled.

• We show the cancellation of 4D mixed Abelian-gravitational anomalies in 3D using

F-/M-theory duality. We discover that the 4D mixed Abelian-gravitational anomaly

is the coefficient Θloop
0m of the 3D Chern-Simons term A0 ∧ Fm for the Kaluza-Klein

vector A0 and the corresponding 3D U(1) vector field Am,

Θloop
0m = −

1

12

∑

q

n(q)qm , (1.3)

where the sum is taken over all U(1)-charges q under the 4D U(1)-vectors Am and

n(q) is the number of fermions with a given charge q. We obtain this result since

Θ0m is one-loop induced in F-theory with the full Kaluza-Klein tower of 4D charged

fermions in the loop. F-/M-theory duality implies that this expression is related to the

classical flux-integral of G4 in M-theory, which is precisely the tree-level contribution

to the anomaly from the GS-mechanism,

Θloop
0m ≡ −

1

2
Θ0m =

1

4
KαΘαm . (1.4)

Here Kα is a vector determining a direction in the space of 4D axions and Θmα is

the G4-flux induced gauging of the αth axion under Am.

In addition, we discuss in general terms the construction of U(1) symmetries in F-theory on

fourfolds by considering a non-trivial Mordell-Weil group of rational sections1 of X̂4. This

construction has been applied successfully on elliptically fibered threefolds in [8, 25–27]

to study non-simply laced gauge groups and U(1)’s as well as Abelian anomalies in six-

dimensional F-theory. The discussion we provide in this note is a first step to being able to

1We neglect the torsion subgroup here for simplicity.
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construct also four-dimensional F-theory compactifications with more than one U(1) and

a matter sector with more general U(1)-charges extending the analysis of [28].

Furthermore, for consistent G4-fluxes in the F-theory limit, we discover geometric

relations that need to be satisfied in any resolved elliptically fibered fourfold X̂4,

1

3

∑

SR

∑

c⊂SR

(SR · [G4])(c ·DΛ)(c ·DΣ)(c ·DΓ) =
1

2
[G4] ·D(Γ · π∗(DΛ ·DΣ)) , (1.5)

1

3

∑

SR

∑

c⊂SR

(SR · [G4])(c ·DΛ) = [G4] · [c1(B3)] ·DΛ . (1.6)

Here G4 is the G4-flux in M-theory and SR is a four-cycle denoted the matter surfaces

obtained by fibering the shrinking P
1’s in X̂4 that are the weights of a representation R of

G over matter curves. The divisors DΛ, DΣ and DΓ are the exceptional divisors obtained

by fibering the shrinkable curves P
1 over co-dimension one loci in the base B3, i.e. the

seven-brane divisors in B3. The curves c are any shrinkable holomorphic curve in the fiber

SR. The map π∗ is induced by the projection to the base π : X̂4 → B3 of the elliptic

fibration of X̂4 and c1(B3) denotes its first Chern-class. These geometric relations are

indeed valid for concrete resolutions as we show for several examples with non-Abelian

gauge groups.

We note that the geometric relations (1.5) and the corresponding statements about

anomaly cancellation should even apply in a broader context than considered in this paper.

In particular one expects that (1.5) is valid for more general G4-flux that is not necessarily

given by a sum of products of (1, 1)-forms, i.e. G4-flux that is not vertical. A phenomeno-

logically interesting example of these fluxes is the F-theory analog of hypercharge flux FY

considered in [29–31] in the context of anomalies. In order to understand anomaly can-

cellation also in these cases, it is crucial to note that the right hand side of (1.5) is in

general only non-trivial for vertical G4-flux and vanishes otherwise. Constraints on the

spectrum then arise from the vanishing of the left-hand side of this equality. A better

understanding of the global geometry of X̂4 and the matter surfaces SR might reveal that

these constraints are also automatic fulfilled for concrete resolved Calabi-Yau fourfolds with

no further restriction on the G4-flux. It would be interesting to investigate this further.

Finally, we compare our analysis of anomaly cancellation in F-theory to anomaly can-

cellation in Type IIB Calabi-Yau orientifold compactifications with O7-planes and inter-

secting D7-branes [20–23]. We show that in general the Type IIB anomaly cancellation

reduces to the F-theory anomaly cancellation when projecting to the sector of geometrically

massless U(1)’s in Type IIB. This demonstrates on the levels of anomalies that the geomet-

rically massless U(1)’s correspond directly to the U(1)’s engineered in F-theory, whereas

the geometrically massive U(1)’s in Type IIB are captured by the residual discriminant

of the elliptic fibration in F-theory, cf. [32] for a more general discussion of geometrically

massive U(1)’s.

The paper is organized as follows. In section 2 we recall some basic facts about anomaly

cancellation in 4D and introduce the Green-Schwarz mechanism. In order to determine the

Green-Schwarz counter terms in F-theory we discuss the geometric structure of resolved
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Calabi-Yau fourfolds used in the duality of M-theory to F-theory in section 3. It will be

crucial to allow for U(1) gauge group factors and their geometric F-theory manifestation

in our analysis. In section 4 we turn to the analysis of one-loop Chern-Simons terms in

the 3D effective theory. We recall how they encode the 4D chiral index for the matter

spectrum and show that they can also capture 4D mixed Abelian/gravitational anoma-

lies. Anomaly cancellation in F-theory is discussed in section 5 were we also derive the

geometric conditions (1.5). We contrast the F-theory analysis with the description of

anomaly cancellation in weakly coupled Type IIB setups with D7-branes and O7-planes in

section 6. Explicit examples of resolved Calabi-Yau fourfolds are introduced in section 7.

Our work has two appendices supplementing additional information about 4D anomalies

and SU(5) representations.

2 Four-dimensional anomaly cancellation

In this section we present the basic techniques for characterizing anomalies of gauge sym-

metries and their cancellation via the generalized Green-Schwarz mechanism in a four

dimensions. More details can be found in appendix A and the reviews [1–4].

We will consider a 4D N = 1 supersymmetric effective theory with a vector multiplet

transforming in the adjoint of a general non-Abelian gauge group,

G = G(1) × · · · ×G(nG) ×U(1)1 × · · · ×U(1)nU(1)
. (2.1)

Here the group factors G(I) denote nG arbitrary simple Lie-groups and we allow for a

number nU(1) of U(1)m-factors. In the following we will use indices

I, J = 1, . . . , nG , m, n = 1, . . . , nU(1) , (2.2)

to label non-Abelian and Abelian group factors. We consider matter in chiral multiplets

that transform in representations denoted

R = (r1, . . . , rnG)q (2.3)

of G. Here rI denote the representations of the non-Abelian factors of G(I) and q =

(q1, . . . , qnU(1)
) denotes the corresponding U(1)-charges arranged as a column vector. Fur-

thermore, since we are considering a theory withN = 1 supersymmetry we have one gravity

multiplet containing a single gravitino.

In general an anomaly of a symmetry denotes the effect that a symmetry of the classical

theory is not promoted to a symmetry of the quantum theory. An anomaly of a local

symmetry, i.e. a gauge symmetry, spoils the consistency of the quantum theory due to the

quantum mechanical violation of current conservation laws. Thus in a consistent quantum

theory anomalies of gauge symmetries have to be absent. The breakdown of a gauge

symmetry is encoded in a gauge invariant and regulator independent way in the anomaly

polynomial. In four dimensions this polynomial is a cubic polynomial in the gauge field

strength of the gauge group G and the 4D Riemann tensor. Thus, it is a formal six-form

denoted by I6. The polynomial I6 is the sum of the anomaly polynomials for all fields

– 7 –
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contributing to the anomaly. These are massless Weyl-fermions, gravitinos and self-dual

tensors and their corresponding anomaly polynomials have been worked out in every space-

time dimension in the seminal work of [33]. The theory is anomaly free if the full anomaly

polynomial vanishes identically, i.e. if all coefficients of the various monomials in the field

strength and the Riemann tensor are zero. As we will discuss next, the full anomaly

polynomial consistent of I6 from the quantum anomalies in the matter sector and another

contribution from a tree-level effect, the Green- Schwarz mechanism.

In four dimensions, the possible anomalies are gauge and mixed anomalies only, since

pure gravitational anomalies are absent by symmetry. For the fields in the standard N = 1

supergravity theory described above the anomaly polynomial reads

I6 =
∑

R

n(R)I1/2(R) , (2.4)

where I1/2(R) denotes the anomaly polynomial (A.4) of a left-chiral Weyl fermion that

occurs with multiplicity n(R) in the 4D spectrum.

In general, the anomaly polynomial (2.4) of the matter sector does not need to vanish

identically if it is a sum of factorizable contributions. In this case, the residual anomalies

can be canceled by a certain tree-level mechanism known as the Green-Schwarz mech-

anism [5]. We consider the higher derivative effective action, referred to as the Green-

Schwarz counter terms,

S
(4)
GS = −

1

8

∫
2

λI
bαI ρα trf (F

I ∧ F I) + 2bαmnρα Fm ∧ Fn −
1

2
aαρα tr(R ∧R) . (2.5)

Here F I and Fm denote the field strengths in the adjoint of G(I) respectively of the m-th

U(1) and trf denote the traces in the corresponding fundamental representations. Further-

more, we have used λI = 2cG(I)
/V (adj) = 2

〈α0,α0〉
with cG(I)

the dual Coxeter number of

G(I) and V (adj) defined in (A.9), whereas 〈α0, α0〉 denotes the length squared of the root

of maximal length α0. The real scalar fields ρα are axions that are gauged by the Abelian

vectors Am of G as

Dρα = dρα +ΘαmAm . (2.6)

The combinations of axions ρα in the various terms in (2.5) are determined by parameters

bαI , b
α
mn and aα, which can be determined by the underlying microscopic theory together

with the matrix Θαm in (2.6). We will explicitly determine these parameters for F-theory

compactifications in section 3.3. The gauging (2.6) induces an anomalous variation of

the action (2.5) that lifts to a contribution to the anomaly polynomial. In factorizable

situations this can cancel a non-vanishing I6 in (2.4) from the matter sector of the theory.

Before we continue by writing down the anomaly conditions we pause for a brief dis-

cussion of additional terms in the effective action that can have an anomalous variation.

As discussed in [34] there can be generalized Chern-Simons terms in four dimensions of

the form EmnkA
m ∧ An ∧ F k for the U(1)’s respectively non-Abelian terms EmIA

m ∧ ωI
3

with ωI
3 denoting the Chern-Simons form of tr(F I ∧ F I). As discussed also in [34] these

terms depend on the chosen regularization scheme and it is possible to work in a scheme

where all these terms are absent. Equivalently these terms parametrize the ambiguities,
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namely the exact forms, in the descend equations that is used to relate the unambiguous,

i.e. scheme-independent anomaly polynomial I6, with the anomalous and scheme dependent

counter terms in the quantum effective action. Thus the generalized Chern-Simons terms

are irrelevant for anomaly cancellation and will be neglected in the rest of our discussion.

Adding up the two contributions to the total anomaly polynomial from the matter

sector, I6 in (2.4), and from the Green-Schwarz mechanism, IGS
6 in (A.8), and requiring

the sum to vanish, the conditions for cancellation read, as reviewed in more detail in

appendix A,

trf (F
I)3 :

∑

rI

n(rI)V (rI) = 0 , (2.7)

FmFnF k :
1

6

∑

q

n(q)q(mqnqk) =
1

4
bα(mnΘk)α (2.8)

Fmtrf (F
I)2 :

1

2

∑

rI

∑

q

n(rIq)U(r
I)qm =

1

4λI
bαI Θαm (2.9)

FmtrR2 :
1

48

∑

q

n(q)qm = −
1

16
aαΘmα , (2.10)

where in the second line we have symmetrized in the indices m,n, k. Here, we have to sum

over each representation rI of the simple group G(I) and over all possible U(1)-charges q

with which the representation rI occurs in the 4D spectrum. In addition, we introduced

n(rIq) denoting the number of chiral multiplets in the representation rIq and the number of

chiral multiplets n(q) with charges q. The latter can be written as

n(q) =
∑

rq′

n(rIq′)dim(rI)δq q′ , (2.11)

where δq q′ = 1 if q = q′ and zero otherwise. Furthermore, we made use of the group

theory relations

trrIF
3 = V (rI)trfF

3 , trrIF
2 = U(rI)trfF

2 . (2.12)

The conditions in the order in which they appear in (2.7)–(2.10) are the purely non-

Abelian anomaly, that has to cancel by itself, the purely Abelian anomaly and the two

mixed anomalies, the Abelian-non-Abelian and Abelian-gravitational anomalies.

3 Fluxes and Green-Schwarz-terms in F-theory

In this section we prepare the ground for our analysis of anomalies in four-dimensional

F-theory compactifications. We start in section 3.1 with a brief review of the geometry

of smooth fourfolds X̂4, obtained by resolving the singularities of the elliptic fibration of

X4, and describe the construction of G4-flux on X̂4. Recalling the duality of 3D M-theory

compactifications on X̂4 with F-theory on X4 ×S1 will be crucial. This 3D perspective on

4D F-theory physics is the backbone of most considerations in this paper. In section 3.2

we discuss the conditions on G4-fluxes in M-theory to be viable fluxes in F-theory. Fi-

nally, we show that 4D Green-Schwarz terms in F-theory are determined by the M-theory

compactification geometry X̂4 in section 3.3.
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3.1 F-theory as M-theory & the geometry of resolved fourfolds

An F-theory compactification to four dimensions is specified by an, in general singular,

elliptically fibered Calabi-Yau fourfold π : X4 → B3 over a Kähler threefold base B3. We

will consider cases in which the fibration has at least one section σ and a number of rational

sections σ̂m.

Since there exists no twelve-dimensional low-energy effective action of F-theory the

4D physics of F-theory compactifications has to be extracted via its M-theory dual. More

precisely, one considers the 4D theory on an additional S1 and pushes the resulting 3D

theory onto its Coulomb branch. In the dual picture this 3D theory is described by com-

pactifying M-theory on the smooth Calabi-Yau fourfold X̂4, that is obtained by resolving

all singularities in X4. Since we will make extensive use of these two dual perspectives, we

summarize them schematically as

F-theory on X4 →
F-theory on X4 × S1

in 3D Coulomb branch
≡ M-theory on X̂4 . (3.1)

In general the identification of F-theory on X4 × S1 with M-theory on X4 will also

hold at the origin of the Coulomb branch where the non-Abelian gauge group is restored.

This provides a microscopic definition of F-theory in the UV by M-theory. However, due

to our poor understanding of the microscopics of M-theory the equality in (3.1) is most

explicitly evaluated on the Coulomb branch. On the M-theory side this corresponds to

using the resolved X̂4 in the compactification of 11D supergravity to three dimensions. The

resulting low energy effective theory is valid below the Kaluza-Klein scale and the energy

scales defined by wrapped M2-branes on (shrinkable) cycles in X̂4. Using 11D supergravity

on X̂4 the M2-branes and Kaluza-Klein modes have effectively been integrated out. On the

F-theory side, W-bosons and matter fields in 4D F-theory precisely arise from such M2-

brane states. For the matching (3.1) yet to work, we thus have to go to the 3D Coulomb

branch where these states become massive and have been integrated out in the IR. In

addition we have to choose the circle radius S1 to be in a regime so that Kaluza-Klein

modes and winding modes of F-theory are above the cut-off scale. Only then the light

degrees of freedom in the 3D effective theories of F-theory on X4×S1 and M-theory on X̂4

in (3.1) match in the IR and the identification of the effective actions can be performed.

There are further motivations to consider compactifications on the resolved fourfold X̂4

that should be stressed here. Firstly, from a mathematical point of view the singularities

of the fourfold X4 can be classified on the smooth X̂4 by analyzing the local resolution

geometry. Resolution of the singularities leads to new exceptional divisors Ei in X̂4, whose

intersections specify the type of the original singularities. Secondly, the resolved fourfold

allows to include G4-fluxes, i.e. topologically non-trivial background values of the M-theory

three-form field strength. Such fluxes are elements of the cohomology H4(X̂4,Z/2), where

half-integrality can be consistent with the quantization condition discussed in (3.24) below.

This cohomology group also contains new classes due to the resolution of X̂4. Precisely

the fluxes arising in the expansion with respect to these forms correspond to seven-brane

gauge fluxes and are the key to understand chiral anomalies and their cancellation as we

will discuss in more detail in the following.
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Having a closer look at the geometry of a resolved fourfold X̂4 one encounters four

different types of divisors. We denote a basis of divisors and their Poincaré dual two-forms

by DA and ωA with A = 1, . . . , h1,1(X̂4). In the following we discuss the intersection

numbers of these divisors and two-forms in detail. They are denoted by

KABCD = DA ·DB ·DC ·DD =

∫

X̂4

ωA ∧ ωB ∧ ωC ∧ ωD . (3.2)

The four types of divisors and their Poincaré dual two-forms in X̂4 are

DA = (B,Dα, Di, Dm) , ωA = (ω0̂, ωα, ωi, ωm) , (3.3)

that we characterize as follows:

• The zero section B: The single divisor B is the zero section of the elliptic fibration

of X̂4. It is the class of the base B3 with its Poincaré dual ω0̂.
2 The section obeys

the intersection property

B ·B = −c1(B3) ·B , (3.4)

as can be seen from application of the adjunction formula.

• The vertical divisors Dα: There are h(1,1)(B3) divisors Dα = π−1(Db
α), with dual

two-forms ωα, that are lifted from divisors Db
α of the base B3 to the fourfold X̂4 and

are thus inherited from the singular fourfold X4.

• The Cartan divisors Di: There are rank(G)− nU(1) divisors Di with their dual two-

forms ωi that are related to the exceptional divisors Ei resolving the singularities

in the elliptic fibration of X4. The Di are denoted as Cartan divisors and their

intersections encode the types of singularities in X4 that correspond to the non-

Abelian gauge symmetry in F-theory.

• Rational sections σ̂m and U(1) Cartan divisors Dm: In general there are nU(1) extra

divisor classes Dm, denoted the Cartan divisors of the mth U(1) symmetry in F-

theory, with Poincaré duals ωm. Geometrically these are related, as discussed below,

to a non-trivial Mordell-Weil group of rational sections σ̂m of the elliptic fibration of

X̂4 [8, 25]. For our purposes we are mostly interested in the intersection properties

of these sections. Most notably, the σ̂m obey a relation like (3.4),

σ̂2
m ·Dα ·Dβ = −[c1(B3)] · σ̂m ·Dα ·Dβ (3.5)

for all m and all vertical divisors Dα, Dβ , where [·] indicates Poincaré duality.

Let us next explain the intersection properties of these four different types of divisors.

As we will see in this discussion, these intersections reflect on the one hand the geometry of

the elliptic fibration of X̂4 and on the other hand the physical structure of the 3D effective

2The hat on the index 0 is introduced since, as we will discuss in detail later, it is more natural for the

description of the 3D effective action to redefine B and ω0̂.
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theory. These intersection properties can be checked by performing an explicit resolution,

employing compact toric methods in [35–42] and the local methods and their extensions

in [15, 43].

We begin with the divisor B. Instead of stating its intersections we first perform a

basis change. It is was noted in [26, 44, 45] that it is necessary in the reduction of M-theory

on X̂4 to shift the 3D M-theory fields for the correct identification by the duality (3.1) with

4D F-theory fields obtained by the reduction on a circle to 3D. Furthermore, we will find in

this work that this redefinition is the key to discover a simple interpretation of the mixed

Abelian-gravitational anomalies in the three- dimensional effective theory. The coordinate

shift of the 3D fields can be translated into a redefinition of the basis (3.3) as

ω̃0 = ω0̂ +
1

2
c1(B3) , B̃ = B +

1

2
[c1(B3)] , (3.6)

with ωα, ωΛ respectively Dα, DΛ unchanged. The brackets [·] indicate the Poincaré dual

cycle of the cohomology class c1(B3). The interesting intersection properties of this new

basis are

B̃2 =
1

4
[c1(B3)]

2 , K00αβ = 0 , (3.7)

where we stress that the intersection numbers with indices 0 without a hat are invoking

ω̃0. The first equation follows from (3.4) for the section B, and the second equation is a

consequence of the first and (3.8).

Next we turn to the intersection numbers of the vertical divisors Dα. By the fibration

structure of X̂4 the intersections of three and four Dα are given by

K0̂αβγ = Kαβγ = Db
α ·Db

β ·Db
γ , Kαβγδ = 0 , (3.8)

where we introduced the triple intersections Kαβγ of the divisors Db
α in the base B3.

Let us next turn to the intersection numbers involving the Cartan divisors Di. We

consider stacks of non-Abelian seven-branes wrapped on divisors Sb
(I) in the base B3. Each

such divisor class can be expanded in the basis Db
α as

Sb
(I) = δα(I)D

b
α , (3.9)

where δα(I) are constant coefficients. In order to incorporate the split (2.1) of G into simple

Lie-groups we divide the Di as

Di = (DiI ) , iI = 1, . . . rank(G(I)) , (3.10)

where the index iI labels the Cartan divisors for the group factor G(I). We say that a

singularity in X4 at codimension one in the base B3 is of type G(I), if the subset of divisors

DiI resolving that particular singularity intersect on X̂4 as

DiI ·DjJ ·Dα ·Dβ = −δIJC
(I)
iIjI

S(I) ·B ·Dα ·Dβ , DiI ·Dα ·Dβ ·Dγ = 0 , (3.11)

where no sum is taken over I, J . Here we introduced, starting with the divisors Sb
(I) in (3.9),

vertical divisors S(I) = π−1(Sb
(I)) defined on the fourfold X̂4. Thus, they are related to
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the Sb
(I) in the base by S(I) · B = Sb

(I). The matrices C
(I)
iIjI

characterize the type of the

singularity over Sb
(I) and can agree with the inner product of coroots of simple Lie-groups

including the ones of ADE type. For simply laced Lie-groups, i.e. precisely for ADE groups,

the coroot inner product agrees with the Cartan matrix C
(I)
iIjI

= C
(I)
iIjI

since all roots have

length 2 and λI . In general we have the relation

C
(I)
iIjI

=
2

λI〈αJ , αJ〉
C

(I)
iIjI

, (3.12)

where αiI are the simple roots of the Lie-algebra with inner product 〈·, ·〉. This motivates

the name Cartan divisors of G(I) for the divisors DiI since these divisors can be identified

with the negative of the simple roots of an ADE gauge group,3 −α
(I)
i . In other words,

the DiI span the negative of the root lattice of G(I) that consequently is embedded into

the Kähler cone of X̂4, more precisely the complement of the Kähler cone of the singular

fourfold X4 in X̂4, that is denoted the relative Kähler cone. Note that given the DiI

one can reverse the logic and use their intersections to unambiguously define the Sb
(I) by

equation (3.11) as discussed in section 3.3.

The vertical divisors S(I) on the fourfold X̂4 are related to the inverse images Ŝ(I) of

the Sb
(I) under the projection to the base on the singular fourfold X4 by the shift

Ŝ(I) = S(I) −
∑

iI

aiIDiI , (3.13)

where aiI are the dual Coxeter labels of G(I) and no sum is taken over I. We note that due

to this shift the divisors Ŝ(I) are not elements in the base B3 in the resolved fourfold X̂4.

The divisors DiI project onto the divisors π(Ŝ(I)) in B3 in the blow-down map X̂4 → X4.

Finally we discuss the intersections of the Cartan divisors Dm of the U(1)-factors.

First we introduce analogously to (3.9) divisors Sb
(m) that indicate the location of the

seven-branes supporting the U(1)’s in the base B3. We expand

Sb
(m) = δα(m)D

b
α (3.14)

and introduce the corresponding vertical divisors S(m) = π−1(Sb
(m)). Next we construct

divisors D̃m starting from a given basis of rational sections σ̂m by the Shioda map [46, 47]

D̃m = σ̂m − B̃ − (σ̂m · B̃ · Cα)η−1β
α Dβ +

∑

I

(σ̂m ·DiI · C
α)(δβ(I)η

α
β )−1(C−1

(I))
iIjIDjI , (3.15)

where we denoted the inverse Cartan matrix of G(I) by C−1
(I) . We are not summing over α,

but rather fix one particular value α so that δβ(I)η
α

β 6= 0 respectively a different α so that

3For a non-simply laced Lie- group the DiI are to be identified with the negative of the simple coroots

α∨
iI

= 2
〈αiI

,αiI
〉
αiI , i.e. the simple roots of the coroot lattice.
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δβ(n)η
α

β 6= 0 to evaluate (3.15).4 We have also introduce a basis of h1,1(B3) vertical four

cycles Cα in X̂4 as

Cα = π−1(Cα
b ) , (3.17)

with Poincaré dual four-forms ω̃α. These are inherited from curves Cα
b in B3.

5 In general,

these curves have a full rank intersection matrix

η β
α = Db

α · Cβ
b , (3.18)

with the divisors Db
α in B3. Finally, the Cartan divisors Dm are obtained from D̃m by a

simple basis transformation which diagonalizes the intersection numbers D̃m · D̃n ·Dα ·Dβ

in the indices m,n as in (3.20).

The Shioda map (3.15) is a map of the Mordell-Weil group to H6(X̂4) and constructed

such that the following intersections vanish,

D̃m ·Dα ·Dβ ·Dγ = 0 , D̃m · B̃ · Cα = 0 , D̃m · c = 0 , (3.19)

for all exceptional curves c introduced in the resolution of the singularities of type G(I),
6

in X̂4. The first relation follows since σ̂m · Dα · Dβ · Dγ = B̃ · Dα · Dβ · Dγ as both are

sections and the second and third relation are obvious from (3.15) and (3.8), (3.11). The

Shioda map has been applied for the construction of U(1)-symmetries in six-dimensional

F-theory compactifications [8, 25–27] on elliptically fibered Calabi-Yau threefolds with

rational sections. The map (3.15) is the natural extension of the conventional Shioda map

to Calabi-Yau fourfolds. Both D̃m and Dm define U(1)-symmetries in F-theory. However,

the definition of Dm ensures in addition that the Dm do not mutually intersect, whereas

the intersections of the D̃m can be in general non-diagonal. This is clear since the D̃m are

fibrations of the curves cm, see footnote 5, over divisors in the base B3.

Then the divisors Dm, Sb
(m) describe four-dimensional U(1) gauge symmetries with the

following intersection properties, that are in complete analogy with (3.11),

Dm ·Dn ·Dα ·Dβ = −δmnS(n) ·B ·Dα ·Dβ ,

Dm ·DiI ·Dα ·Dβ = 0 , (3.20)

Dm ·Dα ·Dβ ·Dγ = 0 .

The second and third equalities are a direct consequence of the defining properties (3.19) of

the Shioda map, the definition of Dm, and the fact that the Di are fibrations of shrinking

4We note that this step intrinsically introduces the exceptional curves c which are the negative of a

simple root −αiI of G(I) respectively the Cartans of the mth U(1),

c−αiI
≡ DiI · Cα(δβ(I)η

α
β )−1

, cm ≡ Dm · Cα(δβ(m)η
α

β )−1 (3.16)

This is clear by calculating c−αiI
·DjJ and cm ·Dn yielding −δIJC

(I)
ij respectively −1 for m = n and an in

general model-dependent number for n 6= m.
5Technically these curves are formed by finding the linearly independent combinations of intersections of

two Db
α in the base as Db

α ·Db
β = K̃αβγC

γ
b , where we introduced the three-point function K̃αβγ = Kαβδη

δ
γ

on B3. The metric η is defined in (3.18).
6More precisely, these are curves that are associated to the roots in the root lattice of any G(I).
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curves c over divisors in the base B3. Given a set of Dm the first equation in (3.20) can be

viewed as the defining equation for the Sb
(m) and the vertical divisors S(m). We will show

in concrete examples how to construct a basis of Dm and the divisors S(m) obeying the

properties (3.20). We note that the association of divisors S(m) to U(1)’s in F-theory leads

to a new perspective on the interpretation of U(1)’s in F-theory.

That the conditions (3.20) have to hold can also be inferred physically from the analysis

of the 3D gauge kinetic terms and their F-theory lift by extending the discussion [48] to

include U(1)-gauge symmetries. In this context the first relation ensures that the gauge

kinetic function of the U(1)’s is diagonal, which is always achievable in field theory, and the

second that the gauge couplings is also diagonal between the U(1)’s and the non-Abelian

group G(I).

We can summarize equations (3.11) and (3.20) in a more compact way in terms of the

quartic intersections (3.2) as

KiI jJ αβ = −δIJ C
(I)
ij δγ(I)Kγαβ , Kmnαβ = −δmnδ

γ
(m)Kγαβ , KΛαβγ = KiImαβ = 0 .

(3.21)

Here Kαβγ are the triple intersections (3.8) in the base B3 and δγ(I) respectively δγ(m) restrict

to the I’s seven-brane stack defined in (3.9) respectively the m’s U(1) seven-brane defined

in (3.14). We also introduced for later convenience the notation

DΛ = (Di, Dm) , ωΛ = (ωi, ωm) , Λ ∈ {i,m} (3.22)

unifying all divisors associated to gauge symmetries in M- and F-theory. To complete the

discussion of intersection relations let us also note that on X̂4 one has

K0̂ΛAB = B ·DΛ ·DA ·DB = 0 . (3.23)

3.2 Four-form fluxes in M-theory to F-theory duality

Next we construct the four-form flux G4 on X̂4. The flux G4 is an element in the fourth

cohomology group H4(X̂4,Z/2) due to the quantization condition [49]

G4 +
1

2
c2(X̂4) ∈ H4(X̂4,Z) . (3.24)

These conditions have been investigated in the F-theory context in [50, 51]. Splitting into

Hodge types, there are two different types of fluxes due to the even complex dimension of

X̂4 [52–54]. The first type are G4-fluxes in the vertical cohomology group H
(2,2)
V (X̂4,Z/2)

that is generated by the product of two forms in H2(X̂4,Z). Thus fluxes in H
(2,2)
V (X̂4,Z/2)

can be specified as

G4 = mABωA ∧ ωB , (3.25)

for appropriate constant coefficients mAB. Note that it is crucial here to know the cohomol-

ogy H2(X̂4,Z) explicitly which is not straightforward for the singular geometry X4. These

vertical fluxes are crucial in generating chirality in F-theory as discussed in section 4.

The second type are fluxes G4 in the normal space to the vertical cohomology. They

lie in the horizontal cohomology H4
H(X̂4,Z/2) that is obtained from complex structure
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variations of the (4, 0)-form on X̂4. Physically they give rise to a non-trivial classical flux

superpotential [55], that corresponds in weak coupling to D7-brane and Type IIB flux

superpotentials. See [14, 56–62] for a list of some works on the physical interpretations of

the flux superpotential in F-theory and studies of properties of horizontal G4-fluxes.

It can be shown that the vertical fluxes (3.25) induce Chern-Simons terms for vectors

AA in the 3D effective action that are obtained by reducing the M-theory three-form C3.

For more details on the complete reduction of M-theory as well as on the lift back to 4D

F-theory see [48]. Reducing C3 in the M-theory compactification on X̂4 with respect to

the forms ωA introduced in (3.3) we expand into 3D vectors AA as

C3 = AA ∧ ωA = A0 ∧ ω̃0 +Aα ∧ ωα +AΛ ∧ ωΛ , (3.26)

with ω̃0 defined in (3.6). From counting indices we thus obtain 1 + h1,1(B3) + rank(G) =

h1,1(X̂4) Abelian U(1) vector fields. The vectors AΛ are the remaining massless vectors

on the 3D Coulomb branch, that are, from the F-theory perspective in (3.1), the gauge

fields in the maximal torus of the non-Abelian gauge group G. The additional vectors Aα

are the 3D dual to the imaginary part of the Kähler moduli of B3. It will be important

for us that A0 is identified with the Kaluza-Klein vector from reducing the 4D metric of

the F-theory effective action on S1, also denoted as the 3D graviphoton. It arises as the

component A0
µ ∝ gµ3, where the index 3 indicates the S1-direction.

Performing the dimensional reduction of the eleven-dimensional action in a background

with the G4-flux (3.25) one obtains a 3D Chern-Simons action for the vectors AA of the

form [63]

S
(3)
CS = −

∫
1

2
ΘABA

A ∧ FB , ΘAB =
1

2

∫

X̂4

G4 ∧ ωA ∧ ωB , (3.27)

where we used the conventions of [48]. Here we employ in the definition of the Chern-Simons

levels ΘAB the shifted basis (3.6).

In addition, these flux integrals ΘAB in general induce in the 3D M-theory effective

action Stückelberg gaugings of the complexified Kähler moduli TA associated to the divisors

DA as

DTA = dTA + iΘABA
B . (3.28)

In this context, the couplings ΘAB play the role of the “embedding tensors”.7 We note that

for the purpose of anomaly cancellation these gaugings are essential since the imaginary

part of some Tα will play the role of an axion with an anomalous gauge transformation

under the U(1) gauge symmetries in the theory. This will lead, as we will discuss in

section 3.3, to a 4D generalized Green-Schwarz mechanism.

The Chern-Simons levels (3.27) are key objects to study the physics of the vertical

fluxes (3.25) in F-theory. In order to have a clear 4D F-theory interpretation we have to

impose additional conditions on the G4-flux in M-theory that we summarize in terms of

7We have chosen the conventions of [44] for the normalization of the TA so that no numerical factors of

2 appear in (3.28). Then Tα agrees with 4D Type IIB Kähler moduli and is related to 3D Kähler moduli

tα as tα = 2Tα.
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the flux integrals ΘAB in (3.27). We require the following integrals to vanish [15, 44],

Θ0α = Θαβ = Θiα = 0 , (3.29)

Θ00 = Θ0i = 0 .

We emphasize that these conditions have to be evaluated in the basis (3.6) that relates

the fields of the M-theory reduction in this basis correctly to the circle-reduced 4D fields.

The conditions (3.29) on the G4-flux are imposed in addition to the conventional M-theory

conditions on allowed G4-flux. We will show in section 5.2 by evaluating the ΘAB for a

general G4-flux of the form (3.25) that these can be always satisfied by restricting the flux

numbers mAB. We will exemplify this even further for concrete examples in section 7.

The requirement Θiα = 0 can be understood readily in the effective field theory. By

imposing these conditions the gaugings of the Tα by the gauge fields Ai are absent according

to (3.28). These gaugings would break the non-Abelian part in the gauge group G in the

corresponding F-theory compactification, that we want to retain e.g. as a GUT group for

phenomenological applications. As we will discuss below in section 4, the non-vanishing

ΘΛΣ encode the chirality of charged matter in 4D. It is important to stress that we do not

require a vanishing of the Chern-Simons levels

Θ0m =
1

2

∫

X̂4

ω̃0 ∧ ωm ∧G4 , (3.30)

where, as in (3.29), one uses the redefined ω̃0 given in (3.6). As we will discuss in more

detail in section 4.2, the non-vanishing components Θ0m are crucial in the study of mixed

Abelian-gravitational anomalies. Clearly, due to the fact that B ·Dm = 0, as stated already

in (3.23), the integral
∫
X̂4

ω0̂ ∧ ωm ∧ G4 vanishes trivially for all fluxes G4. However, this

is not generically true for Θ0m as discussed below.

Let us note that one might think that the Θ0m are on an equal footing with the Θ0i

on the 3D Coulomb branch of the circle reduced theory. However, as we will show in

section 4.2 a non-vanishing Θ0m is generated in the IR from integrating out Kaluza-Klein

states of 4D charged fermions while the Θ0i are also zero at one loop. We will deduce that

Θ0m is precisely given by the 4D mixed Abelian-gravitational anomaly.

3.3 Green-Schwarz terms in F-theory

In the following we will determine all Green-Schwarz counter terms in (2.5). More precisely,

we will outline the steps to derive the coefficients bαI , b
α
mn and aα in 4D F-theory compacti-

fications. We demonstrate that these coefficients are completely determined in terms of the

intersections on the resolved fourfold X̂4 as well as by the canonical divisor, or equivalently

the first Chern class, of the base B3. A similar analysis for 4D compactifications without

U(1) factors can be found in [64].

We start our discussion by noting that the prefactors of the first two terms in (2.5) are

the imaginary parts of the 4D gauge coupling functions for the gauge fields F I of each non-

Abelian factor G(I) respectively for the Fm of each U(1)m. These gauge couplings are given

by the volume of the divisors Sb
(I) and Sb

(m) in the base B3 introduced after (3.9) and (3.14).
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This can be argued by performing the M-theory reduction on X̂4 in the non-Abelian case

or by using intuition from weak coupling results in Type IIB, where the relevant divisors

are those wrapped by D7-branes. In all these cases the divisors are determined uniquely

on X̂4 from their defining intersection properties (3.11) and (3.20). The association of

divisors wrapped by seven-branes to U(1)’s in F-theory might be unexpected and new

since U(1)’s, as discussed in section 3.1 above, are not simply related to singularities in the

elliptic fibration of X4, but to rational sections of the elliptic fibration, i.e. a non-trivial

Mordell-Weil group. Mathematically, the relation of these rational sections to divisors in

B3 is more subtle but straightforwardly formulated in terms of the intersections (3.20) of

the Dm as elucidated further in the following.

We start with the determination of the coefficients bαI . First we note that the axions

ρα in (2.5) are in F-theory the imaginary parts of the Kähler moduli Tα associated to

the divisors Dα in (3.3). Then, the coefficients bαI are just given as the coefficients in the

expansion (3.9), and one finds

bαI = δα(I) . (3.31)

Next we determine by the same logic the coefficients bαmn in (2.5). As mentioned before

this physically amounts to define seven-branes supporting U(1)-symmetries in F-theory.

As in (3.14) we denote by Sb
(m) the divisors that support U(1)-gauge factors. Thus, we

see from the first equation in (3.20) that the coefficients bαmn must be diagonalizable, and

we identify

bαmn = δmnδ
α
(m) , (3.32)

where the coefficients δα(m) were introduced in (3.14). Finally, we determine the coefficients

aα. We just state the final result here and refer to [45, 64, 65] for the derivation in six- and

four-dimensional F-theory. The coefficients read

aα = Kα , c1(B3) = −Kαωα , (3.33)

where we expanded the first Chern class into a basis restricted to B3.

To end this section let us introduce an alternative way to present the coefficients

bαI , b
α
mn, a

α in terms of intersection numbers of geometrical objects. In order to do so

we have to use the basis of h1,1(B3) curves Cα
b in B3 and their intersection matrix η β

α

introduced in (3.18) as well as the induced four-cycles Cα in X̂4 with Poincaré dual four-

forms ω̃α. Furthermore, we introduce the push-forward π∗ from H4(X̂4) to H2(B3) in

homology induced by the projection π. Its action on surfaces S, and by Poincaré duality

also on four-forms ω̃ in H4(X̂4), is defined as

π∗(S) = Db
βη

−1β
α (Cα · S)X̂4

, π∗(ω̃) = ωb
βη

−1β
α

∫

X̂4

ω̃ ∧ ω̃α , (3.34)

where ωb
α is a two-form in H(1,1)(B3) dual to Db

α and where we introduced the inverse η−1

of the intersection matrix (3.18). Using these definitions and the equations of section 3.1

– 18 –



J
H
E
P
0
2
(
2
0
1
3
)
1
0
1

it is straightforward to infer

δαI C
(I)
iIjI

= −η−1α
γ DiI ·DjI · C

γ = −η−1α
γ π∗(DiI ·DjI ) · C

γ
b , (3.35)

δαm = −η−1α
β Dm ·Dm · Cβ = −η−1α

β π∗(Dm ·Dm) · Cβ
b , (3.36)

aα = η−1α
β B ·B · Cβ = η−1α

β π∗(B ·B) · Cβ
b , (3.37)

where no sum is performed over I and we have used that B satisfies B ·B = −[c1(B3)] ·B.

This way of presenting the Green-Schwarz coefficients will be particularly useful when

translating the anomaly conditions into purely geometric conditions involving G4 in sec-

tion 5. It also facilitates the determination of the coefficients bαI , b
α
mn, a

α if only the Cartan

divisors Di and the sections Dm are known.

4 One-loop Chern-Simons terms and their F-theory interpretation

In this section we study the 3D Chern-Simons terms in the duality (3.1) between F-theory

on X4 × S1 and M-theory on the smooth fourfold X̂4. We describe the matching of the

one-loop Chern-Simons term in the circle compactification of F-theory with the classical

flux-induced Chern-Simons term in M-theory. In section 4.1 we concentrate on the Chern-

Simons terms for the 3D gauge fields inherited from 4D gauge fields. We recall that in the

circle reduction such terms are generated at one-loop after integrating out charged matter

that acquired a mass on the 3D Coulomb branch. A matching with the flux-induced Chern-

Simons term in M-theory allows to infer the 4D chiral index counting the net number of

chiral fermions. In section 4.2 we focus on a new one-loop Chern-Simons term that has not

been considered so far in three dimensions. It involves the Kaluza-Klein vector A0, and we

will show explicitly that it is induced at one loop by integrating out massive Kaluza-Klein

modes of the charged fermions. It will be linked with the 4D gauge-gravitational anomalies

in section 5.

4.1 4D chirality formulas from the 3D Coulomb branch

We begin our discussion by first stating the expected form of the 4D chiral index formula for

charged chiral matter in a representation R. In F-theory on a singular elliptic Calabi-Yau

fourfold X4 charged chiral matter is induced by seven-brane flux which maps to vertical

G4-flux. The chiral index of charged matter in a representation R of the gauge group G is

given by the flux integral [9, 10, 13–18]

χ(R) =

∫

SR

G4 . (4.1)

In this general form, without specifying a construction of the fluxes and the so-called matter

surfaces SR, the expression (4.1) is not surprising. If seven-brane fluxes have a G4-flux

image in M-theory then only a linear expression that vanishes for G4 = 0 is conceivable.

However, it is important to stress that for our construction both G4 and SR are both

naturally defined on the smooth M-theory fourfold X̂4, not on the singular fourfold X4.

This might be counter-intuitive, since in an M-theory compactification on a smooth space
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no massless charged matter appears in the effective theory. Nevertheless, following the

strategy of [9], we argue next that the formula (4.1) can be derived by consideration of

the three-dimensional N = 2 effective gauge theory and its dual formulation in terms of

F-theory on S1 on the one hand and M-theory on X̂4 on the other hand.

We start on the F-theory side with a 4D N = 1 supergravity theory with gauge group

G and chiral matter in a representation R. Then we compactify this theory on S1 and

move onto the Coulomb branch of the resulting 3D gauge theory. This breaks the non-

Abelian 4D gauge symmetry to its maximal torus, G → U(1)rank(G), with Abelian gauge

fields AΛ. The Coulomb branch parameters are given by the VEVs of scalars ζΛ in the

3D N = 2 vector multiplets that are the components AΛ
3 of the 4D vectors along the S1,

i.e. the holonomies

ζΛ =

∫

S1

AΛ . (4.2)

Simultaneously the chiral matter receives mass-terms that are proportional to the Coulomb

branch parameters ζ. In the 3D effective action in the IR at energy scales below ζΛ these

massive fields have to be integrated out and generate Chern-Simons terms for the Abelian

vectors at one loop,

S
(3)
CS =

∫
Θloop

ΛΓ AΛ ∧ FΓ , (4.3)

where we use the conventions of [66]. We note that these terms are classically absent, i.e. not

generated in the compactification from 4D to 3D. In order to prepare for section 4.2 it is

important to mention that in a Kaluza-Klein theory also excited modes of the 4D matter

fields along S1 are charged under AΛ and can, in principle, induce a one-loop contribution

in (4.3). In the following we will first discuss the one-loop term without these excited

Kaluza-Klein modes and then comment on their inclusion.

Let us consider the one-loop Chern-Simons term induced by Kaluza-Klein zero modes

of the charged matter fields that became massive in the Coulomb branch. We denote the

real mass of the matter fermion f by mf . The Coulomb branch masses mf are given by

mf = qf · ζ ≡

rank(G)∑

Γ=1

(qf )Γζ
Γ , (4.4)

where (qf )Λ denotes the charge of the fermion f under the U(1) vector field AΛ. The loop

integral expression for the Chern-Simons level is [67–69]

Θloop
ΛΣ =

1

2

∑

f

(qf )Λ(qf )Σ sign(mf ) =
1

2

∑

R

n(R)
∑

q∈R

qΛqΣ sign(q · ζ) , (4.5)

with the sum taken over all fermions f charged under AΣ. In the second equality we split

this sum over fermions into a sum over representations R and then over charges q in that

representation, where nR denotes the multiplicity of R. Thus, we see that the Chern-

Simons terms are only proportional to the 4D chiralities χ(R) = n(R) − n(R∗) since the

weights of the complex conjugate representations R∗ are q(R∗) = −q(R) and since (4.5) is

an odd function in the charges q.
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In a next step we can consider the contributions of excited Kaluza-Klein modes. These

can be equally charged under AΛ and hence contribute to the Chern-Simons term.The mass

of the nth excited fermionic mode f is given by

mf
n = qf · ζ +

n

r
. (4.6)

This expression has to be used in the one-loop Chern-Simons level (4.5). In the following

we will consider the mass hierarchy

mf
0 = qf · ζ <

1

r
= mKK , (4.7)

such that the Coulomb branch mass scale is below the Kaluza-Klein scale. In this case

one can drop the contribution qf · ζ for all excited modes n 6= 0, since the sign sign(mf
n)

is determined by the contribution n/r alone. For each Kaluza-Klein level n > 0 one finds

that there is a positive term that is canceled by a term arising from the level −n. This

pairwise cancellation can be inferred physically from the fact that a Chern-Simons term

arises from parity violation and the excited modes do not violate parity. Therefore, we

conclude that only the zero modes contribute non-trivially to this coupling. As we will see

in section 4.2 the situation changes once we consider Chern-Simons terms involving the

Kaluza-Klein vector under which the excited modes are charged.

The above argument shows that a certain linear combination of the CS-couplings

in (4.3) yields the chiral index χ(R) of matter in the representation R,

χ(R) = tΛΣR ΘΛΣ , (4.8)

where the matrix tΛΣ
R

roughly first projects the sum in (4.5) to a particular representation

R and then cancels the sum over all charges q in this representation R.

Considering the same terms in the M-theory reduction, we have noted in section 3.1

that classical Chern-Simons terms for the vectors AA are given by the flux-integrals (3.27).

By M-/F-theory duality (3.1) these have to be identified precisely with the loop-generated

CS-terms (4.5) as [9]

−Θloop
ΛΣ ≡

1

2
ΘΛΣ =

1

4

∫

X̂4

G4 ∧ ωΛ ∧ ωΣ . (4.9)

It is important to note that also the sign-function in (4.5) is then determined by the geom-

etry by a simple rule. A charge vector q is positive, i.e. sign(q · ζ) = 1, if the corresponding

shrinkable curve in M-theory lies in the Mori cone of X̂4. Accordingly, we call it negative,

sign(q · ζ) = −1, if it does not lie in the Mori cone. Therefore, in combination with (4.8)

we obtain the F-theory chiral index (4.1) from matching 3D CS-terms. Furthermore, the

matter surfaces SR are identified as the Poincaré duals of

[
SR

]
= tΛΣR ωΛ ∧ ωΣ , (4.10)

where the brackets [·] indicate the action of Poincaré duality on X̂4..
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4.2 Graviphoton Chern-Simons terms with Kaluza-Klein modes

In this section we show that a mixed Chern-Simons term for the 3D graviphoton A0 and

the 4D U(1)-vectors Am is generated at one-loop when integrating out all Kaluza-Klein

states of 4D charged fermionic matter. The fact that Chern-Simons terms involving the

Kaluza-Klein vector are induced by one-loop diagrams with excited Kaluza-Klein modes

running in the loop was first noted in a five-dimensional context [45, 70]. It was shown in

these works that the five-dimensional Chern-Simons terms capture the information about

six-dimensional gravitational anomalies.

In the following we present the one loop computation in the three-dimensional setting.

We find that the only non-vanishing Chern-Simons term involving the 3D graviphoton A0 is

S
(3)
CS =

∫
Θloop

0m A0 ∧ Fm , Θloop
0m = −

1

12

∑

f

qfm = −
1

12

∑

q

n(q)qm . (4.11)

The coefficient Θloop
0m is precisely the mixed Abelian-gravitational anomaly encountered

in (2.10). In fact, we argue that the relevant 3D loop diagrams generating Θloop
0m can

be understood as a dimensional reduction of the 4D anomalous triangle diagram for the

mixed Abelian-gravitational anomalies. In addition, by the relation (4.9) between the

Chern-Simons levels also to classical flux integrals (3.27), we can actually deduce in 3D

the 4D cancellation condition (2.10) of mixed Abelian-gravitational anomalies. Indeed,

anticipating the property Θ0m = −1
2K

αΘαm of the classical intersections on X̂4 that we

will derive in (5.8), (5.11) in section 5.2, we obtain the anomaly condition by the M-/F-

theory duality (3.1) as

1

3

∑

q

n(q)qm = −4Θloop
0m ≡ 2Θ0m = −KαΘαm . (4.12)

This agrees precisely with (2.10) using the identification aα = Kα made in (3.33). In

contrast to the non-Abelian anomalies, this is a direct derivation of 4D mixed anomaly

cancellation from 3D Chern-Simons terms.

We begin by understanding diagrammatically the connection of 4D anomalies to the

Chern-Simons-levels Θ0m and the relevance of KK-states running in the 3D loops. The

4D mixed Abelian-gravitational anomaly is encoded in the one-loop triangle diagram in

figure 1, that leads to a violation of the corresponding current conservation law at the

quantum level. Here the external lines are given by two gravitons gµν and one U(1)-vector

Am
µ . Massless charged Weyl fermions carrying U(1)-charges under the Am

µ run in the loop.

The vertex rules are attached to each vertex, where kρ denotes the 4-momentum of the

fermions in the loop and we have used σµ = (−1, σi) with σi denoting the Pauli-matrices.

For the dimensional reduction of the four-dimensional theory to three dimensions, one

direction of 4D Minkowski space, say the third direction, is replaced by a circle of radius

r. Thus one metric component reads g33 = r2, that we interpret as a constant background

field in 3D. From the isometries of S1 we get in addition a new 3D vector A0
µ ∼ gµ3, the

graviphoton. The heuristic dimensional reduction of the diagram 1 follows analogous to

the situation in [70]. We replace in the diagram 1 one external graviton by the background
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Figure 1. One-loop triangle diagram responsible for the Abelian-gravitational anomaly.

Figure 2. One-loop diagram with KK-states in the loop generating the 3D Chern-Simons level Θ0m.

field r2 and the second graviton by the graviphoton as in figure 2. We also introduced

the momentum k3 along the circle that is quantized as k3 = n
r . This gives a qualitative

idea of the 3D vertex rules, however, we refer to the remainder of this section for a more

thorough derivation.

The background field r acts like a mass term and together with the fact that only

KK-states are charged under the graviphoton, this enforces that all KK-states of the 4D

massless charged fermions run in the loop. Thus, effectively we obtain infinitely many one

loop diagrams, one for each KK-state, with only two external lines, namely the Abelian

gauge field Am
µ and the graviphoton A0

µ. Each single of these infinitely many loop-diagrams

is of the form of the loop-diagrams considered in [67–69]. Thus, it is clear that a 3D Chern-

Simons term of the form (4.11) is induced from the 4D mixed anomaly. The main subtlety

that remains is to evaluate the infinite sum over KK-states appropriately. This sum has to

be regularized by zeta function regularization and will precisely account for the prefactor

in (4.11).

We conclude this diagrammatic discussion by excluding further 3D Chern-Simons terms

by a similar logic. As can be seen from the comparison to 4D anomaly graphs, neither the

Chern-Simons level Θ00, nor the levels Θ0i can be induced at one loop. This is clear since

the former would arise from the dimensional reduction of the gravitational anomaly, that

is identically zero in 4D, and the latter from the mixed non-Abelian-gravitational anomaly,

i.e. either trR2trF or trRtrF 2. However, these are identically zero by trF = 0 due to the

traceless condition of the generators of the non-Abelian gauge group in G respectively the

reality of the representations of the 4D Lorentz group implying trR = 0. The vanishing of

Θ00 and Θ0i can also be inferred directly in the 3D effective theory. For example, for Θ00

one can invoke a similar argument to the one of section 4.1, namely that all Kaluza-Klein

modes pairwise cancel because of the sign- function in the loop-correction (4.5).
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Let us now come to the quantitative discussion and the derivation of the Chern-Simons

levels (4.11). The Kaluza-Klein ansatz for the 4D metric on R
(1,2) × S1

r takes the form

g
(4)
MN (xµ, y) =

(
gµν + r2A0

µA
0
ν −r2A0

µ

−r2A0
ν r2

)
(4.13)

where y denotes an angular coordinate of period 2π, that is related to the coordinate on the

circle of radius r by ry and M,N denote 4D Minkowski indices for the following discussion

to avoid confusion. We denote the 3D Minkowski coordinates by xµ and introduced the 3D

metric gµν and the graviphoton A0
µ. For simplicity we assume no dynamics of the radial

mode r, i.e. r is a constant. We note that the reduction ansatz (4.13) implies the vielbein

ea = ẽaµdx
µ , e3 = r(dy −A0

µdx
µ) , (4.14)

where we indicated a split eAM = (eaM , e3M ) of the 4D vierbein eAM , A = 0, . . . , 3 into the 3D

dreibein eaµ, a = 0, 1, 2, and a 3D one-form e3. For completeness we introduce the inverse

metric gMN
(4) and the inverse vierbein eMA = eANgNM

(4) reading

gMN
(4) =

(
gµν (A0)µ

(A0)ν 1
r2

+A0
κ(A

0)κ

)
, ea = ẽνa

∂

∂xν
+ ẽνaA

0
ν

∂

∂y
, e3 =

1

r

∂

∂y
(4.15)

where we raise and lower the indices A and a by the flat metric.

Next we specify the reduction ansatz for the 4D gauge theory. We start with vectors

Aµ with KK-ansatz

A(xµ, y) = Aµdx
µ + ζr(dy −A0

µdx
µ) = Aµdx

µ + ζe3 , (4.16)

where ζ denotes the adjoint valued scalar in 3D. Note that (4.13) and (4.16) imply that

both ζ and A0 have mass-dimension one by noting that dy and the 3D metric have mass-

dimension zero. For 4D fermions Ψ charged under the 4D U(1)-gauge symmetries, we

specify their KK-ansatz as

Ψ(x, y) =
∑

n

Ψn(x)e
iyn . (4.17)

The KK-tower of these states will be running in the loop and generate the Chern-Simons

term Θ0m as we will show next. It is interesting to note that while Tα transforms under

the U(1) as dictated by the gauge covariant derivative (3.28) the fermionic partners will

have an ordinary derivative [71], DM = ∂M .

Considering massless 4D fermions, the only terms in the 4D effective theory for the

fermions Ψ that are relevant for our discussion are the kinetic term. In the UV and

considering a single fermion for simplicity this is the standard kinetic term for a Weyl

fermion reading

L
(4)
Weyl = −

i

κ24
Ψ̄σAeMA DMΨ , (4.18)

where DM = ∂M +iAM is the 4D covariant derivative, σA = (−1, σi) and κ24 the 4D Planck

mass. We use (4.15), (4.16) and (4.17) to reduce this to three dimensions. After integration
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over y we obtain

L
(3)
KK =

∞∑

n=−∞

[
−iΨ̄nσ

aẽµaDµΨn + Ψ̄nσ
3

(
n

r
+ q · ζ

)
Ψn

]
, (4.19)

where we used the shorthand notation (4.4). Furthermore, we have assumed in addition

that we are readily on the 3D Coulomb branch by switching on VEVs for the scalars ζ

along the Cartan directions of G breaking it into its maximal torus U(1)rank(G). The U(1)-

charges under the remaining massless gauge fields on the Coulomb branch AΛ are denoted

by qΛ. The covariant derivative for the KK-fermions is given by

DµΨn = (∂µ + iqΛA
Λ
µ + inA0

µ)Ψn . (4.20)

From this we read off the 3D mass and the 3D charges8 of the KK-fermions that are

discretely labeled by the integral momentum number n along the S1 as

q0 = n , mf
n =

n

r
+ qf · ζ , (4.21)

where we label by f all the U(1)-charges in the case that we have more than one fermion.

We see that the masses of the KK-states are offset from zero by the mass mf
0 = ζ ·qf of the

zero mode Ψ0 on the Coulomb branch, see (4.4). The expressions (4.21) straightforwardly

generalize for a more complicated constant background metric in the kinetic term (4.18)

for several fermions. However, the diagram we want to compute has two vertices and two

fermion propagators and the metric and normalizations drop out.

To determine the loop-induced Chern-Simons level Θ0m, we have to calculate the loop-

diagram depicted in figure 2. As we have argued above heuristically, we have to integrate

out all massive fermions coupling to A0 and Am. Indeed, we see from (4.19) that the whole

KK-tower of fermions with charge and mass (4.21) couples and runs in the loop. The vertex

rules are as anticipated in figure 2. The idea is now to apply at each KK-mass-level mf
n

the general formula (4.5) with the replacement of sign(ζ · qf ) by sign(mf
n). Then we use

q0 = n to obtain the one-loop correction to the Chern-Simons level as

Θloop
0m =

1

2

∑

f

∞∑

n=−∞

nqfm sign

(
ζ · qf +

n

r

)
. (4.22)

This sum is in general divergent and can be regulated using zeta function regularization.

We recall the definition of the Riemann zeta function by the Dirichlet series

ζ(s) =
∞∑

k=0

k−s , for Re(s) > 1 , (4.23)

In order to evaluate the infinite sum (4.22) we need the following identity that holds for

|x| < 1,
∑

n

n sign
(
x+ n

)
=
∑

n

n sign(n) = 2
∞∑

n=1

n = 2ζ(−1) = −
1

6
. (4.24)

8The 3D theory (4.19) without a dynamical dilaton in (4.16) is automatically in the 3D Einstein frame

since the factor r is absorbed into the definition of the 3D Newtons constant multiplying the entire 3D

Lagrangian. We have set it to one for convenience.
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We note that the first equality holds since x lies in the interval [0, 1) and this allows us to

replace sign(n + x) = sign(n). Then in the second equality we split the sum into positive

and negative n, that yields due to the sign(n) the same sum. Finally we used the well-

known result ζ(−1) = − 1
12 from analytic continuation of the Riemann zeta function (4.23)

for Re(s) < 1.

Now we are prepared to perform the sum over n in (4.22). We focus on each summand

in the sum over fermions f independently. Furthermore, we identify x ≡ rmf
0 = rζ · qf

in (4.24). We consider the effective theory in the IR at an energy scale, that is sufficiently

smaller than the mass-scale mKK of KK-states and the mass scale mf
0 on the Coulomb

branch. However, in order to apply the field theory analysis of [67–69] and the result (4.5)

the masses mf
0 of the massive fermions have to be smaller than the KK mass scale mKK as

in (4.7). Since the mass scale mf
0 depends on the position ζΛ on the 3D Coulomb branch,

it can be made parametrically small. In this case we can trust the loop result (4.5).9 We

then have x ≡ rmf
0 < 1 and can apply (4.24) to readily obtain the Chern-Simons levels as

Θloop
0m = −

1

12

∑

f

qfm = −
1

12

∑

q

n(q)qm . (4.25)

Here we replaced the sum over individual fermions f by a sum over charges q where n(q)

denotes their multiplicities. We note that (4.25) is an odd function in the charges and as a

result only sensitive to the chiral index 4D χ(q) = n(q)− n(−q) since 4D vector-like pairs

of fermions cancel out.

We see that (4.25) is precisely the mixed Abelian-gravitational anomaly on the left hand

side in (2.10). This is what one expects since, by reversing the logic from the beginning of

this section, in the limit ζ → 0 we have x = 0 and sending r → ∞ all KK-states become

massless and we have to recover the 4D anomaly result.

5 Anomaly cancellation in F-theory

In this section we will discuss anomaly cancellation in F-theory. This involves relating,

via the general formulas (2.7)–(2.10) for anomaly cancellation in section 2, the Green-

Schwarz counter terms discussed in section 3.3 to the 4D chiralities obtained from 3D

Chern-Simons terms following section 4. This will connect seemingly physically different

object, the geometric intersections on X̂4 and flux integrals, with each other. The main

challenge of this section will be to understand these relations directly from analyzing the

geometrical structure of the resolution fourfold X̂4 on the one hand, and 3D Chern-Simons

terms on the other hand. Anomaly cancellation in 6D F-theory compactifications has been

under intense investigation as reviewed in [72].

9The effective field theory description used in [69] breaks down for x ≥ 1 since interactions with KK-

states become as relevant as interactions with the Ψ0. To find a relation similar to (4.24) when x > 1 one

uses the floor function ⌊x⌋ that rounds down a given real number x. Then one obtains
∑

n n sign
(

x+n
)

=

ζ(−1,−⌊x⌋) + ζ(−1, ⌊x⌋) − ⌊x⌋ = − 1
6
− ⌊x⌋(⌊x⌋ + 1), where the Hurwitz zeta function ζ(s, q) has been

evaluated. One sees that the Chern-Simons terms incrementally jump by 2 for each fermion with mass mf
0

crossing the threshold mKK.
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5.1 The geometric structure of F-theory anomaly cancellation

We begin with an outline of the general geometric relations imposed on X̂4 by anomaly

cancellation in F-theory. As we will argue in this section these relate intersections of

resolution divisors and holomorphic curves over the matter curves ΣR in the base B3 on

the one side to certain flux integrals on X̂4 on the other side. These geometric relations

that we will discover by imposing 4D anomaly cancellation will be very similar to those

found in 6D F-theory on Calabi-Yau threefolds [26]. The crucial point in the analysis in 4D

will be the necessity of the inclusion of G4-flux on both sides of the discovered relations.

The 4D anomaly cancellation conditions (2.7)–(2.10) can be directly translated into

the geometry of the resolved fourfold X̂4. We denote the holomorphic curves in X̂4, that

resolve singular elliptic fibers over codimension two10 in the base B3 and that thus lie in

the weight lattice of G, by c. Then, the 4D charge of a matter particle obtained from a

wrapped M2-brane on c under AΛ is given by

qΛ =

∫

c
ωΛ . (5.1)

This can be seen from reducing the electric coupling of the M2-brane to C3 along c. Then

the anomaly constraints relate sums over these holomorphic curves in the weight lattice of

G to certain flux integrals of G4. It is important to emphasize that the following geometric

relations only hold if the G4-flux obeys all the conditions (3.29) and not for generic G4-flux

in M-theory. The anomaly cancellation conditions (2.7)–(2.9), using (5.1) to express the

charges, then translate into

1

3

∑

SR

∑

c⊂SR

∫

SR

G4

∫

c
ω(Λ

∫

c
ωΣ

∫

c
ωΓ) =

1

2

∫

X̂4

G4 ∧ ωα ∧ ω(Γη
−1α
β

∫

Sβ

ωΛ ∧ ωΣ)

=
1

2

∫

X̂4

G4 ∧ π∗(ω(Λ ∧ ωΣ) ∧ ωΓ) , (5.2)

where we indicate a symmetrization of indices Λ, Σ and Γ by (·). The cancellation condi-

tion (2.10) of the Abelian-gravitational anomaly yields the geometric relation

1

3

∑

SR

∑

c⊂SR

∫

SR

G4

∫

c
ωΛ =

∫

X̂4

G4 ∧ ωα ∧ ωΛη
−1α
β

∫

Sβ
b

c1(B3)

=

∫

X̂4

G4 ∧ c1(B3) ∧ ωΛ . (5.3)

In both equations we split the sum over curves c into a sum over matter surfaces SR and a

sum over curves c lying inside a particular SR. In addition we used the topological metric

η β
α respectively its inverse η−1β

α on B3 as introduced in (3.18) and from the first to the

second line in each equation the push-forward π∗ to H(1,1)(B3) defined in (3.34).

10These curves are characterized by the fact that they are isolated over the codimension two curves ΣR

in B3 with moduli space given by ΣR. Curves corresponding to Yukawa couplings are isolated at points,

i.e. do exhibit the moduli space of a point.
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We can use Poincaré duality to rewrite the relation (5.2) and (5.3) more compactly in

homology as intersections of divisors and holomorphic curves c in the weight lattice of G

1

3

∑

SR

∑

c⊂SR

(SR · [G4])(c ·D(Λ)(c ·DΣ)(c ·DΓ)) =
1

2
[G4] ·D(Γ · π∗(DΛ ·DΣ)) , (5.4)

1

3

∑

SR

∑

c⊂SR

(SR · [G4])(c ·DΛ) = [G4] · [c1(B3)] ·DΛ ,

where we again symmetrized the indices Λ, Σ and Γ.

Both (5.2) and the first equation contains of (5.4) capture all three different types of

gauge anomalies, i.e. the purely Abelian as well as non-Abelian anomalies and the mixed

Abelian-non-Abelian anomalies. This can be seen by choosing Γ,Σ,Λ as the indices of

the Cartan divisors DiI of G(I) and noting that the right hand side vanishes because of

Θiα = 0 in (3.29) yielding the purely non-Abelian anomaly condition (2.7). The mixed

Abelian-non-Abelian anomaly (2.9) is obtained by choosing Γ,Σ,Λ = i, j,m. In order to

see a matching of the Lie algebra structure we expand following [26] the Cartan generators

in the GS-terms (2.5) involving tr(F I ∧F I) in a coroot basis TiI . Since the anomalies have

to hold for all Cartan generators and exploiting 1
λI
tr(TiITjI ) = C

(I)
iIjI

in the GS-terms we

obtain a match with the right hand side of (5.2), (5.4), where we employ (3.11) . The

purely Abelian anomaly (2.8) is manifest for the choice Γ,Σ,Λ = m,n, k. The second

equation summarizes all mixed Abelian-gravitational anomalies (2.10) as is evident by

choosing Λ = m.

As we have noted already in the introduction the conditions (5.4) might generally hold

also for G4-flux that are not wedges of two two-forms as in (3.25). These more general

G4-flux can correspond to seven-brane fluxes trivial in the ambient space. For these fluxes

the right-hand side of (5.4) induced by the gaugings vanishes and the left side might pose

a non-trivial constraint on the spectrum.

5.2 The structure of F-theory fluxes and Green-Schwarz terms

Next we discuss the general structure of theG4-flux obeying the F-theory constraints (3.29).

A very general, presumably the most general, vertical G4-flux on X̂4 that can meet all

conditions listed in section 3.2 takes the form

G4 = Ĝ4 + F (m) ∧ ωm . (5.5)

Here the first term Ĝ4 denotes a non-Abelian flux related to the non-Abelian gauge groups

G(I). It only involves the two-forms ωi, ωα, ω0 introduced in (3.3). The second part are

Abelian fluxes that are of the form of wedge products of a two-form F (m) in B3 with each

ωm dual to the U(1)-Cartan divisors Dm in (3.3). These fluxes can be thought of as the

lift of internal world-volume fluxes F (m) on each U(1) seven-brane to G4-flux. The fluxes

F (m) being (1, 1)-forms on B3 can be expanded, after introducing in general arbitrary flux

numbers f (m)α, as

F (m) = f (m)α ωα . (5.6)
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The validity of the generic splitting (5.5) of G4 into Abelian and non-Abelian fluxes

can be motivated by moving in the complex structure moduli space of the Calabi-Yau

fourfold. For this argument let us begin with a fourfold Ŷ4 yielding a purely non-Abelian

gauge group G(I) without any U(1)-factors. Then only the first flux in (5.5) is present, of

which we assume that it obeys all consistency conditions (3.29) on Ŷ4. Upon specializing

the complex structure of Ŷ4 we can unhiggs a number of U(1) symmetries by forming and

resolving a singularities in Ŷ4. This leads to a new fourfold X̂4 with extra divisors Dm.

Then we can just pull-back the non-Abelian flux Ĝ4 from Ŷ4 to X̂4 and obtain, by virtue

of the second and third equation in (3.20), a valid flux that we again denoted by Ĝ4. This

pull-back flux is still the most general non-Abelian flux Ĝ4 we can construct on X̂4, since

Ĝ4 by definition involves only the ωi, ωα and ω0 and since in the transition from Ŷ4 to X̂4

no any new Cartan divisors Di nor new base divisors Dα were induced. Thus, new fluxes

on X̂4 that were not available on Ŷ4 are of the form F (m) ∧ ωm,11 where F (m) is a general

two-form on B3 as we will see below.

5.2.1 Non-abelian fluxes only

We start by working out the conditions imposed by (3.29) on the non-Abelian flux Ĝ4

in (5.5) as well as the gaugings induced by it. We expand Ĝ4 that in a basis of cohomology

of H4
V (X̂4) as

Ĝ4 = N ij ωi ∧ ωj + f iα ωi ∧ ωα + Ñα ω̃
α +Nα ω0 ∧ ωα , (5.7)

where the ω̃α as before denote pull-backs from H4(B3). The coefficients f iα have the

interpretation of a seven-brane two-form flux F i
2 in the direction of the i-th Cartan generator

of G. The fluxes N ij are non-Abelian in nature as they are associated to products of two

Cartan divisors.

With the expansion (5.7) of Ĝ4 we readily evaluate the constraints (3.29). Employing

the conditions (3.21), (3.23), (3.11), (3.20) and (3.7) we obtain after some algebra the

following,

Θ00 = KαKβΘαβ , Θ0α =
1

2
(Ñα +NγKβKαβγ −KβΘαβ) ,

Θ0Λ = −
1

2
KαΘαΛ , Θαβ =

1

2
(Nγ −N ijCγ

ij)Kαβγ ,

Θαi =
1

2
(N j1j2Kij1j2α − f jβCγ

ijKαβγ) , Θαm =
1

2
N ijKijmα ,

Θij =
1

2
(N i1i2Ki1i2ij + f i1αKi1ijα − ÑαC

α
ij) , Θim =

1

2
(N i1i2Ki1i2im + f jαKijmα) ,

Θmn =
1

2
(N ijKijmn + f iαKimnα − Ñαb

α
mn) . (5.8)

Here we used the definitions (3.2), (3.31), (3.32) and Kαβγ denotes the triple intersections

on B3 introduced in (3.8) and the Kα were defined by the expansion c1(B3) = −Kαωα.

We also introduced the shorthand notation Cγ
ij = C

(I)
ij bγI .

11Although physically more elusive and not present in examples considered below, fluxes of the form

ωi ∧ ωm and ωm ∧ ωn for more than one U(1) are mathematically not excluded in general.
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Indeed, we can solve the constraints (3.29) explicitly using the expressions (5.8). We

obtain three sets of conditions from Θαβ = Θ0α = Θαi = 0 that we solve to determine the

flux numbers Nα, Ñα and f iα in terms of the N ij ,

Nα = N ijCα
ij , Ñγ = −

1

2
(Nγ +N ijCγ

ij)K
βKαβγ = −N ijCγ

ijK
βKαβγ ,

f iα = N i1i2Ki1i2jα(C
−1
(I))

jiKβα

Sb
(I)

. (5.9)

Here we have introduced the inverse Kβα

Sb
(I)

of the intersection form on the seven-brane

divisor SA
b as well as the inverse of the corresponding Cartan matrix C−1

(I) .

It is satisfying to see that Θ0m = −1
2K

αΘαm is implied by (5.8). Thus, Θ0m is

precisely the coefficient of the Green-Schwarz counter term relevant for the cancellation

of mixed Abelian- gravitational anomalies in (2.10) respectively (5.3). This is precisely

what we expect from the discussion of section 4.2 where we related the Chern-Simons level

Θloop
0m induced by loops of KK- fermions to precisely the mixed anomalies. As we argued

there further, the matching of the 3D Chern-Simons levels Θ0m ≡ Θloop
0m by M-/F-theory

duality (3.1) is a prove of the 4D anomaly cancellation condition.

Before switching to the discussion of Abelian fluxes let us conclude by mentioning that

by virtue of section 4 the flux integrals ΘΣΛ in the next to last and last line in (5.8) encode

the 4D chiralities. By means of (5.9) the chiralities only depend on the flux numbers N ij .

It would be interesting to explicitly express these in terms of the N ij .

5.2.2 Inclusion of abelian fluxes

We begin by checking that Abelian fluxes of the form alluded to in (5.5) can be added to a

given non-Abelian flux Ĝ4. For this we check that fluxes of the form F (m) ∧ωm with F (m)

obtained from elements in H(1,1)(B3) obey all constraints in (3.29).

As before we work out explicitly the flux integrals ΘAB. Using again the intersec-

tions (3.20) and (3.21), (3.23) as well as the shifted form ω̃0 defined in (3.6) we obtain

Θ00 = Θ0α = Θ0i = Θαβ = Θαi = 0 , (5.10)

and

Θ0m = −
1

2
KαΘαm , Θαm = −

1

2
f (n)βbγnmKαβγ ,

Θij =
1

2
f (m)αKαmij , Θim =

1

2
f (n)αKαmnj , Θmn =

1

2
f (p)αKαpmn . (5.11)

We see that all conditions (3.29) are automatically obeyed. We note that we again have

Θ0m = −1
2K

αΘαm in agreement with the discussion in section 4.2, as in the non-Abelian

case discussed above. As expected the new fluxes contribute to the ΘΣΛ and thus will

generate additional 4D chiralities.
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6 Anomalies and GS-terms in type IIB orientifolds

In this section we analyze the connection of F-theory anomaly cancellation to anomaly can-

cellation in Type IIB orientifold setups at weak string coupling. We first recall anomaly can-

cellation for compactifications with D7-branes and O7-planes in subsection 6.1 by largely

following [23]. The discussion of anomalies and their cancellation in Type II orientifold

setups has been studied significantly in the past, as can be found in the reviews [19–22].

This comparison to F-theory is performed in subsection 6.2, by relating the gaugings and

Green-Schwarz counter terms of both setups. We discuss the complications arising due to

additional ‘geometrically massive’ U(1) gauge symmetries that are present in orientifold

setups but integrated out in F-theory. A detailed comparison G4-flux in M-theory dual

to F-theory compactifications with SU(N) and SU(N) × U(1) and D7-brane fluxes in the

Type IIB orientifold limit has been addressed in [17].

6.1 Anomaly cancellation in type IIB orientifolds

We begin with a review of anomaly cancellation in Type IIB orientifolds with intersecting

D7-branes. We consider Abelian or non-Abelian D7-branes on divisors SIIB
(A) in the orien-

tifold covering space Y3 and denote the orientifold images of these D7-brane divisors by

SIIB
(A′). The orientifold planes are located at the fix-point set of the orientifold involution

denoted by SO7. The number of D7-branes on a stack are denoted by NA. This includes

cases where NA = 1 yielding a D7-brane with a U(1) gauge group. In the following we will

only focus on U(NA) groups for simplicity, such that the 4D gauge group is given by

Gori = U(N1)× . . .×U(Nn̂G
) , A = 1, . . . , n̂G . (6.1)

The cases SO(NI) and Sp(NI) should work out similarly and it would be interesting to

perform such an analysis using F-theory.

The Type IIB orientifold matter spectrum arises from strings stretching between D7-

branes. Four representations are present: (1) the bi-fundamental representation FĀB =

(N̄A, NB) corresponding to strings stretching from a D7-brane on SD7
(A) to a D7-brane on

SD7
(B) with A 6= B; (2) the bi-fundamental representation FAB = (NA, NB) for strings

stretching between SD7
(A′) and SD7

(B) with A 6= B; (3) the symmetric representation SA, (4)

the anti-symmetric representationAA. The latter two arise from strings stretching between

the brane and its orientifold image. For evaluating the anomaly cancellation conditions it

will be crucial to give the U(1)-charges qA(R) under the Ath U(1) in (6.1) of the various

representations. Together with the dimension of the representations they are summarized

in table 1.

The chiral indices in the orientifold setup are denoted by χ(R). For the intersecting

D7-brane setup one has the relations

χ(FAB) = χ(FBA) , χ(FĀB) = −χ(FB̄A) , χ(FĀA) = 0 , χ(FAA) = χ(SA) + χ(AA) .

(6.2)

The first condition is trivially true since exchanging brane and image, which is a symmetry

of the theory, exchanges the fundamental representations. The second condition uses the
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R rep. U(1)C-charge dim(R) V (R) U(R) χ(R)

FĀB (N̄A, NB)q (q)C = −δCA + δCB NANB (−1, 1) (1, 1) χĀB

FAB (NA, NB)q (q)C = δCA + δCB NANB (1, 1) (1, 1) χAB

SA Sym(NA)q (q)C = 2δCA
1
2NA(NA + 1) NA + 4 NA + 2 χ(A)

AA Λ2(NA)q (q)C = 2δCA
1
2NA(NA − 1) NA − 4 NA − 2 χ[A]

Table 1. A list of the matter representations arising from intersecting D7- branes. The second

column denotes the representations of SU(NA)×SU(NB)×U(1)n̂G respectively of SU(NA)×U(1)n̂G

and the third column denotes the charges under the Cth U(1). Finally we summarize the dimension

of R in the fourth, the values of the cubic Casimir and the index in (2.12) in the fifth respectively

sixth columns and the chiral indices in the last.

fact that the bi-fundamental (N̄A, NB) is the complex conjugate of (NA, N̄B) and the chiral

index changes sign under the exchange of a representation and its complex conjugate. The

third equality is true since since the representation FĀA is real and the last equality makes

use of the group theoretical decomposition NA⊗NA = SA⊕AA. To simplify our notation

we will introduce the abbreviations

χAB = χ(FAB) , χĀB = χ(FĀB) , χ(A) = χ(SA) , χ[A] = χ(AA) . (6.3)

The chiralities in Type IIB are calculated explicitly from a simple index depending on the

D7-brane flux. In the following we will focus on D7-branes with U(1)-fluxes FA only, which

are a non-trivial background on SIIB
A in the U(1)-directions of (6.1). The indices then read

IAB =

∫

SIIB
(A)

·SIIB
(B)

(FA −FB) (6.4)

for two D7-brane divisors SIIB
(A), S

IIB
(B) with their intersection denoted by SIIB

(A) · S
IIB
(B) . For

convenience we have set the string length ℓs = 1. In terms of these indices the chiralities

are given by

χĀB = IAB , χAB = IA′B , (6.5)

χ(A) =
1

2
(IA′A − 2IO7A) , χ[A] =

1

2
(IA′A + 2IO7A) .

Here A′ denotes the orientifold image of a divisor SIIB
(A) and IO7A is obtained from (6.4)

by using the orientifold divisor SO7 and noting that the are no fluxes on an O7-plane.

We note that from (6.5) and the symmetry properties of (6.4) we immediately obtain the

relations (6.2), where we here and in the following have to make use of

FA′
∧ [SIIB

A′ ] = −σ∗(FA ∧ [SIIB
A ]) , AA

U(1) = −σ∗AA′

U(1) . (6.6)

The map σ denotes the orientifold involution and AA
U(1) are the U(1)-gauge fields in

the setup.
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Next we evaluate the anomalies on the left-hand side of (2.7)–(2.10) for the 4D ori-

entifold theory. One evaluates for the weak coupling representations employing the last

relation in (6.2) and table 1 that

trf (F
A)3 : AF 3

A =
∑

C6=A

NC

(
χC̄A + χCA

)
+ (NA + 4)χ(A) + (NA − 4)χ[A] ,

FA
U(1)(F

B
U(1))

2 :
1

2
NA

[
NB

(
χB̄A + χBA

)
(1− δAB) (6.7)

+
1

3
δAB

(∑

C6=A

NC

(
χC̄A + χCA

)
+ 4(NA + 1)χ(A) + 4(NA − 1)χ[A]

)]

=
1

2
NA

[
NB

(
χB̄A + χBA

)
+

1

3
δABA

F 3

A

]
,

FA
U(1)trf (F

B)2 :
1

2

[
NA

(
χB̄A + χBA

)
(1− δAB) + δAB

(∑

C6=A

NC

(
χC̄A + χCA

)
(6.8)

+2(NA + 2)χ(A) + 2(NA − 2)χ[A]

)]
(6.9)

=
1

2

[
NA

(
χB̄A + χBA

)
+ δABA

F 3

A

]
,

FA
U(1)trR

2 :
1

48
NA

[
AF 3

A − 3χ(A) + 3χ[A]

]
=

1

48
NA

[
AF 3

A + 6IO7A

]
. (6.10)

Here FA denotes the field strength of SU(NA) and FA
U(1) are the U(1) field strengths of

the Abelian factors appearing in (6.1). Note that the contribution δAB in the second and

third condition arises from bi-fundamental matter from all intersections with D7-branes

with the A-stack together with the symmetric and anti-symmetric representations arising

from the A-stack itself. We have conveniently written the result using AF 3

A .

These anomalies are canceled by a GS-mechanism in 4D when imposing D7-brane and

D5-brane tadpole cancellation. For general Type IIB Calabi-Yau orientifold setups with

D7-branes this has been shown in [23]. Since trf (F
A)3 is non-factorizable one has

D7-/D5-tadpole cancellation ⇒ AF 3

A = 0 . (6.11)

The remaining conditions then read

FA
U(1)(F

B
U(1))

2 :
1

2
NANB

[
IBA + IB′A

]
, (6.12)

FA
U(1)trf (F

B)2 :
1

2
NA

[
IBA + IB′A

]
,

FA
U(1)trR

2 :
1

8
NA IO7A ,

where we have used the relations (6.5) and (6.6). This concludes the evaluation of the

one-loop anomaly.

Next we will recall the derivation of the gaugings and Green-Schwarz counter terms.

There are two different types of axions relevant in the Green-Schwarz mechanism in Type
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IIB orientifolds. Firstly, there are orientifold-even axions ρα arising from the expansion of

the R-R-form C4 into a basis of H4
+(Y3). Secondly, there are orientifold-odd axions in the

expansion of the R-R-form C2 into a basis of H2
−(Y3). They appear in the Green-Schwarz-

terms of Type IIB as

S
(4)
GS = −

1

4

∫
(bαAρα+baAc

a)tr(FA∧FA)+(bαABρα+baABc
a)FA

U(1)∧F
B
U(1)−

1

4
aαραtr(R∧R) ,

(6.13)

where we identified I ∼= A, m,n ∼= A,B and used λA = 1 for SU(NA) in (2.5). The coupling

coefficients bA, bAB and a determined in the following.

In order to obtain the gaugings and GS-terms in weakly coupled Type IIB setups one

has to expand the D7-brane and O7-plane world-volume actions. The resulting gaugings

of these axions can be extracted from Stückelberg couplings arising from C4 and C6 in the

D7-brane actions and are given by [73, 74]

∇ρα = dρα +ΘαAAA
U(1) , ∇ca = dca +Θa

AAA
U(1) , (6.14)

with constant gaugings specified by

ΘαA = 2NA

∫

SIIB
(A)

FA ∧ ωα , Θa
A = −2NAδ

a
(A) . (6.15)

Here the factor of 2 in the first equation appears since the same coupling is generated

twice, by the D7-brane on S(A) and by its image brane on S(A′). The AA
U(1) are the U(1)’s

in (6.1) that comprise combinations of the brane and image brane U(1)′s. The D7-brane

field strength F
(A)
D7 has a flux part F (A) on SIIB

(A), where we focus on fluxes in the U(1)A-

direction only. We stress that the gaugings of ca are purely geometrical and independent of

any brane flux. They contain the coefficients δa(A) arising in the expansion of the D7-brane

locus SIIB
(A) as

1

2
(SIIB

(A) + SIIB
(A′)) = δα(A)D

IIB
α ,

1

2
(SIIB

(A) − SIIB
(A′)) = δa(A)D

IIB
a , SO7 = δαO7D

IIB
α , (6.16)

where DIIB
α , DIIB

a is a basis of H+
4 (Y3), H

−
4 (Y3), respectively. The factor of 2 in the second

equation in (6.15) is due to the factor 1
2 in (6.16). For completeness we have displayed here

the expansion of the O7-plane locus as well.

The GS-counter terms can be extracted from the Chern-Simons world-volume actions

of D7-branes and O7-planes. One obtains the GS-terms (2.5) for both the C4 axions ρα
with the coefficients bαA, b

α
AB and aα and for the C2 axions ca with coefficients baA, baAB

and aα as

bαA = 2δα(A) , baA = 2

∫

SIIB
(A)

FA ∧ ωa ,

bαAB = NAδAB bαA , baAB = NAδAB baA

aα = −
1

6

(
2δαO7 +

∑

A

NAδ
α
(A)

)
= −δαO7 . (6.17)
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As before the factor of 2 in baA is due to the two identical contributions from S(A) and

the image cycle S(A′). Here the first equality for aα can be inferred by the reduction of the

D7-brane world-volume theory on SIIB
(A) and the image cycle SIIB

(A′) as well as the O7-plane

action on SO7 using (6.16) and µO7 = −8µD7 on the orientifold double cover [64]. For the

second equality we use the Type IIB D7-brane tadpole, formulated again on the double

cover, reading

8SO7 =
∑

A

NA(S
IIB
(A) + SIIB

(A′)) . (6.18)

Finally we can formulate the anomaly cancellation conditions of a Type IIB orientifold.

This means that the anomalies (6.7) have to equal the GS-terms as required in (2.7)–(2.10).

With (6.17), (6.15) and (6.4) these take the form

FA
U(1) (F

B
U(1))

2 :
1

4
bαBBΘAα +

1

4
baBBΘ

a
A =

1

2
NANB

[
IBA + IB′A

]
(6.19)

FA
U(1)trf (F

B)2 :
1

4
bαBΘAα +

1

4
baBΘ

a
A =

1

2
NA

[
IBA + IB′A

]
,

FA
U(1)trR

2 : −
1

16
aαΘαA =

1

8
NA IO7A .

We note that there is no symmetrization over the indices A, B in the first equation since the

Green-Schwarz terms for the U(1)-field strengths FA
U(1) in (6.13) are diagonal in A, B due

to (6.17). This shows agreement of the Green-Schwarz terms with the anomalies (6.12).

Thus, anomaly cancellation in Type IIB with D7-branes and O7-planes with canceled

tadpoles is guaranteed.

6.2 Comparison with F-theory anomaly cancellation

The complication in matching the F-theory setup with the corresponding weak coupling

compactification arises from the fact that the U(1)’s in each of the U(NA) = U(1)A ×

SU(NA) can be massive due to a geometric Stückelberg mechanism [73, 74] as investigated

recently in [32]. More precisely, the geometric gaugings (6.14), (6.15) of the additional R-R

two-form axions ca arising from cycles negative under the orientifold projection can render

the combinations Θa
AA

A
U(1) of U(1)’s massive even in the absence of fluxes. This implies

that in general

G ⊂ Gori , nU(1) ≤ n̂G , (6.20)

where G is the F-theory gauge group G = SU(N1)× . . .×SU(NnG
)×U(1)1× . . .U(1)nU(1)

,

and nG is the number of U(NA) factors in (6.1) with NA > 1.

We denote the geometrically massive and massless U(1)’s by

geom. massive: AM , M = 1, . . . , rank(Θa
A) , (6.21)

geom. massless: Am, m = 1, . . . , nU(1) ,

where nU(1) ≡ n̂G − rank(Θa
A). To perform the comparison with F-theory we thus have

to perform a basis transformation of the U(1)-gauge fields AA
U(1) to separate AM and Am

in the Lagrangian. Thus, we use the ansatz

AA
U(1) = πA

mAm + πA
MAM , πA

mΘa
A = 0 , (6.22)
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where rank(πA
m) = nU(1) and rank(πA

m) + rank(πA
M ) = n̂G. The vanishing condition tells us

that the geometrically massless U(1)’s are in the kernel of the map Θa
A.

The map to F-theory can now be formulated using the matrices πA
m, πA

M . We identify

the Am with the U(1)-vectors in (3.26) in F-theory. The F-theory gaugings and Green-

Schwarz terms are captured by

Θmα = πA
mΘAα , bαm = πA

mbαA . (6.23)

Using these identifies we can project the orientifold Green-Schwarz terms to the geometri-

cally massless modes as

Fm
U(1) (F

n
U(1))

2 : πA
mπB

n

(
bα(ABΘB)α + ba (ABΘ

a
B)

)
= bα(mnΘn)α (6.24)

Fm
U(1)trf (F

I)2 : πA
m

(
bαIΘAα + ba IΘ

a
A

)
= bαIΘmα ,

Fm
U(1)trR

2 : πA
maαΘαA = aαΘαm ,

where we have repeatedly used the condition πA
mΘa

A = 0 for the geometrically massless

U(1)’s. In order to complete the match we note that aα agrees for the orientifold and

F-theory setup. The Kodaira constraint, ensuring that c1(X̂4) = 0, that takes at weak

coupling the form

12c1(B3) = [∆] = 2[SO7] +
∑

I

ND7I [S
IIB
(I) ] +

∑

m

[SIIB
(m)] + [∆′] . (6.25)

Here we split the discriminant [∆] into a sum over D7-branes and O7-planes. It is important

to note that the sum over D7-branes includes stacks with ND7I D7-branes and single D7-

branes corresponding to massless U(1)-symmetries. We claim that there is a residual dis-

criminant ∆′ corresponding to D7-branes with no associated geometrically massless U(1)’s.

Thus, both geometrically massless and massive U(1)’s are captured by ∆ in F-theory.

To conclude this section, we stress that the F-theory effective action obtained from a

Calabi-Yau reduction of M-theory only includes the subset Am of U(1)’s that are geometri-

cally massless but can become massive due to fluxes. Following the arguments of section 5,

together with the explicit checks for a number of examples in section 7, we claim that

this F-theory effective action is free of anomalies. The F-theory setup comprises a con-

sistent reduction of the orientifold setup for scales where the geometrically massive U(1)’s

are already integrated out. We have recalled that anomalies are canceled in orientifold

compactifications with both types of U(1)’s due to tadpole cancellation. While we have

not explicitly integrated out the geometrically massive U(1)’s one expects an anomaly free

theory after this process. Indeed, the resulting theory should match the F-theory effective

action determined via M-theory. We have then shown that the Green-Schwarz terms of

the projected orientifold setup (6.24) indeed match the Green-Schwarz terms in F-theory

determined in section 3. To extend also the F-theory setup it would be very interesting to

include the geometrically massive U(1)’s as suggested in [32]. In this work it was argued

that the geometrically massive U(1)’s can be included in the M-theory to F-theory limit

when extending the M-theory reduction to include certain non-closed forms.
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7 4D anomaly-free F-theory compactifications

In this section we study anomaly cancellation in concrete examples. We consider com-

pact elliptically fibered Calabi-Yau fourfolds realized as toric hypersurfaces. We begin by

showing anomaly cancellation for a fourfold with base B3 = P
2 × P

1 and giving rise to an

SU(5) gauge symmetry in section 7.1. Then we include U(1) symmetries by the method

of the U(1)-restricted Tate model in section 7.2. We consider two fourfolds, one with base

B3 = P
2×P

1 and another one with B3 = Blx(P
3). In both cases we show that all anomalies

are cancelled by an implementation of the Green-Schwarz mechanism.

7.1 F-theory with SU(5) gauge symmetry

Let us consider a concrete F-theory compactification to 4D with an SU(5) gauge symmetry.

The corresponding elliptically fibered Calabi-Yau fourfold X4 has to be constructed so that

an SU(5) singularity in the elliptic fibration is formed over a divisor S in the base B3. In this

simple case and assuming enhancement over codimension two in B3 to SU(6) and SO(10)

matter arises in the representations 5, 10 and its conjugate representations 5̄, 10. Upon

switching on suitable chirality inducing G4-flux a chiral 4D matter spectrum is induced.

For this theory we evaluate the anomaly condition (5.4). Since the other anomalies

are trivial, only the anomaly cancellation condition for the SU(5) gauge anomaly poses a

non-trivial constraint on the spectrum. As discussed above this anomaly is non-factorizable

and can thus not be canceled by a GS-mechanism but has to cancel by itself. The anomaly

condition then reads

χ(5) + χ(10) = 0 , (7.1)

which is the well-known fact that in any consistent SU(5) GUT theory one must have an

equal number of 5’s and 10’s. In evaluating (7.1) we employed the general trace rela-

tions (2.12) that we evaluated explicitly for SU(5) using (A.11).

We demonstrate that the anomaly condition (7.1) is automatically obeyed in a concrete

example of an F-theory compactification with SU(5) gauge symmetry. We consider the

F-theory compactification on a Calabi-Yau fourfold X4 elliptically fibered over the base

B3 = P
2 × P

1. We realize it as a toric hypersurface in the five-dimensional toric ambient

space W = P(O⊕L2 ⊕L2), where the line bundle L is given by the anti-canonical bundle

K−1
B3

of B3, L = K−1
B3

. By specializing the complex structure of a generic elliptic fibration

over B3, we generate a single SU(5) singularity over a divisor Ŝ in B3, that we choose to be

the zero-section of the P
1, i.e. Ŝ = P

2. We readily blow-up this SU(5) singularity torically

by blowing up the toric ambient space W. This induces four new, exceptional divisors Di.

The Calabi-Yau hypersurface in this new toric space is the smooth Calabi-Yau fourfold X̂4.
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The toric data specifying this smooth fourfold reads

Points DA

−1 0 0 0 0 X̃

0 −1 0 0 0 Y

3 2 0 0 0 B

3 2 1 0 0 Ŝ

3 2 −1 0 0 S

3 2 0 1 1 H

3 2 0 −1 0 H

3 2 0 0 −1 H

2 1 1 0 0 D1

1 1 1 0 0 D4

1 0 1 0 0 D2

0 0 1 0 0 D3

(7.2)

Each line denotes a point in Z5 representing the vertices defining the polyhedron of the

toric ambient space W. We introduced the generators of the divisor group, that are asso-

ciated to these vertices. By linear equivalences, only DA = (B,S,H,D1, D2, D3, D4) are

independent. Both X̃ and Y as well as S = Ŝ+
∑

iDi, according to (3.13) with ai = 1, are

linear combinations of these generators. The basis of divisors on the base B3 is given by

Dα = (S,H). It can easily be checked that the Di are the Cartan divisors of SU(5) obeying

the relation (3.11) for the Cartan matrix of SU(5) and with the divisor S as introduced

in (7.2).

Omitting the details and referring to [9] for the technicalities, the polyhedron defined

by (7.2) admits three different Calabi-Yau phases out of 54 different star-triangulations of

the toric ambient space W. Picking one particular triangulation, it can be seen that the

relative Mori cone of X̂4,
12 of effective curves contains some of the weights of the SU(5)

representations R = 5,10 and their complex conjugates. Thus, we see that indeed 6D

matter arises precisely in these representations. The 4D matter is induced by turning on a

suitable G4-flux meeting all the consistency conditions (3.29). Choosing the triangulation

denoted as phase I in [9] we start with the ansatz (5.7) without Abelian fluxes, since there

are no U(1)-symmetries by construction, and satisfy the equations (5.9). We obtain the

one-parameter family of allowed flux that takes the form

G4(λ) = λ(8D2D4 − 4D2
2 − 2D2D3 + 3D2

3 + 9D3H) , (7.3)

with quantized flux parameter λ. We have suppressed the use of Poincaré duality in our

notation of G4(λ) for the sake of the readability of this expression.

Next we introduce the four multiplicities n(R) of the representations R = 5, 10, 10 ,5

as free variables and solves for them by the matching (4.9) of 3D Chern-Simons terms. One

12We note that we have to form the Mori cone of X̂4. It is found by intersecting the various Mori cones

of the different triangulations of the toric ambient space that lead to the same Calabi-Yau phase.
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finds that as expected only the chiralities χ(5̄) = n(5̄)− n(5) and χ(10) = n(10)− n(10)

can be determined as

χ(5̄) = χ(10) = 162λ . (7.4)

This immediately confirms that the non-Abelian SU(5) anomaly condition (7.1) is obeyed.

Since this is the only possible anomaly the constructed SU(5) GUT is anomaly-free.

7.2 F-theory with SU(5) × U(1) gauge symmetry

As a more involved example we consider now an F-theory compactification with gauge

group SU(5)×U(1). Anomaly cancellation in this theory is richer due to the possibility of

both mixed and purely Abelian anomalies that might require a non-trivial GS-mechanism

as discussed in section 2.

We will construct the singular fourfold leading to SU(5) × U(1) gauge symmetry by

starting with a singular fourfold with only an SU(5) singularity. Then we apply the method

of the U(1)-restricted Tate model [28] to generate a new section of the elliptic fibration of the

fourfold. This means that the complex structure of the given fourfold hast to be restricted

even further so that not only an SU(5) is generated, but also the I1 locus self-intersects

in a curve. This additional singularity results in a new section and a corresponding U(1)

gauge symmetry after resolution. For this gauge group, four-dimensional matter can arise

in representations 5q, 10q′ and their complex conjugates. In general there can be matter

in the same SU(5) representation but with different U(1)-charge.

In this section we will consider two concrete fourfolds, that do not differ by their fiber

singularities but the choice of base B3. The first example will be the fourfold of the last

section 7.1 with base B3 = P2 ×P1 on which we apply the method of the U(1)-restricted

Tate model. In this case we will demonstrate the structure of the the G4-flux (5.5), i.e. the

split into a non-Abelian and Abelian flux, explicitly. As a second example we consider the

elliptically fibered fourfold with SU(5) × U(1) singularities over the base B3 = Blx(P
3),

the blow-up of P3 at a generic point x.

7.2.1 An SU(5) × U(1) singularity over B3 = P2
× P1

The first concrete example we consider is the elliptically fibered Calabi-Yau fourfold X4

with base B3 = P2 ×P1 considered in the last section 7.1.

In addition to the SU(5) singularity we generate by a further specialization of the

complex structure a self-intersection of the I1-locus. As before we study the geometry

X̂4 obtained after the toric blow-up of all singularities by blowing up the toric ambient

space W. Because of the extra singularity, we have to perform five blow-ups that yield

five new, exceptional divisors, the four Cartan divisors Di of the SU(5) and a single new

exceptional divisor X from resolving the curve of self-intersection of the I1 locus. The

Calabi-Yau hypersurface in this new toric space is again a smooth Calabi-Yau fourfold X̂4.

The toric data of the blown-up ambient space is that of (7.2) augmented by a single new

point [−1 −1 0 0 0|X], where as before the first column denotes the vertex and the second

the associated divisor X. The basis of divisors on X̂4 is that of the last section with the

– 39 –



J
H
E
P
0
2
(
2
0
1
3
)
1
0
1

one new divisor X,

B , Dα = (H,S) , Di = (D1, D2, D3, D4) , X . (7.5)

Here, the divisors are as before the zero section of the elliptic fibration B, the vertical

divisors Dα and the four Cartan divisors Di of SU(5). The new toric divisor X introduces a

new section of the elliptic fibration of X̂4. We confirm this by checking in a toric calculation

the necessary condition (3.5) for a section, namely

X2 · Cα = −[c1(B3)] ·X · Cα . (7.6)

We have evaluated this in a basis of vertical four-cycles Cα = (S ·H,H2) on X̂4. From the

section X we then construct a divisor of type Dm by applying the Shioda map (3.15) to X.

This divisor thus induces a U(1)-gauge symmetry in the effective theory by the reduction

of C3 in (3.26) along it. We note that the Shioda map agrees with the construction of a

divisor of type Dm used in [28].

It is instructive to perform the Shioda map for X ≡ σ̂m in two steps. We first introduce

a divisor [28]

D5 = X −B − c1(B3) , (7.7)

which takes into account only the first three terms in (3.15). Here we have used that

the intersection X · B = 0 on X̂4, as confirmed in an explicit toric calculation, which

immediately implies X ·B · Cα = 0. Then, we obtain a divisor of type Dm, denoted by BX

for reasons discussed in the next paragraph, as

BX = −2B1 − 4B2 − 6B3 − 3B4 − 5B5 = −4C5i
SO(10)Bi . (7.8)

This is the fourth term of the Shioda map, where we have changed the normalization so

that BX ≡ −5Dm in (3.15) for later convenience. Indeed we take again the above basis

of vertical four-cycles Cα and of vertical divisors Dα of (7.5) to calculate the following

intersection matrix (3.18) and the intersections with X ·Di,

η β
α = δβα , X ·Di · C

α = δ3iδ
α
2 . (7.9)

Thus since only X ·D3 ·H
2 = 1 is non-vanishing we choose α = 2 when evaluating (3.15)

and note that since S(1) = S in (3.9) we obtain (δβ(1)η
2

β ) = δ2(1) = 1. Then we evaluate the

inverse C−1
(1) of the Cartan matrix C(1) of SU(5) of which we need according to the second

equality in (7.9) the third line (C−1
(1) )

3i. We finally obtain

Dm = D5 +
1

5
(2D1 + 4D2 + 6D3 + 3D4) , (7.10)

which clearly agrees with (7.8) up to a factor of −5.

We note that the coefficients of BX in (7.8) also agree with the entries (C−1
SO(10))

5i of the

inverse of the Cartan matrix CSO(10) of SO(10). This is pointing to an underlying SO(10)

structure hidden in the construction of the divisor BX via the Shioda map. This has been

noted earlier, but differently motivated and without reference to the Shioda map, in [28]
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as we outline next. First, one notes that the divisor D5 defined in (7.7) intersects with the

Cartan divisors Di, i = 1, 2, 3, 4, of the SU(5) singularity almost like the Cartan divisors of

an underlying SO(10) singularity. Indeed, one obtains in a concrete toric calculation the

intersections of the Di of SU(5) and D5 as

Di ·Dj ·Dα ·Dβ = −(C̃SO(10))ijS ·B ·Dα ·Dβ , C̃SO(10) =




2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 ∗




. (7.11)

Here i, j = 1, . . . , 5 and C̃SO(10) agrees with the Cartan matrix of SO(10) up to the entry

(C̃SO(10))55. This entry is the intersection of B2
5 with the product of two vertical divisors

Dα ·Dβ, which is not −2, as required for an SO(10), but actually depends on the choice of

Dα ·Dβ. Geometrically, this fact is, however, not surprising since there is only an SU(5)

singularity over S and the enhancement to SO(10) happens only over co-dimension two

on the 10 matter curve. We see that the construction of the divisor BX in (7.8) reflects

this underlying SO(10) structure up to the mentioned mismatch. In this interpretation BX

agrees with the U(1)-factor U(1)X in the group theoretical breaking SO(10) → SU(5) ×

U(1)X . This analogy between geometry and group theory has been the motivation for the

notation BX in the literature [16, 28].

Finally we double-check in an explicit toric calculation that BX is indeed of type Dm,

i.e. that it obeys the intersection properties (3.20). The first condition is easily proven

in general by noting that the construction of BX agrees precisely with conventional group

theory embedding of U(1)X into SO(10) as noted before. Thus, it also follows directly from

group theory arguments that BX commutes with the Cartan divisors Di, i = 1, . . . , 4, of

SU(5) which in geometrical terms directly implies the first condition in (3.20). In addition,

we confirm this expectation from group theory by an explicit toric computation. Next we

have to find the divisor S(1) of (3.20), namely the vertical divisor supporting the seven

brane inducing the U(1)-symmetry in F-theory. In the Calabi-Yau phase specified later in

this section we explicitly find the solutions bα1 to (3.36) that determine S(1) completely to

S(1) = 150H + 70S , (7.12)

where we expanded in the basis of divisors (7.5) on B3. Thus we have confirmed explicitly

that the divisor BX is indeed of type Dm fulfilling the intersection properties (3.20). In

addition we checked that the intersections (3.21) and (3.23) vanish as expected.

In order to determine the occurring matter representations we have to choose a Calabi-

Yau phase and to analyze its Mori cone. The blown-up toric ambient has 108 different star-

triangulations that are grouped into six inequivalent Calabi-Yau phases. The Calabi-Yau

phase we consider is directly related to the Calabi-Yau phase chosen in section 7.1 by

the geometric transition induced by blowing down X and deforming away the I1 self-

intersection. We specify it by its charge vectors, i.e. the Mori cone, that we construct

by intersecting the Mori cones of the ambient toric variety corresponding to the same
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Calabi-Yau phase. It reads

Mori cone generators

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

X̃ 0 0 0 1 0 0 0 0

Y 0 0 0 1 −1 1 0 0

B −3 1 −2 0 0 0 0 0

Ŝ 0 −2 1 0 0 0 1 0

S 0 0 1 0 0 0 0 0

H 1 0 0 0 0 0 0 0

H 1 0 0 0 0 0 0 0

H 1 0 0 0 0 0 0 0

D1 0 1 0 0 0 0 −2 1

D2 0 0 0 0 1 −1 1 −1

D3 0 0 0 0 −1 0 0 1

D4 0 1 0 0 0 1 0 −1

X 0 0 0 −1 1 0 0 0

(7.13)

Here, we noted the corresponding divisor classes in the first row. The three vectors

ℓ1, ℓ2 and ℓ3 correspond to the two curves in the base P2 ×P1 and the class of the elliptic

fiber. The five vectors ℓ4 to ℓ8 encode the rational curves originating from the resolution

process. They shrink to zero in the blow-down X̂4 → X4 and are denoted as the relative

Mori cone [9, 75], the complement of the Mori cone of X4 in X̂4. Physically we can wrap

M2-branes over these curves that correspond to the W-bosons, i.e. the roots, of SU(5). The

roots further split into weights of matter representations corresponding to new P1’s isolated

over higher co-dimension loci in the base B3. Thus, these exceptional P1’s naturally take

values in the weight lattice of SU(5), with which we identify the relative Mori cone [9].

The matter representations can be read off from the Mori cone generators (7.13).

Performing the basis transformation from X to BX and focusing on the relative Mori cone

and the last five entries of the charge vectors ℓi, i = 4, . . . , 8, we obtain the vectors

ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

D1 −2 0 0 0 1

D2 1 0 1 −1 −1

D3 0 0 −1 0 1

D4 0 0 0 1 −1

BX 0 5 −3 1 −1

(7.14)

The rows are now precisely the U(1)-charges of an M2-brane wrapping the respective curves

corresponding to ℓi with respect to the Cartan divisors Di, that are identified with the

negative of the simple roots −αi, and BX . The columns are then just the Dynkin labels of

SU(5) representation with U(1)X -charge given by the last entry. We refer to appendix B for

the Dynkin labels the the 5 and 10 representations. We immediately identify the Dynkin
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labels of the following representations with the charge vectors,

∑

i

ℓi ⊂ 52 , ℓ5 ⊂ 15 , ℓ6 ⊂ 5−3 , ℓ7 ⊂ 101 ℓ8 ⊂ 10−1 . (7.15)

The other weights of the respective representations, with some of them lying in the Mori

cone, can be constructed by adding the simple roots αi.

Having determined the spectrum (7.15) of six-dimensional matter we have to construct

appropriate G4-flux that potentially induces 4D chiral matter. We start with a general

vertical flux of the general form (3.25) and choose the flux quanta mAB such that (3.29)

are obeyed. In fact, for the Calabi-Yau fourfold at hand, there are only eleven independent

surfaces S, i.e. only eleven independent combinations ωA∧ωB and as many flux parameters

mAB. We choose the basis of surfaces given by

D2
3, D2 ·D3, D2

2, D2 ·D4, D2
4, D3 ·H, H2, Ŝ, B ·H, BX ·H, BX · S . (7.16)

We note that only the last two surfaces are additional to the nine independent surfaces

on the fourfold of the last section 7.1 with only an SU(5)-singularity. The allowed G4-flux

then reads

G4 = GnA
4 (λ) + (αH + βS) ·BX , (7.17)

where we as before suppressed the use of Poincaré duality. The flux GnA
4 (λ) denotes the

one- parameter non-Abelian flux (7.3) already present on the Calabi-Yau fourfold before

the formation of an U(1)-singularity and α, β denote two quantized flux numbers. We note

that (7.17) is precisely of the form (5.5) with one non-Abelian flux part G4(λ) induced

from the fourfold without the U(1)-symmetry and thus independent of the divisor BX and

a second, Abelian flux of the form F ∧ [BX ] with F denoting a general two-form flux on

the base B3. Fluxes of this type have been considered previously in [14–17].

Next we calculate the 4D chiralities using M-/F-theory duality for the CS-terms (4.9).

We calculate both the loop-induced CS-terms Θloop
ΛΓ and the classical flux integrals ΘΛΓ.

For the former, since we have already identified the charges in (7.15), we only have to

determine the sign-function in (4.5). As explained in section 4 this is achieved by just

testing whether a curve associated to a given charge q lies in the Mori cone of X̂4. In

this case we call q positive, otherwise negative. This allows us to readily evaluate the

loop-induced CS-levels, suppressing the superscript for brevity, as

Θ11 = −2Θ12 = −2Θ23 = −Θ44 = χ(5̄−3) + χ(5̄2) + χ(10−1) ,

Θ24 = Θ25 = Θ33 =
1

2
Θ45 = χ(10−1) ,

Θ22 = χ(5̄−3) + χ(5̄2) ,

Θ35 = 3χ(5̄−3)− 2χ(5̄2) ,

Θ34 =
1

2
(χ(5̄−3) + χ(5̄2)− χ(10−1)) ,

Θ55 =
9

2
χ(5̄−3) + 2χ(5̄2) +

25

2
χ(15)
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with all other CS-levels vanishing and invoking symmetry of the matrix ΘΛΓ. As expected

the CS-levels are functions only of the 4D chiralities χ(R). Equally, we evaluate the classical

CS-levels (3.27) to obtain

ΘΛΣ =




0 0 0 0 0

0 −162λ+ 3α 0 162λ− 3α 162λ− 3α

0 0 162λ− 3α −162λ+ 3α −486λ− 141α

0 162λ− 3α −162λ+ 3α 0 324λ− 6α

0 162λ− 3α −486λ− 141α 324λ− 6α −729λ+ 5751α+ 6750β




(7.18)

depending on the three flux quanta. Equating the two expressions according to (4.9) we

solve for the 4D chiralities as

χ(5̄−3) = 162λ+ 27α , χ(5̄2) = −30α ,

χ(10−1) = −162λ+ 3α, χ(15) = −465α− 540β (7.19)

We are now prepared to determine the anomalies for the spectrum (7.19). Evaluating

the left hand side of (2.7)–(2.10) we obtain

trfF
3 : χ(10−1) + χ(5̄2) + χ(5̄−3) = 0 , (7.20)

FmFnF k :
1

6
(−10χ(10−1) + 40χ(5̄2)− 135χ(5̄−3) + 125χ(15))

= −3375λ− 10500α− 11250β

Fmtrf (F
I)2 :

1

2
(−3χ(10−1) + 2χ(5̄2)− 3χ(5̄−3)) = −75α

FmtrR2 :
1

48
(−10χ(10−1) + 10χ(5̄2)− 15χ(5̄−3) + 5χ(15))

= −
1

8
(135λ+ 510α+ 450β) ,

where we made use of the group theory relations (A.11) and (A.18) in appendix A for

SU(5). We note that since the non-Abelian anomaly is automatically canceled, we can

potentially obtain a non-anomalous theory by a GS-mechanism.

We will show next that indeed the chirality inducing G4-flux (7.17) induces the appro-

priate gaugings for a working GS-mechanism. We evaluate the G4-flux induced gaugings

of the Kähler moduli associated to the divisors Dα = (H,S) in (7.5) with respect to the

U(1) corresponding to BX as

Θmα = (Θm1,Θm2) = (−90λ− 140α− 300β,−300α) . (7.21)

Next we note that the canonical bundle of the base B3 is given by KB3 = O(−3H − 2S).

Recalling that the SU(5)-singularity is located over the divisor S by construction and the

U(1)-divisor S(1) has been determined in (7.12), we obtain the contribution of the GS-terms
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to the anomalies on the right hand side of (2.7)–(2.10) as

FmFnF k :
1

4
(150Θm1 + 70Θm2) = −3375λ− 10500α− 11250β (7.22)

Fmtrf (F
I)2 :

1

4λI
Θm2 = −75α

FmtrR2 : −
1

16
(−3Θm1 − 2Θm2) = −

1

8
(135λ+ 510α+ 450β) ,

where we used λI = 1 for SU(N). By comparing this with the anomalies (7.20) we see that

the anomaly cancellation conditions (2.7)–(2.10) are obeyed and the theory is anomaly-free.

7.2.2 An SU(5) × U(1) singularity over B3 = Blx(P
3)

In this section we will consider another F-theory compactification on an elliptically fibered

fourfold with an SU(5)×U(1) gauge symmetry and with base B3 = Blx(P
3), i.e. the blow-

up of P3 at a point x. Since this discussion will be very similar to the one in the last

section, section 7.2.1, we will be as brief as possible here. We refer the reader to [9] for a

more detailed discussion of the geometry.

We directly start with the smooth fourfold X̂4 that is obtained by resolving all sin-

gularities in the singular fourfold X4 with an SU(5)-singularity over an divisor S and a

codimension two singularity from the self-intersection of the I1-locus. The fourfold X̂4

is realized as a toric Calabi-Yau hypersurface in a five-dimensional toric ambient space

defined by a polyhedron with the following vertices

Points DA

−1 0 0 0 0 X̃

0 −1 0 0 0 Y

3 2 0 0 0 B

3 2 1 1 1 H

3 2 −1 0 0 H + S

3 2 0 −1 0 H + S

3 2 0 0 −1 H

3 2 1 1 0 Ŝ

2 1 1 1 0 D1

1 1 1 1 0 D4

1 0 1 1 0 D2

0 0 1 1 0 D3

−1 −1 0 0 0 X

(7.23)

Here we present as before the coordinates of the vertices as the five-dimensional row vectors

and the corresponding toric divisors. The polyhedron admits 348 star-triangulations that

correspond to twelve independent Calabi-Yau phases when restricted to the anti-canonical

divisor in the toric ambient space.

A basis of divisors with all other divisors in (7.23) by linear equivalences reads

B , Dα = (H,S) , Di = (D1, D2, D3, D4) , X (7.24)
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with B being the base, Dα the vertical divisors, the Di denoting the Cartan divisors

of SU(5) and X the exceptional divisor generated by the blow-up in construction of the

U(1)-restricted Tate model. We readily check the necessary condition (3.5) for X being a

section. The divisor S is related to the divisor Ŝ as S = Ŝ +
∑

iDi. A divisor of type Dm

is constructed from X as before in section 7.2.1 by applying the Shioda map (3.15). Again,

we first construct D5 = X−B− [c1(B3)], that intersects the Cartan divisors Di as in (7.11)

resembling an SO(10) singularity, and then form BX = −2B1 − 4B2 − 6B3 − 3B4 − 5B5.

Here we choose a basis of vertical four-cycles given by Cα = (H ·S, S2) and evaluate in the

basis of vertical divisors Dα and Cartan divisors Di in (7.24)

η β
α =

(
0 1

1 −2

)
, X ·D3 · C

1 = 1 , D3 · C
1 = −2 , (7.25)

with all other intersections X ·Di · C
α = 0. Thus, we can choose any α to evaluate (3.15)

and obtain Dm = −1
5BX . It can then be shown as in the last section that BX obeys

the intersections properties (3.20) and thus generates a U(1)-symmetry in the low-energy

effective action.

In particular we use (3.20) respectively (3.36) to determine in a concrete toric calcula-

tion in a Calabi-Yau phase specified later in this section the coefficients bα1 in (3.36). The

corresponding divisor S(1) reads

S(1) = 200H + 120S . (7.26)

In addition, we check explicitly that the intersection properties (3.20) are obeyed.

Again we determine the 4D chiral matter by first looking at the Mori cone (7.27) to

determine the 6D matter representations. For Calabi-Yau phase we consider it reads

Mori cone generators

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

X̃ 0 0 0 1 0 0 0 0

Y 0 0 0 0 0 0 0 1

B −3 −1 1 1 0 0 −1 1

H 0 1 0 0 0 0 0 0

H + S 1 0 0 0 0 0 0 0

H + S 1 0 0 0 0 0 0 0

H 0 1 0 0 0 0 0 0

Ŝ 1 −1 −2 0 0 1 0 0

D1 0 0 1 0 1 −2 0 0

D2 0 0 0 −1 −1 1 1 −0

D3 0 0 0 0 1 0 −1 0

D4 0 0 1 1 −1 0 0 −1

X 0 0 0 0 0 0 1 0

(7.27)

As one can see by analyzing this Mori cone as in (7.14) and (7.15) in the last section, cf. [9]

for details, the occurring matter representations are as before given by

10−1 , 5−3 , 52 , 15 . (7.28)
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Then we construct the chirality inducing vertical G4-flux starting with the ansatz (3.25).

There are 15 independent four-forms in H
(2,2)
V (X̂4) that are Poincaré dual to the surfaces

H ·Di , S ·Di , D2
4 , D3 ·D4 , B · Ŝ , B2 , H · S , BX ·H , BX · S , (7.29)

where i runs from i = 1, . . . , 4. Accordingly, we have only 15 independent flux numbers

mAB that get further constrained by the conditions (3.29). We obtain the G4-flux meeting

all these constraints as

G4 = λ[c1(B3) · (D1 + 2D2 − 2D3 − 6D4) + 5D4 · (D3 + 2D4)] + (αH + βS) ·BX

≡ GnA
4 (λ) + (αH + βS) ·BX (7.30)

where we implicitly apply Poincaré duality. Again we identified in accordance with the

general structure (5.5) a non- Abelian flux GnA
4 (λ) depending on a single flux parameter λ

and two Abelian fluxes with flux numbers α, β.

As a next step, we determine the 4D chiralities by the matching (4.9) of the CS-levels

in 3D. We evaluate first the one-loop CS-terms (4.5) yielding

Θ11 = −2Θ12 = −2Θ23 = −Θ44 = χ(5̄−3) + χ(5̄2) + χ(10−1) ,

Θ24 = Θ25 = Θ33 =
1

2
Θ45 = χ(10−1) ,

Θ22 = χ(5̄−3) + χ(5̄2) ,

Θ35 = 3χ(5̄−3)− 2χ(5̄2) ,

Θ34 =
1

2
χ(5̄−3) +

1

2
χ(5̄2)−

1

2
χ(10−1) ,

Θ55 =
9

2
χ(5̄−3) + 2χ(5̄2) +

25

2
χ(15) ,

where we suppressed the superscript for brevity. All other CS-levels vanish and the remain-

ing ones are determined by symmetry of the matrix Θloop
ΛΓ . As expected the CS-levels are

functions only of the 4D chiralities χ(R). Then, we evaluate the classical CS-levels (3.27)

to obtain

ΘΛΣ =




0 0 0 0 0

0 92λ+ 3α− 2β 0 −92λ− 3α+ 2β −92λ− 3α+ 2β

0 0 −92λ− 3α+ 2β2 92λ+ 3α− 2β 256λ− 111α+ 34β

0 −92λ− 3α+ 2β 92λ+ 3α− 2β 0 −184λ− 6α+ 4β

0 −92λ−3α+2β 256λ−111α+34β −184λ−6α+4β 404λ+3891α+5886β




(7.31)

that are functions of the three flux quanta. Identifying the two expressions as in (4.9) we

determine the 4D chiralities as

χ(5̄−3) = −88λ+ 21α− 6β , χ(5̄2) = −4λ− 24α+ 8β ,

χ(10−1) = 92λ+ 3α− 2β, χ(15) = −315α− 470β (7.32)
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We can now evaluate the anomalies of the F-theory compactification under considera-

tion. Inserting the chiralities (7.32) into the left hand side of the anomaly constraints (2.7)–

(2.10) we obtain, using again the group theory relation of appendix A,

trfF
3 : χ(10−1) + χ(5̄2) + χ(5̄−3) = 0 , (7.33)

FmFnF k :
1

6
(−10χ(10−1) + 40χ(5̄2)− 135χ(5̄−3) + 125χ(15))

= 1800λ− 7200α− 9600β

Fmtrf (F
I)2 :

1

2
(−3χ(10−1) + 2χ(5̄2)− 3χ(5̄−3)) = −10λ− 60α+ 20β

FmtrR2 :
1

48
(−10χ(10−1) + 10χ(5̄2)− 15χ(5̄−3) + 5χ(15))

=
1

2
(15λ− 90α− 90β) ,

The anomaly is obviously completely factorized and thus of the appropriate form to be

canceled by the GS-counter terms (2.5).

Next we will show that the chirality-inducing G4-flux induces the appropriate gaugings

of 4D axion so that the GS-mechanism works to cancel the anomalies. We obtain the

gaugings induced by the G4-flux (7.30) explicitly as

Θmα = (Θm1,Θm2) = (60λ− 240β,−40λ− 240α+ 80β) (7.34)

in the basis Dα = (H,S). The determination of the GS-terms on the right hand side of

the anomaly condition is then completed by noting that the SU(5)-singularity is supported

over S, the U(1)-divisor has the expansion (7.26) and the canonical bundle of the base B3

reads KB3 = O(−4H − 3S). Thus, we obtain using λA = 1 for SU(N)

FmFnF k :
1

4
(200Θm1 + 120Θm2) = 1800λ− 7200α− 9600β (7.35)

Fmtrf (F
I)2 :

1

4λI
Θm2 = −10λ− 60α+ 20β

FmtrR2 : −
1

16
(−4Θm1 − 3Θm2) =

1

2
(15λ− 90α− 90β) .

Comparing this to (7.33) we immediately see that by the GS-mechanism all anomalies are

canceled and we obtain an anomaly-free effective theory.

8 Conclusions

In this work we have addressed anomaly cancellation in four-dimensional N = 1 F-theory

compactifications via their three-dimensional dual N = 2 M-theory reductions. The M-

theory compactification was performed on a resolved Calabi-Yau fourfold and included a

non-trivial G4-flux background. To match this M-theory configuration the four-dimensional

F-theory setup was dimensionally reduced on an extra circle. The three-dimensional effec-

tive theories have been compared in the Coulomb branch and we argued that it is crucial
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to properly integrate out massive charged matter and excited Kaluza-Klein modes in the

circle compactification. We focused on globally consistent chiral compactifications with

both non-Abelian and Abelian U(1) gauge symmetries due to space filing seven-branes.

The investigation of some key geometric properties of divisors in resolved Calabi-Yau

fourfolds was our first focus. We gave a detailed account on the intersection structure and

the appropriate identifications to lift the 3D M-theory effective action to a 4D F-theory

setup. This included an extended introduction to the geometry of seven-branes with U(1)

gauge symmetries, for example, introducing the Shioda map. Also the geometric definition

of the U(1) vectors A0, Aα, corresponding to the Kaluza-Klein vector and the duals of the

Kähler moduli axions in the 4D to 3D reduction, turned out to be crucial in the discussion

of 4D anomalies from a 3D point of view.

The intriguing interplay of geometry and couplings in the effective theory becomes

particularly apparent when aiming to demonstrate that F-theory compactifications auto-

matically cancel all 4D gauge and mixed gauge-gravitational anomalies. Two ingredients

are necessary: (1) The F-theory compactification has to be defined via a singular Calabi-

Yau fourfold that admits a Calabi-Yau resolution of, at least, all gauge group and matter

singularities. (2) A G4-flux has to be defined on the resolved Calabi-Yau fourfold in such a

way that it can be lifted to a 4D F-theory compactification, i.e. it has to obey the vanishing

conditions (3.29).

To explicitly study anomaly cancellation in F-theory we had to explore the map be-

tween M-theory and F-theory and the corresponding 3D and circle compactified 4D effective

actions. We argued that it suffices to concentrate on deriving the coefficients of the 3D

Chern-Simons terms and the coefficients of the four-dimensional topological terms F ∧ F

and R∧R. The 3D Chern-Simons terms in the M-theory reduction are induced by G4-flux.

On the circle compactified F-theory side, they admit two very different origins. They arise

either from classical 4D gaugings, or are induced at one loop by integrating out matter

fields that are massive in the 3D Coulomb branch or that arise as Kaluza-Klein modes.

We particularly focused on Chern-Simons terms involving the Kaluza-Klein vector A0

of the 4D metric. While this term has been previously neglected we showed that it can

be generated at one loop by integrating out Kaluza-Klein modes of 4D chiral matter. If

this matter is charged under an U(1) vector Am descending from four dimensions a one-

loop Chern-Simons term Θ0mA0 ∧ Fm is induced with Θ0m precisely measuring the 4D

mixed Abelian-gravitational anomaly. On the M-theory side, geometry predicts that this

coefficient is equal to the U(1) gaugings contracted with the coefficient of the topological

term R ∧ R given by the first Chern class of the base B3. This is precisely the matching

enforced by the generalized Green-Schwarz mechanism. Hence, this term can be either

used to justify anomaly cancellation for an F-theory setup with a given spectrum or used

to infer information about an unknown spectrum after specifying the G4-flux.

The mixed Abelian-gravitational anomaly allows for the most direct match of the 3D

and 4D data. The study of gauge anomalies is complicated by the fact that the chiral index,

counting the net number of matter fields in a given representation, has to be extracted from

the one-loop result of the 3D Chern-Simons terms. We demonstrated that this can be done

for a number of explicit examples. Indeed, in these geometrically realized setups one can
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check complete anomaly cancellation for each G4-flux lifting to F-theory. Our examples

included gauge groups SU(5) and SU(5) × U(1), all relevant for GUT model building.

Needless to say that our strategy is not fixed to specific examples and anomaly cancellation

will be guaranteed generally. An inversion of the one-loop result for the Coulomb branch

Chern-Simons couplings in terms of the chiral indices would shed additional light on the

mechanisms ensuring anomaly-freedom in F-theory.

Turning the story around, one can also use anomaly cancellation to derive a set of very

non-trivial conditions on the geometry of resolved Calabi-Yau fourfolds. These have been

given in (5.4) and display conditions on the intersections of the resolution spheres support-

ing M2-branes in the M-theory Coulomb branch. We have shown that these equations are

satisfied for our examples, but a direct general geometrical proof would be desirable. Fur-

ther support from a physical point of view for automatic anomaly cancellation in F-theory

can also be given in the weak string coupling limit. We have recalled that in this Type IIB

limit the cancellation of D7-brane and induced D5-brane tadpoles suffices to guarantee the

absence of 4D anomalies. Absence of anomalies in F-theory is then simply a consequence

of the fact that the construction of the elliptically fibered Calabi-Yau fourfold ensures the

cancellation of seven-brane tadpoles, while the choice of a harmonic G4 flux guarantees the

absence of 5-brane tadpoles.

In our analysis of the weakly coupled setup we also noted that general D7-brane stacks

can support geometrically massive U(1) gauge symmetries. In the F-theory effective action

derived via M-theory these U(1) gauge bosons and corresponding Stückelberg axions are

already integrated out and do not appear in the low energy spectrum. We have shown

that the projection to the reduced low energy spectrum allows to consistently match Type

IIB anomaly cancellation and F-theory anomaly cancellation. It would be interesting to

include these additional massive U(1) also into the F-theory setup and extend the analy-

sis accordingly.

Let us end by some additional observations and remarks. It is interesting to recall that

4D anomalies are only induced in the presence of G4-flux and their cancellation employs the

Green-Schwarz mechanism only in the presence of gauged U(1) symmetries. In contrast,

the coefficient bαI , b
α
m and aα in front of the 4D topological terms F ∧ F and R ∧R can be

extracted generally for any F-theory geometry without making reference to the flux G4.

Also anomalies are automatically satisfied for any G4-flux that lifts to F-theory. Follow-

ing [64] it is thus natural to conjecture that the geometric constraints are actually stronger

than the 4D low-energy constraints. The G4 fluxes can be used to probe these geometric

constraints and translate them into actual 4D anomaly cancellation conditions. It would

be interesting to further investigate the theoretical underpinnings of these observations.

Let us close by emphasizing that in this work only the match of discrete data of

topological couplings in 4D and 3D have been of importance. Indeed one expects that this

information is most uncontrollably extracted for a dimensional reduction and can be traced

through dualities. For a complete study of the effective action, however, one will also need

to face the computation of less protected N = 1 data such as the Kähler potential. While

the classical matching can be found in [48] it remains to show how corrections can be

reliably computed in the M-theory to F-theory duality.
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A Review of anomalies and the generalized Green-Schwarz mechanism

In this appendix we discuss aspects of anomalies of local symmetries and their cancellation

via the generalized Green-Schwarz mechanism in four-dimensional effective theories coupled

to gravity. The following discussion applies for a gauge theory with a generic semi-simple

non-Abelian gauge group, i.e. a product of simple gauge groups G(I), with any number

nU(1) of U(1)-factors,

G = G1 × · · · ×G(nG) ×U(1)1 × · · · ×U(1)nU(1)
. (A.1)

In any quantum field theory in D dimensions the local anomalies are characterized

in a gauge invariant way by the anomaly polynomial ID+2 of degree D/2 + 1 in the field

strength FG of G and the curvature two-form R [33]. The anomaly polynomial encodes all

the information of the anomalous one-loop diagram signalling the presence of the anomaly.

Writing the spectrum of the four-dimensional effective theory only in terms left-handed

Weyl fermions in a representation R of the gauge group G, the induced four-dimensional

anomaly takes the form

I6 =
∑

R

n(R) I1/2(R) . (A.2)

Here n(R) is the number of left-handed Weyl fermions in the representation R and we

introduce the anomaly polynomial I1/2(R) of a single left-handed Weyl fermion in a rep-

resentation R as13

I1/2(R) = trR(e
FG)Â(R) . (A.3)

The right hand side of this equation has to be read as a formal polynomial in F and R

and we denote by trR the trace in the representation R. Note that in four dimensions

anomalies are induced only by massless Weyl-fermions. The anomalies of self-dual ten-

sors and left-handed gravitinos are trivial since they only contribute purely gravitational

13Here we use the sign conventions of the fourth reference in [1–4] for the anomaly polynomial, however

with A = iA and F = iF in eq. (8.25) of this reference due to a different convention for the covariant

derivative compared to our choice in (4.18).
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anomalies that are absent in four dimensions by symmetry. We emphasize that only the

chiral index χ(R) = n(R)−n(R∗) appears in (A.2) because a left-handed Weyl fermion in

the complex conjugate representation R∗ is equivalent to a right-handed Weyl fermion in

the representation R that contributes with −I1/2(R) to the anomaly polynomial. This im-

plies that the anomaly of real representations vanishes identically. Expanding the general

polynomial (A.3) to third order in FG and R we obtain

I1/2(R) =
1

6
trR(F

3
G) +

1

48
trR(FG)trR

2 , (A.4)

where tr denotes the trace in the fundamental representation of the four-dimensional

Lorentz group SO(3, 1).

There can be a tree-level contribution to the anomaly polynomial due to gauged scalars,

the axions ρA, with an anomalous transformation and anomalous couplings in the effective

Lagrangian. This additional contribution can cancel the total anomaly polynomial (A.2) of

Weyl-fermions rendering the theory anomaly-free. However, this cancellation mechanism,

known as the generalized Green-Schwarz mechanism, is only possible if the anomaly poly-

nomial I6 factorizes appropriately. The requirement for this factorization is that on the

one hand the cubic non-Abelian anomaly in trRF
3
G that it is obviously non-factorizable has

to vanish, as discussed below. This puts a stringent condition on the spectrum of charged

chiral matter. On the other hand, for the cancellation of the factorizable terms, relations

between the anomalous couplings of the axions, their gaugings and the chiral indices χ(R)

have to hold as we will derive next.

The Green-Schwarz mechanism is a combination of two ingredients, firstly the presence

of appropriate couplings of the axions ρA and secondly gaugings of their shift symmetries.

The general form of the couplings of the axions that are topological and denoted as the

Green-Schwarz counter terms reads in the conventions of [64] as

S
(4)
GS = −

1

8

∫
2

λI
bAI ρAtrfF

I ∧ F I + 2bAmnρAF
m ∧ Fn −

1

2
aAρAtrR ∧R , (A.5)

where trf denotes the trace in the fundamental representation f of the gauge group factor

G(I), F
I is the corresponding gauge field strength of the non-Abelian gauge group G(I),

Fm the U(1)-field strength and λI = 2cG(I)
/V (adj) for cG(I)

the dual Coxeter number of

the group factor G(I) and V (adj) defined in (A.9). For example we have λ = 1 for SU(N)

and U(1). The constants bAI and aA as well as the number of axions ρA depend on details

of the considered effective theory. In an effective action from F-theory bAI , b
A
ij and aA have

been shown in [64] to be determined by the F-theory geometry as discussed in section 3 and

the number of axions is h1,1(B3)+1, where B3 is the base of the F-theory elliptic fibration.

The Green-Schwarz terms can have non-trivial gauge transformations due to possible

gaugings of the shift symmetries of the axion ρA by the U(1)-vectors in the theory. These

gaugings are specified by the covariant derivatives

DρA = dρA +ΘAmAm , (A.6)

where the constant ΘAm encode the combination of U(1)-vectors Am, m = 1, . . . , nU(1)

gauging a given shift symmetry. We note that the gaugings (A.6) in string theory are
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typically seen in the dual action where the axions ρA have been dualized into two-forms

CA. In terms of these two-forms a gauging is signalled by a coupling of the form ΘAmCA∧

Fm
U(1). Upon eliminating the CA from the action it can be shown that the covariant

derivatives (A.6) are generated.

Thus we see that the Green-Schwarz counter terms (A.5) in combination with the

gaugings (A.6) can lead to an anomalous variation of the classical effective action. The con-

tribution of this classical non-gauge invariance of the Green-Schwarz terms to the anomaly

polynomial is determined by the descend equation. First, we perform a gauge transforma-

tion of (A.5) with (A.6) to obtain the anomalous variation as

δS
(4)
GS = −

1

8

∫ (
2

λI
bAI trf(F

I)2 + 2bAmnF
m ∧ Fn −

1

2
aAtrR2

)
ΘAkλ

k (A.7)

assuming that the other terms in the action are gauge invariant. According to the rules of

the descend equation we then have to replace the gauge parameter λm by the vector poten-

tial Am since δAm
U(1) = dλm and since the other terms in (A.7) are gauge invariant. Finally,

we take the exterior derivative to obtain the contribution to the anomaly polynomial as

IGS
6 = −

1

8

(
2

λI
bAI trf(F

I)2 + 2bAmnF
m ∧ Fn −

1

2
aAtrR2

)
ΘAkF

k . (A.8)

Thus, taken the contribution IGS
6 to the anomaly polynomial into account all anomalies are

canceled, i.e. I6 + IGS
6 = 0, if the anomaly polynomial of chiral matter in (A.2) factorizes

like (A.8) with coefficients equal to bAΘAm respectively aAΘAm. This implies that relations

between the gaugings, encoded in the ΘAm, the couplings aA, bA and the chiral indices

χ(R) have to hold.

In the following we work out in detail these relations for the four possible types of

anomalies in four dimensions.

A.1 Purely non-abelian anomaly

In order to evaluate the anomaly polynomial for purely non-Abelian factors, e.g. for SU(N),

one rewrites all traces trR in (A.2), (A.4) into traces over the fundamental representation

f using

trRF
3 = V (R)trfF

3 , (A.9)

where we assume that an independent third order Casimir operator exists, which is the

case e.g. for SU(N) with N ≥ 3. Since this anomaly is non-factorizable, it has to cancel

by itself as ∑

R

n(R)V (R) = 0 , (A.10)

For example, for SU(N) the trace relations take the form

tras2F
3 = (N − 4)trfF

3 , N > 2 , (A.11)

tras3F
3 =

1

2
(N2 − 9N + 18)trfF

3 , N > 5 .

where as2, as3 is the second and third rank anti-symmetric tensor representation. In

theories without U(1)’s the condition (A.10) is the only anomaly in four dimensions since

by trRF = 0 there can be no mixed non-Abelian-gravitational anomaly in (A.4).
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A.2 Abelian and mixed anomalies

In the presence of U(1) factors in G the four-dimensional anomaly cancellation gets slightly

richer. To see this it is customary to split the field strength of G accordingly in U(1)-factors

with field strengths Fm and a purely non-Abelian gauge field F as

FG = F +

nU(1)∑

m=1

Fm . (A.12)

Upon inserting this split into the (A.4) we obtain

I1/2(R) =
1

6

(
trr(F

3) + dim(r)
(∑

m

qamFm
)3)

(A.13)

+
1

2

∑

m

qamFm

(
trr(F

2) +
1

24
dim(r)trR2

)
,

where we denoted the representation R by R = rq, with irreducible representations r, of

the purely non-Abelian gauge factor and with U(1) charges q = (q1, . . . , qk) under the nU(1)

U(1) factors. Inserting this into (A.2) we obtain the total anomaly I6 of chiral matter as

I6 =
∑

r

∑

q

n(rq)I1/2(rq) , (A.14)

where we split the sum over the non-Abelian representations r and their possibly different

U(1) charges q.

Now, taking the Green-Schwarz terms (A.5) into account we can write the anomaly

cancellation conditions as

FmFnF k :
1

6

∑

q

n(q)q(mqnqk) =
1

4
bA(mnΘk)A (A.15)

Fmtrf (F
I)2 :

1

2

∑

rI

∑

q

n(rIq)U(r)qm =
1

4λI
bAI ΘAm

FmtrR2 :
1

48

∑

q

n(q)qm = −
1

16
aAΘAm

where we now wrote the representation R in terms of representations of G(I) and the U(1)-

factors as R = (r1, . . . , rnG)q. In addition we split the non-Abelian field strength F into

its field strengths F I for each group factor G(I), F =
∑

I F
I . Furthermore, we introduced

the number of chiral multiplets n(q) respectively n(rIq) with charges q respectively in the

representation rIq . Furthermore we used trF I = 0 when evaluating

trRF =
∑

m

trRF
m = dim(R)

∑

m

qmFm , (A.16)

trRF
3 = dim(R)

(∑

I

1

dim(rI)
trrI (F

I)3

+3
∑

I,m

qm
dim(rI)

trrI (F
I)2Fm +

∑

m,k,n

qmqnqkF
mFnF k

)
,
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Finally, we expressed all traces as traces over the fundamental representation employ-

ing (A.9) and

trR(F
2) = U(R)trf (F

2) . (A.17)

For later reference we summarize the following trace relations between the fundamen-

tal representation and the rank two and rank three anti-symmetric tensor representation

of SU(N),

Tr F 2 = 2NtrfF
2 , (A.18)

tras2F
2 = (N − 2)trfF

2 ,

tras3F
2 =

1

2
(N2 − 5N + 6)trfF

2 .

Here we denote by Tr the trace in the adjoint representation of SU(N).

B Dynkin labels of SU(5) representations

The Cartan matrix of SU(5) reads

C
SU(5)
ij =




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


 . (B.1)

The Dynkin labels of the 5 of SU(5) read

5 = {(1, 0, 0, 0), (−1, 1, 0, 0), (0,−1, 1, 0), (0, 0,−1, 1), (0, 0, 0,−1)} . (B.2)

The weights of the representation are obtained by subtracting successively the rows of the

Cartan matrix of SU(5) from the highest weight Λ = (1, 0, 0, 0).

The Dynkin labels of the 10 of SU(5) are constructed from the highest weight Λ =

(0, 1, 0, 0) and read

10 = {(0, 1, 0, 0), (1,−1, 1, 0), (−1, 0, 1, 0) , (1, 0,−1, 1), (−1, 1,−1, 1),

(1, 0, 0,−1), (0,−1, 0, 1), (−1, 1, 0,−1), (0,−1, 1,−1), (0, 0,−1, 0)} . (B.3)

The complex conjugates are obtained from the highest weights Λ = (0, 0, 1, 0) and Λ =

(0, 0, 0, 1) for 10 respectively 5̄. Their Dynkin labels are the negative of the Dynkin labels

of the 10 and 5 by complex conjugation.
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