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1 Introduction and summary

During the last few years dualities between higher spin theories on AdSd+1 and weakly

coupled d-dimensional conformal field theories have attracted a lot of attention. The origi-

nal idea that dualities of this kind should appear in the free field theory limit of the usual

AdS/CFT correspondence was already noted some time ago [1–4]. However, a concrete

proposal was only made by Klebanov & Polyakov [5] (and generalised shortly afterwards

by Sezgin & Sundell [6]) who suggested that the large N limit of the O(N) vector model

in 3 dimensions is dual to Vasiliev’s (parity preserving) higher spin gravity on AdS4 [7, 8].

More recently, highly non-trivial evidence in favour of this proposal has been obtained by

comparing correlation functions of the two theories [9, 10]. By now, the structure of these

correlation functions has been understood conceptually [11, 12], and various further general-

isations (in particular to parity violating theories) have been proposed and studied [13–17].

– 1 –



J
H
E
P
0
2
(
2
0
1
3
)
0
7
0

In a somewhat different development, a lower dimensional version of this duality was

proposed in [18] and further refined in [19]. It relates a one-parameter family of higher

spin theories on AdS3 to a ’t Hooft like large N limit of 2-dimensional WN,k minimal

model CFTs.1 This proposal was inspired by the asymptotic symmetry analysis (à la

Brown-Henneaux [21]) of the higher spin theories [22, 23] (see [24, 25] for subsequent de-

velopments), and has, by now, been tested in a variety of ways [26–32]. There have also

been interesting results concerning the construction of black holes for these higher spin

theories, as well as their dual CFT interpretation [33–36].

The proposal of [18] was generalised to the case where instead of the su(N) based W-

algebras, one considers the so(2N) series [37, 38]. More recently, a N = 2 supersymmetric

generalisation has been proposed [39], relating a family of Kazama-Suzuki models [40, 41]

to the supersymmetric higher spin theory of [42, 43], and various aspects of it have been

confirmed [44–47].

As was already alluded to above, for the formulation of the original duality [18] the

determination of the asymptotic symmetry algebra of the higher spin theory [22–25] was

crucial since it defines, by the usual AdS/CFT correspondence, also the symmetry of the

dual CFT. Originally, this analysis was done classically, i.e. the algebra was determined as

a commutative Poisson algebra. However, since the resulting algebra is non-linear, i.e. a

W-algebra, the naive quantisation does not lead to a consistent Lie algebra since normal-

ordering contributions from commutators of non-linear terms spoil the Jacobi identities.

Recently, it was understood [19] how to overcome this limitation for the original bosonic

case. To this end the most general W∞ algebra with the field content predicted by the

asymptotic symmetry analysis was studied. (For the bosonic case, the algebra is generated

by one primary field for each spin s = 2, 3, 4, . . ..) It was found that the Jacobi identities

fix the structure of this algebra up to two free parameters (see also [48]): the central

charge c, as well as the coupling constant γ of the spin s = 4 field in the OPE of two spin

s = 3 fields. This is what one would have expected for the quantisation of the classical

asymptotic symmetry algebra since the latter has also two free parameters: the size of

AdS in Planck units — this is directly related to the central charge by the familiar Brown-

Henneaux relation [21] c = 3ℓ
2G — and the parameter characterising the Lie algebra hs[µ]

whose Chern-Simons theory defines the higher spin theory. In order to determine the exact

relation between γ and µ, the representation theory of the two algebras was compared

(see also [49] for earlier work), using in particular that for µ = N integer, the higher spin

algebra truncates to sl(N) ∼= hs[N ]/χN for which the quantum representation theory is

known; this then led to an explicit dictionary between γ and µ, see eq. (2.15) of [19].

As it turned out, this relation is not one-to-one, meaning that there are different val-

ues of µ — generically there are three distinct values — that lead to the same γ, and

hence to the same W∞ algebra; thus from the point of view of W∞[µ] there is a ‘triality’

of identifications. One of these identifications then implies the equivalence between the

quantum symmetry of the bulk higher spin theory, and the chiral algebra of the minimal

1This is the natural generalisation of the vector models in 3 dimensions since, for vanishing ’t Hooft

coupling, the theory is indeed equivalent to the singlet sector of a free theory [20].
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model CFTs, and thus proves an important aspect of the conjectured duality of [18]. In

fact, the equivalence even holds for finite N and k, and hence makes a prediction for the

‘quantum corrections’ of the higher spin theory that appear at finite c.

In this paper we analyse the quantum W algebra of the N = 2 supersymmetric higher

spin theory that was conjectured to be dual to the ’t Hooft limit of the Kazama-Suzuki

models in [39]. In this case, the higher spin algebra whose Chern-Simons action defines the

higher spin theory is shs[µ], which truncates, for µ = −N , to the superalgebra sl(N+1|N).

The classical asymptotic symmetry algebra was already partially determined in [45, 46], and

first steps towards analysing the quantum algebra were taken in [47], see also [50] for earlier

work. Here we follow the same strategy as in [19]: we first study the most general N = 2

supersymmetric algebra W∞ whose field content agrees with that predicted by the asymp-

totic symmetry analysis of the higher spin theory (see section 2). Due to the complexity of

the algebra, we can only study the first few commutators, but they already suggest that the

algebra W∞ is also characterised by two parameters: the central charge c, and the coupling

constant γ of the Virasoro primary spin s = 2 field W 2 in the OPE of W 2 with itself.

In order to find the relation between γ and µ we then use (in section 3) that the

Drinfel’d-Sokolov reduction of sl(N + 1|N) is equivalent to a Kazama-Suzuki model [51].

The representation theory of the Kazama-Suzuki models follows directly from their coset

description, and thus again by comparing representations, we can identify the exact rela-

tion between γ and µ, see eq. (3.30) below. We also check (see section 3.4) that the wedge

subalgebra of W∞[µ] agrees indeed with shs[µ], as has to be the case if the former is the

Drinfel’d-Sokolov reduction of the latter [52].

As in the bosonic case of [19], the relation is not one-to-one, and there are now gener-

ically four different values of µ that define the same algebra (see section 4). Among other

things this leads to the familiar level-rank duality of Kazama-Suzuki models that was al-

ready observed in [53]. More importantly in our context, the identifications also imply that

the quantum algebra W∞[λ] of the higher spin gravity theory is equivalent to the chiral

algebra of the Kazama-Suzuki models. As before, this relation does not just hold in the

’t Hooft limit, but even for finite N and k; this establishes therefore an important aspect

of the duality of [39].

The structure of the quantum W∞[µ] algebra also implies how the various representa-

tions behave as a function of c; for the case of the two minimal representations that are

dual to the scalar fields of [39] this is studied in section 4.1. Following the same logic as

in [19] this analysis suggests that in the present case both ‘scalar’ fields should be thought

of as describing non-perturbative solutions in the semiclassical limit. We also suggest a

possible explanation of this somewhat surprising conclusion.

Finally, there are three appendices where we have collected some of the more technical

material: appendix A contains the commutation relations of the modes of the low lying

fields, while in appendix B we give explicit expressions for the first few composite fields.

Finally, appendix C describes the structure constants of the superalgebra shs[µ], as well as

the relation between its generators and those of the wedge subalgebra of W∞[µ].
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2 The structure of the N = 2 W-algebras

Let us begin by studying the structure of the superconformal W-algebras that are relevant

for the N = 2 version of minimal model holography [18] proposed in [39]. These algebras,

which we shall denote by W∞ in the following, are generated, in addition to the N = 2

superconformal algebra, by a single N = 2 primary field for every integer spin s ≥ 2.

The analysis of [39, 44–47] suggests that, for each value of the central charge c, there is

a one-parameter family of such algebras that are labelled by the ’t Hooft parameter λ of

the Kazama-Suzuki models. Here we want to show that, with the above field content, the

Jacobi identities fix the algebra precisely up to two free parameters that we can identify

with the central charge c, and the self-coupling γ of the spin-2 N = 2-primary field. In the

next section we shall then explain how γ can be expressed in terms of λ and c.

Recall that each N = 2 multiplet contains 4 Virasoro primary fields. Indeed, if we

denote by W s the N = 2 primary field of spin s and U(1)-charge zero, then the four fields

are simply

W s 0 =W s , W s± = G±

− 1

2

W s , W s 1 =
1

4

(

G+
− 1

2

G−

− 1

2

−G−

− 1

2

G+
− 1

2

)

W s . (2.1)

Here we have used the usual conventions for the N = 2 superconformal algebra which we

review for the convenience of the reader in appendix A. The fields W s± have spin s + 1
2

and U(1)-charge ±1, while the field W s 1 has spin s + 1 and U(1)-charge zero. The fact

that they lie in an N = 2 multiplet means that the various components satisfy the OPEs

G±(z)W s 0(w) ∼ ∓W
s±(w)

z − w
, G±(z)W s±(w) ∼ 0 , (2.2)

G±(z)W s∓(w) ∼ ±
[

2sW s 0(w)

(z − w)2
+
∂W s 0(w)

z − w

]

+
2W s 1(w)

z − w
,

G±(z)W s 1(w) ∼ 1

2

[

(2s+ 1)W s±(w)

(z − w)2
+
∂W s±(w)

z − w

]

,

J(z)W s 1(w) ∼ s
W s 0(w)

(z − w)2
.

Using the usual expansion of fields in terms of modes

W (z) =
∑

n∈Z

Wnz
−n−h , (2.3)

where h is the conformal dimension of W , the OPEs (2.2) can also be converted into com-

mutation relations for the corresponding modes; the resulting formulae are given in (A.3).

We shall collectively denote the fields in the N = 2 multiplet (2.1) by W (s); in order

to have a coherent notation, we shall also denote the generating fields J , G±, and T of the

N = 2 Virasoro algebra by W (1).

2.1 The strategy

Next we want to study the OPEs of the fields W s α, α = 0,±, 1 with one another. These

OPEs are constrained by the requirement that they must be associative; translated into
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modes this is believed to be equivalent to the condition that the corresponding commutators

satisfy the Jacobi identity.

We shall proceed in two steps. First we present the most general ansatz for the

singular part of the OPEs W s1 α1(z)W s2 α2(w) with s1, s2 ≥ 2 that is compatible with

the full N = 2 superconformal symmetry and with the assumed spectrum of W∞. This

step is actually the technical core of our calculation: we have worked in terms of Virasoro

primaries, using the Mathematica packages OPEdefs and OPEconf of Thielemans2 [54, 55].

The compatibility with the N = 2 superconformal symmetry can then be implemented by

requiring the associativity of the OPE with the N = 2 superconformal generators. This

fixes the coefficients of the various Virasoro primaries relative to one another.

In a second step we then require that these different OPEs are associative, i.e. that

they satisfy
((

W s1 α1(x)W s2 α2(y)
)

W s2 α3(z)
)

=
(

W s1 α1(x)
(

W s2 α2(y)W s2 α3(z)
))

. (2.4)

It is believed that requiring (2.4) is equivalent to demanding the Jacobi identities

[

W s1 α1
m1

,
[

W s2 α2
m2

,W s3 α3
m3

] ]

+ cycl. = 0 for all m1,m2,m3. (2.5)

Note that in order to study (2.4), one has to work with the full OPEs, rather than just their

singular part. The precise way in which this calculation can be done is explained in detail in

the thesis of Thielemans [55]. His Mathematica package OPEdefs allows to compute these

associativity constraints very efficiently by using a built-in function called OPEJacobi.

We shall present our answers mostly in a rather compact form, namely by grouping

together the fields that appear in the same N = 2 superconformal representation. However,

as mentioned before, we have actually carried out the calculations by working in terms of

Virasoro primaries and then realising the N = 2 superconformal symmetry by solving the

W (1) ×W (s1) ×W (s2) associativity constraints.

For the case at hand, there are infinitely many N = 2 superconformal primary fields,

and therefore infinitely many associativity constraints to check. The full problem is there-

fore too hard to be solved completely. However, we have studied the low-lying OPEs in

detail, and they already suggest that there is indeed exactly one free parameter beyond

the central charge, that characterises these W∞ algebras.

2.2 Enumerating N = 2 primary fields

Before we can make the most general ansatz for the various OPEs, we first need to under-

stand how many N = 2 primary fields W∞ contains. (In particular, we need to determine

how many composite N = 2 primary fields there are.) This information can be easily read

off from the vacuum character3 of W∞

χ∞(q, z) = Tr0
(

qL0zJ0
)

=
∞
∏

s=1

∞
∏

n=s

(1 + z qn+
1

2 )(1 + z−1qn+
1

2 )

(1− qn)(1− qn+1)
. (2.6)

2The latest versions of OPEdefs and OPEconf are available directly from the author.
3In the definition of the various characters we drop for convenience the overall − c

24
exponent.
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We want to decompose χ∞(q, z) in terms of characters of irreducible N = 2 Virasoro

representations. The character of the N = 2 vacuum representation equals

χ0(q, z) =
∞
∏

n=1

(1 + z qn+
1

2 )(1 + z−1qn+
1

2 )

(1− qn)(1− qn+1)
, (2.7)

while for a generic irreducible N = 2 representation with highest weight (h,Q) with respect

to (L0, J0) we have instead

χ(h,Q)(q, z) = qh zQ
∞
∏

n=1

(1 + z qn−
1

2 )(1 + z−1qn−
1

2 )

(1− qn)2

= qh zQ
(1 + z q

1

2 )(1 + z−1q
1

2 )

(1− q)
χ0(q, z) . (2.8)

The multiplicity d(h,Q) of an N = 2 primary field with quantum numbers (h,Q) in W∞

is then simply determined by the decomposition

χ∞(q, z) = χ0(q, z) +
∑

h∈ 1

2
N

∑

Q∈Z

d(h,Q)χ(h,Q)(q, z) . (2.9)

Writing χ∞(q, z) = χ0(q, z) · χHS(q, z) with

χHS(q, z) =
∞
∏

s=2

∞
∏

n=s

(1 + zqn+
1

2 )(1 + z−1qn+
1

2 )

(1− qn)(1− qn+1)
, (2.10)

and diving the whole expression by χ0(q, z), the generating function for d(h,Q) turns out

to equal

P (q, z) ≡
∑

h∈ 1

2
N

∑

Q∈Z

d(h,Q) qh zQ =
(1− q)

(

χHS(q, z)− 1
)

(1 + z q
1

2 )(1 + z−1q
1

2 )
. (2.11)

The first few terms are explicitly

P (q, z) = q2 + q3 + 2q4 + 3q5 + (2z + 2z−1)q
11

2 + 7q6 + · · · . (2.12)

Since in W∞ there is one simple N = 2 primary field for every spin s ≥ 2, we read off

from (2.12) that the first composite N = 2 primary field appears at spin 4 and U(1) charge

zero; this field is essentially the normal ordered product of W (2) with itself. The higher

terms can be similarly interpreted.

2.3 Constraining the OPE

Let us illustrate our method with the example of the OPEs of the N = 2 supermultiplet

W (2) (whose N = 2 primary is the spin 2 field W 2). In terms of N = 2 multiplets, the

singular part of the OPE has the general form

W (2) ×W (2) ∼ n2I + c22,2W
(2) + c22,3W

(3) , (2.13)

– 6 –



J
H
E
P
0
2
(
2
0
1
3
)
0
7
0

where on the right-hand-side also the corresponding N = 2 superconformal descendants

are included (if they contribute to the singular part of the OPE).

In order to see that this is the most general ansatz recall that in the singular part of

the OPE of two Virasoro primary fields of conformal dimension h1 and h2, only Virasoro

primary fields with h ≤ h1 + h2 − 1 can appear. However, to apply this general rule to

our current context, we need to remember that each N = 2 multiplet actually contains 4

Virasoro primaries, see eq. (2.1). Thus each N = 2 OPE gives actually rise to 16 OPEs

of Virasoro primaries; the condition that an N = 2 multiplet appears in the OPE then

requires that all its 4 Virasoro primaries of eq. (2.1) appear among the 16 Virasoro primary

OPEs.4 Obviously, the N = 2 superconformal symmetry relates the structure constants of

some of these Virasoro primaries to one another, but the explicit expressions are somewhat

complicated, see [58].

Given the structure of (2.12) it follows that the singular part of the OPE can, apart

from the identity I of spin zero, at most contain the N = 2 multiplets W (s) of spin s =

2, 3, 4. The N = 2 multiplet of spin s = 4, however, cannot actually appear, since it con-

tains the Virasoro primary W 4 1 of spin s = 5. However, W 4 1 can only appear in the OPE

W 2 1×W 2 1, and then the conformal symmetry requires that the coefficient ofW 4 1
m+n in the

commutator [W 2 1
m ,W 2 1

n ] is independent of m and n. Since the commutator must be anti-

symmetric inm↔ n, the overall coefficient must therefore vanish. Thus we arrive at (2.13).

We also need to be specific about what we precisely mean by the various structure

constants, given that the N = 2 primary does not necessarily appear in the OPE of the

two N = 2 primaries. We define c22,2 by the OPE

W 2 0(z)W 2 0(w) ∼ n2
(z − w)4

+
n2

c(c− 1)

(4cT − 6J2)(w)

(z − w)2
+ c22,2

W 2 0(w)

(z − w)2
(2.14)

+
n2

c(c− 1)

(2c∂T − 6∂JJ)(w)

(z − w)
+
c22,2
2

∂W 0 2(w)

z − w
,

where we have for once given all the singular terms. (In the following we shall not be so

explicit any more, see however appendix A for the commutators of W 2α.) The structure

constant c22,3 can be similarly defined by a coefficient in the OPE

W 2 0(z)W 2−(w) ∼ c22,2
2

W 2−(w)

(z − w)2
+ c22,3

W 3−(w)

z − w
+ · · · . (2.15)

So far we have only used the constraints that come from the N = 2 superconformal

symmetry, i.e. the conditions that follow from the Jacobi identities (2.5) associated to

s1 = 1 and s2 = s3 = 2. The next step is to study (2.5) (or the associativity of (2.4)) for

s1 = s2 = s3 = 2. However, since the OPE of W (2) with itself generates W (3), we also need

to make an ansatz for W (2)×W (3). Using the same arguments as above, one finds that the

most general ansatz for the singular part of that OPE is (again the N = 2 superconformal

4Another way of saying this is that the N = 2 primary of the right-hand-side does not necessarily have

to appear in the OPE of the two N = 2 primaries on the left-hand-side. Indeed, this is the origin of the

so-called odd fusion rules of [56], see also [57].
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descendants are included where they contribute to the singular part)

W (2) ×W (3) ∼ c23,2W
(2) + c23,3W

(3) + c23,4W
(4) + a23,4A

(4) (2.16)

+ c23,5W
(5) + a23,5A

(5) ,

where A4 and A5 are the uncharged composite N = 2 primaries of spin 4 and 5, respec-

tively. Note that it would seem from (2.12) that three fields of spin 5 should generically

appear on the right-hand-side of (2.16). However, one of them is just the normal ordered

product of W 2 with W 3 (appropriately completed to make it N = 2 primary), which does

not contribute to the singular part of the OPE. The composite fields A4 and A5 have the

leading terms

A4 =
(

W 2 0
)2

+ · · · ,

A5 =W 2 0W 2 1 +
(5c− 24)

8c
W 2+W 2− − 6

c
J
(

W 2 0
)2

+ · · ·

that have to be completed to make them N = 2 primaries; explicit formulae for them are

given in appendix B. The structure constants in the ansatz (2.16) are again defined by

OPE coefficients as

W 2+(z)W 3−(w) ∼ c23,2
20W 2 0(w)

(z − w)4
+ c23,3

2W 3 0(w)

(z − w)3
− c23,4

8W 4 0(w)

(z − w)2
(2.17)

− a23,4
8A4 0(w)

(z − w)2
+ c23,5

W 5 0(w)

z − w
+ a23,5

A5 0(w)

z − w
+ · · · .

It follows from the permutation symmetry of the 3-point functions together with the N = 2

superconformal symmetry, see the appendix of [58], that we have the relation

10 c23,2 n2 = −3 c22,3 n3 , (2.18)

where ns are the normalisation constants

〈W s 0(z)W s 0(w)〉 = ns
(z − w)2s

. (2.19)

This fixes the normalisation of the other fields in the multiplet as well.

2.4 Structure constants

Now we have everything in place to study the associativity of the OPE (2.4) for s1 = s2 =

s3 = 2. The calculation is somewhat tedious, but the end result is simple: the structure

constants appearing in (2.13) and (2.16) must satisfy

c22,3 c23,2 = −6(c+ 3)(5c− 12)

5c(c+ 6)(2c− 3)
n2 −

3(c− 15)(c− 1)

10(c+ 3)(5c− 12)
(c22,2)

2 (2.20)

c23,3 =
3(c+ 6)(2c− 3)

(c+ 3)(5c− 12)
c22,2 (2.21)

c23,5 = a23,5 = 0 . (2.22)
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Before proceeding we should note that there is one non-trivial consistency check we can

easily perform: if we require all W (s) multiplets with s ≥ 3 to vanish, our algebra should

reduce to that constructed explicitly by Romans in [59]. In order to be able to decouple

all of these fields, we need in particular that c22,3 = 0 in eq. (2.13). Eq. (2.20) then fixes

c22,2 in terms of n2, and the solution coincides exactly with the one obtained in [59] if we

normalise the W 2 0 field as he does, namely with n2 =
c
2 .

Next we observe that eqs. (2.18) and (2.20) – (2.22) fix all the structure constants in

the OPEs (2.13) and (2.16), except for c22,2, c23,4 and a23,4. The fact that the latter two

structure constants are unconstrained at this stage is not surprising: it simply reflects that

we can rescale W 4 and A4 arbitrarily. (Furthermore, there is the freedom of redefining W 4

by adding to it a multiple of A4 — as a consequence, these two structure constants must al-

ways appear together in Jacobi identities [60].) Thus there is only one free parameter at this

stage, namely the structure constant c22,2. Note that our normalisation convention (2.19)

only fixes W 2 up to a sign, leading to a sign ambiguity in the definition of c22,2.

Thus the structure seems to be rather similar to that of the non-supersymmetric W-

algebra W∞[µ], that is determined (for each central charge c) by a single structure con-

stant [19], see also [48]. Reasoning by analogy with [19] we therefore conjecture that for

every value of the central charge c, there exists a one-parameter family of non-isomorphic

W∞ algebras which are parametrised by

γ = (c22,2)
2 . (2.23)

In the next section we want to relate these algebras to those that appear in the supersym-

metric minimal model holography of [39].

3 Minimal representation

In the application to minimal model holography [18, 39], the above W∞ algebras should

arise as the Drinfel’d-Sokolov (DS) reduction of the infinite dimensional Lie algebra shs[µ],

which can be constructed as

shs[µ]⊕ C =
U(osp(1|2))

〈Cosp − 1
4µ(µ− 1)1〉 . (3.1)

Here we have normalised the Casimir operator Cosp so that for the osp(1|2) representation
of dimension 4j + 1 it takes the value Cosp = j(j + 1

2). We can think of shs[µ] as

shs[µ] ∼= sl(1− µ| − µ) (3.2)

since, for µ = −N with N ∈ N, we have5

shs[−N ]/χN
∼= sl(N + 1|N) . (3.3)

Here χN is the maximal (infinite-dimensional) ideal that appears for these values of µ. Let

us denote the DS-reduction of shs[µ] by W∞[µ],

W∞[µ] ≡ Drinfel’d-Sokolov reduction of shs[µ] . (3.4)

5Note that by definition shs[−µ] ∼= shs[1 + µ].
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We want to understand how to relate γ in (2.23) to µ.

It was shown by Ito in [51] that the Drinfel’d-Sokolov reduction of sl(N + 1|N) is

equivalent to the Kazama-Suzuki coset

SU(N + 1)k × SO(2N)1
SU(N)k+1 ×U(1)κ

, (3.5)

where κ = N(N + 1)(N + k + 1), see [44] for our notation. Thus it follows that (3.5) is

equivalent to (a quotient of) W∞[−N ]. For future use we also recall that the central charge

of (3.5) equals

cN,k =
3kN

k +N + 1
. (3.6)

In order to relate γ to µ we can now use the same idea as in [19, 49]. From their coset

description, it is clear that the Kazama-Suzuki models possess minimal representations

whose Virasoro character agrees to low orders in q with

χmin(q) =
qh(1 + q

1

2 )

(1− q)

∞
∏

s=1

∞
∏

n=s

(1 + qn+
1

2 )2

(1− qn)(1− qn+1)
. (3.7)

Indeed, in the notation of [44] where the coset representations are labelled by (Λ; Ξ, l), this

is the case for the 4 representations

(f; 0, N) , (f̄; 0,−N) , (0; f,−(N + 1)) , (0; f̄, (N + 1)) , (3.8)

where f and f̄ is the fundamental and anti-fundamental representation of SU(N) or

SU(N + 1), respectively. Their conformal dimensions equal

h
(

(f; 0, N)
)

= h
(

(f̄; 0,−N)
)

=
N

2(N + k + 1)

h
(

(0; f,−(N + 1))
)

= h
(

(0; f̄, N + 1)
)

=
k

2(N + k + 1)
,

(3.9)

and all of them are ‘chiral primaries’, i.e. have Q = ±2h. Indeed, this is immediate from

their character formula (3.7), which implies that each of these representations has a null-

vector of the form G±
−1/2|h,Q〉. Furthermore, since the character has only a single state at

conformal weight h+ 1
2 , all other (−1/2)-descendants have to be proportional to G∓

−1/2P
0,

i.e. the representation generated from P 0 has to have very many null-vectors.

These null-vectors are only compatible with the commutation relations of W∞ (that

depend on γ) if h solves an equation in terms of γ and c. We can then compare this to

the solutions (3.9) that arise for µ = −N and c = cN,k, and this will allow us to determine

the N (and c) dependence of γ; analytically continuing in N will then finally lead to the

desired relation between µ and γ.

3.1 Ansatz for OPEs

Actually, it will be more convenient to work out the equation for h in terms of γ not directly

using the commutation relations (as was done in the bosonic case in [19]), but rather by
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exploiting the associativity of the OPE W (2) ×W (2) × P . (Incidentally, this is also the

approach that was taken in the original analysis of [49].) In order to do so, we first need to

translate the above statements about the structure of the P -representation, into the OPE

language. For definiteness, let us consider the case Q = +2h, so that G+
−1/2P

0 = 0, where

P 0 = |h,Q〉 is the N = 2 primary. (The case Q = −2h works analogously.) Let us also

denote the non-vanishing G−
−1/2 descendant of conformal weight h+ 1

2 by P−. The above

statements about the null-vectors then imply that we have the OPEs

G−(z)P 0(w) ∼ P−

z − w
, G+(z)P 0(w) ∼ 0 , (3.10)

G+(z)P−(w) ∼ 4hP 0

(z − w)2
+

2∂P 0

z − w
, G−(z)P−(w) ∼ 0 . (3.11)

In order to work out the most general ansatz for the OPEs of the higher spin fields

W (s) with P , we need to understand again the decomposition of the minimal representation

in terms of irreducible N = 2 representations. As before in section 2.2, this can be read

off from the character (3.7). Including the U(1)-chemical potential z, the character of the

minimal representation (with Q = 2h) has the form

χmin(q, z) = qhz2h
(1 + z−1q

1

2 )

(1− q)

∞
∏

s=1

∞
∏

n=s

(1 + zqn+
1

2 )(1 + z−1qn+
1

2 )

(1− qn)(1− qn+1)
(3.12)

= qhz2h χ0

[

(1 + z−1q
1

2 )

(1− q)
+

∑

s∈ 1

2
N

∑

Q∈Z

dmin(s,Q) qszQ
(1 + zq

1

2 )(1 + z−1q
1

2 )

(1− q)

]

,

where χ0 was defined in (2.7), and dmin(s,Q) is the multiplicity of the N = 2 representation

with conformal dimension h′ = h + s and U(1)-eigenvalue Q′ = 2h +Q. Their generating

function is now

Pmin(q, z) =
∑

s∈ 1

2
N

∑

Q∈Z

dmin(s,Q) qszQ =
χHS(q, z)− 1

1 + zq
1

2

, (3.13)

where χHS was defined in (2.10). The first few terms are explicitly

Pmin(q, z) = q2 + z−1q
5

2 + 2 q3 + 2 z−1q
7

2 + · · · . (3.14)

With these preparations, we can now make the most general ansatz for the singular part

of the OPE of P with the higher spin fields

W (2) × P ∼ w2 P , (3.15)

W (3) × P ∼ w3 P + aP (2) + b P ( 5
2
) , (3.16)

where P (2) and P ( 5
2
) are the composite N = 2 (non-chiral) primary fields corresponding to

the first two terms in eq. (3.14); their corresponding N = 2 primary states are of the form

P 2 0 =W 2 0
−2 P

0 + · · · , P
5

2
0 =W 2 0

−2 P
− − hW 2−

− 5

2

P 0 + · · · , (3.17)
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completed to make them N = 2 primary, see appendix B for the full expressions. The

parameters appearing in (3.15) and (3.16) are defined in terms of OPE coefficients of the

component fields as

W 2 0(z)P 0(w) ∼ w2

[

P 0(w)

(z − w)2
+

1

h(c− 6h)

c∂P 0(w)− 6h(JP 0)(w)

z − w

]

(3.18)

W 3 0(z)P 0(w) ∼ w3
P 0(w)

(z − w)3
+ a

P 2 0(w)

z − w
+ · · · (3.19)

W 3 0(z)P−(w) ∼ b
P

5

2
0(w)

(z − w)
+ · · · . (3.20)

In particular, w2 and w3 are therefore the eigenvalue of P 0 with respect to W 2 0
0 and W 3 0

0 ,

respectively.

3.2 Structure constants

Now we are in the position to study the associativity of the OPEs W (2) ×W (2) ×P . After

a tedious but straightforward calculation it leads to the constraints on the parameters

appearing in eqs. (3.15) and (3.16)

w2
2 =

h2(1 + 2h)(c− 6h)(c− 3 + 12h)n2
c(c− 1)[c(1− h) + 3h]

(3.21)

w3 = −12h(1 + h)(c− 1)(c+ 3)(c− 12h)(c− 6 + 18h)n2
c(c+ 6)(2c− 3)(5c− 12)[c(1− h) + 3h]c22,3

(3.22)

a =
72(1 + h)(c− 1)(c− 6 + 18h)w2

(1 + 2h)(5c− 12)(c− 6h)(c− 3 + 12h)c22,3
(3.23)

b = − 54(2h− 1)(c− 1)(c− 12h)w2

h(1 + 2h)(5c− 12)(c− 6h)(c− 3 + 12h)c22,3
. (3.24)

Furthermore, the conformal dimension h of the minimal representation must be related to

the parameter c22,2 of the W∞ algebra by

c22,2 = − 2(c+ 3)[c(1− 4h)− 12h2]w2

h(1 + 2h)(c− 6h)(c− 3 + 12h)
. (3.25)

Note that it follows that the structure constants of eqs. (3.15) and (3.16) are uniquely

determined (up to the sign of w2) by the associativity of the OPEsW (2)×W (2)×P . In terms

of the parameter (2.23) and using eq. (3.21) for w2
2, the relation (3.25) then finally becomes

γ =
4(c+ 3)2[c(1− 4h)− 12h2]2n2

(1 + 2h)c(c− 1)(c− 6h)(c− 3 + 12h)[c(1− h) + 3h]
. (3.26)

3.3 The desired relation

Next we plug into eq. (3.26) the expression for the central charge c = cN,k (3.6), and one of

the conformal dimensions h in eq. (3.9); this leads to a relation for γ in terms of N and k

γ =
8(1 + k)2(k −N)2(1 +N)2(1 + k +N)n2

(k − 1)k(N − 1)N(1 + 2k +N)(1 + k + 2N)(3kN −N − k − 1)
. (3.27)
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Note that the same formula is obtained, independent of which of the two solutions in (3.9)

one considers; this is a non-trivial consistency check on our analysis. Next we want

to replace k in favour of c; unlike the bosonic case considered in [19], here the central

charge (3.6) uniquely determines the level k, and we get

k =
c (N + 1)

3N − c
. (3.28)

Plugging this relation into eq. (3.27) we then get an expression for γ as a function ofN and c

γ = − 8(c+ 3)2(c+ 2cN − 3N2)2n2
c(c− 1)(c− 3− 6N)(N − 1)(c+ 3N)(2c− 3N + cN)

. (3.29)

Finally, we can replace N by −µ in the above equation, and analytically continue µ; this

leads to our central relation

γ(µ, c) =
8(c+ 3)2 (c− 2cµ− 3µ2)2 n2

c(c− 1)(c− 3 + 6µ)(µ+ 1)(c− 3µ)(2c+ 3µ− cµ)
(3.30)

establishing the connection between the γ-parameter of the W∞ algebra, and the µ-

parameter in W∞[µ], i.e. in the DS reduction of shs[µ]. Note that the n2 factor on the right-

hand-side simply reflects the fact that γ = (c22,2)
2 depends on the normalisation of W (2).

We should mention that the expressions (3.27), (3.29) for γ are compatible with those

obtained in [47, 50, 59] for the finitely generated algebras W∞(1, 2, . . . , N) with N = 2, 3, 4,

and conjectured in [50] for arbitrary N .

3.4 Wedge subalgebra

As another consistency check we can analyse whether the ‘wedge subalgebra’ [52] of W∞[µ]

agrees indeed with shs[µ], as must be the case if W∞[µ] is the Drinfel’d-Sokolov reduction

of shs[µ]. Recall that the wedge subalgebra of W∞[µ] is defined by restricting the modes

W s α
m to the wedge |m| < s, and taking the limit c → ∞. As can be seen from eq. (3.30),

the c→ ∞ limit of γ is zero unless we take n2 to be proportional to the central charge;

we can choose

n2 = − c
6
(µ+ 1)(µ− 2) , (3.31)

so that the structure constant c22,2 equals

c22,2 =
2√
3
(1− 2µ) +O(c−1) . (3.32)

Note that this then reproduces the result of [46]. With this normalisation convention we

have checked that the other structure constants, that are determined by the OPEs (2.13)

and (2.16) (with the coefficients given by (2.20) – (2.22)), agree indeed with those of

shs[µ]; the details are described in appendix C.
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4 Dualities

As in the bosonic case [19], the actual W∞ algebra only depends on γ and c. However,

since the map µ 7→ γ(µ, c) is not injective, there are in general different values of µ that

lead to the same γ, and hence to the same algebra. Indeed, if we fix γ and c, then (3.30)

leads to a quartic equation for µ. This means that we have a 4-fold equivalence of algebras

W∞[µ1] ∼= W∞[µ2] ∼= W∞[µ3] ∼= W∞[µ4] , (4.1)

where the relation between the four parameters takes the remarkably simple form

µ1 = µ , µ2 =
c− cµ

c+ 3µ
, µ3 =

c+ 3µ

3 (µ− 1)
, µ4 = − c

3µ
. (4.2)

Note that these relations break the classical µ 7→ 1−µ symmetry (that is obvious from the

definition of shs[µ], see (3.1)) at finite c; this is analogous to what happened in the bosonic

analysis of [19], where the µ 7→ −µ symmetry was similarly broken.

It is also useful to think about these identifications in the (N, k)-parametrisation, i.e.

in terms of the Kazama-Suzuki cosets

SU(N + 1)k × SO(2N)1
SU(N)k+1 ×U(1)κ

. (4.3)

Then we have

N1 = N , k1 = k , (4.4)

N2 = k , k2 = N , (4.5)

N3 = − N

N + k + 1
, k3 = − k

N + k + 1
, (4.6)

N4 = − k

N + k + 1
, k4 = − N

N + k + 1
. (4.7)

Note that the equivalence between (4.4) and (4.5) (and similarly between (4.6) and (4.7)) is

the familiar level-rank duality of the Kazama-Suzuki models [53]. On the other hand, the

relation between (4.4) and (4.6) explains the agreement of symmetries between the ’t Hooft

limit of the Kazama-Suzuki models, and the higher spin theory based on shs[λ] with

λ =
N

N + k + 1
. (4.8)

Indeed, (4.4) is the standard Kazama-Suzuki coset which is equivalent to (4.6), and hence to

SU(N + 1)k × SO(2N)1
SU(N)k+1 ×U(1)κ

∼= W∞[λ] for c = cN,k , (4.9)

where we have used the dictionary µ3 = −N3. In the ’t Hooft limit, this proves that the

two dual theories have equivalent symmetries, but (4.9) is actually a stronger statement

since it applies also to finite N and k.
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4.1 Analytic continuation

Given the detailed understanding of the structure of the algebra, we can also ask how the

conformal dimensions of the various representations behave in the ‘semiclassical’ regime,

i.e. for large c. This analysis is of significance in order to determine which of the states of

the CFT should correspond to perturbative or non-perturbative higher spin excitations,

respectively, see [19].

First we note that a generic W∞[µ] algebra has four minimal representations,

since (3.25) has always four solutions for h. Plugging in the expression for γ in terms of

µ and c, the four solutions are

h1 =
µ

2
, h2 =

c(1− µ)

2(c+ 3µ)
, h3 = − c

6µ
, h4 = − (c+ 3µ)

6(1− µ)
. (4.10)

As an aside, we can also write these formulae in terms of (N, k), where they take the form

h1 = −N
2
, h2 = −k

2
, h3 =

k

2(N + k + 1)
, h4 =

N

2(N + k + 1)
. (4.11)

If we fix µ and consider the semi-classical limit (c → ∞), two of the solutions in (4.10),

namely h1 and h2, are ‘perturbative’ (since they remain finite in this limit), while two

solutions, namely h3 and h4, are ‘non-perturbative’ — they are proportional to c and go

to −∞ in this limit (for 0 < µ < 1).

According to [19], the semiclassical limit is obtained by working with the higher spin

theory based on sl(N + 1|N), and taking c → ∞ while keeping N fixed. In order to

understand what happens in this limit, we should write the conformal dimensions of the

two minimal representations of the coset CFT (3.9) in terms of N and c; this leads to

h(f; 0, N) = h(f̄; 0,−N) =
N

2(N + k + 1)
=

3N − c

6(N + 1)

h(0; f,−(N + 1)) = h(0; f̄, (N + 1)) =
k

2(N + k + 1)
=

c

6N
, (4.12)

where we have used (3.6) to express k in terms of c (and N). These two solutions agree

with h3 and h4 from (4.10), (4.11) for µ = −N , and hence are both non-perturbative.

While this may sound somewhat surprising at first, it actually ties in nicely with the

results of [19].6 To see this, recall that the N = 2 multiplet based on either (f; 0) or (0; f)

actually contains a scalar field that is quantised using the alternate (−) quantisation, see

figure 3 of [44].7 From a bosonic point of view, we expect the fields with this alternate

boundary condition to become non-perturbative in the semiclassical limit [19], and thus

both N = 2 multiplets must show this behaviour, in agreement with the above. It is

tempting to speculate that the non-perturbative characteristic of these fields is related

to the fact that, in 4 dimensions, the scalar field with the alternate boundary condition

actually breaks the higher spin symmetry at finite N [62], see also [63].

Our result also suggests that the generalisation of the analysis of [30] to the super-

symmetric case should lead to more classical solutions; it would be very interesting to

confirm this.
6We thank Rajesh Gopakumar for the following suggestion.
7Incidentally, the same phenomenon also occurs in one dimension higher, see [61].
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5 Conclusion

In this paper we have analysed the structure of the W∞ algebra that underlies the higher

spin — CFT duality of [39]. This algebra is generated, in addition to the N = 2 super-

conformal algebra, by exactly one N = 2 primary field for every integer spin s ≥ 2. In

particular, we have solved the Jacobi identities arising from the first few OPEs, and we

have found that the W∞ algebra is characterised by the central charge, as well as one free

parameter that can be taken to describe the self-coupling γ of the spin s = 2 primary field.

From the point of view of the bulk AdS3 theory, W∞ should be the quantum Drinfel’d-

Sokolov reduction of the infinite superalgebra shs[µ] that appears in the Chern-Simons

description of the higher spin theory. For µ = −N , this DS algebra is equivalent [51]

to a specific Kazama-Suzuki model [40, 41], whose representation theory is known from

the coset description. By comparing representations we have determined, as in [19], the

exact relation between µ and the coupling constant γ characterising W∞, see (3.30). This

identification agrees with various results that had been previously determined in the

literature [50, 59], and it is compatible with the requirement that the wedge subalgebra of

W∞[µ] reduces to shs[µ].

It follows from (3.30) that there are generically 4 different values of µ, see (4.2), that

correspond to the same γ, and hence define the same W∞ algebra. The 4-fold equivalence

of the W∞[µ] algebras (4.1) explains, among other things, the level-rank duality [53] among

the Kazama-Suzuki cosets, see (4.4) vs. (4.5). More importantly, it also establishes the

equivalence of the quantum asymptotic symmetry algebra W∞[µ] of the higher spin theory

on AdS3, to the Kazama-Suzuki models in the duality of [39]. As in [19] this equivalence is

actually true at finite N and k, and hence makes definitive predictions about the quantum

corrections of the higher spin theory. It would be very interesting to reproduce these

quantum corrections directly from the higher spin theory.

Among other things, our improved understanding of the quantum symmetry algebra

W∞[µ] also allows us to study the semi-classical (large c at fixed µ = N) behaviour

of the two complex scalar fields that appear in the duality of [39]. Quite surprisingly,

the conformal dimension of both dual fields is proportional to the central charge, thus

suggesting that neither should be thought of as a perturbative scalar. Instead one should

expect that they have an interpretation in terms of ‘non-perturbative’ classical solutions

of the type found in [30] for the bosonic case; it would be very interesting to check this

in detail. A possible explanation for this non-perturbative behaviour of the ‘scalar fields’

is that all N = 2 matter multiplets involve a scalar that is quantised in the alternate (−)

manner; such scalars turned out to be non-perturbative in the bosonic analysis of [19].

It would be very interesting to understand this issue better, in particular, if there is a

relation to the fact that in the AdS4/CFT3 duality the scalar field with the (−) boundary

condition breaks the higher spin symmetry at finite N .
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A Commutation relations

The N = 2 Virasoro algebra is generated by the energy momentum tensor T (z), a U(1)

current J(z) and two fermionic currents G±(z). Their OPEs take the familiar form

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
,

T (z)J(w) ∼ J(w)

(z − w)2
+
∂J(w)

z − w
, T (z)G±(w) ∼ 3G±(w)

2(z − w)2
+
∂G±(w)

z − w
,

J(z)J(w) ∼ c

3(z − w)2
, J(z)G±(w) ∼ ±G

±(w)

z −m
, (A.1)

G+(z)G−(w) ∼ 2c

3(z − w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂J(w)

z − w
, G±(z)G±(w) ∼ 0 .

The commutation relations of the corresponding modes are then

[Lm, Ln] = (m−n)Lm+n+
c

12
m(m2−1)δm+n,0 ,

[Lm, Jn] = −nJm+n , [Lm, G
±
r ] =

(m

2
− r

)

G±
m+r ,

[Jm, Jn] =
c

3
δm+n,0 , [Jm, G

±
r ] = ±G±

m+r , (A.2)

[G+
r , G

−
s ] = 2Lr+s+(r−s)Jr+s+

c

3

(

r2− 1

4

)

δr+s,0 , [G±
r , G

±
s ] = 0 .

Similarly, the modes of the fields in (2.2) satisfy

[Lm,W
s 0
n ] = [(s− 1)m− n]W s 0

m+n , [Lm,W
s±
r ] =

[(

s− 1

2

)

m− r

]

W s±
m+r ,

[Lm,W
s 1
n ] = [sm− n]W s 1

m+n , [Jm,W
s 0
n ] = 0 , [Jm,W

s±
r ] = ±W s±

m+r ,

[Jm,W
s 1
n ] = smW s 0

m+n , [G±
r ,W

s 0
n ] = ∓W s±

r+n , (A.3)

[G±
r ,W

s∓
t ] = ±[(2s−1)r−t]W s 0

r+t+2W s 1
r+t , [G±

r ,W
s±
t ] = 0 ,

[G±
r ,W

s 1
n ] =

1

2
[(2s+ 1)r − n]W s±

r+n .

Finally, the complete commutators [W 2α
m ,W 2β

n ] corresponding to the OPEs (2.13) take

the form

[W 2 0
m , W 2 0

n ] =(m− n)A
[2]
m+n +

c

12
m(m2 − 1)δm+n,0

[W 2 1
m , W 2 1

n ] =
c

48
m(m2 − 1)(m2 − 4)δm+n,0 + (m− n)(2m2 −mn+ 2n2 − 8)B

[2]
m+n

+ (m− n)
(

B
[4]
m+n − 2c322W

3 1
m+n

)

[W 2 0
m , W 2 1

n ] =C
[4]
m+n + (2m− n)

(

C
[3]
m+n − c322W

3 0
m+n

)

+ (6m2 − 3mn+ n2 − 4)C
[2]
m+n +m(m2 − 1)C

[1]
m+n
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J
H
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0
2
(
2
0
1
3
)
0
7
0

[W 2+
r , W 2−

s ] =
(

D
[4]
r+s − 2c322W

3 1
r+s

)

+ (r − s)
(

D
[3]
r+s − 3c322W

3 0
r+s

)

+

(

3r2 − 4rs+ 3s2 − 9

2

)

D
[2]
r+s + (r − s)

(

r2 + s2 − 5

2

)

D
[1]
r+s

+
c

12

(

r2 − 1

4

)(

r2 − 9

4

)

δr+s,0

[W 2+
r , W 2+

s ] =E
[4]
r+s

[W 2 0
m , W 2+

r ] =
(

Φ
[7/2]
m+r − c322W

3+
m+r

)

+

(

3

2
m− r

)

Φ
[5/2]
m+r

+

(

3m2 − 2mr + r2 − 9

4

)

Φ
[3/2]
m+r

[W 2+
r , W 2 1

m ] =Ψ
[9/2]
r+m +

(

2r − 3

2
m

)

(

Ψ
[7/2]
r+m − c322W

3+
r+m

)

+

(

2r2 − 2rm+m2 − 5

2

)

Ψ
[5/2]
r+m

+

(

4r3 − 3r2m+ 2rm2 −m3 − 9r +
19

4
m

)

Ψ
[3/2]
r+m .

Here A [s], B[s], C [s], D [s], E [s] Φ[s], Ψ[s] are defined exactly as in the paper of Romans [59],

except that his coupling constant κ should be regarded as a free parameter and identified

with 1
2c22,2.

B Composite fields

In this appendix we give the explicit form of the composite N = 2 primaries that appear

in our ansatz for the OPEs (2.16) and (3.16). The main reason for doing so, besides fixing

the normalisation of their structure constants, is to provide some non-trivial expressions

that can be checked at intermediate steps of the calculation.
In our conventions, the normal ordered product O1O2 of two operators O1 and O2 is

the coefficient of the (z − w)0 term in the OPE O1(z)O2(w), see [55] for some properties
of this normal ordered product. (In particular, it is not associative.) In the expressions
below, a normal ordered product of multiple operators is always nested from the right,
i.e. O1O2 · · ·OnOn−1 := (O1(O2(· · · (On−1On) · · · ))). With these conventions, the explicit

expressions for A4, A5, P 2 and P
5

2 are

A
4 =

(

W
2 0

)2
−

9
(

22c2 − 3c+ 9
)

n2

c(c− 1)(c+ 1)(c+ 6)(2c− 3)(5c− 9)
J
4 +

18(c− 33)n2

(c+ 1)(c+ 6)(2c− 3)(5c− 9)
JG

+
G

−

−
2(c+ 3)

(

44c2 − 129c+ 99
)

n2

(c− 1)(c+ 1)(c+ 6)(2c− 3)(5c− 9)
T

2 +
12

(

22c2 − 3c+ 9
)

n2

(c− 1)(c+ 1)(c+ 6)(2c− 3)(5c− 9)
TJ

2

+
3(c− 33)cn2

(c+ 1)(c+ 6)(2c− 3)(5c− 9)
G

+
∂G

− +
9
(

4cc + 32 − 51c+ 54
)

n2

2c(c+ 1)(c+ 6)(2c− 3)(5c− 9)
(∂J)2

−
18(c− 33)n2

(c+ 1)(c+ 6)(2c− 3)(5c− 9)
∂TJ −

3(c− 33)cn2

(c+ 1)(c+ 6)(2c− 3)(5c− 9)
∂G

+
G

−

+
6
(

108− 108c− 6c2 − 25c3 + 3c4
)

n2

c(c− 1)(c+ 1)(c+ 6)(2c− 3)(5c− 9)
∂
2
JJ +

3(45 + 11c)c22,2
(5c− 12) (c2 + 18c− 51)

J
2
W

2 0

+
18(c− 33)(c− 1)c22,2

(c+ 3)(5c− 12) (c2 + 18c− 51)
JW

2 1
−

2
(

594− 477c+ 96c2 + 11c3
)

c22,2

(c+ 3)(5c− 12) (c2 + 18c− 51)
TW

2 0
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0

+
3(c− 33)(c− 1)cc22,2

2(c+ 3)(5c− 12) (c2 + 18c− 51)
G

−

W
2+

−
3(c− 33)(c− 1)cc22,2

2(c+ 3)(5c− 12) (c2 + 18c− 51)
G

+
W

2−

−
18c22,3
7c− 18

JW
3 0 +

2cc22,3
7c− 18

W
3 1

−
3
(

27− 42c+ c2 + 2c3
)

n2

(c+ 1)(c+ 6)(2c− 3)(5c− 9)
∂
2
T

−
3(c− 1)

(

108− 87c+ 10c2 + c3
)

c22,2

4(c+ 3)(5c− 12) (c2 + 18c− 51)
∂
2
W

2 0
−

(c− 33)(c− 6)n2

2(c+ 1)(c+ 6)(2c− 3)(5c− 9)
∂
3
J ,

A
5 = W

2 0
W

2 1 +
(5c− 24)

8c
W

2+
W

2−

−
6

c
J
(

W
2 0

)2
+

3(c− 4)
(

−42 + 12c+ c2
)

c22,3

4c (c2 + 26c− 75)
∂
2
W

3 0

−
27(11c− 64)c22,3
4c (c2 + 26c− 75)

J
2
W

3 0 +
3
(

−72− 47c+ 5c2
)

c22,3

4c (c2 + 26c− 75)
JW

3 1 +
9
(

72− 81c+ 17c2
)

c22,3

4c (c2 + 26c− 75)
TW

3 0

−
9
(

200− 103c+ 17c2
)

c22,3

16c (c2 + 26c− 75)
G

−

W
3+ +

9
(

200− 103c+ 17c2
)

c22,3

16c (c2 + 26c− 75)
G

+
W

3−

+
(5c− 24)c22,3

8c
∂W

3 1 +
9
(

−576− 1956c+ 257c2
)

c22,2

2c(5c− 12)(7c+ 6) (2c2 + 9c− 36)
J
3
W

2 0

+
3
(

−15552 + 4968c+ 15192c2 − 2397c3 + 64c4
)

c22,2

2c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
J
2
W

2 1 +
3(c− 15)(5c− 24)c22,2

8c(c+ 3)(5c− 12)
J∂W

2 1

−
3
(

108864− 13608c− 11178c2 + 3195c3 − 1065c4 + 242c5
)

c22,2

16c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
J∂

2
W

2 0

+

(

139968− 69336c− 42174c2 + 37809c3 − 6951c4 − 174c5 + 8c6
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
∂
2
W

2 1

−
3
(

−46656 + 193320c− 46782c2 − 16179c3 + 2333c4 + 414c5
)

c22,2

16c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
∂J∂W

2 0

−
3
(

−31104− 25056c+ 22878c2 − 10599c3 + 656c4
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
JG

−

W
2+

−
3
(

62208− 19872c− 19080c2 + 13872c3 − 3061c4 + 58c5
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
G

−

∂W
2+

+
3
(

−31104− 25056c+ 22878c2 − 10599c3 + 656c4
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
JG

+
W

2−

+
3(c− 15)(5c− 24)c22,2

8c(c+ 3)(5c− 12)
∂JW

2 1
−

27(c− 1)(5c− 24)c22,2
8c(c+ 3)(5c− 12)

T∂W
2 0

−
3
(

−31104 + 4752c+ 11052c2 − 8349c3 + 899c4
)

c22,2

2c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
TJW

2 0

−

(

15552−26136c+15570c2−2757c3+46c4
)

c22,2

4c(5c− 12)(7c+ 6) (2c2 + 9c− 36)
TW

2 1
−
(c−15)(2c−3)(5c−24)c22,2

48c(c+ 3)(5c− 12)
∂
3
W

2 0

−
3
(

−77760 + 76248c+ 41274c2 − 37695c3 + 7033c4
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
G

+
G

−

W
2 0

+
3
(

−46656 + 51624c+ 25398c2 − 24915c3 + 3427c4 + 222c5
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
G

+
∂W

2−

−
3
(

15552− 31320c+ 8442c2 + 6117c3 − 3656c4 + 315c5
)

c22,2

4c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
∂TW

2 0

+

(

93312− 42768c− 22572c2 + 15462c3 − 219c4 + 10c5
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
∂G

−

W
2+

+

(

139968 + 52488c− 3618c2 − 17667c3 + 879c4 + 850c5
)

c22,2

8c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
∂G

+
W

2−

−

(

264384− 55080c− 79812c2 + 41211c3 − 4827c4 + 199c5
)

c22,2

4c(c+ 3)(5c− 12)(7c+ 6) (2c2 + 9c− 36)
∂
2
JW

2 0

−

(

5184−11880c+7182c2−975c3−67c4+10c5
)

n2

12(c− 2)(c− 1)c(c+ 6)(c+ 12)(2c− 3)
∂
3
T−

3(c−12)
(

144−30c+19c2
)

n2

8(c−2)c(c+6)(c+12)(2c−3)
G

+
∂
2
G

−
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0

−

(

31104− 34992c+ 8856c2 + 2268c3 − 618c4 + 25c5
)

n2

2(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
T∂

2
J

+
27

(

87c3 − 386c2 + 1512c− 576
)

n2

4(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
J
2
G

+
G

−

−
3
(

53c2 − 630c− 1152
)

n2

4(c− 2)(c− 1)(c+ 6)(c+ 12)(2c− 3)
JG

+
∂G

−

−
3
(

10368 + 7344c− 7020c2 + 1344c3 + 67c4
)

n2

4(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
J∂G

+
G

−+
45(11c− 102)n2

(c− 2)(c− 1)(c+ 6)(c+ 12)(2c− 3)
TJ

3

−
9
(

−1728+1656c+102c2−439c3+45c4
)

n2

2(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
T

2
J−

3
(

−864+1692c−894c2+157c3
)

n2

(c− 2)(c− 1)c(c+ 6)(c+ 12)(2c− 3)
TG

+
G

−

+
9
(

1728+4536c−2982c2+111c3+65c4
)

n2

8(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)

(

J
′
)2
J−

3
(

−3456+5040c−1686c2−125c3+45c4
)

n2

2(c− 2)(c− 1)c(c+ 6)(c+ 12)(2c− 3)
∂TT

+
9
(

1728−1656c−102c2−71c3+10c4
)

n2

2(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
T

′

J
2
−
3(c−3)

(

3456−1008c−828c2+84c3+25c4
)

n2

4(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
∂T∂J

−

(

2592− 756c− 162c2 + 39c3 + 16c4
)

n2

(c− 2)(c− 1)c(c+ 6)(c+ 12)(2c− 3)
∂G

+
∂G

− +
3
(

6912 + 3780c− 828c2 + 55c3
)

n2

4(c− 2)(c− 1)c(c+ 6)(c+ 12)(2c− 3)
∂
2
JJ

2

+
3(c− 15)(5c− 24)n2

4(c− 1)c(c+ 6)(2c− 3)
∂
2
J∂J −

9
(

−1728 + 2232c− 258c2 − 23c3 + 5c4
)

n2

4(c− 2)c2(c+ 6)(c+ 12)(2c− 3)
∂
2
TJ

−
3(c− 3)

(

−1728 + 5112c− 1542c2 − 135c3 + 22c4
)

n2

4(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
∂
2
G

+
G

− +
9(4c+ 3)(5c− 24)n2

2(c− 1)c2(c+ 6)(2c− 3)
T∂JJ

+

(

−67392 + 50760c− 2538c2 − 465c3 − 26c4 + 5c5
)

n2

8(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
∂
3
JJ −

9(4c+ 3)(5c− 24)n2

4(c− 1)c2(c+ 6)(2c− 3)
∂JG

+
G

−

−

(

−41472 + 62208c− 32112c2 + 4050c3 + 525c4 − 117c5 + 2c6
)

n2

16(c− 2)(c− 1)c2(c+ 6)(c+ 12)(2c− 3)
∂
4
J

−
27(11c− 102)n2

(c− 2)(c− 1)c(c+ 6)(c+ 12)(2c− 3)
J
5
,

P
2 = W

2 0
P −

3(3 + 5c− 12h)w2

(c− 6h)(c+ 3− 6h)(c− 1− 4h)
J
2
P −

2
(

9c− 5c2 − 18h− 6ch+ 8c2h− 48ch2
)

w2

(c− 6h)(c− 1− 4h)(1 + 2h)(c− 3 + 12h)
TP

+
18(c− 1)

(

−c+ 3h+ 5ch+ c2h− 6h2
)

w2

(c− 6h)(c+ 3− 6h)(c− 1− 4h)h(1 + 2h)(c− 3 + 12h)
J∂P

−
3(c− 1)(c− 12h)

(

−c+ ch− 6h2
)

w2

(c− 6h)(c+ 3− 6h)(c− 1− 4h)h(1 + 2h)(c− 3 + 12h)
G

+
P

−

+
3
(

27− 33c+ 3c2 + 3c3 + 78ch− 14c2h− 468h2 + 84ch2 + 32c2h2
− 384ch3 + 1152h4

)

w2

(c− 6h)(c+ 3− 6h)(c− 1− 4h)(1 + 2h)(c− 3 + 12h)
∂JP

−
3(c− 1)

(

−9c+ 4c2 + c3 + 12ch− 72h2
)

w2

2(c− 6h)(c+ 3− 6h)(c− 1− 4h)h(1 + 2h)(c− 3 + 12h)
∂
2
P ,

and

P
5

2 = W
2 0

P
−

− hW
2−

P +
3
(

−3 + 5c+ 12h− 26ch− 36h2 + 36ch2 + 72h3
)

w2

(c− 6h)h(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
J
2
P

−

−
6
(

−3 + 5c+ 12h− 26ch− 36h2 + 36ch2 + 72h3
)

w2

(c− 6h)(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
JG

−

P

−
9(c− 1)

(

−c+ 3ch+ 6h2
)

w2

(c− 6h)h(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
J∂P

−

+
(3 + c)(3h− 1)w2

h(c− 3 + 6h)(c− 3 + 12h)
TP

− +
3(c− 1)(2h− 1)

(

−6 + c+ 6h+ 5ch+ 18h2
)

w2

(c− 6h)h(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
G

−

∂P

−
3
(

6 + 5c− 3c2 − 78h+ 7ch+ 7c2h+ 90h2
− 36ch2 + 2c2h2 + 252h3 + 36ch3

− 288h4
)

w2

2(c− 6h)h(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
∂JP

−

+
2
(

−18 + 24c− 8c2 − 3ch+ 5c2h+ 234h2
− 156ch2 + 6c2h2

− 108h3 + 36ch3
− 432h4

)

w2

(c− 6h)(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
∂G

−

P
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+
3(c− 1)(3 + c)(−2 + c+ 2h)w2

2(c− 6h)h(1 + 2h)(c− 3 + 6h)(c− 3 + 12h)
∂
2
P

−

.

C Structure constants of shs[µ]

The structure constants of shs[µ] were computed in a very explicit form in [64]; to explain

the basis that was used there, recall that the bosonic subalgebra of shs[µ] equals

shs[µ]0 ≃ hs[1− µ]⊕ hs[µ]⊕ C , (C.1)

where hs[µ] is defined as

hs[µ]⊕ C =
U(sl(2))

〈Csl − µ2−1
4 〉

. (C.2)

Using the same conventions as in [24], we denote the standard basis for hs[1−µ] by T j
m, and

the standard basis for hs[µ] by U j
m. Furthermore, the generator for the u(1) factor in (C.1)

is denoted by v. The fermionic generators of shs[µ] have eigenvalue ±1 under the adjoint

action of v; we denote the generators with eigenvalue +1 by Ψj
r, |r| ≤ j, j = 1

2 ,
3
2 , . . . , and

those with eigenvalue −1 by Ψ̄j
r. The commutation relations of shs[µ] can then be written as

[T j
m, T

j′

m′ ] =
∑

j′′,m′′

f jj
′j′′

TTT C
jj′j′′

mm′m′′T
j′′

m′′ , [U j
m, U

j′

m′ ] =
∑

j′′,m′′

f jj
′j′′

UUUC
jj′j′′

mm′m′′U
j′′

m′′ ,

[T j
m,Ψ

j′

r′ ] =
∑

j′′,r′′

f jj
′j′′

TΨΨC
jj′j′′

mr′r′′Ψ
j′′

r′′ , [T j
m, Ψ̄

j′

r′ ] =
∑

j′′,r′′

f jj
′j′′

T Ψ̄Ψ̄
Cjj′j′′

mr′r′′Ψ̄
j′′

r′′ , (C.3)

[U j
m,Ψ

j′

r′ ] =
∑

j′′,r′′

f jj
′j′′

UΨΨC
jj′j′′

mr′r′′Ψ
j′′

r′′ , [U j
m, Ψ̄

j′

r′ ] =
∑

j′′,r′′

f jj
′j′′

UΨ̄Ψ̄
Cjj′j′′

mr′r′′Ψ̄
j′′

r′′ ,

together with

{Ψj
r, Ψ̄

j′

r′} =
∑

j′′,m′′

Cjj′j′′

rr′m′′

(

f jj
′j′′

ΨΨ̄T
T j′′

m′′ + f jj
′j′′

ΨΨ̄U
U j′′

m′′

)

, (C.4)

where Cjj′j′′

mm′m′′ are the sl(2) Clebsch-Gordan coefficients and the structure constants

f jj
′j′′

AA′A′′ are those given in [64]; explicitly they are8

f jj
′j′′

TTT = (1− ǫjj
′j′′)F jj′j′′

000 (1− µ) , f jj
′j′′

UUU = (1− ǫjj
′j′′)F jj′j′′

000 (−µ) , (C.5)

f jj
′j′′

TΨΨ = −ǫjj′j′′f jj′j′′
T Ψ̄Ψ̄

, f jj
′j′′

T Ψ̄Ψ̄
= +F jj′j′′

0 1/2 1/2(−µ) , (C.6)

f jj
′j′′

UΨΨ = −ǫjj′j′′f jj′j′′
UΨ̄Ψ̄

, f jj
′j′′

UΨ̄Ψ̄
= −ǫjj′j′′F jj′j′′

0−1/2−1/2(1− µ) , (C.7)

f jj
′j′′

ΨΨ̄T
= −ǫjj′j′′F jj′j′′

1/2−1/2 0(1− µ) , f jj
′j′′

ΨΨ̄U
= −F jj′j′′

−1/2 1/2 0(−µ) , (C.8)

where ǫjj
′j′′ = (−1)j+j′−j′′ . The symbols F jj′j′′

kk′k′′(ν) were defined in [64] as a deformation

of the 6j-symbols; their arguments must satisfy |j − j′| ≤ j′′ ≤ j + j′, k′′ = k + k′, |k| ≤ j,

8Note that there is a typo (wrong sign) in eq. (27d) of [64].
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|k′| ≤ j′, |k′′| ≤ j′′. For this range of parameters one has

F jj′j′′

kk′k′′(ν) =
√

2j′′ + 1∆jj′j′′
∑

t

(−1)t
j+j′−j′′−t

∏

p=1

(ν − j′′ + k′′ − p)
t
∏

q=1

(ν + j′′ + k′′ + q)

×
√

(j + k)!(j − k)!(j′ + k′)!(j′ − k′)!(j′′ + k′′)!(j′′ − k′′)!

t!(j + j′ − j′′ − t)!(t+ j′′ − j − k′)!(t+ j′′ − j′ + k)!(j − k − t)!(j′ + k′ − t)!
,

where

∆jj′j′′ =

√

(j + j′ − j′′)!(j + j′′ − j′)!(j′ + j′′ − j)!

(j + j′ + j′′ + 1)!
.

In order to compare this basis to the wedge algebra of W∞[µ] it is convenient to rescale

all generators by the factor

αj
m =

√

(j −m)!(j +m)!

(2j)!
; (C.9)

the rescaled generators will be denoted by small letters, e.g. T j
m = αj

mt
j
m, etc. Then we

have the identifications

J0 = v , G+
r =

√
2ψ1/2

r ,

G−
r =

√
2ψ̄1/2

r , Tm = − t
1
m + u1m√

2
,

W 2 0
m =

(µ+ 1)t1m + (µ− 2)u1m√
6

, W 2+
r = −

√
2ψ3/2

r ,

W 2−
r = −

√
2ψ̄3/2

r , W 2 1
m =

t2m + u2m√
2

,

W 3 0
m =

3
[

(µ+ 2)t2m + (µ− 3)u2m
]

5
√
6c22,3

, W 3+
r = − 3ψ

5/2
r√

5c22,3
,

W 3−
r = − 3ψ̄

5/2
r√

5c22,3
, W 3 1

m =
3(t3m + u3m)

2
√
5c22,3

,

W 4 0
m =

3
√
3
[

(µ+ 3)t3m + (µ− 4)u3m
]

14
√
5c22,3c23,4

, W 4+
r = − 3

√
6ψ

7/2
r√

35c22,3c23,4
,

W 4−
r = − 3

√
6ψ̄

7/2
r√

35c22,3c23,4
, W 4 1

m =
3
√
6(t4m + u4m)

2
√
35c22,3c23,4

.

We have checked that, with these identifications and to the extent to which we have

determined the commutation relations of W∞[µ], the wedge subalgebra of W∞[µ] agrees

indeed with shs[µ]. Note that since c22,2 =
√
γ has (for c → ∞) a branch point at µ = 1

2 ,

we have to be careful about the branch of the square root we choose; we have worked

with (3.32) and restricted µ to µ < 1
2 . Furthermore, we have absorbed A(4) into the

definition of W (4), see eq. (2.16), i.e. we have set a23,4 = 0.
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