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Abstract: We explore the origins of non-geometric fluxes within the context of M theory

described as a matrix model. Building upon compactifications of Matrix theory on non-

commutative tori and twisted tori, we formulate the conditions which describe compactifi-

cations with non-geometric fluxes. These turn out to be related to certain deformations of

tori with non-commutative and non-associative structures on their phase space. Quantiza-

tion of flux appears as a natural consequence of the framework and leads to the resolution

of non-associativity at the level of the unitary operators. The quantum-mechanical nature

of the model bestows an important role on the phase space. In particular, the geometric

and non-geometric fluxes exchange their properties when going from position space to mo-

mentum space thus providing a duality among the two. Moreover, the operations which

connect solutions with different fluxes are described and their relation to T-duality is dis-

cussed. Finally, we provide some insights on the effective gauge theories obtained from

these matrix compactifications.
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1 Introduction

Superstring theories offer an attractive framework for the ultraviolet completion of our

current knowledge of nature as described by the standard model of particle physics and

general relativity for gravitational interactions. As such, there is hope that superstring

theories will ultimately account for physics both at the weak scale and at the Planck scale.

A deeper conceptual unification of superstring theories, including the several dualities

among themselves, is achieved in the context of M theory, whose full quantum-mechanical

incarnation remains however elusive. A very interesting proposal for its non-perturbative

definition was provided in ref. [1] and is known under the name of Matrix theory.

The attempt to connect superstring theories to our low-energy, four-dimensional world

traditionally involves a compactification of the ten-dimensional theory and a subsequent

dimensional reduction to four dimensions. Clearly, finding the correct vacuum which would

reproduce the standard model at low energies is not an easy task. A lot of attention in

the recent years focused on flux compactifications [2, 3], where the internal components

of p-form fields, present in string theory, acquire a vacuum expectation value. This long-

standing programme is mainly carried out in the supergravity approximation, which is the

low-energy, field theory limit of perturbative string theory.

A separate development, mainly in the direction of providing a non-perturbative def-

inition of superstring theories, arose in the context of reduced matrix models [4]. In this
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framework, the dynamical variables are represented by large Hermitian matrices which

provide the microscopic degrees of freedom of superstrings. In the case of the type IIB

superstring theory such a model was proposed in ref. [5] and it was studied further in nu-

merous instances. These range from the study of non-commutative Yang-Mills theories [6],

the structure and dimensionality of spacetime [7–9] and the emergence of geometry and

gravity [10] to applications in particle physics [11, 12] and cosmology [13, 14]. It is worth

mentioning that these studies use both analytical tools and/or Monte Carlo simulations.

A recent review of the latter with a more complete list of references is ref. [15]. More-

over, as already mentioned, the authors of ref. [1] suggested a matrix model serving as a

non-perturbative formulation of M theory, called Matrix theory.

In connection to the string compactification programme, a natural development was

the study of compactifications in the framework of Matrix theory. The first systematic

study was performed by Connes, Douglas and Schwarz in ref. [16], where toroidal compact-

ifications of Matrix theory were examined and important relations to non-commutative

geometry and non-commutative gauge theories were described. It was argued that matrix

compactifications on non-commutative tori can be related to supergravity compactifica-

tions. In particular, a constant deformation of the torus leads to a theory which is tan-

tamount to a vacuum of eleven-dimensional supergravity with constant background three-

form potential. In type IIA language, there is a reciprocal relation among the constant

non-commutativity parameter θ and a constant B-field.

The relation between non-commutativity parameters and background values of fields

raises the question whether this analogy can be extended to more general situations, i.e.,

how flux compactifications can be understood in matrix models. Conventional string com-

pactifications may include geometric fluxes and NS-NS fluxes, as well as R-R fluxes in the

type II cases [2, 3]. A first description of geometric fluxes in Matrix theory was given in

ref. [17] for the case of the three-dimensional twisted torus. This was recently revisited and

generalized to higher-dimensional twisted tori, utilizing their construction as quotients of

nilpotent Lie groups by certain discrete subgroups of them (nilmanifolds) [18]. However,

the possibility of describing NS-NS flux compactifications in this framework has not been

studied yet.1 What is more, a lot of attention was drawn recently to the so-called non-

geometric fluxes corresponding to unconventional compactifications whose origin is not yet

fully understood. Clearly, their possible role in Matrix theory was not yet addressed.

Non-geometry is intimately connected to T-duality [20–22].2 Moreover, it may be re-

lated to an unconventional type of fluxes which can be present in the effective superpotential

of a string compactification [26, 27]. A convenient way to think of such backgrounds has as

starting point a toroidal compactification of string theory on a standard torus penetrated

by a NS-NS flux Hijk. As usual, let us restrict our discussion to a three-dimensional torus,

keeping in mind that this is not a fully consistent background of string theory and has to

be appropriately extended, as discussed in ref. [28]. It serves as a toy model, whose central

properties may be directly transferred to a full-fledged vacuum. Performing a T-duality

1See however ref. [19].
2For T-duality in Matrix theory, see for example the refs. [23–25].
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along one direction of the torus the T-dual geometry is described by the three-dimensional

nilmanifold, the twisted torus, whose non-trivial spin connection serves as a geometric flux.

Such backgrounds lie in the heart of Scherk-Schwarz compactifications [29] and they were

studied systematically in [30] and more recently in [28, 31–34]. A second T-duality along

another direction of the torus takes the twisted torus background to a situation which is

globally ill-defined. The fields of the theory cannot be patched with the usual transition

functions anymore; instead this patching requires T-duality elements [35]. The situation

gets even worse when a third T-duality is considered. This bizarre situation was tackled

in the context of the doubled formalism, where an extended space is considered such that

duality transition functions become diffeomorphisms of the enlarged manifold [35]. Further

progress led to the construction of twisted doubled tori, which provided a context where

both geometric and non-geometric situations can be described [36, 37]. The above con-

nection between NS-NS flux (H), geometric flux (f) and non-geometric fluxes (Q and R

respectively) may be described by the following T-duality chain:

Hijk
Tk−→ f k

ij

Tj
−→ Q jk

i

Ti−→ Rijk. (1.1)

More recently, a ten-dimensional description of non-geometric fluxes was investigated in

the context of generalized geometry [38, 39], double field theory [40–43] and non-associative

geometry [44, 45].3

From the early studies of non-geometric backgrounds it was realized that Q fluxes

are somehow associated to non-commutativity and R fluxes to non-associativity of the

underlying space [47–50]. Recently, the emergence of non-commutative and non-associative

geometries in compactifications with non-geometric fluxes was described by Lüst from a

physically motivated perspective [51, 52]. In particular, it can be related to the properties

of a quantum-mechanical particle moving under the influence of a (non-constant) magnetic

field [53, 54]. This is also reminiscent of the Landau problem in quantum mechanics (see

for example the discussion in ref. [55]). Furthermore, the quantization of such backgrounds

was recently elaborated in ref. [56]. Such structures were also derived using conformal field

theory in ref. [57] and later also appeared in the context of asymmetric orbifolds [58].

Having already mentioned the close connection between non-commutativity and com-

pactifications of Matrix theory, it is worth examining whether non-geometric fluxes can

be traced in non-commutative and/or non-associative deformations of tori in this context.

This is the main topic of the present paper. We believe that there are some advantages in

this programme as compared to investigations of such structures directly in supergravity.

First of all, Matrix theory is inherently quantum-mechanical and phase space plays an

important role in the study of its compactifications. Secondly, supergravity, being a field

theory, does not include the stringy winding modes. This is important because in non-

geometric string backgrounds momentum modes and winding modes appear to be mixed.

Such aspects can be addressed in the non-perturbative context of Matrix theory [59, 60].

Finally, another advantage of Matrix theory over supergravity regards the quantization of

3After the first version of this paper was posted, ref. [46] appeared, where non-geometric fluxes in M

theory are discussed as well within the framework of (M-theory extended) generalized geometry.
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flux. Indeed, while in string theory charges are quantized, in supergravity, being a classical

field theory, the charges are continuous parameters [2]. On the contrary, in the context of

Matrix theory we will determine appropriate quantization conditions.

The structure of the paper is as follows. In section 2 the matrix model of Banks,

Fischler, Shenker and Susskind (BFSS) is briefly reviewed, along with its known com-

pactifications on non-commutative tori and twisted tori. The issue of the description of

non-geometric situations in Matrix theory is addressed in section 3. First, the algebraic

building blocks responsible for the non-commutative/non-associative deformations are de-

scribed in terms of operator algebras acting on the extended phase space. The way that

each algebraic block can be obtained from another one indicates how T-duality operates

on the corresponding solutions. In the process of relating such solutions we find a corre-

spondence between position and momentum space which is reminiscent of a frame choice

in generalized geometry. Furthermore, we obtain flux quantization conditions, a property

that resolves the non-associativity of unitary operators. In section 4 certain aspects of the

resulting gauge theories obtained from the compactifications of Matrix theory are discussed.

Finally, we summarize our findings in section 5.

2 The matrix model and its compactifications

2.1 The BFSS matrix model

Let us begin by briefly describing the BFSS matrix model [1]. This model, also referred to

as Matrix theory, was suggested as a non-perturbative definition of M theory. Its action,

determining the dynamics of N D0 branes in uncompactified spacetime, is given by the

following functional:

SBFSS =
1

2g

∫

dt

[

Tr
(

ẊaẊa −
1

2
[Xa,Xb]

2
)

+ 2ψT ψ̇ − 2ψTΓa[ψ,Xa]

]

, (2.1)

where Xa(t), a = 1, . . . , 9 are nine time-dependent N ×N Hermitian matrices, ψ are their

fermionic superpartners and Γa furnish a representation of SO(9). In the limit of infinite-

dimensional matrices, namely N → ∞, this matrix model is supposed to be equivalent to

uncompactified M theory. In the following we shall be concerned mainly with the bosonic

part of the above action. An important point is that this model may be thought of as

supersymmetric quantum mechanics. As such it is inherently quantum-mechanical, which

will play an important role in our discussions in the following sections.

The equations of motion resulting from the variation of the action (2.1) with respect

to Xa, setting ψ = 0, are

Ẍa + [Xb, [X
b,Xa]] = 0, (2.2)

where indices are raised and lowered with δab and therefore it does not make any difference

whether they are upper or lower. For static configurations it is clear that the first term

in (2.2) may be dropped.
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2.2 Compactification on tori

A matrix compactification on a d-dimensional torus is defined by a restriction of the matrix

action under certain periodicity conditions incorporating the cycles of the torus. Let us

restrict to the 3-dimensional case, since most of our following discussions will relate to this

number of dimensions. The generalization to any dimension is simple and straightforward.

For a T3 extending, say, in the directions X1,X2,X3, the compactification involves three

invertible unitary matrices U i acting as translation operators and leading to the conditions

Xi +Ri = U iXi(U
i)−1, i = 1, 2, 3,

Xa = U iXa(U
i)−1, a 6= i, a = 1, . . . , 9, (2.3)

where Ri are constants (times the unit matrix). In the ensuing we set these constants to

one since they may be easily reinserted at any point of the analysis.

The standard way to solve the conditions (2.3) is to introduce an auxiliary Hilbert

space H on which Xi’s and U
i’s act [16]. In the simplest case of toroidal compactification,

this is the space of periodic functions on the torus, and Xi’s and U
i’s act by multiplication.

Noticing that the conditions (2.3) can be written as the (analogue of the) Leibniz rule,

XiU
j = U jXi − δijRiU

j , one finds the solution in the following form:

Xi = iD̂i, Xm = Am(Û i), m = 4, . . . , 9,

U i = eix̂
i

, (2.4)

where the covariant derivatives are given as

D̂i = ∂̂i − iAi(Û
j). (2.5)

Moreover, one can check that the operators Qij ≡ U iU j(U i)−1(U j)−1 commute with all

Xk, and therefore they can be set to complex constants Qij = λij . The special case of

λij = 1 leads to commuting U i’s, which correspond to the case of a standard 3-torus T3.

However, in general the parameters λij 6= 1, in which case the U i’s are not commuting

operators, i.e.,

U iU j = λijU jU i. (2.6)

This case corresponds to a compactification on a non-commutative torus. The latter is

defined as the non-commutative algebra with generators U i satisfying the algebraic rela-

tion (2.6). This is understood in the spirit of non-commutative geometry, where attention

is shifted from the space itself to the algebra of functions defined on it. In the case at

hand, the commutative algebra of smooth functions on the standard torus is replaced by

the non-commutative algebra (2.6), generated by U i and being the non-commutative ana-

log of the torus. Moreover, a direct implication of the non-commutativity among the U i is

that the x̂i do not commute as well, but instead they satisfy the relation

[x̂i, x̂j ] = iθij . (2.7)

Thus, for λij = e−iθij , they may be interpreted as the coordinate operators of the non-

commutative 3-torus T3
θ, as long as they are periodic.
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On a non-commutative torus, one can introduce linear connections, such as (2.5), and

their corresponding curvature (field strength). These allow for the construction of gauge

theories on the non-commutative torus. Ai and Am, which at the level of the solution (2.4)

are arbitrary elements of the endomorphism algebra of H, source the gauge and scalar fields

of this non-commutative gauge theory. Let us note that the Ai and Am do not depend on

U i’s, but rather on another set of operators4 Û i which commute with all U i, i.e.

Û iU j = U jÛ i. (2.8)

The reason for this is the following. In the absence of Ai and Am a particular solution of

the conditions (2.3) is obtained. Then Ai and Am are added in order to obtain the general

solution. Evidently, the conditions (2.3) remain true for the general solution only if these

are endomorphisms, namely they are central to the generators of the operator algebra (2.6),

which happens when the condition (2.8) is satisfied. This means that the fields Ai and Am

indeed depend on the operators Û i. Of course, in the commutative case where λij = 1 the

Û i and the U i are identified.

The form of the operators Û i can be determined from the above properties. From the

solution (2.4) we know that the operators U i act on functions5 of H as

(U if)(x̂j) = eix̂
i

f(x̂j). (2.9)

It is then straightforward to show that the operators acting as

(Û if)(x̂j) = eix̂
i

f(x̂j + θij) (2.10)

commute with the action (2.9). Performing a series expansion of f(x̂j + θij), eq. (2.10) can

be written in the equivalent form

(Û if)(x̂j) = eix̂
i+θij ∂̂jf(x̂j). (2.11)

Therefore the Ûs may be written as

Û i = eix̂
i+θij ∂̂j , (2.12)

and they satisfy the relations

Û iÛ j = e−iθ̂ij Û jÛ i, θ̂ij = −θij . (2.13)

Thus these are also generators of a (dual) non-commutative 3-torus with deformation pa-

rameter θ̂ij , where the gauge theory lives. In the case of θij = 0 = θ̂ij the operators Û i

descent to the U i and the algebra is commutative.

4Note that the algebra of all possible operators commuting with the three U i’s is also generated by three

elements [16].
5Such functions f(x̂j) are formal power series in x̂j with defined ordering. One can represent these

algebra elements in terms of functions of commuting coordinates by mapping the basis in the algebra to

the basis of monomials of commuting coordinates.
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Let us stress that the above considerations involve the full phase space of x̂i and

p̂i = −i∂̂i and that the phase space algebra reads as

[x̂i, x̂j ] = iθij ,

[x̂i, p̂j ] = iδij ,

[p̂i, p̂j ] = 0. (2.14)

Note that the momenta are commutative and they satisfy the standard Heisenberg relation

with the coordinates, while the latter exhibit constant non-commutativity.

The constant non-commutativity among the coordinate operators, which also controls

the non-commutativity properties of the unitary operators U i and Û i, has an interesting

physical interpretation. It corresponds to turning on a background value for the 3-form

potential C(3) of 11-dimensional supergravity, which is the low-energy, field theory limit

of M theory. Indeed, Connes, Douglas and Schwarz (CDS) suggested that that the de-

formation parameters θij defining the non-commutative tori, correspond to moduli of the

11-dimensional supergravity, such that

(θ−1)ij ∝

∫

dxidxjC
(3)
ij−, (2.15)

where “−” denotes the light cone direction x− [16]. In the language of the type IIA theory,

which is obtained from 11-dimensional supergravity upon compactification on a circle, this

relation may be written as

(θ−1)ij ∝

∫

dxidxjBij , (2.16)

where the NS-NS 2-form field B of the type IIA supergravity is obtained by the 3-form

C(3) in the compactification process. We will often denote such relations as

θij
CDS
←→ Bij , (2.17)

where the left hand side is related to the BFSS matrix model and the right hand side to

type II backgrounds.

2.3 Compactification on twisted tori

Following the same reasoning as before, it is straightforward to define compactifications of

Matrix theory on twisted tori. The simplest example of a twisted torus arises for d = 3. In

that case, a (twisted) compactification is achieved by imposing and solving an appropriately

extended set of constraints, which involve again three unitary matrices U1, U2, U3 and

they are6

U iXi(U
i)−1 = Xi + 1, i = 1, 2, 3,

U1X3(U
1)−1 = X3 −NX2,

U2X3(U
2)−1 = X3 +NX1,

U iXa(U
i)−1 = Xa, a 6= i, a = 1, . . . , 9, (a, i) 6= {(3, 1), (3, 2)}. (2.18)

6Note that these constraints are slightly different than the ones presented in [18]. This is nothing but

an equivalent description of the 3-dimensional twisted torus which will render our present discussion more

practical.
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The latter constraints generalize the ones for the square torus appearing in (2.3), thus

incorporating the twist of the 3-dimensional nilmanifold T̃
3
[17, 18]. A general solution of

the above constraints is given again by eq. (2.4), with the following new features:

• The operators U i satisfy the relation

U iU j = e−iθij−iNf
ij
k
x̂k

U jU i, (2.19)

where f ijk = f ij
k are antisymmetric only in the upper two indices and the only

non-vanishing components are f123 = −f213 = 1. In fact they correspond to the

structure constants of the unique nilpotent Lie algebra in three dimensions, which

plays an important role in the construction of the twisted torus [18]. Moreover, these

parameters are also known as geometric fluxes in the language of Scherk-Schwarz

compactifications [30]. The relation (2.19) defines the operator algebra associated

with the twisted compactification (2.18).

• The components Ai must be corrected to Âi = Ai+iNf
jk

i Aj ∂̂k, which in the present

case means that only A3 has to be corrected accordingly.

• For the above solution we can find the set of Û i’s which provide the dependence of Ai

and Am and thus give the connection on a trivial gauge bundle. As already stated,

the operators U i and Û i act on a Hilbert space of states H, with elements f(x̂i).

Then the actions of the operators U i on such function is given, as before, by

(U if)(x̂j) = eix̂
i

f(x̂j).

Then it can be shown that the operators acting as

(Û if)(x̂j) = eix̂
i

f(x̂j + θij + f ijkx̂
k), (2.20)

commute with the above action. Indeed, a simple computation gives

(U iÛ jf)(x̂l) = (U ieix̂
j

f)(x̂l + θjl + f jlkx̂
k) = eix̂

i

eix̂
j

f(x̂l + θjl + f jlkx̂
k),

while

(Û jU if)(x̂l) = (Û jeix̂
i

f)(x̂l) = eix̂
j

eix̂
i+iθji+if

ji
k
x̂k

f(x̂l + θjl + f jlkx̂
k).

It is now easy to see that the Baker-Campbell-Hausdorff formula leads to the desired

commutation between U i and Û i. As before, it is convenient to rewrite eq. (2.20)

in a form that all the translations are encoded in the exponents of the operators. A

series expansion leads to the result that the hatted operators can be written as

Û i = eix̂
i

eθ
ij ∂̂j+Nf

ij
k
x̂k∂̂j . (2.21)

Moreover, the algebra of these operators is dual to (2.19), namely

Û iÛ j = eiθ
ij+iNf

ij
k
x̂k

Û jÛ i. (2.22)

As before, substituting the solution back to the original matrix model action we

obtain a gauge theory on a dual non-commutative twisted torus. We will return to

this point later in this paper.
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• Finally, the algebra of the phase space is determined to be

[x̂i, x̂j ] = iθij + iNf ijkx̂
k,

[p̂i, p̂j ] = 0,

[p̂i, x̂
j ] = −iδji − iNf

jk
i p̂k. (2.23)

It is directly observed that the momenta remain commutative, however the (previ-

ously constant) non-commutativity of the coordinates acquires a non-constant part.

This is exactly a (nilpotent) Lie algebra type non-commutativity.

Needless to mention that the formulae of the present paragraph are general, in the

sense that they retain the same form for the compactification on any higher-dimensional

nilmanifold. For example, a six-dimensional case was explicitly presented in [18], where

all the necessary data for a large class of higher-dimensional nilmanifolds may be found as

well (see also ref. [61]).

A final comment on the case of twisted tori regards the Connes-Douglas-Schwarz cor-

respondence. In the present case this translates into the statement that the non-constant

non-commutativity of the coordinate operators, controlling also the non-commutative prop-

erties of the operators U i and Û i, corresponds to turning on a geometric flux in 11-

dimensional/type IIA supergravity [31–33]. Schematically this means that

θij(x̂)
CDS
←→ f k

ij (2.24)

This relation is supported by the resulting theory, as we will discuss in section 4.

3 Non-geometric compactifications of Matrix theory

In the previous section we remembered some of the established compactifications of Matrix

theory on non-commutative tori and twisted tori. We already mentioned that these cor-

respond to compactifications in the presence of a background B-field and geometric fluxes

respectively. The natural question which immediately arises regards the implementation

of other types of fluxes in this scheme. The most standard one is of course the NS-NS

flux, which from the point of view of twisted tori corresponds to a T-dual background

with respect to the geometric flux one. However, it is by now well-known that there ex-

ist backgrounds with non-geometric fluxes formally obtained by further T-dualities of the

geometric flux background. In this section we are going to describe Matrix theory flux

compactifications with NS-NS H flux, as well as non-geometric Q and R fluxes.

Let us begin with the following observation. In the compactifications of section 2 it is

evident that apart from non-commutative coordinate operators it is necessary to consider

momentum operators as well. This leads naturally to a phase space description, reminiscent

of the quantum-mechanical structure of Matrix theory. However, in section 2 we did not

introduce explicitly the unitary operators

Ũi = eip̂i ,

– 9 –
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which are the counterparts of the operators U i in the phase space. On the auxiliary Hilbert

space these operators act as translation operators, i.e., (Ũif)(x̂
j) = f(x̂j+δij). The reason

that they were not explicitly introduced previously is that in the case of the twisted torus

they commute among themselves, as well as with the Xi and therefore they did not play

any crucial role7 up to now. In the present section we introduce these operators in order

to exploit the full potential of the phase space.

According to the above, there is now a second set of unitary operators acting on Xi.

This reminds us of the doubled formalism, which was used in order to construct the so-

called twisted doubled tori [36, 37] and provide an adequate description of non-geometric

situations in terms of the geometry of an enlarged space. This realization motivates us to

introduce also a set of “dual” Hermitian matrices X̃ i and impose on the matrices Xi and

X̃ i the conditions which describe a compactification on a twisted doubled torus.

However, it is important to note that although the introduction of the second set of

operators Ũi is natural according to the above considerations, the introduction of the dual

set of Hermitian matrices is not indispensable. In particular, these dual matrices are not

meant to introduce any additional degrees of freedom in Matrix theory. They represent

alternative possibilities for solutions of diverse compactification conditions and together

with the Ũi they formally serve as a way of bookkeeping of all operators/matrices acting

on the full phase space. We could have proceeded without X̃ i and could have determined

Ansätze for the matrices Xi which would provide meaningful compactifications for diverse

actions of the operators U i and Ũi on them. Instead, in the next two subsections we will

proceed with the doubled formulation, thus displaying the complete algebraic structure

acting on the phase space. Subsequently, in subsection (3.3) we will utilize this formulation

in order to describe the non-geometric compactifications and we will discuss the structure

of the resulting theories in terms of dynamical degrees of freedom only.

3.1 Algebraic building blocks for fluxes

Here we are going to define and solve the conditions corresponding to a flux compactification

of Matrix theory with f,H,Q and R flux. Technically the first one was already done in

section 2, but we shall reformulate it in terms of an extended set of operators, exhibiting

an analogy to the twisted doubled tori approach in supergravity. In a way this will serve

as a calibration of our formulation.

In all the following cases our solutions will have the form

Xi = i∂̂i + Âi,

X̃ i = (−1)ci x̂i + ˆ̃Ai, (3.1)

where the hat over the A and Ã denotes that these components may have to be appro-

priately corrected. In the second line we introduced a grading (−1)ci , which has to be

included in order to guarantee that the Heisenberg relation is not spoilt. Its values will be

7However, their importance lies in the fact that these operators were in fact used, together with the U i,

in constructing the operators Û i.
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given case by case in the following analysis. Moreover, the unitary operators will always

have the form

U i = eix̂
i

,

Ũi = e(−1)ci ∂̂i , (3.2)

with the same grading as above. Finally, in the present section we set the constant part

of the non-commutativity to zero, θij = 0. These parameters may be reintroduced if

necessary.

The f-block. This is the geometric flux situation, which we discussed in section 2.3

without any reference to the doubled formalism. Here we reformulate it including the

tilded sets of operators. In the supergravity framework, this case corresponds to a specific

twisted doubled torus as described in [36, 37]. Here we follow the conventions of [37].

The conditions that define the specific compactification in the matrix model framework,

analogous to the identifications for the twisted doubled torus coordinates in [37], are the

following:

U iXi(U
i)−1 = Xi + 1,

U1X3(U
1)−1 = X3 −X2,

U2X3(U
2)−1 = X3 + X1, (3.3)

and

ŨiX̃
i(Ũi)

−1 = X̃ i + 1,

Ũ3X̃
1(Ũ3)

−1 = X̃ 1 + X2,

Ũ3X̃
2(Ũ3)

−1 = X̃ 2 −X1,

U1X̃ 2(U1)−1 = X̃ 2 + X̃ 3,

U2X̃ 1(U2)−1 = X̃ 1 − X̃ 3, (3.4)

while all the combinations that do not appear in the above equations are supposed to have

the trivial form UXU−1 = X and similarly for the tilded ones. We directly observe that

the first conditions, eq. (3.3), are the same that we encountered in section 2 for the twisted

torus.

When the unitary operators have the form (3.2), then the connections appearing in

eq. (3.1) solve all the compactification conditions under the following requirements:

• The grading exponent ci has the value 1 for i = 3 and it is zero for i 6= 3.

• The algebra of {x̂i, ∂̂i} has the form

[x̂i, x̂j ] = if ijkx̂
k,

[∂̂i, ∂̂j ] = 0,

[∂̂i, x̂
j ] = δji − if

jk
i ∂̂k, (3.5)
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where only f123 = −f213 = 1 are non-vanishing. This is identical to the algebra

we determined for the single twisted torus in eq. (2.23) for θij = 0 and N = 1, as

expected.

• The gauge fields Âi and
ˆ̃Ai are given by

Âi = Ai + if jk
i Aj ∂̂k,

ˆ̃Ai = Ãi − f ik
j Akx̂

j . (3.6)

Note that Ai are functions of a set of operators Û i with the property [Û i, U i] = 0.

The above requirements fix the U - and Ũ -algebra and moreover allow us to determine

the operators Û i and their algebra. Indeed we find

U iU j = e−if
ij
k
x̂k

U jU i = f ijk(U
k)−1U jU i,

ŨiŨj = ŨjŨi,

U iŨj = e−(−1)cj f ik
j ∂̂k ŨjU

i. (3.7)

Moreover, the Û i and their algebra are identical to the ones appearing in eqs. (2.21)

and (2.22) respectively, with θij = 0.

Let us now make an important observation concerning the phase space algebra (3.5).

It is simple to check that it is in fact non-associative. One way to see this is by calculating

the double commutators

− 1 = [[p̂3, x̂
1], x̂2] 6= [p̂3, [x̂

1, x̂2]] = 1. (3.8)

Alternatively, the Jacobiator with one p̂ and two x̂ entries does not vanish:

[p̂i, x̂
j , x̂k] ≡ [[p̂i, x̂

j ], x̂k] + c.p. = −3f jki. (3.9)

In our framework this is a quantum-mechanical property, since it is a consequence of the

Heisenberg relation between the coordinate and momentum operators. Upon introducing

the quantum of action ~, it will appear multiplicatively on the right hand side of (3.9).

Thus, as ~ → 0 this non-associativity will go away. Moreover, let us stress that the

dynamical degrees of freedom, X and A, do not exhibit this type of non-associativity.

Further discussion on this point is left for section 3.4.

As we already mentioned the extended structure introduced here does not add much

to the results of the single twisted torus. Indeed, projecting to the relevant sector of Xi

we obtain the geometric flux compactification of Matrix theory. However, the present

formulation turns out to be very useful in order to account for other types of fluxes, as we

will immediately do.

The H-block. In this paragraph we are going to describe a doubled compactification

which will capture the case of a torus with H flux. Such a compactification was described

in [36, 37] in the supergravity picture. Along the lines of the f -block, the analog of this
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twisted doubled torus compactification is described in the matrix model with the following

non-trivial conditions on Xi and X̃
i:

U iXi(U
i)−1 = Xi + 1,

ŨiX̃
i(Ũi)

−1 = X̃ i + 1, (3.10)

and

U iX̃ j(U i)−1 = X̃ j +H ijkXk, (3.11)

where H ijk is fully antisymmetric.

When the unitary operators have the form (3.2), we obtain a full solution as in eq. (3.1)

under the following requirements:

• Concerning the grading exponent: ci = 0 for every i = 1, 2, 3.

• The algebra of {x̂i, ∂̂i} has the form

[x̂i, x̂j ] = H ijk∂̂k,

[∂̂i, ∂̂j ] = 0,

[∂̂i, x̂
j ] = δji . (3.12)

• The gauge fields Âi and
ˆ̃Ai are given by

Âi = Ai,

ˆ̃Ai = Ãi + iH ijkAj ∂̂k, (3.13)

i.e. Ai is not modified. Note that, as always, the Ai are functions of a set of operators

Û i with the property [Û i, U i] = 0.

According to the above, the algebras of U i and Ũ i are now fixed to be

U iU j = e−Hijk∂̂kU jU i = H ijk(Ũk)−1U jU i,

ŨiŨj = ŨjŨi,

U iŨj = ŨjU
i. (3.14)

Moreover the operators Û i, which centralize the U i ones, are

Û i = eix
i+iHijk∂̂j ∂̂k , (3.15)

and they satisfy the dual relations

Û iÛ j = eH
ijk∂̂k Û jÛ i = (H ijkŨk)Û jÛ i. (3.16)

This non-commutativity should be related to a non-vanishing background B-field. Indeed,

the commutativity of the gauge algebra is now obstructed by the parameters

θij = H ijkp̂k.
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Then, the relation θ−1 ∼ B dictates that the corresponding IIA supergravity is compactified

on a torus with non-constant B field:

B = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2, (3.17)

where xi are the toroidal coordinates. This is in accord with the results of ref. [37].

A similar observation to the previous case is that the phase space algebra (3.12) is also

non-associative. Indeed, the Jacobiator with three x̂ entries does not vanish:

[x̂i, x̂j , x̂k] = 3H ijk. (3.18)

It is very welcome that the Jacobiator is obstructed exactly by the object H, which is

associated to the NS-NS flux. Note again that the dynamical variables Xi do not feel this

non-associativity (see also section 3.4).

The Q-block. A further possibility arises when we consider the twisted doubled torus

of ref. [37] which is related to a non-geometric Q flux. This translates in the matrix model

into the following non-trivial compactification conditions:

U iXi(U
i)−1 = Xi + 1,

U1X2(U
1)−1 = X2 + X̃

3,

U1X3(U
1)−1 = X3 − X̃

2, (3.19)

and

ŨiX̃
i(Ũi)

−1 = X̃ i + 1,

Ũ2X3(Ũ2)
−1 = X3 + X1,

Ũ3X2(Ũ3)
−1 = X2 − X1,

Ũ2X̃
1(Ũ2)

−1 = X̃ 1 − X̃ 3,

Ũ3X̃
1(Ũ3)

−1 = X̃ 1 + X̃ 2, (3.20)

With the unitary operators of eq. (3.2) and the solution of eq. (3.1), the corresponding

requirements are:

• The grading exponent has the values c2 = c3 = 1 and c1 = 0.

• The algebra of {x̂i, ∂̂i} has the form

[x̂i, x̂j ] = 0,

[∂̂i, ∂̂j ] = Q k
ij ∂̂k,

[∂̂i, x̂
j ] = δji −Q

j
ik x̂

k. (3.21)

where Q k
ij is antisymmetric in its lower two indices and the only non-vanishing index

structure is Q 1
23 = 1. We directly observe the novel feature that the momenta are

now non-commutative, while presently the coordinates commute among themselves.
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• The gauge fields Âi and
ˆ̃Ai are given by

Âi = Ai + iQ k
ij Ã

j ∂̂k,

ˆ̃Ai = Ãi +Q i
jk Ã

kx̂j . (3.22)

The U - and Ũ -algebra now becomes

U iU j = U jU i,

ŨiŨj = eQ
k

ij ∂̂k ŨjŨi = (Q k
ij Ũk)ŨjŨi,

U iŨj = e−iQ i
jk

x̂k

ŨjU
i, (3.23)

where we observe that the operators U i now commute among themselves. This obviates

the need to introduce the corresponding hatted operators Û i. On the other hand, unlike

the previous cases, now the Ũi operators do not commute among themselves. Therefore,

for later use, it is instructive to introduce the hatted operators which commute with them,

i.e. [ ˆ̃Ui, Ũj ] = 0. These operators read as

ˆ̃Ui = e(−1)ci ∂̂i−Q k
ij x̂j ∂̂k (3.24)

and they satisfy an algebra dual to the one of Ũi, namely

ˆ̃Ui
ˆ̃Uj = e−Q k

ij ∂̂k ˆ̃Uj
ˆ̃Ui = Q k

ij ( ˆ̃Uk)
−1 ˆ̃Uj

ˆ̃Ui. (3.25)

As before, there is a non-associativity related to the algebra of the phase space. The

relevant Jacobiator in the present case involves one x̂ and two p̂ entries and it reads as

[x̂i, p̂j , p̂k] = 3Qi
jk. (3.26)

We observe that the Jacobiator is now obstructed exactly by Q. A novel feature is that

here the dynamical matrices Xi do not commute among themselves. This will be discussed

in the subsection 3.3.

The R-block. The last algebraic block in this series should be related to the R flux, which

is captured by the appropriate twisted doubled torus. The compactification conditions

implementing the geometry of this torus now read as

U iXi(U
i)−1 = Xi + 1,

ŨiX̃
i(Ũi)

−1 = X̃ i + 1, (3.27)

and

ŨiXj(Ũi)
−1 = Xj +RijkX̃k. (3.28)

The usual requirements which fix the solution now are:

• Grading exponent: ci = 1 for all i = 1, 2, 3.
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• The algebra of {x̂i, ∂̂i} has the form

[x̂i, x̂j ] = 0,

[∂̂i, ∂̂j ] = −iRijkx̂
k,

[∂̂i, x̂
j ] = δji . (3.29)

• The gauge fields Âi and
˜̂
Ai are given by

Âi = Ai −RijkÃ
j x̂k,

˜̂
Ai = Ãi. (3.30)

The algebra of U i and Ũi operators is now found to be

U iU j = U jU i,

ŨiŨj = e−iRijkx̂
k

ŨjŨi,

U iŨj = ŨjU
i. (3.31)

Similarly to the Q-block, the U i commute among themselves, unlike the Ũ i. Therefore we

introduce the operators centralizing the latter, i.e.

ˆ̃Ui = e−∂̂i−iRijkx̂
j x̂k

, (3.32)

which satisfy the dual algebra
ˆ̃Ui
ˆ̃Uj = eiRijkx̂

k ˆ̃Uj
ˆ̃Ui. (3.33)

Finally, the non-associativity related to the phase space algebra may be traced in the

Jacobiator involving three p̂ entries. Indeed we compute

[p̂i, p̂j , p̂k] = 3Rijk, (3.34)

thus obtaining an obstruction by R. Moreover, note that in the present case the dynamical

matrices Xi not only do not commute among themselves but they do not associate as well.

This is part of the discussion which follows in subsection 3.3.

3.2 Moving from block to block — T-duality

The four algebras which we obtained for each flux-block appear in eqs. (3.5), (3.12), (3.21)

and (3.29). Let us now explore how starting with one of them we can obtain all the rest

with appropriate transformations. Our starting point is the H-block which moreover is the

leftmost entry in the T-duality chain (1.1). It is directly observed that the algebra (3.5) of

the f -block is obtained by the H-block algebra (3.12) under the canonical transformation

x̂3 → − p̂3,

p̂3 → x̂3. (3.35)
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Equivalently, we may rewrite this transformation as
(

x̂3

p̂3

)

→

(

0 −1

1 0

)(

x̂3

p̂3

)

= −iσ2

(

x̂3

p̂3

)

. (3.36)

Similarly, we can move from the algebra of the f -block to the algebra (3.21) of the Q-block

by means of the canonical transformation

x̂2 → − p̂2,

p̂2 → x̂2, (3.37)

while the transformation from the Q-block algebra to the R-block one is similarly given by

x̂1 → − p̂1,

p̂1 → x̂1. (3.38)

Defining the six-dimensional column vector

q̂i :=

(

x̂i

p̂i

)

,

the above transformations are realized by the following six-dimensional matrices

MH→f =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0



















,Mf→Q =



















1 0 0 0 0 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1



















, (3.39)

and

MQ→R =



















0 0 0 −1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















(3.40)

respectively. Additionally, one may define the matrix which directly connects the starting

H-block to the R-block. This is just the multiplication of the above three matrices and it

is given as

MH→R =



















0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



















. (3.41)
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The above phase space transformations connect the algebraic blocks in the way we dis-

cussed. On the other hand we know that the solutions corresponding to each block should

be related among themselves by T-dualities, in the spirit of the chain (1.1). However, it

is evident that the above matrices are not elements of the T-duality group. Thus, these

canonical transformations are not directly associated to T-dualities. At this point the

grading operator that we introduced in (3.1) comes into play. Let us consider the unitary

operators U i and Ũi on equal footing by the column

(

U i

Ũi

)

=

(

eix̂
i

e(−1)ci ip̂i

)

:= e(−1)ĉi iq̂i ,

where we introduced the grading operator (−1)ĉi , representing the action of (−1)ci on all

the unitary operators. If we represent this grading operator by a six-dimensional matrix

acting on the column vector q̂i, then for the H-block it is just

(−1)ĉiH = 1l6,

where 1l6 denotes the unit matrix in six dimensions. For the f -block this operator has the

diagonal form

(−1)ĉif = diag(1, 1, 1, 1, 1,−1), (3.42)

and similarly for the other two blocks,

(−1)ĉiQ = diag(1, 1, 1, 1,−1,−1), (3.43)

(−1)ĉiR = diag(1, 1, 1,−1,−1,−1). (3.44)

Therefore we now have at hand two operations, namely the canonical transformations given

by the matrices M , which connect just the algebraic building blocks, and the gradings

(−1)ĉi , which preserve the Heisenberg relation. When we move from one block to the other

it is the combined action of these two operations that connects one solution to another. Let

us consider for example the case of moving from the H- to the f -block. The corresponding

operation is

MH→f · (−1)
ĉi
f =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0



















:= T3. (3.45)

The latter, T3, is an element of the compact subgroup of the T-duality group and generates

(at least formally) a T-duality along the x3 direction of the torus, thus leading to the

corresponding twisted torus without H flux. This way one can explain the T-duality

chain (1.1) in the present framework.
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The above results can be represented as in the following diagram:

H
T3←→ f

T2←→ Q
T1←→ R

x







y

x







y

x







y

x







y

θ(p̂)
MH→f ·(−1)

ĉi
f

←→ θ(x̂)
Mf→Q·(−1)

ĉi
Q

←→ θ̃(p̂)
MQ→R·(−1)

ĉi
R←→ θ̃(x̂)

The vertical arrows denote the CDS correspondence, i.e. they connect a compactification

of the matrix model to a compactification of low-energy supergravity. The upper horizon-

tal arrows denote T-duality among supergravity vacua, while the lower horizontal arrows

denote the operations in the matrix model which correspond to these T-dualities. The

matrix model solutions are represented by the non-commutativity parameters

θij = [x̂i, x̂j ], (3.46)

θ̃ij = [p̂i, p̂j ], (3.47)

whose dependence appears in the parentheses.

Finally, it is worth mentioning the case when one moves directly from the H-block

to the R-block. According to the above rule, the T-duality should be achieved by the

operation

MH→R · (−1)
ĉi
R =

(

0 1l3
1l3 0

)

, (3.48)

which is indeed also an element of the T-duality group.

3.3 Position/momentum space duality

The doubled formulation of section 3.1 motivated the introduction of the additional Her-

mitian matrices X̃ i, which facilitated the implementation of twisted doubled tori in the

present framework. However, these matrices should not be really dynamical degrees of

freedom, since they are not present in Matrix theory.8 Thus we would like here to re-

strict the previous formulation to the subsectors which contain only the true dynamical

components. This procedure is similar to the so-called “polarizations” of [36].

Let us warm up this discussion with the case of the geometric flux f , which was

presented both as a twisted torus in section 2.3 and as a twisted doubled torus in section

3.1. As we already mentioned, the overlapping non-trivial compactification conditions

and the phase space algebras in these two cases fully coincide, as well as the form of the

dynamical matrices Xi. This directly shows that there is a trivial projection from one to

the other. In a way, the introduction of X̃ i is totally redundant in this case.

8However, note that they could be thought of as coexisting sectors of Matrix theory, i.e. different multi-

brane solutions which are combined block-diagonally as e.g. in ref. [12]. Moreover, it is conceivable that

X̃
i may be part of a “doubled matrix model”, which could serve as a non-perturbative definition of double

field theory [62]. We shall not explore further these possibilities in the present paper.
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Turning to the H-block, which is related to an NS-NS flux background in the super-

gravity picture, it is again plausible to determine a well-defined projection to a single torus.

Indeed, we can consider only the non-trivial conditions

U iXi(U
i)−1 = Xi + 1, (3.49)

dressed with the commutation relation

U iU j = e−Hijk∂̂kU jU i (3.50)

for the operators U i. The conditions (3.49) define a compactification of matrix theory on

a torus, while the relation (3.50) indicates that the algebra of functions on this torus is

deformed, its non-commutativity being controlled by H ijk. We already discussed that this

non-commutativity is related to the presence of a non-vanishing and non-constant B-field.

The next and more interesting situation is the Q-block. Can we define a projection

from the twisted doubled torus to a single toroidal-like compactification? Or, alternatively,

can we define a legitimate Matrix theory compactification based on the algebra (3.21)?

Suppressing for a moment the Ai part in the connections, let us examine what happens for

the standard form of the solutions, i.e. when Xi = i∂̂i and U
i = eix̂

i
. It is straightforward

to obtain

U1X2(U
1)−1 = X2 − x̂

3. (3.51)

This is a bizarre relation which at first sight does not seem to have a clear interpretation

apart from the one in the extended context of twisted doubled tori, where the x̂3 is actually

X̃ 3. Furthermore, presently the operators U i commute among themselves, which makes

the situation even more obscure.

In order to clarify the above situation let us make the following observations. Define

the deformation parameters

θij |f = f ijkx̂
k, (3.52)

θ̃ij |Q = Q k
ij p̂k, (3.53)

in obvious notation. There is already a flavour of duality in these relations, which is

intensified by looking at the U/Ũ relations:

f : U iU j(U i)−1(U j)−1 = f ijk(U
k)−1, ŨiŨj = ŨjŨi, (3.54)

Q : ŨiŨj(Ũi)
−1(Ũj)

−1 = Q k
ij Ũk, U iU j = U jU i, (3.55)

It is then clear that the structure of U i in the f -block mimics the structure of Ũi in the

Q-block and vice versa. Thus we can argue that the projection which defines a compactifi-

cation of Matrix theory in the Q-block case is the one to the tilded subsector. In particular,

we consider the tilded quantities X̃ i and Ũi with the conditions

ŨiX̃
i(Ũi)

−1 = X̃ i + 1,

Ũ2X̃
1(Ũ2)

−1 = X̃ 1 − X̃ 3,

Ũ3X̃
1(Ũ3)

−1 = X̃ 1 + X̃ 2. (3.56)
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The dynamical matrices are now the X̃ i instead. This compactification is now the twisted

torus compactification on the dual space to the one operating in the case of the geometric

flux f . More specifically, let us recall that in the position representation of quantum

mechanics the classical variables are mapped to Hermitian operators as

x→ x̂, p→ p̂ = −i~
∂

∂x
, (3.57)

while in the momentum representation the correspondence is

x→ x̂ = i~
∂

∂p
, p→ p̂. (3.58)

This simple observation shows that there is an exact correspondence between geometric f

flux in the position space and non-geometric Q flux in the momentum space:

θij |f in x̂-space ←→ θ̃ij |Q in p̂-space .

There is a final case which one would like to project, that of the R-block. As expected,

this exhibits similar features to the Q-block case and it has to be interpreted as above. In

particular, assuming the algebra (3.29) with Xi = i∂̂i and U
i = eix̂

i
, we obtain

U iXi(U
i)−1 = Xi + 1, (3.59)

U iU j = U jU i. (3.60)

This might seem a totally well-defined compactification, i.e. a compactification on a stan-

dard torus such as the ones we referred to in section 2.2 with θij = 0. However, the

situation is not as simple as this since it turns out that in the present case the dynamical

matrices Xi are non-associative:

[Xi,Xj ,Xk] 6= 0. (3.61)

This is rather expected in view of the known properties of non-geometric compactifica-

tions [47–50], but it is awkward to think that a set of Hermitian matrices does not satisfy

the Jacobi identity. In fact it is then impossible to represent them on a Hilbert space. The

discussion of the Q-block comes to the rescue, since we can instead consider the projection

to the tilded sector, which satisfies the conditions

ŨiX̃
i(Ũi)

−1 = X̃ i + 1, (3.62)

with

ŨiŨj = eRijkx̂
k

ŨjŨi. (3.63)

This comes on a dual footing to the H-block case. In particular, the relevant deformation

parameters are

θij |H = H ijkp̂k, (3.64)

θ̃ij |R = Rijkx̂
k. (3.65)
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Thus there is an exact correspondence between NS-NS H flux in the position space and

non-geometric R flux in the momentum space:

θij |H in x̂-space ←→ θ̃ij |R in p̂-space .

In the momentum space the compactification related to the R-block is well-defined and

moreover the dynamical matrices are associative.

Summarizing,

• In position space, there are well-defined compactifications of Matrix theory with non-

constant non-commutativity θij among the coordinate operators, which is related to

the presence of geometric or NS-NS fluxes in the corresponding supergravity com-

pactifications. The compactifications related to the Q- and R-algebras which exhibit

non-commutativity among the momentum operators are not well-defined.

• In momentum space, the compactifications with non-commutativity θ̃ij among the

momentum operators are well-defined and they correspond to supergravity with Q

and R fluxes. The cases based on theH- and f -algebras are presently not well-defined.

The situation we just described has a very similar incarnation in low-energy supergravity.

The authors of refs. [38, 39] studied non-geometric compactifications from the perspective

of generalized geometry [63, 64]. They showed that while non-geometric configurations

are ill-defined in a frame where the generalized metric is parametrized by the B-field Bij ,

they become well-defined in another frame where the generalized metric is parametrized

by the antisymmetric bivector βij of generalized geometry. In the second frame, geometric

configurations are instead ill-defined. This means that one has to choose the appropriate

generalized vielbein which would yield the correct, i.e. well-defined, Lagrangian for each

configuration.

The above discussion allows us to make the reasonable speculation that just as the

deformation parameter θ is related to the B-field via

θij ∼ (Bij)
−1, (3.66)

there should exist a similar dependence among the deformation parameter θ̃ and the bivec-

tor β of generalized geometry as

θ̃ij ∼ (βij)−1. (3.67)

The latter relation should be studied in detail by comparison of the corresponding effective

actions.

Moreover, let us remind that in supergravity f is a (spin) connection and H is a tensor

field. The above duality between position and momentum space in the matrix model

indicates that in momentum space Q should instead be a connection and R should be a

tensor field. A similar observation was made in [39].

A final remark regards the index structure of the encountered quantities. Observe that

the indices in the T-duality chain (1.1) are in exactly the opposite position to the corre-

sponding parameters in the phase space algebras. Recall that the former are related to the

supergravity picture while the latter to the matrix model picture. Then the relations (3.66)

and (3.67) explain the above index structure.
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3.4 Resolution of non-associativity and flux quantization

Let us now make some important remarks regarding the non-assocativity we encountered

above. First of all, we could say that there are two types of non-associativity which have

to be treated differently. The first type is the one among the dynamical degrees of freedom

Xi. This issue was already discussed in the previous subsection within position-momentum

space duality. We saw that in the appropriate representation, where the compactification

is well-defined, there is no sign of non-associativity. In particular, for the R-type solution

in momentum space the dynamical degrees of freedom are perfectly associative.

However, there is a second type of non-associativity which we have not discussed in

detail so far. This has a common origin to the first one, i.e. the phase space algebra, but it

regards the non-dynamical algebraic elements U i. Indeed, let us look at the H-block, with

algebra (3.12) and commutation relation among the U i as in eq. (3.50). It is straightforward

to compute that

U i(U jUk) = e
i
2
Hijk

(U iU j)Uk. (3.68)

This relation should be thought of as an anomalous 3-cocycle. Indeed, exactly the same

relation may be found in [54], where its appearance in a physical system is discussed.

However, such a 3-cocycle cannot be tolerated. In the words of Jackiw, “It is important

to appreciate that non-associating quantities cannot be represented by well-defined linear

operators, acting on a vector or Hilbert space, since by definition operators on vectors nec-

essarily associate” (see page 19 of ref. [54]). The resolution of this problem leads naturally

to a Dirac quantization condition. Requiring associativity to be restored in eq. (3.68) we

directly obtain

H ijk = 4πn, n ∈ Z. (3.69)

Therefore we observe that the analog of the H flux in the framework of Matrix theory has

to obey a quantization condition. This is very plausible because in string theory fluxes

have to be quantized [2].

Let us move on to the geometric flux and examine what happens in this case. Taking

into account the algebra (3.5) and the commutation relation among the operators U i, we

obtain

U i(U jUk) = (U iU j)Uk, (3.70)

namely the present situation is already associative. This is expected, since the f flux does

not arise from a p-form source, but it is a metric flux.

As far as the Q and R cases are concerned, there is not much to add. As we already

discussed above, they provide well-defined solutions in the momentum space, where they

play the corresponding role of f and H. Therefore, R obeys a quantization condition much

like H, while for Q the corresponding operators already associate.

It should be noted that apart from the above operators, associativity should be guaran-

teed for the gauge fields A of each solution. These are functions of the hatted operators Û i,

which associate whenever the unhatted ones do. Therefore, the above discussion applies

equally well for the gauge fields too.
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Let us mention that in the recent ref. [65] and in the context of double field theory it

is found that large gauge transformations do associate even in cases when the coordinate

maps do not. It is notable that this exhibits a similarity to our present discussion in a

rather different framework.

3.5 Putting the blocks together

It is well-known that in supergravity it is possible to consider compactifications where

different types of fluxes coexist.9 For example one can consider simultaneously geometric

and NS-NS fluxes, i.e. a twisted torus penetrated by an H flux. Therefore it is reason-

able to ask whether the different algebraic blocks described above may be combined to

yield Matrix theory compactifications with a superimposition of deformation parameters θ

and/or θ̃. This question boils down to the attempt of defining and solving the appropriate

compactification conditions which would yield the general phase space algebra

[x̂i, x̂j ] = if ijkx̂
k +H ijk∂̂k,

[∂̂i, ∂̂j ] = Q k
ij ∂̂k − iRijkx̂

k,

[∂̂i, x̂
j ] = δji −Q

j
ik x̂

k − if jki∂̂k. (3.71)

In the doubled formalism of section 3.1, the form of Xi, U
i and the corresponding tilded ones

leads to some compactification conditions which combine all the blocks that we discussed

in section 3.1. Although these conditions define some non-commutative twisted doubled

torus, for Matrix theory we would like to have a projection on a single set of dynamical

variables (see, however, footnote 3). Let us now discuss some of them.

A first possibility is to consider Xi as the Matrix theory variables. This choice includes

the first two projections of section 3.3 but it also allows for the combination of the two.

This amounts to the deformation parameters

θij = H ijkp̂k + f ijkx̂
k, θ̃ij = 0. (3.72)

The first term in θ corresponds to a non-constant B-field, while the second term to a

geometric flux. Thus, this situation would be related to a twisted torus with NS-NS flux

in supergravity.

Equally well we could project to the X̃i sector, which would now provide the dynamical

variables of Matrix theory. This choice includes the latter two projections of section 3.3,

as well as their combination. As discussed above, both these projections are ill-defined in

x̂-space but they become well-defined in p̂-space. The deformation parameters are now

θij = 0, θ̃ij = Q k
ij p̂k +Rijkx̂

k, (3.73)

and in p̂-space they define a Matrix theory compactification analogous to a supergravity

background with Q and R fluxes.

9Usually this is indispensable in order to obtain a true string vacuum solving the string equations of

motion, which is not the case for the toy model of a twisted 3-torus. R-R fluxes are then important too,

but we will not discuss them here.
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It is not clear how one could combine all the fluxes in a single case. One possibility

would be to consider the sum of two twisted tori, T̃
3
A ⊕ T̃

3
B and associate the Hermitian

matrices Xi to the first twisted torus and the matrices Xi+3 to the second one, for i = 1, 2, 3.

Then one could think of using the solution related to the eq. (3.72) on the first torus and

the solution associated to eq. (3.73) on the second. This is a legitimate possibility but its

interpretation is rather obscure and therefore we would not like to pursue it further in the

present paper.

4 Remarks on the gauge theory

In the previous section we determined several types of solutions of Matrix theory com-

pactified on deformed tori. In the prototype example of a torus with constant non-

commutativity, when the solution is substituted back into the original action functional

the effective action describes a non-commutative gauge theory coupled to scalars and

fermions [16]. This resulting action was subsequently compared to the action of a string

moving in the background of a constant B-field. This comparison further supports the cor-

respondence between non-commutativity parameters and background field values [66–68].

Generically, the compactification of the matrix model on a standard 3-torus will lead

to the following tree-level effective action:

Seff ∝

∫

dt Tr

{

−Ḋ2
i + Ȧ

2
m +

1

2
[Di,Dj ]

2 − i[Di,Am]2 −
1

2
[Am,An]

2 + fermions

}

.

Here we replaced the matrices Xi with their solution, namely with covariant derivatives.

Ignoring the scalar part of the action coming from Xm and defining Fij = [Di,Dj ] one

obtains

S ∝

∫

dt Tr(FijF
ij). (4.1)

In the case of compactification on a non-commutative torus [16], the action (4.1) is

defined on the dual non-commutative torus given by the relations (2.13). It is possible to

represent the action (4.1) on the space of commuting variables and rewrite the trace over

infinite-dimensional matrices as

Tr→

∫

d3x tr, (4.2)

where xi are periodic coordinates on T3 and tr denotes the trace over n-dimensional Her-

mitean matrices Ai. Representing the matrices Ai as functions of commuting variables

Ai(x
j) one obtains the non-commutative field strength in the form

Fij = ∂iAj − ∂jAi + iAi ⋆ Aj − iAj ⋆ Ai, (4.3)

where the Moyal-Weyl ⋆ product

f ⋆ g = e
i
2

∂

∂xi
θ̂ij ∂

∂yj f(x)g(y)|y→x, (4.4)

encodes the non-commutativity of the algebra of functions (2.13) on the non-commutative

torus.
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4.1 Gauge theory with fluxes

Let us now discuss some features of the gauge theory resulting from the compactifications

with fluxes. In the following we concentrate on the pure gauge sector of the compactified

action.

In the case of geometric flux, the solutions of the compactification conditions are:

Xi = iDi = i∂̂i +Ai(Û) + if jk
i Aj(Û)∂̂k,

X̃ i = iD̃i = (−1)cixi + Ãi(Ũ)− f ik
j Ak(Û)xj . (4.5)

Note that Ãi are polynomial functions of Ũk = exp((−)ck∂k), while Ai depend on

Û j = exp(iŷj), with ŷj = x̂j − if jikx̂
k∂̂i. The gauge transformations corresponding to

the compactification of the original action on the twisted doubled torus are generated

by U i:

U iÂj(U
i)−1 = Âj − f

ik
j Âk,

U iÃj(U i)−1 = Ãj + f ij
k Ã

k, (4.6)

and Ũi

ŨiÂj(Ũi)
−1 = Âj ,

ŨiÃj(Ũi)
−1 = Ãj . (4.7)

Let us recall that the corrected gauge field has the form Âi = Ai+ if
jk

i Aj ∂̂k. The algebra

of these gauge generators, given in eq. (3.7), represents in the matrix model framework

the gauge algebra of the corresponding string compactification, which was determined in

ref. [30].

Inserting the solutions (4.5) back into the original action (2.1) leads to the following

effective action:

Seff ∝

∫

dt Tr
(

[Di,Dj ]
2 + 2[Di, D̃

j ]2
)

. (4.8)

As we noticed before, the dual formulation is redundant in the case of geometric flux.

The gauge (sub)algebra generated by U i closes, so projecting on the physical torus (i.e.,

integrating out non-dynamical degrees of freedom) we get

S ∝

∫

dt Tr[Di,Dj ]
2 =

∫

dt Tr(FijF
ij), (4.9)

where the non-commutative field strength in the present case is defined in terms of Âi as

Fij = ∂iÂj − ∂jÂi − i[Âi, Âj ].

Notice that the operators Û j generate the gauge transformations in the resulting gauge

theory (4.9). Moreover, one can show that these operators define the compactification on

the dual torus:

Û iXi(Û
i)−1 = Xi + 1,

Û1X3(Û
1)−1 = X3 − 2X2,

Û2X3(Û
2)−1 = X3 + 2X1, (4.10)
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with

Û iÂj(Û
i)−1 = Âj . (4.11)

This supports our claim that the non-constant non-commutativity of coordinate operators

corresponds to turning on a geometric flux in supergravity.

Representing the action (4.9) on the space of commuting coordinates is a non-trivial

task. However, it is important to notice that the non-commutative structure of the algebra

of functions on the torus would be encoded using the ⋆ product:

f ⋆ g = e
− i

2
f
ij

k
xk ∂

∂yi
∂

∂zj f(y)g(z)|y,z→x , (4.12)

which is associative, as is the whole algebra of functions on the twisted torus.

Let us turn to the compactification incorporating the H flux. This case resulted in the

following solutions:

Xi = iDi = i∂̂i +Ai(Û),

X̃ i = iD̃i = xi + Ãi(Ũ) + iH ijkAj(Û)∂k. (4.13)

The gauge transformations are generated by U i and Ũi:

U iAj(U
i)−1 = Aj , U i ˆ̃Aj(U i)−1 = ˆ̃Aj +H ijkAk,

ŨiAj(Ũi)
−1 = Aj , Ũi

ˆ̃Aj(Ũi)
−1 = ˆ̃Aj . (4.14)

The gauge algebra, given in (3.14), is now more involved. Unlike the case of geometric

flux, here the algebra of generators U i does not close. Inserting the solutions (4.13) in the

original BFSS action we again obtain (4.8), but in this case the second term under the

integral will have a contribution to the projected action. We find that the projected action

on the (plain) torus is of the form:

S ∝

∫

dt Tr

(

1

4
F 2
ij +

1

2
H ijkXkFij −H

ijkAkFij +
i

2
H ijk[Ai,Aj ]Xk +O(H

2)

)

. (4.15)

The first H-dependent term is basically a Myers term [69], here obtained from the fluctua-

tions without a need to modify the original action. Let us note that such a term was also

obtained in refs. [70, 71] from the expansion of the Dirac-Born-Infeld action. The second

and the third H-dependent terms appear as (parts of) the Chern-Simons action. Let us

recall that here we substituted the solutions in the tree-level matrix model action. It would

be very interesting to determine the 1-loop effective action of the solutions we discussed

and analyze the corresponding new terms. This task may be pursued along the lines of

techniques used in refs. [72, 73].

Moreover, the gauge transformations induced by Û i define a compactification on the

dual torus:

Û iXj(Û
i)−1 = Xj + 1, Û iÂj(Û

i)−1 = Âj , (4.16)

showing that this matrix model compactification is related to a supergravity compactifica-

tion on a torus with NS-NS flux.
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The compactifications incorporating Q and R fluxes do not reveal any new structure.

Defining the physical space as the one where the algebra of functions is associative, lead

us to the projection on the dual momentum space. The effective tree-level gauge action in

these cases will be dual to the ones for f and H cases as discussed in section 3.3.

5 Conclusions

The BFSS model or Matrix theory is a matrix model which, in its N → ∞ limit, is

conjectured to be equivalent to uncompactified M theory [1]. Thus, if Matrix theory indeed

serves as a non-perturbative definition of M theory, it should contain its low-energy limit,

namely 11-dimensional supergravity on flat spacetime. Moreover, compactifications of the

matrix model should provide another description of compactified supergravity backgrounds.

Progress towards this direction revealed that matrix compactifications on non-commutative

tori are related to supergravity compactifications with background fields [16, 66].

In the present paper we explored connections between compactifications of Matrix the-

ory and flux compactifications of supergravity, with geometric, NS-NS and non-geometric

fluxes. The quantum-mechanical nature of the BFSS model assigns an important role to

the phase space. In particular, different non-commutative deformations of the phase space

algebra lead to certain solutions of the model and the parameters of the non-commutativity

can be related to fluxes in the corresponding supergravity compactification. Moreover, the

algebraic building blocks for these solutions can be related via certain operations which

provide a matrix model realization of the T-duality chain

Hijk
Tk−→ f k

ij

Tj
−→ Q jk

i

Ti−→ Rijk.

The T-duality pattern results from canonical transformations exchanging position and

momentum operators in the phase space.

The role of the phase space in this framework becomes even more central under the

realization that certain non-associative structures emerge when the compactification con-

ditions are solved. Essentially there are two types of such structures: (a) non-associativity

of the dynamical degrees of freedom of the theory, i.e. the Hermitian matrices and (b)

non-associativity between gauge transformations represented by unitary operators. They

both have a common origin in the non-associativity of the phase space algebra. However,

since the above quantities should be operators on a Hilbert space, their non-associativity

has to be resolved [53, 54].

The resolution of non-associativity in the above two cases follows a different path.

In the case of the dynamical degrees of freedom, where non-associativity appears only in

the solution associated to a non-geometric R flux, the interpretation is based on a duality

between position space and momentum space. Thus, a solution which is not well-defined

in position space turns out to be perfectly well-defined in momentum space. A similar

argument holds for the Q flux case. Thus, while the solutions related to geometric and

NS-NS fluxes are defined in position space, the ones for the non-geometric fluxes are

defined on momentum space. What is more, in momentum space a Q flux plays the role

of a geometric flux (i.e. a connection in supergravity language), while the R flux plays
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the role of the H flux (i.e. a tensor field in supergravity). The latter observation indicates

that much like the non-commutativity of coordinates exhibits a reciprocal relation to the

B-field, the non-commutativity of momenta should be reciprocally related to the bivector

β of generalized geometry.

As for the translation operators, the requirement of associativity leads to a quantiza-

tion condition for the flux. Therefore, fluxes in compactified Matrix theory appear to be

quantized due to this requirement. This is a very welcome feature of the matrix model,

since in a quantum theory charges have to be quantized anyway.

Finally, we discussed some aspects of the effective gauge theory obtained from these

compactifications. The transformations of the gauge fields were provided and the effective

action obtained by inserting the solutions back into the tree-level action of the matrix

model was determined. It is notable that in the NS-NS flux case we obtained terms which

are related to the Myers and Chern-Simons terms. An interesting next step would be to

calculate the 1-loop effective action and try to compare it with the Dirac-Born-Infeld and

Chern-Simons actions.
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[38] D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for

non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

[39] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for
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