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1 Introduction

Recently, holography involving higher spin gauge theories has received a lot of attention.

Higher spin gauge theories are believed to be related to the tensionless limit of superstring

theory, and indeed higher spin holography may be seen as a simplified, but non-trivial,

version of AdS/CFT duality in superstring theory. A famous example is the proposal by

Klebanov and Polyakov in [1] which says that a 4 dimensional higher spin gauge theory

is dual to the large N limit of the O(N) vector model. Two years ago it was conjectured

in [2] that a 3 dimensional higher spin gauge theory is dual to a large N minimal model,

see [3] for a review. There are several generalizations of this duality; a truncated version was
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considered in [4, 5], and the fullN = 2 supersymmetric version was introduced in [6]. In this

paper we would like to propose and test the N = 1 supersymmetric version of the duality.

The higher spin gauge theories appearing in these dualities are truncated versions of

the N = 2 supergravity by Prokushkin and Vasiliev [7]. A bosonic truncation is used

in the original proposal [2] which has an infinite series of higher spin gauge fields with

spins s = 2, 3, . . . and two complex scalars. The dual theory is a large N limit of the

minimal model with higher spin WN symmetry [8]. Currently there is much evidence for

the duality based on the symmetry [9–13] and the spectrum [14], and also correlators have

been calculated [15–19]. In the case of finite N , a refined version of the duality has been

proposed in [13], however, we will here only be concerned with the strict large N limit.

In [4, 5] a further truncation is used for the gravity theory, and it then includes even spin

gauge fields with s = 2, 4, 6, . . . and two real scalars with the mass M2 = −1 + λ2. The

dual theory is the large N limit of the WDN minimal model described by the coset theory1

ŝo(2N)k ⊕ ŝo(2N)1
ŝo(2N)k+1

. (1.1)

In the limit we also take k to infinity, but fix the ’t Hooft parameter

λ =
2N

2N + k − 2
, (1.2)

which is identified with the λ parameter in the mass of the bulk scalars. This conjecture

was supported by the analysis of RG-flow in [4] and the comparison of one-loop partition

functions in [5], see also [20] for work on the spin-4 operator in correlators.

In [6] we extended the duality to the case with supersymmetry. The untruncated

version of the N = 2 supergravity in [7] is proposed to be dual to the N = (2, 2) CPN

Kazama-Suzuki model [21, 22]. The partition functions of the gravity theory and the CFT

are shown to match in [23], and the symmetry algebras are analyzed in [24–27]. Other

related works may be found in [28–33]. By including supersymmetry, quantum effects are

known to become more tractable in general. Moreover, the relation to superstring theory

could be more transparent as was also mentioned in [24]. In [7] several N = 1 truncations

have been also discussed, and we would like to consider the simplest one without any

matrix degrees of freedom. The supergravity includes both bosonic and fermionic higher

spin gauge fields and also massive scalars and fermions, as in the untruncated case. Our

proposal is that the dual CFT is given by the N = (1, 1) super coset

ŝo(2N + 1)k ⊕ ŝo(2N)1
ŝo(2N)k+1

. (1.3)

There is no enhancement of supersymmetry from N = 1 to N = 2 since this coset does not

satisfy the condition in [21, 22].2 We need to take the largeN limit with ’t Hooft parameter3

λ =
2N

2N + k − 1
(1.4)

1As pointed out in [4, 5], the WBN minimal model is a candidate as well.
2The condition for enhancement to N = 2 superconformal symmetry is that the coset manifold G/H is

a Hermitian symmetric space. This is not true for SO(2N + 1)/SO(2N) with N > 1.
3For large N, k, the difference between (1.2) and (1.4) is irrelevant.
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kept finite. Again, this parameter is identified with the one in the masses of the bulk

matter. We will underpin this conjecture by showing that the supergravity and the CFT

partition functions match, i.e. the spectrum is the same on both sides. Further, we will

also study the symmetry of the super coset model.

This paper is organized as follows: In the next section we give explicit formulas for

one-loop partition functions in the higher spin gravity theories. In section 3, the one-loop

partition function of truncated bosonic gravity theory is reproduced by the ’t Hooft limit of

the coset model (1.1). This was already done in [5], but we obtain the same result by using

the different method adopted in [23] as a preparation of the later analysis. In section 4,

we introduce the N = (1, 1) super coset (1.3) and study its torus partition function. We

show that in the ’t Hooft limit it reproduces the one-loop partition function of the N = 1

supergravity. In section 5, we study the symmetry of the super coset model (1.3). Section 6

is devoted to conclusion and discussions. In appendix A, we review the N = 1 truncation

of the N = 2 supergravity found in [7] and show that the N = 1 higher spin algebra is

the analytical continuation of the osp(2N + 1|2N) Lie superalgebra. In appendix B, we

summarize useful properties of orthogonal Lie algebras.

2 Higher spin gravity theories

In this section, we study truncated versions of the higher spin N = 2 supergravity in [7] and

obtain explicit formulas for their one-loop partition functions. In the first subsection, we

review the bosonic gravity theory having only gauge fields of even spin s = 2, 4, 6, . . . which

is proposed in [4, 5] as the gravity dual of the WDN minimal model. In subsection 2.2,

we consider the larger N = 1 truncation of N = 2 supergravity via an anti-automorphism

which was also introduced in [7], and which we review in appendix A.

2.1 The bosonic truncation

In [2] a bosonic truncation of the N = 2 supergravity introduced in [7] is utilized to

construct a simplified version of the AdS/CFT correspondence. The gravity theory includes

massless gauge fields with spins s = 2, 3, 4, . . . and two complex scalars with mass

M2 = −1 + λ2 . (2.1)

The massless sector can be described by a Chern-Simons gauge theory based on the hs[λ]

Lie algebra which can be reduced to sl(N) for λ = ±N . The dual CFT is proposed to be

a large N limit of the WAN minimal model.

The WDN (and WBN ) version of [2] was treated by [4] and [5] (the last reference

mostly on the former algebra). The bulk side is a truncated version of the hs[λ] algebra

containing only even spins, see [5, 34]. The one-loop partition function for the gauge sector

is given by [35–37]

Zgauge =

∞∏

l=1

Z(2l)
gauge =

∞∏

l=1

∞∏

n=2l

1

|1− qn|2 , (2.2)
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ci,j

ci+1,j

ci,j+1

Figure 1. A Young tableau TabΛ of a shape Λ. In each box of the Young diagram Λ, we assign

a non-negative number ci,j with a rule that ci,j ≤ ci,j+1 and ci,j < ci+1,j . A Young supertableau

STabΛ of a shape Λ are also given by a Young diagram Λ and a non-negative number ci,j in a each

box. However, the rules for ci,j are a bit different. The numbers should always satisfy the conditions

ci,j ≤ ci,j+1 and ci,j ≤ ci+1,j . Further ci,j < ci,j+1 if ci,j and ci,j+1 are odd, and ci,j < ci+1,j if ci,j
and ci+1,j are even.

where q = exp(τ) is a modulus for the boundary torus of the Euclidean AdS3. The bulk

side contains two real scalars with the same mass as in eq. (2.1). The fall-off behaviour at

the boundary is chosen oppositely for the two scalars like in the WAN case. In the dual

boundary CFT this gives two real scalars with conformal weights

h+ =
1 + λ

2
, h− =

1− λ

2
. (2.3)

For each scalar field with the dual conformal weight h, the partition function is [35, 36]

Zhscalar =
∞∏

m,n=0

1

1− qh+mq̄h+n
. (2.4)

The one-loop partition function of the gravity theory is then given by

Zλ1-loop = ZgaugeZ
h+
scalarZ

h−
scalar . (2.5)

In order to compare the gravity partition function to the dual CFT partition function,

it is convenient to rewrite the partition function of the matter sector. We introduce a

Young tableau TabΛ of shape Λ. Here we assign a non-negative integer ci,j to the box in

the Young diagram Λ at the i-th row and the j-th column, see figure 1. The rules for the

numbers ci,j are that the entries do not decrease along a row and increase along a column.

Then the partition function of a scalar field can be rewritten as [14, 23]

Zhscalar =
∑

Λ

|chΛ(U(h))|2 , (2.6)
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where the character of the representation Λ is defined as

chΛ(U(h)) =
∑

T∈TabΛ

∏

j∈T

qh+j , U(h)jj = qh+j . (2.7)

The one-loop partition function of the gravity theory is thus summarized as

Zλ1-loop = Zgauge

∑

Λ,Ξ

|chΛ(U(h+))chΞ(U(h−))|2 (2.8)

with h± given in (2.3).

2.2 The N = 1 truncation

In [7] the truncation from N = 2 to N = 1 supergravity has been discussed, see also

appendix A. The N = 1 theory also has massless higher spin gauge fields and matter

fields. Let us start from the massless sector. As derived in appendix A, the massless

sector can be described by a large N limit of osp(2N + 1|2N) ⊕ osp(2N + 1|2N) Chern-

Simons gauge theory.4 In order to see the spin content of the theory, we have to identify an

osp(1|2) subalgebra as theN = 1 supergravity sector. As in [6], we adopt the superprincipal

embedding of osp(1|2), which gives us [38]

osp(2N + 1|2N) =
N∑

k=1

(
R2k−1 ⊕R2k−1/2

)
. (2.9)

Here Rj is the representation of osp(1|2) decomposing under the sl(2) as Rj = Dj ⊕
Dj−1/2, where Dj denotes the 2j +1 dimensional representation of sl(2). This gives a spin

decomposition of the form

osp(2N + 1|2N) =
N∑

k=1

(
D2k−1/2 ⊕ 2D2k−1 ⊕D2k−3/2

)
. (2.10)

We see that we have no odd integer spins. In the infinite N limit we have two fields of each

even spin, and one field of each half odd integer spin.

The spin j of the embedded sl(2) is related to the space-time spin as s = j + 1, and

a more close examination shows that the integer and the half-integer spin components are

bosonic and fermionic elements of osp(2N + 1|2N), respectively. With the help of the

results for N = 2 supergravity in [6], we can write down the contribution from higher spin

fields as

Zgauge =
∞∏

l=1

(Z
(2l)
B )2

∞∏

s=2

Z
(s−1)
F , (2.11)

where

Z
(s)
B =

∞∏

n=s

1

|1− qn|2 , Z
(s)
F =

∞∏

n=s

|1 + qn+
1

2 |2 (2.12)

4It might be possible to use osp(2N − 1|2N)⊕ osp(2N − 1|2N) Chern-Simons gauge theory.
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are the partition functions of a bosonic field with spin s and a fermionic field with spin

s+ 1/2, respectively.

One advantage of the Chern-Simons description is that we can easily read off the

classical asymptotic symmetry near the boundary of AdS3 [9–12]. The Chern-Simons

theory is a topological theory, and dynamical degrees of freedom exist only at the boundary.

The boundary degrees can be described by osp(2N +1|2N) Wess-Zumino-Novikov-Witten

model, whose symmetry is the affine osp(2N +1|2N) Lie superalgebra. For the application

to the AdS/CFT correspondence, we have to assign the boundary conditions ensuring the

bulk space being asymptotically AdS space. It was shown in [10, 12] that this condition is

the same as for the classical Hamiltonian reduction (see, for instance, [8]). Thus the classical

asymptotic symmetry of the N = 1 truncated theory is obtained by the Hamiltonian

reduction of affine osp(2N + 1|2N) Lie superalgebra in a large N limit.

The matter sector consists of a single N = 1 hypermultiplet, having two complex

scalars with masses respectively

(MB
− )2 = −1 + λ2 , (MB

+ )2 = −1 + (λ− 1)2 , (2.13)

and two fermions with mass

(MF
± )2 =

(
λ− 1

2

)2

. (2.14)

Also for the fermions we can choose two types of boundary conditions. We choose these

such that the boundary conformal dimensions simply become a real version of the N = 2

case [6] (see also [23])

(∆B
+,∆

F
±,∆

B
−) =

(
2− λ,

3

2
− λ, 1− λ

)
,

(
λ,

1

2
+ λ, 1 + λ

)
. (2.15)

The one-loop partition function of the matter part is [6]

Zmatter = Z
λ
2

hyperZ
1−λ
2

hyper , Zh
hyper = Z

h+ 1

2

scalar(Z
h
spinor)

2Zhscalar (2.16)

where (note no square in the bosonic partition function)

Zhscalar =

∞∏

l,l′=0

1

1− qh+lq̄h+l′
, (Zhspinor)

2 =

∞∏

l,l′=0

(1 + qh+lq̄h+
1

2
+l′)(1 + qh+

1

2
+lq̄h+l

′

) .

As in the bosonic case, it is convenient to define the supercharacter5

schΛ(U(h)) =
∑

T∈STabΛ

∏

j∈T

qh+
j

2 , U(h)jj = (−1)jqh+
j

2 . (2.17)

5This is a character of gl(∞|∞)+ considered in [23]. The bosonic one (2.7) is the character of gl(∞)+
which is the Lie algebra of infinite dimensional matrices. The generators may be given by (eij)k,l = δi,lδj,k
and only those with finite i, j are considered. The supergroup gl(∞|∞)+ is quite similar to gl(∞)+, but

now eij is bosonic for even i+ j and fermionic for odd i+ j.

– 6 –
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Here STabΛ represents a Young supertableau of shape Λ. In the supertableau, a non-

negative integer is assigned to each box of the Young diagram Λ with rules specified in

figure 1. Then following [23], the partition function of the matter sector can be given as

Zh
hyper =

∑

Λ

|schΛ(U(h))|2 . (2.18)

Therefore, the one-loop partition function of the N = 1 truncated theory can be ex-

pressed as

Z = Zgauge

∑

Λ,Ξ

|schΛ(U(h+)) schΞ(U(h−))|2 , (2.19)

where h+ = λ
2 and h− = 1−λ

2 .

3 Holography for SO(2N)

It was proposed in [2] that a bosonic truncation of Prokushkin-Vasiliev theory [7] is dual

to a large N limit of WN minimal model. A further consistent truncation is possible in

the gravity theory as discussed in section 2.1, and the dual CFT is conjectured to be the

WDN minimal model with the coset description (1.1) [4, 5]. In order to compare with

the classical gravity theory, we need to take a large N limit while keeping the ’t Hooft

coupling (1.2) finite, and this parameter is identified with λ in (2.1). The equivalence of

the spectrum in this limit was shown in [5] by directly applying the method in [14]. In this

section, we will obtain the same result by making use of the different method in [23]. In

the next section, we will use the same method to show the matching of the spectrum in

the N = 1 supersymmetric version of the duality.

3.1 The dual CFT

We would like to reproduce the gravity partition function (2.8) from the viewpoint of the

dual coset CFT (1.1)6

ŝo(2N)k ⊕ ŝo(2N)1
ŝo(2N)k+1

, (3.1)

whose central charge is

c = N

[
1− (2N − 1)(2N − 2)

(k + 2N − 2)(k + 2N − 1)

]
. (3.2)

We use the diagonal embedding of ŝo(2N)k+1 into ŝo(2N)k ⊕ ŝo(2N)1, and the states of

the coset (3.1) are obtained by the decomposition

Λ⊗ ω = ⊕Ξ(Λ, ω; Ξ)⊗ Ξ . (3.3)

6We heard that in [34] the duality is refined so as to be applicable for finite N, k. It is pointed out there

that an Z2 orbifold should be used instead of (1.1), but this difference disappears in the large N limit, like

we also found in (5.2). Further, this subtlety does not arise in the WBN case.
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The states are thus labeled by (Λ, ω,Ξ), which are the highest weights of the representations

of ŝo(2N)k, ŝo(2N)1, ŝo(2N)k+1, respectively. Some basics of so(2N) Lie algebra may be

found in appendix B. For ŝo(2N)1, there are only four representations: The identity, vector,

spinor and cospinor representations. The selection rule is

Λ + ω − Ξ ∈ Q2N (3.4)

whereQ2N is the root lattice of so(2N). The congruence class of so(2N) is Z4 forN = 2n+1

or Z2 × Z2 for N = 2n with n ∈ Z (see, e.g., [39]), and this equation uniquely determines

ω given Λ and Ξ, and we simply denote the states by (Λ; Ξ). Moreover, there are field

identifications (Λ; Ξ) ≃ (AΛ;AΞ) with an outer automorphism A of the affine algebra

ŝo(2N)k and ŝo(2N)k+1 [40]. The conformal weight of the state (Λ; Ξ) is given by

h(Λ;Ξ) =
C2N (Λ)

k + 2N − 2
+
C2N (ω)

2N − 1
− C2N (Ξ)

k + 2N − 1
+ n , (3.5)

where C2N (Λ) is the quadratic Casimir of so(2N) and the integer n is the grade at which

Ξ appears in Λ⊗ ω.

We define the characters of ŝo(2N)k and the branching function as

ch2N,kΛ (q, eH) = trΛq
L0eH , b2N,kΛ;Ξ (q) = tr(Λ;Ξ)q

L0 , (3.6)

where L0 is the zero mode of energy momentum tensor and H is the Casimir element of

so(2N). From the decomposition (3.3) we find

ch2N,kΛ (q, eH) ch2N,1ω (q, eH) =
∑

Ξ

b2N,kΛ;Ξ (q) ch2N,k+1
Ξ (q, eH) . (3.7)

In addition to the chiral sector, the CFT has an anti-chiral sector. We consider the charge-

conjugated theory with the Hilbert space H =
∑

(Λ; Ξ) ⊗ (Λ; Ξ). We should take care of

the field identification when the sum is taken. The partition function is then given by the

diagonal modular invariant

Z2N,k(q) = |q− c
24 |2

∑

[Λ;Ξ]

|b2N,kΛ;Ξ (q)|2 . (3.8)

In order to compare with the classical gravity theory, we take a large N, k limit with

the ’t Hooft parameter (1.2)

λ =
2N

2N + k − 2

kept finite. Since representations of order N2 decouple in this limit, we keep those whose

conformal weights are of order N . With this criterion, the highest weights for the represen-

tations that survive can be labeled by Young tableaux [5] (see also appendix B). Moreover,

representations are self-conjugate for the orthogonal Lie algebra. Denoting the number of

boxes in the i-th row by li and in the j-th column by cj , the quadratic Casimir is expressed

as (B.9)

C2N (Λ) = |Λ|
(
N − 1

2

)
+

1

2



N−2∑

i=1

l2i −
∑

j

c2j


 . (3.9)
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We consider Young diagrams with only finitely many boxes in the large N limit, and the

above equation implies that C2N (Λ) ∼ N |Λ| where |Λ| is the number of boxes of the

corresponding Young diagram.

3.2 Comparison of partition functions

We would like to compute the branching function b2N,kΛ;Ξ (q) in eq. (3.6) in the ’t Hooft limit.

For q having real part less than one, we can neglect qN and qk. Following [5] we first study

the large k behavior of the characters of ŝo(2N)k and then compute the branching function

utilizing (3.7). For large k, the character becomes [8, 14, 23]

ch2N,kΛ (q, eH) ≃ qh
2N,k
Λ ch2NΛ (eH)∏∞

n=1[(1− qn)N
∏
α∈∆2N

(1− qneα(H))]
, (3.10)

where we have used the Weyl-Kac formula and ∆2N denotes the roots of so(2N). For large

k, the affine Weyl group reduces to the finite Weyl group as discussed in [14], which leads to

the character of the finite so(2N) Lie algebra ch2NΛ (eH). The conformal dimension is now

h2N,kΛ =
C2N (Λ)

k + 2N − 2
. (3.11)

For large k we can reduce the relation (3.7) to

ch2NΛ (eH) ch2N,1ω (q, eH) =
∑

Ξ

a2NΛ;Ξ(q) ch
2N
Ξ (eH) , (3.12)

with the help of (3.10). Here the k-independent function a2NΛ;Ξ(q) is related to the branching

function as

b2N,kΛ;Ξ (q) ≃ qh
2N,k
Λ

−h2N,k+1

Ξ a2NΛ;Ξ(q) . (3.13)

As will be shown now, the function aNΛ;Ξ(q) can be written as

a2NΛ;Ξ(q) =
∑

Π

N
(2N)Ξ
ΛΠ a2N0;Π(q) =

∑

Π

N
(2N)Π
ΛΞ a2N0;Π(q) (3.14)

with N
(2N)Π
ΛΞ being the Clebsch-Gordan coefficients of so(2N). First notice that

ch2N,1ω (q, eH) =
∑

Ξ

a2N0;Ξ(q) ch
2N
Ξ (eH) , (3.15)

which is obtained from (3.12) with Λ = 0. Then, we use

ch2NΛ (eH) ch2NΠ (eH) =
∑

Ξ

N
(2N)Ξ
ΛΠ ch2NΞ (eH) (3.16)

and the fact that the representations are now self-conjugate.

– 9 –
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Next, we take the large N limit. As discussed in the previous subsection, the highest

weight representations can be labeled by Young diagrams with finitely many boxes in the

limit. In the next subsection, we will obtain

a0;0(q) = lim
N→∞

a2N0;0 (q) =
∞∏

l=1

∞∏

n=2l

1

1− qn
, (3.17)

a0;Ξ(q) = lim
N→∞

a2N0;Ξ(q) = a0;0(q) chΞt

(
U

(
1

2

))
, (3.18)

where the character is defined in (2.7). In the transposed expression Ξt, the rows and

columns are exchanged. Moreover, the conformal weight becomes

h2N,kΛ ≃ λ

2
|Λ| . (3.19)

Using these facts, the branching function in the ’t Hooft limit can be found as

bλΛ;Ξ(q) = q
λ
2
(|Λ|−|Ξ|)a0;0(q)

∑

Π

NΠ
ΛΞ chΠt

(
U

(
1

2

))
. (3.20)

As in [5] (see above the eq. (3.34) of the paper) we assume that

|Λ|+ |Ξ| = |Π| , (3.21)

which leads to

NΠ
ΛΞ = lim

N→∞
N

(2N)Π
ΛΞ (3.22)

with NΠ
ΛΞ as the Clebsch-Gordan coefficient of gl(∞)+. Using the fact that the Clebsch-

Gordan coefficients are the same for the transposed representations, we can show

∑

Λ,Ξ

|bλΛ;Ξ(q)|2 = Zgauge

∑

Λ,Ξ

∣∣∣∣q
λ
2
(|Λ|−|Ξ|)chΛt

(
U

(
1

2

))
chΞt

(
U

(
1

2

))∣∣∣∣
2

= Zgauge

∑

Λ,Ξ

|chΛt(U(h+)) chΞt(U(h−))|2 .
(3.23)

This reproduces the gravity partition function (2.8). It was argued in [5, 14] that a large

number of null states appear in the ’t Hooft limit and the decoupling of these null states is

equivalent to the condition (3.21). This assumption is quite important for the equivalence

of the partition functions, so we would like to examine it more carefully as a future problem.

3.3 Characters from free fermions

Here we would like to compute (3.17) and (3.18) using free fermions. It is well known that

ŝo(2N)1 can be expressed by 2N real free fermions ψa with a = 1, 2, . . . , 2N . Thus the

task here is to decompose the left hand side of (3.15) by the characters of the zero mode

so(2N) Lie algebra. The space of free fermions is spanned by

nψ∏

j=1

ψ
aj

−rj−
1

2

Ω , (3.24)
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where rj = 0, 1, 2, . . . and Ω is the vacuum. The branching function a0;Ξ counts the

multiplicity when the representation Ξ of so(2N) appears. The representation appears for

the first time when nψ = |Ξ|. Following the argument below (2.49) of [23], the branching

function is found to be

chΞt

(
U

(
1

2

))
(3.25)

when summing the possible modes rj while keeping nψ = |Ξ| fixed. Notice here that the

modes rj can be interpreted as the entries of the Young tableau of the shape Ξ since the

Fermi statistic explains the rules for the entries (see figure 1).

There is another contribution to the branching function a0;Ξ with nψ > |Ξ|, which
comes from multiplying with so(2N) invariants. From the classical invariant theory, we

can see that the so(2N) invariants are generated by [41]

∞∏

r,s=0

( 2N∑

a=1

ψa
−r− 1

2

ψa
−s− 1

2

)Mrs

(3.26)

and additional invariants that have conformal dimension at least N . Note, that there are

also only relations between invariants for conformal dimension of that order due to the

first and second fundamental theorems of invariant theory for the vector representation of

the orthogonal group. Now that we are dealing with Majorana fermions, there are two

differences from (2.51) of [23]. Firstly, we should set r 6= s due to the Fermi statistic.

Secondly, we should set r > s since two fermions can be exchanged. In the large N limit,

we ignore the finite N effects and obtain

a0;0(q) =
∞∏

r>s=0

∞∑

Mr,s=0

q(r+s+1)Mr,s =
∞∏

r>s=0

1

1− qr+s+1
=

∞∏

l=1

∞∏

n=2l

1

1− qn
, (3.27)

which is (3.17). By multiplying with (3.25), we obtain (3.18).

4 N = 1 supersymmetric holography

In [6] we have proposed the untruncatedN = 2 supersymmetric version of the duality in [2],

and the equivalence of the spectrum has been shown in [23]. The aim of this paper is to

conjecture an N = 1 version of the duality and show that the one-loop partition functions

agree. The gravity theory considered is the N = 1 truncation of the N = 2 higher spin

supergravity discussed in subsection 2.2 (see also appendix A). We propose that the dual

CFT is given by the super coset model (1.3)

ŝo(2N + 1)k ⊕ ŝo(2N)1
ŝo(2N)k+1

. (4.1)

Moreover, we take a large N, k limit while keeping the ’t Hooft parameter (1.4) finite, and

identify the parameter with λ appearing in the masses (2.13) and (2.14). Geometrically,

the quotient by the right action of SO(2N) is a sphere

S2N =
SO(2N + 1)

SO(2N)
. (4.2)
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Our coset, however, is a quotient by the adjoint action of SO(2N). Introducing 2N

fermions, given by ŝo(2N)1 factor, the model has N = (1, 1) supersymmetry. This model

should have the symmetry obtained by the Drinfeld-Sokolov reduction of osp(2N + 1|2N)

and this should be studied as a next step. In the following we will show that the gravity

partition function is reproduced by the ’t Hooft limit of the N = (1, 1) super coset (4.1).

4.1 The dual CFT

We would like to compute the torus partition function of the coset model (4.1) in the ’t

Hooft limit and compare it with the gravity partition function. The central charge of the

coset model is given by

c =
k(2N + 1)N

k + 2N − 1
+
N(2N − 1)

2N − 1
− (k + 1)N(2N − 1)

k + 2N − 1
=

3Nk

k + 2N − 1
. (4.3)

The states are labeled as in the bosonic case. Namely, we use Λ, ω,Ξ as the highest weights

of representations of ŝo(2N +1)k, ŝo(2N)1, ŝo(2N)k, see appendix B for some basics of the

orthogonal Lie algebras. The selection rule is now given by

Λ + ω − Ξ ∈ Q2N+1 (4.4)

where Q2N+1 is the root lattice of so(2N + 1). For the identification of so(2N + 1) and

so(2N) weights, see again appendix B. Since the fermions in the gravity theory satisfy

the anti-periodic boundary condition along the space-like circle, we have to use the same

boundary condition for the fermionic states. We set ω = NS, where NS means the sum of

the identity representation (ω = 0) and the vector representation (ω = 2). With this ω,

the selection rule reduces to ΛN = ΞN−1 + ΞN mod 2 with the notation in appendix B.

The states are thus labeled by (Λ; Ξ) with the field identification taken into account,7 and

the conformal weights are

h(Λ;Ξ) =
1

k + 2N − 1
[C2N+1(Λ)− C2N (Ξ)] +

ω

4
+ n . (4.5)

Here CM (Λ) is the quadratic Casimir of so(M) and and the integer n is the grade at which

Ξ appears in (Λ, ω).

We use the embedding SO(2N) →֒ SO(2N + 1) as

ı(v) =

(
1 0

0 v

)
∈ SO(2N + 1) . (4.6)

Then we embed ŝo(2N)k+1 diagonally into ŝo(2N)k ⊗ ŝo(2N)1. The states of the coset is

obtained by the decomposition

Λ⊗NS = ⊕Ξ(Λ; Ξ)⊗ Ξ . (4.7)

7The field identification can be read off from the phases of character modular transformations [40], and

it may be written as (Λ, ω; Ξ) ∼ (AΛ, ω + 2; ÃΞ). Here A is the Z2 outer automorphism of ŝo(2N + 1)k.

The group of outer automorphisms of ŝo(2N) is Z4 or Z2 ×Z2 depending on whether N is odd or even. We

set Ã to be one of the four that exchanges Ξ0 and Ξ1 (and possibly others), where the affine Dynkin labels

are represented as [Ξ0; Ξ1, . . . ,ΞN ].

– 12 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
9

The branching function of the coset model (4.1) can be defined as in the bosonic case

ch2N+1,k
Λ (q, ı(v)) ch2N,1NS (q, v) =

∑

Ξ

sb2N,kΛ;Ξ (q) ch2N,k+1
Ξ (q, v) . (4.8)

Here the character of the 2N free fermions in the NS-sector is

ch2N,1NS (q, v) =

∞∏

n=0

N∏

i=1

(1 + viq
n+ 1

2 )(1 + v̄iq
n+ 1

2 ) , (4.9)

where v is an SO(N,N) matrix with eigenvalues (vi, v̄i). We consider the Hilbert space

spanned as H =
∑

(Λ; Ξ)⊗ (Λ; Ξ) and the partition function is

Z2N,k(q) = |q− c
24 |2

∑

[Λ;Ξ]

|sb2N,kΛ;Ξ (q)|2 . (4.10)

Note that this is not the diagonal modular invariant in the usual sense, since we now take

the sum of the identity and the vector representations for ŝo(2N)1 in the numerator of (4.1)

in both the chiral and anti-chiral part.

In order to compare the CFT partition function with the supergravity partition func-

tion, we have to take a large N, k limit with the ’t Hooft parameter (1.4)

λ =
2N

k + 2N − 1
(4.11)

kept finite. Now the states of the N = (1, 1) super coset model (4.1) are labeled by

(Λ; Ξ), where Λ,Ξ are the highest weights of so(2N +1) and so(2N), respectively. As men-

tioned in the bosonic case, the highest weight representations for so(2N) can be labeled by

Young diagrams with finitely many boxes in the limit, and the quadratic Casimir becomes

C2N (Ξ) ∼ N |Ξ| where |Ξ| is the number of boxes of Young diagram denoted by the same

letter Ξ. The case of so(2N + 1) is also studied in appendix B and the same conclusions

are obtained in this case. Namely, the highest weights are described by Young diagrams in

the limit, which implies that the states of the super coset (4.1) are labeled by sets of two

Young diagrams (Λ; Ξ). The quadratic Casimir is (B.15)

C2N+1(Λ) = |Λ|N +
1

2



N−1∑

i=1

l2i −
∑

j

c2j


 , (4.12)

where the number of boxes in the i-th row is li and the number in the j-th column is cj .

In the large N limit, this behaves as C2N+1(Λ) ∼ N |Λ|.
We end this subsection by noting that the most fundamental states in the coset, which

we believe to generate the remaining states under fusion in the ’t Hooft limit, are (v, 0; 0)

together with its fermionic partner (v, v; 0), and (0, 0; v) also together with its fermionic

partner (0, v; v). Here v denotes the vector representation with only the first Dynkin label

non-zero and equal to one. Using the equation for the conformal weights (4.5) we get

h(v,0;0) =
1

2
λ , h(v,v;0) =

1

2
(1 + λ) ,

h(0,v;v) =
1

2
(1− λ) , h(0,0;v) =

1

2
(2− λ) , (4.13)

– 13 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
9

where in the last case we had to use n = 1 in (4.5) since we start from the trivial repre-

sentation in the numerator of the coset. This fits perfectly with the calculated conformal

dimensions from the bulk side (2.15). We will thus have two supermultiplets in the CFT

generated from (v, 0; 0)⊗ (v, 0; 0) and (0, v; v)⊗ (0, v; v), respectively.

4.2 Comparison of partition functions

In order to compare the CFT partition function with its gravity dual, we have to take the

’t Hooft limit. For large k, the leading terms of the characters are

ch2N+1,k
Λ (q, eı(H)) ≃ qh

2N+1,k
Λ ch2N+1

Λ (eı(H))∏∞
n=1[(1− qn)N

∏
α∈∆2N+1

(1− eα(ı(H))qn)]
, (4.14)

ch2N,k+1
Λ (q, eH) ≃ qh

2N,k+1

Λ ch2NΛ (eH)∏∞
n=1[(1− qn)N

∏
α∈∆2N

(1− eα(H)qn)]
(4.15)

as in (3.10), where ∆2N+1 and ∆2N denote the root systems of so(2N + 1) and so(2N),

respectively. As before, the Lie algebra characters appear in the limit. The conformal

dimensions are now

h2N+1,k
Λ =

C2N+1(Λ)

k + 2N − 1
, h2N,k+1

Λ =
C2N (Λ)

k + 2N − 1
. (4.16)

Defining the leading term for large k as

sb2N,kΛ;Ξ (q) ≃ qh
2N+1,k
Λ

−h2N,k+1

Ξ sa2NΛ;Ξ(q) , (4.17)

we have k-independent relations

ch2N+1
Λ (ı(v))ϑ(q, v) =

∑

Ξ

sa2NΛ;Ξ(q) ch
2N
Ξ (v) . (4.18)

The roots in ∆2N+1 include ±ej (j = 1, . . . N) in the orthogonal basis in addition to those

in ∆2N , and from this fact we have

ϑ(q, v) =

∞∏

n=0

N∏

i=1

(1 + viq
n+ 1

2 )(1 + v̄iq
n+ 1

2 )

(1− viqn+1)(1− v̄iqn+1)
. (4.19)

Setting Λ = 0 in (4.18), we obtain

ϑ(q, v) =
∑

Ξ

sa2N0;Ξ(q) ch
2N
Ξ (v) . (4.20)

If we use the decomposition

ch2N+1
Λ (ı(v)) =

∑

Φ

R
(2N)
ΛΦ ch2NΦ (v) (4.21)

and (3.16), then we find

sa2NΛ;Ξ =
∑

Φ,Ψ

R
(2N)
ΛΦ N

(2N)Ξ
ΦΨ sa2N0;Ψ(q) =

∑

Φ,Ψ

R
(2N)
ΛΦ N

(2N)Ψ
ΦΞ sa2N0;Ψ(q) . (4.22)
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Now we take the ’t Hooft limit. In the limit, the highest weights of so(2N + 1) and

so(2N) are expressed by Young diagrams. In the next subsection, we will find

sa0;0(q) = lim
N→∞

sa2N0;0 (q) =
∞∏

l=1

∞∏

n=2l

[
1

1− qn

]2 ∞∏

s=1

∞∏

n=s

(1 + qn+
1

2 ) , (4.23)

sa0;Ξ(q) = lim
N→∞

sa2N0;Ξ(q) = sa0;0(q) schΞt

(
U
(
1

2

))
, (4.24)

where the supercharacter is defined in (2.17). The conformal dimensions are

h2N+1,k
Λ ≃ λ

2
|Λ| , h2N,k+1

Ξ ≃ λ

2
|Ξ| . (4.25)

As in [5], we assume the decoupling of null states in the ’t Hooft limit, which means that

only the terms with

|Φ|+ |Ξ| = |Ψ| (4.26)

contribute to the fusion rules. In the large N limit, the coefficients stabilize as

lim
N→∞

N
(2N)Ψ
ΦΞ = NΨ

ΦΞ , lim
N→∞

R
(2N)
ΛΞ = RΛΞ , (4.27)

whereNΨ
ΦΞ are the Clebsch-Gordan coefficients of gl(∞)+. Just like the u(M) case discussed

in [23], the restriction functions for the so(M) case become RΛΦ = NΞ
Λ|Λ/Ξ| as shown in [42].

Here |Λ/Ξ| represents the Young diagram with a single row and with |Λ| − |Ξ| number of

boxes. Then eqs. (3.57) and (3.59) of [23]

schΛ schΞ =
∑

Ξ

NΠ
ΛΞ schΠ , schΛ(U(0)) =

∑

Ξ

RΛΞ schΞt

(
U
(
1

2

))
, (4.28)

which were proven in appendix A of that paper, lead to

sbλΛ;Ξ = q
λ
2
(|Λ|−|Ξ|)

∑

Φ,Ψ

RΛΦN
Ψ
ΦΞ sa0;0(q) schΨt

(
U
(
1

2

))

= sa0;0(q) schΛ(U(h+)) schΞt(U(h−)) . (4.29)

Combining the anti-chiral part, we have
∑

Λ,Ξ

|sbλΛ;Ξ(q)|2 = Zgauge

∑

Λ,Ξ

|schΛ(U(h+)) schΞt(U(h−))|2 , (4.30)

which reproduces the supergravity result (2.19).

4.3 Characters from free bosons and fermions

Let us now derive (4.23) and (4.24) using free bosons and fermions. The character (4.19)

is that of 2N real fermions ψa (a = 1, 2, . . . , 2N) and 2N real bosons Jc (c = 1, 2 . . . , 2N).

The Fock space is spanned by

nψ∏

j=1

ψ
aj

−rj−
1

2

nJ∏

l=1

Jcl−tl−1Ω , (4.31)

where rj , tl run over non-negative integers.
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From (4.20), we can see that the branching function sa0;Ξ counts the multiplicity when

the representation Ξ of so(2N) appears. The representation appears for the first time when

|Ξ| = nψ+nJ . Following the argument above (3.69) of [23], the branching function is found

to be

schΞt

(
U

(
1

2

))
(4.32)

when summing over the possible modes and nψ, nJ while keeping the sum nψ + nJ = |Ξ|
fixed. We also need to consider the so(2N) invariant states

∞∏

r,s=0

( 2N∑

a=1

ψa
−r− 1

2

ψa
−s− 1

2

)Krs ∞∏

t,u=0

( 2N∑

a=1

Ja−t−1J
a
−u−1

)Ltu ∞∏

r,u=0

( 2N∑

a=1

ψa
−r− 1

2

Ja−u−1

)Pru
.

(4.33)

Here we should set Krs non-zero only for r > s and Ltu non-zero only for t ≥ u. We also set

Pru = 0, 1 for all r, u since they are fermionic operators. Invariant states can be constructed

using Weyl’s fundamental theorems of invariant theory for the orthogonal group [41]. In-

variants that are not polynomials of the above states appear only for conformal dimensions

larger than N , and also non-trivial relations between invariant states appear for the first

time at that order of conformal dimension. In the large N limit, we can ignore these finite

N effects and obtain

sa0;0(q) =
∞∏

r>s=0

∞∑

K=0

q(r+s+1)K
∞∏

t≥u=0

∞∑

L=0

q(t+u+2)L
∞∏

r,u=0

1∑

P=0

q(r+u+
3

2
)P

=
∞∏

r>s=0

1

1− qr+s+1

∞∏

t≥u=0

1

1− qt+u+2

∞∏

r,u=0

(1 + qr+u+
3

2 )

=
∞∏

l=1

∞∏

n=2l

[
1

1− qn

]2 ∞∏

s=1

∞∏

n=s

(1 + qn+
1

2 ) (4.34)

as in (4.23). By multiplication with (4.32), we get (4.24).

5 Symmetries of the dual conformal field theory

The symmetry algebra of the coset

ŝo(2N + 1)k ⊕ ŝo(2N)1
ŝo(2N)k+1

, (5.1)

is the commutant subalgebra Com(ŝo(2N)k+1, ŝo(2N + 1)k ⊕ ŝo(2N)1) of ŝo(2N + 1)k ⊕
ŝo(2N)1 that commutes with ŝo(2N)k+1. Here, by ŝo(2N)1 we mean rank 2N free fermions

F2N . Since they transform in the 2N -dimensional vector (standard) representation of

so(2N), they contain a homomorphic image of ŝo(2N)1 as subalgebra. In addition, as we

will see, the coset algebra is too large as it also contains additional fields with spin of

order N . In order to get rid of these additional fields, one needs an orbifold projection
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by improper orthogonal transformations. At finite N , the candidate coset for the N = 1

super W-algebra is thus

Orb
( ŝo(2N + 1)k ⊕F2N

ŝo(2N)k+1

)
, (5.2)

but since the additional fields appear at conformal dimension at least N , these are invisible

in the large N limit, in other words, the spin content for the coset and its orbifold is the

same for large N .

5.1 The dimension 3/2, 2, 2, 5/2 fields of the coset algebra

Before we discuss the complete coset algebra, we will explicitly compute the fields of lowest

conformal dimension. For this we need some preparation, we write so(2N +1) = so(2N)⊕
m, where m carries the standard representation of so(2N). We denote the currents of

ŝo(2N + 1)k that belong to m with the Roman indices J i, J j , . . . and those associated to

so(2N) with Greek indices Jα, Jβ , . . .. In addition, the fermions of ŝo(2N)1 also transform

in the standard representation and we denote them by ψi, ψj , . . . . Then, the operator

products expansions are

Jα(z)Jβ(w) ∼ kδα,β
(z − w)2

+
fαβγJγ(w)

(z − w)
,

Jα(z)J i(w) ∼ fαijJ j(w)

(z − w)
,

J i(z)J j(w) ∼ kδi,j
(z − w)2

+
f ijαJα(w)

(z − w)
.

(5.3)

We also need the operator product with normal ordered products of currents. Denote by

(JαJβ)(z) the normal ordered product of two currents, then we e.g. have

Jα(z)(JβJγ)(w) ∼ kfαβγ

(z − w)3
+
kδα,βJ

γ(w) + kδα,cJ
β(w) + fαβδf δγǫJ ǫ(w)

(z − w)2

+
fαβδ(JδJγ)(w) + fαγδ(JβJδ)(w)

(z − w)
.

(5.4)

With the help of this formula, we compute

J i(z)(JαJα)(w) ∼ (2N − 1)J i(w)

(z − w)2
+
f iαj((J jJα)(w) + (JαJ j)(w))

(z − w)
,

Jα(z)(J iJ i)(w) ∼ 4Ja(w)

(z − w)2
,

J i(z)(J jJ j)(w) ∼ (2k + 2N − 1)J i(w)

(z − w)2
− f iαj((J jJα)(w) + (JαJ j)(w))

(z − w)
.

(5.5)

The fermionic fields are denoted by ψi with operator product expansion

ψi(z)ψj(w) ∼ δi,j
(z − w)

, (5.6)
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and the corresponding currents are

jα = −1

2
fαijψiψj . (5.7)

Moreover ψi are primaries in the standard representation for these currents

jα(z)ψi(w) ∼ fαijψj(w)

(z − w)
. (5.8)

Let γ = 2k + 4N − 2, then the Virasoro field of the coset algebra is

T = Tŝo(2N+1)k + Tfermion − Tŝo(2N)k+1

=
1

γ

(
(J iJ i)− 2(Jαjα) + (2k − 3)Tfermion

)
.

(5.9)

The coset symmetry algebra is the algebra that commutes with the Kα = Jα + jα, this is

certainly true for

G =

√
2

γ
(J iψi) . (5.10)

The fields G and T obey the operator product algebra of the N = 1 super Virasoro algebra,

that is

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
,

T (z)G(w) ∼ 3G(w)/2

(z − w)2
+
∂G(w)

(z − w)
,

G(z)G(w) ∼ 2c/3

(z − w)3
+

2T (w)

(z − w)
.

(5.11)

Next, there is an additional dimension two field that commutes with both jα and Jα, hence

also with Kα, and this is the Virasoro field T̃ of the coset

ŝo(2N + 1)k
ŝo(2N)k

. (5.12)

Explicitly, in terms of currents, it reads

T̃ = Tŝo(2N+1)k − Tŝo(2N)k

=
1

γ
(J iJ i)− 1

γ(γ − 2)
(JαJα) .

(5.13)

This field is not a Virasoro primary, in contrast to the following linear combination

W2 = cT̃ − βT , β =
4kN

γ2(γ − 2)
((γ − 2)(2k + 2N − 1)− 4N + 2) . (5.14)

This statement is a straightforward computation using the above operator product expan-

sions. The dimension 5/2 partner G5/2 of W2 can be computed as

G(z)W2(w) ∼
G5/2(w)

(z − w)
,

G5/2 =
1√
2γ

(
β(2(J i∂ψi)− (ψi∂J i)) + af ijα(((JαJ j)ψi) + ((J jJα)ψi))

)
,

a =
12kN

γ2

(
(2k + 2N − 1) + 2

γ

γ − 2

)
.

(5.15)

– 18 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
9

The operator product of W2 with itself does not generate new fields, and it is

W2(z)W2(w) ∼ (cb − β)2c/2

(z − w)4
+

2(c− 2β)W2(w) + 2β(c− β)T (w)

(z − w)2

+
(c− 2β)∂W2(w) + β(c− β)∂T (w)

(z − w)
,

(5.16)

where cb is the central charge of the bosonic coset (5.12). The computation of further

operator products becomes very complicated, but in a large k limit they simplify just as

explained in section 6.5 of [33] for the case of the N = 2 coset. We find

lim
k→∞

W2(z)G5/2(w)

∼ −6N2G(w)

(z − w)3
−

2N2∂G(w) +NG5/2(w)

(z − w)2

−
N2

2 ∂
2G(w) + 2N

5 ∂G5/2(w) +G7/2(w) +
3N
2 A7/2(w)− 12N2

5 B7/2(w)

(z − w)
.

(5.17)

Here G7/2 is a fermionic primary field of conformal dimension 7/2, and A7/2 and B7/2 are

dimension 7/2 descendents that together with G7/2, ∂G5/2 and ∂2G form an orthogonal

basis of dimension 7/2 fields. The precise form of these fields in the large k limit is

G7/2 =
3N

2
∂G5/2 +

5N

2
(W2G) +

3N2

5
∂2G− 9N2

√
k
(J i∂2ψi)− 4N(W2G) +

12N2

5
(TG) ,

A7/2 =
N

2
(W2G) +

3N

10
∂G5/2 , B7/2 = (TG)− 3

8
∂2G.

(5.18)

We believe that the fields G, T,W2 already generate the full symmetry algebra under iter-

ated operator products.

5.2 The field content of the coset algebra

We now consider the field content of the coset algebra. Note, that the following analysis is

in many respects similar to the one of last section, in particular, it relies on the classical

invariant theory.

The generic field content of a coset algebra can under certain circumstances be com-

puted using classical invariant theory [43]. The coset, we are interested in, is of this

favourable type. As mentioned before, the coset algebra is the commutant subalgebra

Com(ŝo(2N)k+1, ŝo(2N + 1)k ⊕F2N ) . (5.19)

The algebra ŝo(2N + 1)k ⊕ F2N is generated as a conformal field theory by the fields Jα

generating the ŝo(2N)k subalgebra of ŝo(2N +1)k, the fields J i which are primaries in the

vector representation of ŝo(2N)k, and the fermions ψi. An alternative set of generators is

Kα, J i and ψi, where the fields Kα generate the ŝo(2N)k+1 subalgebra of the commutant
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problem. Note that J i as well as ψi are primaries in the vector representation of Kα.

In such a situation, it was argued that the fields of the commutant subalgebra are those

that can be identified with the SO(2N) invariant products of the vector representation as

follows. Let

p(J, ∂J, . . . , ∂mJ, ∂ψ, . . . , ∂mψ) (5.20)

be a normally ordered polynomial in J, ψ and their derivatives that is invariant under the

natural action of SO(2N). Then

p(J,DJ, . . . ,DmJ,Dψ, . . . ,Dmψ) (5.21)

is a generator of the coset algebra, and all generators are of such a form. Here, the covariant

derivative is

DIi = ∂I i +
1

k + 1
fαij(JαIj) , Ii ∈ {J i, ψi} . (5.22)

We are thus left with determining all invariants in the vector representation. Weyl’s first

fundamental theorem for the orthogonal group [41] tells us that all such invariants are

expressible in terms of the basic invariants which are traces of two vectors and determinants

of matrices whose columns are 2N vectors. Clearly, the determinants have spin at least

N and thus they are invisible in the large N limit. Also, note that the determinants are

improper invariants, this means they change sign under transformations by orthogonal

matrices with determinant minus one. The traces are proper invariants and all proper

invariants can be expressed in terms of traces [41]. We have three types of traces

A(n,m) = DnJ iDmJ i, B(n,m) = DnψiDmψi, C(n,m) = DnJ iDmψi. (5.23)

The spins are

∆(A(n,m)) = n+m+ 2, ∆(B(n,m)) = n+m+ 1, ∆(C(n,m)) = n+m+
3

2
. (5.24)

Now, if there were no relations between products of the fields, then we can count that the al-

gebra we found has a generating set of fields whose bosonic fields have spin 2, 2, 4, 4, 6, 6, . . .

while the fermionic generators have spin 3/2, 5/2, 7/2, . . .. Note, that these fields are multi-

plets of the N = 1 super algebra as (3/2, 2), (2, 5/2), (7/2, 4), . . .. The second fundamental

theorem of invariant theory for the orthogonal group [41] states that all relations between

invariants either involve a determinant of a matrix whose columns are vectors or they are

determinants of (2N − 1)× (2N − 1) matrices whose entries are traces. All these relations

concern invariants whose spin is at least N which implies that the spin content of the coset

algebra agrees with the proposed higher spin supergravity in the large N limit.

We would like to remark, that due to the determinants, the coset algebra at finite N

is larger than the N = 1 super W-algebra. In [44] it has been proposed in an analogous

situation to consider an orbifold in order to obtain a smaller coset algebra. It is certainly

possible that the invariant subalgebra, invariant under all improper orthogonal transforma-

tions, is the N = 1 super W-algebra. As mentioned before, this is an issue which becomes

invisible in the large N limit and is thus of minor importance for the present purpose.
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6 Conclusion and outlook

In this work, we propose that the N = 1 truncation of Prokushkin and Vasiliev’s N = 2

higher spin supergravity on AdS3 [7] is dual to a limit of a family of conformal field theories

given by the N = (1, 1) super cosets

ŝo(2N + 1)k ⊕ ŝo(2N)1
ŝo(2N)k+1

. (6.1)

We need to take the large N limit with ’t Hooft parameter

λ =
2N

2N + k − 1
(6.2)

kept finite. We have supported this conjecture by showing that the supergravity and the

CFT partition functions match, i.e. the spectrum is the same on both sides. Further,

we also studied the symmetry of the super coset model, especially we provided explicit

formulae for the fields of dimension 3/2, 2, 2 and 5/2.

It often happens that seemingly very different cosets possess the same symmetry al-

gebra. We would like to remark that there are other cosets whose spin content of the

symmetry algebra seems to coincide with the one of the coset of the present work. For

example consider
ôsp(1|2N)k ⊕ BN

ŝp(2N)k−1/2
. (6.3)

Here BN denotes rank N βγ-ghosts which contain as a subalgebra a homomorphic image

of sp(2N)−1/2. The central charge of this coset is

c = − 3Nk

k +N + 1/2
. (6.4)

This means that only for some negative levels k, we get a positive central charge. The

spin content of this coset can be studied as in the last section and with the help of Weyl’s

fundamental theorems of invariant theory for the symplectic group [41]. Indeed in the large

N limit, the spin content of this coset coincides with the spin content of the coset algebra

studied in last section. More cosets are constructed as follows. Let SM |P be the algebra

generated by 2M free real fermions and P βγ ghosts, then SM |P contains a homomorphic

image of ôsp(2M |2P )1 as subalgebra. The symmetry algebra of the cosets

ôsp(2M + 1|2P )k ⊕ SM |P

ôsp(2M |2P )k+1
(6.5)

can be studied as before in the large k limit and again seems to have the same spin

content. Conformal field theories of supercosets are usually not unitary and hence we

expect a tentative dual higher spin supergravity to be less interesting.

Further work is needed to obtain a better understanding of the duality. In order to

compare the partition functions, we assumed that some states in the CFT decouple from

the others in the large N limit. It is thus necessary to examine whether this assumption
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is true or not. Also, it would be desirable to show that the asymptotic symmetry of the

N = 1 supergravity can be reproduced by the ’t Hooft limit of the N = (1, 1) super coset,

in particular one should also study the Hamiltonian reduction of the ôsp(2N + 1|2N)k
affine Lie algebra. Furthermore, like in the cases of the other holographies on AdS3,

important checks of the duality would be to calculate and compare correlators, and to

consider the RG-flow.
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A N = 1 truncation of Prokushkin-Vasiliev theory

The field equations of higher spin gravity theory by Prokushkin and Vasiliev can be ex-

pressed in terms of generating functions (Wµ, B, Sα) [7]. Here Wµ is a space-time one-form

including the higher spin gauge fields, B is a zero-form including matter fields, and Sα is

an auxiliary field. The generating functions depend on the parameters (zα, yα;ψ1,2, k, ρ|xµ)
where xµ are the space-time coordinates. The spinor index α takes values 1, 2. The gener-

ating functions are expanded as

A(z, y;ψ1,2, k, ρ|x) =
1∑

B,C,D,E=0

∞∑

m,n=0

ABCDEα1,...,αm,β1,...,βnk
BρCψD1 ψ

E
2 z

α1 . . . zαmyβ1 . . . yβn .

The Grassmann parity π = 0, 1 is determined by the number of spinor indices as

π(Wα1,...,αm,β1,...,βn) =
1

2
(1− (−1)|m+n|) , π(Bα1,...,αm,β1,...,βn) =

1

2
(1− (−1)|m+n|) ,

π(Sα1,...,αm,β1,...,βn) =
1

2
(1− (−1)|m+n+1|) . (A.1)

Moreover, we define a map σ by

σ[A(z, y;ψ1,2, k, ρ)] = Arev(−iz, iy;ψ1,2, k, ρ) (A.2)

where the order of all generating elements is reversed in Arev. As shown in [7] the following

transformation is a symmetry of the field equations

η(Wµ) = −iπ(W )σ(Wµ) , η(B) = iπ(B)σ(B) , η(Sα) = iπ(S)+1σ(Sα) . (A.3)

We can thus consistently truncate the fields to those invariant under this transformation,

and this gives us the N = 1 supersymmetric theory.

We consider vacuum solutions with B = ν. In [7] they obtained three types of vacuum

solution for Sα, but we chose S
sym
α,0 in eq. (6.6) of that paper. The vacuum solutionW =W0
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depends only on (ỹα;ψ1, k). Here ỹα = ỹsymα is defined in eq. (6.11) of [7], but all we need

is that they obey the following fundamental commutator

[ỹα, ỹβ ] = 2iǫα,β(1 + νk) , {ỹα, k} = 0 . (A.4)

Explicit forms of Ssym
α,0 and ỹsymα will not be used, but the following properties are important

σ[Ssym
α,0 ] = −iSsym

α,0 , σ[ỹsymα ] = iỹsymα . (A.5)

In particular, Ssym
α,0 is invariant under the action of η defined in eq. (A.3). Defining A, Ā as

W0 = −1 + ψ1

2
A− 1− ψ1

2
Ā , (A.6)

the field equations for A, Ā are given by those of the Chern-Simons theory for the algebra

generated by (ỹα, k). This algebra was called shs[λ] algebra in [6] where λ = (1− ν)/2. If

we consider the sub-sector with even number of ỹα and k = 1, then shs[λ] is reduced to its

bosonic sub-algebra hs[λ]. The generators of shs[λ] may be given by [33]

V (s)+
m =

(−i
4

)s−1

Ssm , V (s)−
m =

(−i
4

)s−1

Ssmk , V (1)− = k + ν (A.7)

with s = 2, 3, . . . for bosonic generators and s = 3/2, 5/2, . . . for fermionic generators. Here

Ssm is the symmetric product of ỹαs, where 2s− 2 is the number of ỹα and 2m = N1 −N2

with N1,2 being the number of ỹ1,2. For the bosonic generators, even s generators are

invariant under the action of (A.3), and for the fermionic generators, V
(s)±
m generators

with s = 2n∓ 1/2 (n = 1, 2, . . .) survive.

We may define a different basis for the bosonic generators as

U (s)±
m =

(−i
4

)s−1

Ssm
1± k

2
. (A.8)

Without the N = 1 truncation, U
(s)+
m generate hs[λ] while U

(s)−
m generate hs[1 − λ]. It is

known that the infinite dimensional Lie algebra hs[λ] can be truncated at λ = ±n with

integer n and the reduced algebra becomes sl(n) [45]. In the same way, the even spin sub-

algebra of hs[λ] is reduced at λ = ±n to sp(n) for even n and so(n) for odd n (see, e.g., [5]).

Thus, the N = 1 truncation of shs[λ] can be reduced at λ = 2N + 1 to a superalgebra

whose bosonic sub-algebra is given by so(2N + 1) ⊕ sp(2N). Notice that (V
(2)+
m , V

(3/2)+
r )

with m = 0,±1 and r = ±1/2 are the generators of the osp(1|2) sub-algebra. In terms

of the superprincipal embedding of osp(1|2), the generators of osp(2N + 1|2N) can be

decomposed by the representation of osp(1|2). The action of V
(3/2)+
±1/2 produces fermionic

generators from bosonic ones in the same representation of osp(1|2). This implies that

the N = 1 truncation of shs[λ] can be reduced to the osp(2N + 1|2N) superalgebra since

the bosonic sub-algebra of osp(2N + 1|2N) is so(2N + 1) ⊕ sp(2N). In other words, the

symmetry for the massless gauge sector of the N = 1 truncated theory is given by an

analytic continuation of osp(2N+1|2N) with λ = 1+2N . Or put differently, when λ takes
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integer values, the Z2 automorphism η defined in (A.3) becomes the Z2 automorphism

acting on supermatrices by a combination of (minus) supertransposition and conjugation

with a special matrix and this defines osp(2N +1|2N) in terms of gl(2N +1|2N), see [38].

The small perturbation by matter fields can be obtained by setting B = ν+C. Studying
the dynamical parts of C, we can read off the matter content. The N = 1 truncation of

the matter fields is discussed around eq. (10.8) in [7], and it is given by an N = 1

hypermultiplet with two complex scalars having masses

(MB
− )2 = −1 + λ2 , (MB

+ )2 = −1 + (λ− 1)2 , (A.9)

and two fermions with mass

(MF
± )2 =

(
λ− 1

2

)2

. (A.10)

B Orthogonal Lie algebras

Some basics of so(2N) and so(2N + 1) Lie algebra are summarized.

B.1 so(2N) Lie algebra

It will be convenient to introduce an orthogonal basis ei (i = 1, 2, . . . N) with ei · ej = δij .

In this basis, the roots of the so(2N) Lie algebra are of the form ±ei ± ej (i 6= j) and the

simple roots are

αi = ei − ei+1 (i = 1, . . . , N − 1) , αN = eN−1 + eN . (B.1)

The fundamental weights are

λi =
i∑

l=1

el (i = 1, . . . , N − 2) ,

λN−1 =
1

2
(e1 + e2 + · · ·+ eN−1 − eN ) , (B.2)

λN =
1

2
(e1 + e2 + · · ·+ eN−1 + eN ) ,

and the Weyl vector is

ρ =
N∑

i=1

λi =
N∑

i=1

(N − i)ei . (B.3)

We consider a representation with the highest weight

Λ =
N∑

i=1

Λiλi , (B.4)
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where the coefficients are the Dynkin labels Λi ≥ 0. In the orthogonal basis, the highest

weight can be expressed as

Λ =
N∑

i=1

liei , (B.5)

with

li =
N−2∑

l=i

Λl +
1

2
(ΛN−1 + ΛN ) (i = 1, . . . N − 2) , (B.6)

lN−1 =
1

2
(ΛN−1 + ΛN ) , lN =

1

2
(ΛN−1 − ΛN ) .

In this basis, the quadratic Casimir is computed as

C2N (Λ) =
1

2
Λ · (Λ + 2ρ) =

1

2

N∑

i=1

l2i +
N∑

i=1

li(N − i) . (B.7)

As shown in [5], the quadratic Casimir for the representation with ΛN−1 6= 0 and/or

ΛN 6= 0 is of order N2 and these representations will be neglected. In other words, we set

ΛN−1 = ΛN = 0. Then the highest weight is labeled by a Young tableau with li boxes in

the i-th row. Notice that now li ≥ li+1 and lN−1 = lN = 0. Denoting the number of boxes

in the j-th column by cj , we have (see (A.9) of [14])

∑

i

ili =
1

2

∑

j

c2j +
|Λ|
2

(B.8)

where the total number of boxes is denoted by |Λ|. The quadratic Casimir is now

C2N (Λ) = |Λ|
(
N − 1

2

)
+

1

2



N−2∑

i=1

l2i −
∑

j

c2j


 , (B.9)

and thus C2N (Λ) ∼ N |Λ| in the large N limit.

B.2 so(2N + 1) Lie algebra

We use the orthogonal basis ei (i = 1, . . . , N) as in the so(2N) case. The roots of the

so(2N + 1) Lie algebra are ±ej in addition to ±ei ± ej (i 6= j) with i, j = 1, . . . , N . The

simple roots are

αi = ei − ei+1 (i = 1, . . . , N − 1) , αN = eN , (B.10)

and the fundamental weights are

λi =

i∑

l=1

el (i = 1, . . . , N − 1), λN =
1

2

N∑

l=1

el . (B.11)
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The Weyl vector is now

ρ =
N∑

i=1

(
N +

1

2
− i

)
ei . (B.12)

The Dynkin labels Λi ≥ 0 are the coefficients of the highest weight

Λ =
N∑

i=1

Λiλi =
N∑

i=1

liei , (B.13)

li =
N−1∑

l=i

Λl +
1

2
ΛN (i = 1, . . . N − 1) , lN =

1

2
ΛN . (B.14)

The quadratic Casimir for the highest weight representation is

C2N+1(Λ) =
1

2

N∑

i=1

l2i +
N∑

i=1

li

(
N +

1

2
− i

)
. (B.15)

It is easy to see that all the elements of the inverse of Cartan matrix C−1
ij = λi · λj are

non-negative. Thus we have

C2N+1(Λ) ≥ C2N+1(Λ
(s)) = N2 · a

4
+
a2

8
, (B.16)

where Λ
(s)
i = 0 for i = 1, . . . , N − 1 and Λ

(s)
N = a. This implies that C2N+1(Λ) is of order

N2 for representations with ΛN 6= 0 as in the so(2N) case, so we again set ΛN = 0. The

highest weight representation is now labeled by a Young tableau with li boxes in the i-th

row. We denote the number of boxes in the j-th column by cj , The quadratic Casimir

is now

C2N+1(Λ) = |Λ|N +
1

2



N−1∑

i=1

l2i −
∑

j

c2j


 , (B.17)

which again leads to C2N+1(Λ) ∼ N |Λ| for large N .
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