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1 Introduction

The production of photons via perturbative processes is very important for both the search

for the Higgs boson and other new physics, via photon pair production, and for the study

of QCD and experimental effects, in particular the jet-energy scale, in the production of

a photon in association with a jet. To study these processes in detail in hadron-hadron

collisions we need an accurate Monte Carlo simulation. In this paper we present a new

approach for the simulation of these processes and illustrate it with the simulation of photon

pair production.

Monte Carlo event generators simulate events by combining fixed-order matrix el-

ements, parton showers and hadronization models. The first programs used leading-

order (LO) matrix elements, together with the parton shower approximation which de-

scribes soft and collinear emission. Recently different approaches correcting the emission

of high transverse momentum, pT , partons have been introduced.1

Different algorithms have been developed to provide a better description of the hard-

est emission, including the full next-to-leading-order cross section. In the approach of

Frixione and Webber (MC@NLO) [31, 32], the parton shower approximation is subtracted

from the real emission contribution to the next-to-leading-order cross section and com-

bined with the virtual correction. This method was successfully applied to many different

processes [33–40]. However, this approach has two drawbacks: it generates weights that

are not positive definite and its implementation depend s on the parton shower algorithm.

1See ref. [1] for a recent review of the older techniques [2–19] and techniques for improving the simulation

of multiple hard QCD radiation [20–30].
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These drawbacks have been addressed with a new method introduced by Nason [41, 42],

the POsitive Weight Hardest Emission Generator (POWHEG) approach. This method

generates positive weights and is implemented in a way that does not depend on the details

of the parton shower algorithm. Nevertheless, the parton shower algorithm must have a

well defined structure: a truncated shower simulating wide angle soft emission; followed

by the emission with highest transverse momentum (pT ); followed by a vetoed shower

simulating softer radiation. The hardest emission is generated by a Sudakov form factor

that includes the full matrix element for real emission. The truncated shower generates

emission at a higher scale (in the evolution variable of the parton shower), while the vetoed

shower simulates radiation at a lower evolution scale than the one at which the hardest

emission is generated. The POWHEG method has been successfully applied to a wide

range of processes [43–62].2

These approaches have yet to be applied to processes involving the production of pho-

tons due to the complications which arise in the experimental measurement, simulation

and calculation at higher orders in perturbation theory of these processes. Collider ex-

periments do not measure inclusive photons because of the high background due to the

production of photons in meson decays. Indeed, the inclusive production rate of high pT

π0, η, ω mesons is orders of magnitude bigger than for direct photon production. For

this reason the experimental selection of direct photons requires the use of an isolation

cut. Different criteria for the isolation of photons include: the cone approach [66, 67], the

democratic approach [68] and the smooth isolation procedure [69]. In fixed-order calcu-

lations this contribution is included using the measured photon fragmentation function,

the probability of a parton fragmenting to produce a photon with a given fraction of the

parent parton’s momentum, whereas Monte Carlo simulations instead rely on the parton

shower and hadronization models to simulate this contribution. This presents a problem

in simulating these processes at NLO where some of the singularities in the real emission

processes are absorbed into photon fragmentation function in fixed-order calculations. In

this paper we will present a method for simulating these processes using the POWHEG

approach which still relies on the parton shower and hadronization models to simulate

the photon fragmentation contribution. This approach is similar in its philosophy to the

method o f ref. [70] for combining leading-order matrix elements and the parton shower.

We illustrate this approach with the simulation of diphoton (γγ) production. Diphoton

production is important as it provides a large background for the discovery of the Higgs bo-

son decaying into a pair of photons, for both the Tevatron [71] and LHC experiments [72, 73].

It is also an important background in new physics models, for example in heavy resonance

models [74], models with extra spatial dimensions [75] and cascade decays of heavy new

particles [76]. Experimental measurements of γγ production have a long history in fixed-

target [77–79] and collider experiments [80–84].

The theoretical understanding of diphoton production and precise measurements of

the differential cross section are therefore not only important for the discovery of new

2There has also been some work combining either many NLO matrix elements [63] or the NLO matrix

elements with subsequent emissions matched to leading-order matrix elements [64, 65] with the parton

shower.
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phenomena but also as a check of the validity of the predictions of perturbative quantum

chromodynamics (pQCD) and soft-gluon resummation methods.

The dominant production method for direct photon pairs is leading order qq̄ scatter-

ing (qq̄ → γγ), although the formally next-to-next-to-leading-order, O(α2
s), gluon-gluon

fusion (gg → γγ) process via a quark-loop diagram [85] can be important, and even com-

parable to the leading-order contribution at low diphoton mass (Mγγ) [84], due to the large

gluon parton distribution function.

The O(αs) corrections to the qq̄ → γγ process includes the qq̄ → γγg, gq → γγq

and gq̄ → γγq̄ processes and corresponding virtual corrections. Moreover, the contribution

where the final parton is collinear to a photon is calculated in terms of the quark and gluon

fragmentation function into a photon [85, 86]. Given the behaviour of the latter functions,

∼ α
αs

, these terms contribute to the same order as qq̄ → γγ.

The calculation of the O(αs) corrections to this contribution yield the LO contribution

of the double fragmentation type process that corresponds to the case in which both pho-

tons are collinear to the final state partons. A full study at NLO accuracy requires that

the O(αs) corrections to this LO component are in turn calculated. However, the NLO

corrections to the fragmentation type contributions are not considered in the present work.

The QCD corrections to the diphoton production process are well known in the lit-

erature [66, 87–91]. Fixed-order Monte Carlo programs, such as JETPHOX [92] and

DIPHOX [93], provide simulation for direct photon production together with the imple-

mentation of isolation cuts.

The present paper is organized as follows. In section 2 we introduce the POWHEG

formulae useful for the description of our approach and our treatment of the photon frag-

mentation contribution. The calculation of the leading-order kinematics with NLO accu-

racy in the POWHEG approach is discussed in section 3. In section 4 we describe the

procedure used to generate the hardest emission. We show our results in section 5 and

finally present our conclusions in section 6.

2 The POWHEG method

In the POWHEG approach the NLO differential cross section for a given N-body process is

dσ = B̄(ΦB)dΦB

[

∆R(0) +
R(ΦB ,ΦR)

B(ΦB)
∆R(kT (ΦB ,ΦR))dΦR

]

, (2.1)

where B̄(ΦB) is defined as

B̄(ΦB) = B(ΦB) + V (ΦB) +

∫

[R(ΦB,ΦR) − C(ΦB,ΦR)] dΦR, (2.2)

B(ΦB) is the leading-order contribution, ΦB the N-body phase-space variables of the LO

Born process whereas ΦR are the radiative variables describing the phase space for the

emission of an extra parton. The real contribution, R(ΦB,ΦR), is the matrix element

including the radiation of an additional parton multiplied by the relevant parton flux

factors, and is regulated by subtracting the counter terms C(ΦB,ΦR) which contain the
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same singularities as R(ΦB,ΦR). In practice the counter term is usually composed of a

sum over a number of terms, Di(ΦB ,ΦR), each of which regulates one of the singularities in

the matrix element using approaches of either Catani and Seymour (CS) [94] or Frixione,

Kunszt and Signer (FKS) [95], i.e. C(ΦB,ΦR) =
∑

i D
i(ΦB ,ΦR). The finite contribution

V (ΦB) includes the virtual loop corrections and the counter terms integrated over the real

emission variables, which cancel the singularities from the loop corrections, and the collinear

remnant from absorbing the initial-state singularities into the parton distribution functions.

The modified Sudakov form factor is defined in terms of the real emission

matrix element

∆R(pT ) = exp

[

−
∫

dΦR
R(ΦB ,ΦR)

B(ΦB)
θ(kT (ΦB,ΦR) − pT )

]

, (2.3)

where kT (ΦB,ΦR) is equal to the transverse momentum of the emitted parton in the soft

and collinear limits.

The POWHEG method is based on two steps: the N-body configuration is generated

according to B̄(ΦB) and then the hardest emission is generated using the Sudakov form

factor given in eq. (2.3). Since B̄(ΦB) is defined as the NLO differential cross section

integrated over the radiative variables, the event weight will not be negative.

If the parton shower algorithm is ordered in transverse momentum we would generate

the hardest emission first and then evolve the N + 1 parton final-state system using the

shower forbidding any emission with transverse momentum higher than that of the hardest

emission. On the contrary for shower simulations which are ordered in other variables,

such as angular ordering in Herwig++ [19, 96] , the hardest emission is not necessarily the

first one. For this reason the shower must be split into a truncated shower describing soft

emission at higher evolution scales, the highest pT emission and vetoed showers simulating

emissions at lower evolution scales; however, constraints are imposed to guarantee that the

transverse momentum of the emitted particles is smaller than the one corresponding to the

hardest emission [41, 42].

In order to use this procedure for processes involving photons where the real emission

matrix elements contain both QCD singularities from the emission of soft and collinear

gluons and QED singularities from the radiation of soft and collinear photons we need to

make some modifications to the approach. We start by writing the real emission piece as

R(ΦB,ΦR) = RQED(ΦB,ΦR) + RQCD(ΦB,ΦR), (2.4)

where

RQED(ΦB ,ΦR) =

∑

i Di
QED

∑

j Dj
QED +

∑

j Dj
QCD

R(ΦB,ΦR) (2.5a)

contains the collinear photon emission singularities and

RQCD(ΦB,ΦR) =

∑

i Di
QCD

∑

j Dj
QED +

∑

j Dj
QCD

R(ΦB ,ΦR) (2.5b)
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contains the singularities associated with QCD radiation.3 Here the counter terms have

been split into those Di
QCD which regulate the singularities from QCD radiation and those

Di
QED which regulate the singularities due to photon radiation.

We can regard the real QCD emission terms as part of the QCD corrections to the

leading-order process, whereas the QED contributions are part of the photon fragmentation

contribution coming from a leading-order process with one less photon and an extra par-

ton. We therefore modify the next-to-leading-order cross section for processes with photon

production giving

dσ =

{

B(ΦB) + V (ΦB) +

∫

[

RQCD(ΦB ,ΦR) −
∑

i

Di
QCD(ΦB ,ΦR)

]

dΦR

}

dΦB

+RQED(ΦB,ΦR)dΦRdΦB. (2.6)

There should also be an additional non-perturbative contribution with the convolution of

the photon fragmentation function and the leading-order process with one less photon and

an extra parton.

We can now write the cross section for photon production processes in the POWHEG

approach in the same way as in eq. (2.1)

dσ = B̄(ΦB)dΦB

[

∆QCD(0) +
RQCD(ΦB ,ΦR)

B(ΦB)
∆QCD(kT (ΦB ,ΦR))dΦR

]

(2.7)

+B′(Φ′
B)dΦ′

B

[

∆QED(0) +
RQED(Φ′

B ,Φ′
R)

B′(Φ′
B)

∆QED(kT (Φ′
B ,Φ′

R))dΦ′
R

]

,

where B̄(ΦB) is now defined as

B̄(ΦB) =

{

B(ΦB) + V (ΦB) +

∫

[

RQCD(ΦB,ΦR) −
∑

i

Di
QCD(ΦB ,ΦR)

]

dΦR

}

dΦB

(2.8)

and B′(Φ′
B) is the leading-order contribution for the process with an extra parton and one

less photon with Φ′
B and Φ′

R being the corresponding Born and real emission phase-space

variables.

The Sudakov form factor for QCD radiation is

∆QCD(pT ) = exp

[

−
∫

dΦR
RQCD(ΦB,ΦR)

B(ΦB)
θ(kT (ΦB ,ΦR) − pT )

]

, (2.9a)

and the Sudakov form factor for QED radiation is

∆QED(pT ) = exp

[

−
∫

dΦ′
R

RQED(Φ′
B ,Φ′

R)

B′(Φ′
B)

θ(kT (Φ′
B,Φ′

R) − pT )

]

. (2.9b)

Both the direct photon production and the non-perturbative fragmentation contribu-

tion are correctly included. The non-perturbative fragmentation contribution is simulated

by the parton shower from the B′(Φ′
B) contribution when there is no hard QED radiation.

The POWHEG algorithm is implemented for photon production processes using the

following procedure.

3In practice the counter terms can be negative in some regions and we choose to use their magnitude in

this separation in order to ensure that the real contributions are positive.
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• First select either a direct photon production or a fragmentation event using B̄(ΦB)

and B′(Φ′
B) and the competition method to correctly generate the relative contribu-

tions of the two different processes.

• For a direct photon production process:

– generate the hardest emission using the Sudakov form factor in eq. (2.9a);

– directly hadronize non-radiative events;

– map the radiative variables parameterizing the emission into the evolution scale,

momentum fraction and azimuthal angle, (q̃h, zh, φh), from which the parton

shower would reconstruct identical momenta;

– generate the N -body configuration from B̄(ΦB) and evolve the radiating parton

from the starting scale down to q̃h using the truncated shower;

– insert a branching with parameters (q̃h, zh, φh) into the shower when the evolu-

tion scale reaches q̃h;

– generate pT vetoed showers from all the external legs.

• For a fragmentation contribution:

– generate the hardest QED emission using the Sudakov form factor in eq. (2.9b);

– directly shower and hadronize non-radiative events, forbidding any perturbative

QED radiation in the parton shower generating the non-perturbative fragmen-

tation contribution;

– for events with QED radiation map the radiative variables parameterizing the

emission into the evolution scale, momentum fraction and azimuthal angle,

(q̃h, zh, φh), from which the parton shower would reconstruct identical momenta;

– generate the N -body configuration from B′(Φ′
B) and evolve the radiating parton

from the starting scale down to q̃h using the truncated shower, but allowing QCD

radiation with pT greater than that of the hardest QED emission;

– insert a branching with parameters (q̃h, zh, φh) into the shower when the evolu-

tion scale reaches q̃h;

– generate the shower from all external legs forbidding QED radiation, but not

QCD radiation, above the pT of the hardest emission.

This procedure now includes the QCD corrections to the leading-order direct photon pro-

duction process and both the perturbative QED corrections to the photon fragmentation

contribution and the non-perturbative contribution are simulated by the parton shower.

In the next two sections we will describe how we implement this approach in Herwig++

for photon pair production.

– 6 –
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q

q̄

γ1

γ2

+1 ↔ 2

Figure 1. Diphoton production at leading-order.

3 Calculation of B̄(ΦB)

In this section we describe the O(αs) corrections to diphoton production. At leading-

order, γγ-production is described by the Feynman diagram illustrated in figure 1. Next-

to-leading-order contributions yield O(αs) corrections coming from qq̄ → γγg, gq → γγq

and gq̄ → γγq̄, together with the corresponding virtual corrections, as shown in figure 2.

These subprocesses contain QED singularities, corresponding to configurations where the

final-state parton becomes collinear to a photon, which do not cancel when summing up

the real and the virtual pieces of the cross section. As described in the previous section

they are formally absorbed into a quark (Gγq(z, µ2)) or gluon (Gγg(z, µ2)) fragmentation

function into photons, which define the probability of finding a photon carrying longitu-

dinal momentum fraction z in a quark or gluon jet at scale µ for a given factorization

scheme. This QED singular component is called the Bremsstrahlung or single fragmen-

tation contribution. In our approach it is treated separately and simulated by showering

the gq → γq or gq̄ → γq̄ within the Monte Carlo algorithm, see figure 3, as described

in the previous section. At next-to-leading-order the same configuration appears in any

subprocess in which a quark (gluon) undergoes a cascade of successive collinear splittings

ending up with a quark-photon (gluon-photon) splitting. These singularities are factorized

to all orders in αs, according to the factorization theorem. When the fragmentation scale

µ is chosen higher than any other hadronic scale, i.e. µ ∼ 1 GeV, these functions behave

roughly as α
αs(µ2)

and therefore they contribute at leading-order.

For a full study at NLO accuracy, the O(αs) corrections to the Bremsstrahlung contri-

bution need to be calculated. Moreover, these corrections in their turn yield the leading-

order contribution of the double fragmentation type process; in the latter case, both pho-

tons result from the collinear fragmentation of a parton. However, these corrections are

out of the scope of the present work and are not considered here.

3.1 Real emission contribution

In order to calculate the real emission contribution to B̄(ΦB) we need to specify both the

radiative phase space, ΦR, and the subtraction counter terms. We choose to use the dipole

subtraction algorithm of Catani and Seymour [94] to specify the counter terms and the

associated definition of the real emission phase space as follows.

– 7 –
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+1 ↔ 2

+1 ↔ 2

q q q

qqq

q q q

q q
′

q

q
′

q

q
′

γ1 γ1 γ1

γ1γ1γ1

γ1 γ1 γ1

γ1

γ1

γ1

γ2
γ2 γ2

γ2γ2γ2

γ2 γ2 γ2

γ2

γ2

γ2

g

g

g

g

g g

q̄ q̄ q̄

q̄q̄q̄

q̄ q̄ q̄

(a)

(b)

Figure 2. Diphoton production at next-to-leading-order. In (a) the real and virtual Feynman

diagrams contributing to the qq̄ → γγ subprocess are shown while in (b) the real diagrams for gq

initiated process are given.

In the centre-of-mass frame the incoming hadronic momenta are, P⊕ and P⊖, respec-

tively for the hadrons traveling in the positive and negative z-directions. Similarly the

momenta of the incoming partons in the Born process are p̄⊕ = x̄⊕P⊕ and p̄⊖ = x̄⊖P⊖,

respectively. The momenta of the photons in the Born process are k̄1,2 respectively. The

corresponding momenta in the real emission process are p⊕ and p⊖ for the incoming par-

tons and k1,2,3 for the outgoing particles which are chosen such that k1,2 are the momenta

of the photons and k3 that of the radiated final-state parton.

In the CS approach the real phase space depends on which parton is the emitter

of the radiation and which the associated spectator defining the dipole [94]. When the

parton with momentum p̄⊕ is the emitter and that with momenta p̄⊖ the spectator the

full phase space is [94]

dΦ3 = dΦBdΦR = dΦB
(k1 + k2)

2

16π2

dφ⊕
2π

dv⊕
dx

x
θ(v⊕) θ

(

1 − v⊕
1 − x

)

θ(x(1 − x)) θ(x − x̄⊕),

(3.1)
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q

q

γ1

γ1

γ2

g

q̄

q

γ1

γ2

γ2

q̄

γ1

γ2

+1 ↔ 2

q

g

Figure 3. Bremsstrahlung contribution for diphoton production.

where the radiative phase space variables are

x = 1 − (p⊕ + p⊖) · k3

p⊕ · p⊖
, v⊕ =

p⊕ · k3

p⊕ · p⊖
, φ⊕, (3.2)

φ⊕ is the azimuthal angle of the emitted particle around the ⊕̂-direction and

x ∈ [x⊕, 1], v⊕ ∈ [0, 1 − x]. (3.3)

In terms of these variables

p⊕ = p̄⊕/x, p⊖ = p̄⊖, (3.4a)

x⊕ = x̄⊕/x, x⊖ = x̄⊖. (3.4b)

It is useful to specify the momentum of the radiated parton in terms of its transverse

momentum, pT , and rapidity, y, such that

k3 = pT (cosh y; cos φ⊕, sin φ⊕, sinh y) . (3.5)

Using the definition of x and v⊕ we have

k3 = v⊕p⊖ + (1 − x − v⊕)p⊕ + q⊥, (3.6)

where q⊥ is the component of the 4-momenta transverse to the beam direction. The on-shell

condition, k2
3 = 0, gives

− q2
⊥ = p2

T = 2p⊕ · p⊖(1 − x − v⊕)v⊕. (3.7)
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From eq. (3.6) and the definition of rapidity

y =
1

2
ln

[

kE
3 + kz

3

kE
3 − kz

3

]

=
1

2
ln

[

(1 − x − v⊕)x⊕
v⊕xx⊖

]

, (3.8)

the CS variables are


















v⊕ = 1
x⊖

√
s
pT e−y,

x =
1− pT

x⊖
√

s
e−y

1+
pT

x⊕
√

s
ey

.

(3.9)

This is sufficient to calculate the momentum of the radiated parton, however, rather

than implementing the real emission variables in the Sudakov form factor in this way and

then imposing the θ(kT (ΦB ,ΦR)− pT ) function it is easier to consider the real emission in

terms of the transverse momentum, rapidity and azimuthal angle of the emitted parton.

The Jacobian for this transformation is

∣

∣

∣

∣

∂(x, v)

∂pT ∂y

∣

∣

∣

∣

=

2pT

sx⊕x⊖

(

1 − pT√
sx⊖

e−y
)

(

1 + pT√
sx⊕

ey
)2 =

2pT x2

sx⊕x⊖(1 − v⊕)
. (3.10)

The momenta of the photons in the real emission process can then be calculated from

the Born momenta using

kµ
r = Λµ

ν k̄ν
r r = 1, 2, (3.11)

where the Lorentz transformation is

Λµ
ν = gµ

ν − 2(K + K̄)µ(K + K̄)ν
(K + K̄)2

+
2KµK̄ν

K2
, (3.12)

with

K = p⊕ + p⊖ − k3 = k1 + k2, (3.13a)

K̄ = p̄⊕ + p̄⊖. (3.13b)

The condition K2 = K̄2 is compatible with the definition of x given in eq. (3.2). The

kinematic variables for the ⊖̂ collinear direction are calculated in a similar way and they

provide a radiative phase space as in eq. (3.1). Moreover, given the x⊕ ↔ x⊖ asymmetry

of the rapidity in eq. (3.8), it is [y]⊖ = − [y]⊕. In the rest of the paper we refer to the

collinear direction as Ô = {⊖̂, ⊕̂}, when both components need to be included.

In addition to the real emission variables we need the dipole subtraction terms of

ref. [94]. In the following B(ΦB) and B′(Φ′
B) are computed in terms of the reduced

momenta defined in terms of the momenta for the real emission process in ref. [94]. The

QCD singularities from qq̄ → γγg are absorbed by the dipoles

Dqg,q̄ ≡ Dqg
QCD = 8πCF αs(µR)

1

2p̄⊕k3

{

2

1 − x
− (1 + x)

}

B(ΦB), (3.14a)

Dq̄g,q ≡ Dq̄g
QCD = 8πCF αs(µR)

1

2p̄⊖k3

{

2

1 − x
− (1 + x)

}

B(ΦB), (3.14b)
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where the dipoles Dij,k denote the emitter i, emitted parton j and spectator k.

The gq → γγq subprocess involves the QCD dipoles

Dgq,q ≡ Dgq
QCD = 8πTF αs(µR)

1

2p̄⊕k3
{1 − 2x(1 − x)}B(ΦB). (3.15)

In order to separate the QCD and QED emission we also need the QED dipoles

Dq
qγ ≡ DqγF

QED = 8παe2
q

1

2k2k3ξ

{

2

1 − ξ + z
− 2 + z

}

B′(Φ′
B), (3.16a)

Dqγ
q ≡ DqγI

QED = 8παe2
q

1

2p⊖k3ξ

{

2

1 − ξ + z
− (1 + x)

}

B′(Φ′
B), (3.16b)

where

ξ = 1 − k2k3

(k2 + k3)p⊕
, (3.17a)

z =
p⊕k2

(k2 + k3)p⊕
, (3.17b)

and eq is the charge of the quark q in units of the electron charge. In this case, the radiative

phase space is dΦ′
R(ξ, z, φ′). Similar dipoles are included for the gq̄ → γγq̄ subprocess. We

do not include perturbative QED radiation from the qq̄ → γg subprocess as it does not

give a perturbative correction to Gγg(z, µ2).

In practice we generate the real emission piece as a contribution from each of the

incoming partons as

∫

[

RQCD(ΦB,ΦR) −
∑

i

Di
QCD(ΦB ,ΦR)

]

dΦi
R =

∑

i=⊕,⊖

∫

[

|Di
QCD|

∑

j |D
j
QED| +

∑

j |D
j
QCD|

R(ΦB,Φi
R) − Di

QCD(ΦB,ΦR)

]

dΦi
R. (3.18)

For the later generation of the Sudakov form factor it is useful to express the dipoles

as

DI
QCD ≡ CIαs(µR)

2π
DIB(ΦB), (3.19)

where I = {qg; q̄g; gq; gq̄},

Cqg = Cq̄g = CF , (3.20a)

Cgq = Cgq̄ = TF , (3.20b)

and

DJ
QED ≡ α

2π
e2
qDJB(Φ′

B), (3.21)

where J = {qγF, qγI, q̄γF, q̄γI}.
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3.2 Virtual contribution and collinear remainders

The finite piece of the virtual correction is

dσV =
CF αs(µR)

2π
V (w)B(ΦB). (3.22)

where the finite contribution of I(ǫ) [94] and the virtual correction [89] is

V (w) =
(

3 + ln2w + ln2(1 − w) + 3ln(1 − w)
)

+
F (w)

(

1−w
w

+ w
1−w

) , (3.23)

where eq is the electric charge of quark q, and

F (w) = 2lnw + 2ln(1 − w) +
3(1 − w)

w
(lnw − ln(1 − w))

+

(

2 +
w

1 − w

)

ln2w +

(

2 +
1 − w

w

)

ln2(1 − w), (3.24)

with w = 1 + t̂
ŝ
, where ŝ and t̂ are the usual Mandelstam variables.

The collinear remainders are

dσcoll =
CF αs(µR)

2π

fm(xO, µF )

f(xO, µF )
B(ΦB), (3.25)

where the modified PDF is4

fm
q (xO, µF ) =

∫ 1

xO

dx

x

{

fg

(xO

x
, µF

)

A(x)

+
[

fq

(xO

x
, µF

)

− xfq(xO, µF )
]

B(x)

+ fq

(xO

x
, µF

)

C(x)
}

+ fq(xO, µF )D(xO), (3.26)

fq and fg are the quark and gluon PDFs respectively, and

A(x) =
TF

CF

[

2x(1 − x) + (x2 + (1 − x)2)ln
Q2(1 − x)2

µ2
F x

]

, (3.27)

B(x) =

[

2

1 − x
ln

Q2(1 − x)2

µ2
F

]

, (3.28)

C(x) =

[

1 − x − 2

1 − x
lnx − (1 + x)ln

Q2(1 − x)2

µ2
F x

]

, (3.29)

D(xO) =

[

3

2
ln

(

Q2

µ2
F

)

+ 2ln(1 − xO)ln

(

Q2

µ2
F

)

+ 2ln2(1 − xO) +
π2

3
− 5

]

. (3.30)

The combined contribution of the finite virtual term and collinear remnants is

dσV +coll =
CF αs(µR)

2π
V(ΦB)B(ΦB), (3.31)

where

V(ΦB) ≡ V (w) + Ṽ (xO, µF ), (3.32)

with Ṽ (xO, µF ) = fm(xO,µF )
f(xO,µF ) .

4We write the modified PDF for the quark q, but a similar expression is valid for an incoming antiquark

q̄.
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3.3 Generation of the hard process

The next-to-leading-order simulation of photon pair production in Herwig++ uses the stan-

dard Herwig++ machinery to generate photon pair and photon plus jet production in com-

petition. The B̄ function is implemented as a reweighting of the leading-order matrix

element as follows:

1. the radiative variables ΦR {x, v, φ} and Φ′
R {ξ, z, φ′} are transformed into a new set

such that the radiative phase space is a unit volume;

2. using the standard Herwig++ leading-order matrix element generator, we generate

a leading-order configuration and provide the Born variables ΦB with an associated

weight B(ΦB);

3. the radiative variables ΦR are generated and B̄(ΦB) sampled in terms of the unit

cube (x̃, ṽ, φ̃), using the Auto-Compensating Divide-and-Conquer (ACDC) phase-

space generator [97];

4. the leading-order configuration is accepted with a probability proportional to the

integrand of eq. (2.8) evaluated at {ΦB ,ΦR}.

4 The generation of the hardest emission

Following the generation of the Born kinematics with next-to-leading-order accuracy the

hardest QCD or QED emission must be generated according to eqs. (2.9a) or (2.9b), respec-

tively depending on whether a direct or photon fragmentation contribution was selected.

4.1 The hardest QED emission

The hardest QED emission is generated by using the modified Sudakov form factor defined

in eq. (2.9b). We generate it in terms of the variables Φ′
R(xp, zp, φ), with

dΦ′
R =

1

2π
dxpdzpdφ, (4.1)

defined in [9, 13], where xp ∈ [xo, 1], zp ∈ [0, 1] and the azimuthal angle φ ∈ [0, 2π]. The

invariant mass of the initial-final dipole q2 = (pi − pk)
2 = −Q2 is preserved by the photon

radiation. It is easiest to generate the hardest emission by introducing x⊥ such that the

transverse momentum of the emission relative to the direction of the partons in the Breit

frame of the dipole is pT = Q
2 x⊥, where

x2
⊥ =

4(1 − xp)(1 − zp)zp

xp
. (4.2)

The Sudakov form factor can then be calculated in terms of Φ̃′
R(x⊥, zp, φ), such that the

θ-function simply gives x⊥ as integration limits and eq. (2.9b) becomes

∆J
QED(x⊥) = exp

(

−
∫ xmax

⊥

x⊥

dx′
⊥

x′3
⊥

dφdzp
α

2π
W

AJ
QED

B

)

, (4.3)

– 13 –



J
H
E
P
0
2
(
2
0
1
2
)
1
3
0

where
α

2π
AJ

QED =
|DJ

QED|
∑

j |D
j
QED| +

∑

j |D
j
QCD|

R(ΦB ,ΦJ
R), (4.4)

the Jacobian, W, is

W = 4zp(1 − zp)(1 − xp)
2, (4.5)

and Q
2 xmax

⊥ is the maximum value for the transverse momentum.

It is impossible to generate the hardest emission directly using eq. (4.3) instead we use

an overestimate

g(x⊥) =
a

x3
⊥

, (4.6)

of the integrand in eq. (4.3) so that

∆over
QED(x⊥) = exp

(

−
∫ xmax

⊥

x⊥

dx′
⊥

x′3
⊥

dφdzpa

)

(4.7)

can be easily integrated in {x⊥, xmax
⊥ }. This allows us to solve R1 = ∆over

QED(x⊥) where R1

is a random number in [0, 1] to get the transverse momentum of a trial hard emission

x2
⊥(R1) =

1
1

(xmax

⊥ )2 − 2
a

lnR1
. (4.8)

This trial hard emission is then accepted or rejected using a probability given by the ratio

of the true integrand to the overestimated value. If the emission is rejected the procedure

is repeated with xmax
⊥ set to the rejected x⊥ value until the generated value is below the

cut-off. This procedure, called the veto algorithm, correctly generates the hardest emission

according to eq. (4.3) [98].

4.2 The hardest QCD emission

The hardest QCD emission is generated in terms of the variables ΦR(pT , y, φ) defined in

section 3.1. Eq. (2.9a) then becomes

∆I
QCD(pT ) = exp

(

−
∫ pmax

T

pT

dp′⊥dφdy
CIαs

2π
WI

AI
QCD

B

)

, (4.9)

where
CIαs

2π
AI

QCD =
|DI

QCD|
∑

j |D
j
QED| +

∑

j |D
j
QCD|

R(ΦB,ΦI
R), (4.10)

the Jacobian is

WI =
x

1 − vO
, (4.11)

where we mean to use v⊕ for I = {qg; gq; gq̄} and v⊖ for I = {q̄g}.
As before we use the veto algorithm to generate the hardest QCD emission according

to eq. (4.9). In this case we introduce the overestimate function

gI(pT ) =
aI

pT
, (4.12)
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so that

∆over
QCD(pT ) = exp

(

−
∫ pmax

T

pT

dp′T
p′T

dφdyaI

)

(4.13)

is easily integrable in {pT , pmax
T } and R1 = ∆over

QCD(pT ) can be solved giving

pT (R1) = R
1

a

1 . (4.14)

As before this trial hard emission is then accepted or rejected using a probability given by

the ratio of the true integrand to the overestimated value. If the emission is rejected the

procedure is repeated with pmax
T set to the rejected pT value until the generated value is

below the cut-off.

5 Results

Unlike the implementations of many other processes in the POWHEG formalism it is

impossible to directly compare our results for any quantities directly with next-to-leading-

order simulations in order to test the implementation due to the very different treatment

of the photon fragmentation contribution. Instead we compare a simple observable, the

rapidity of the photons, with the next-to-leading-order program DIPHOX [93] as a sanity

check of our results not expecting exact agreement, although the PDFs and electroweak

parameters were chosen to give exact agreement for the leading order qq̄ → γγ process.

For proton-proton collisions at a centre-of-mass energy of 14 TeV, we used the following

set of cuts on pT and rapidity of photons

pγ
T > 25 GeV, |yγ | < 2.5, (5.1)

together with a cut on the invariant mass of the γγ-pair

80 GeV < Mγγ < 1500 GeV. (5.2)

Moreover, we follow typical experimental selection cuts to isolate direct photons from the

background: we require that the amount of total transverse energy, Ehad
T , released in the

cone, centred around the photon direction in the rapidity and azimuthal angle plane, is

smaller than 15 GeV, i.e.

(y − yγ)2 + (φ − φγ)2 ≤ R2 (5.3)

Ehad
T ≤ 15 GeV, (5.4)

where R = 0.4 is the radius of the cone. The PDFs are chosen to be the CTEQ6 set [99].

The result is shown in figure 4. The distributions from DIPHOX at NLO(red dashed

line) and LO (red dash-dotted line), together with LO Herwig++ (dotted black line) and

Herwig++ with POWHEG corrections (solid black line) do not include the gluon-gluon

channel. At LO the Herwig++ and DIPHOX distributions are indistinguishable. At NLO

they show a difference that is very small compared to the correction from LO to NLO, which

means that the NLO curves are in reasonable agreement given the sizable contribution of
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Figure 4. Rapidity of the γγ-pair at NLO. The distribution from the Herwig++ parton shower

with POWHEG correction (solid black line) is compared with NLO cross section from DIPHOX

(dashed red line). At LO the Herwig++ distribution is given by the dotted black line while the

cross section from DIPHOX by the dash-dotted red line. In the lower panel we show the ratio of

each distribution (MC) over the DIPHOX curve at NLO.

the fragmentation contribution that is treated differently in the two approaches. The size

of the difference of the two approaches is better seen in the lower panel that shows ratio

plot of each distribution (MC) over the DIPHOX curve at NLO.

In figure 5a we compare the results from Herwig++ with the data of ref. [83], a

fixed next-to-leading-order calculation from DIPHOX (dotted magenta line) and RESBOS

(dashed-dotted green line) [100–104], which performs an analytic resummation of the log-

arithmically enhanced contributions. Here and in the following the LO Herwig++ parton

shower (red dashed line) includes the qq̄ → γγ, qg → γjet and gg → γγ contribution.

The implementation of POWHEG correction improves the description and this results in

a distribution (solid blue line) that is in good agreement with the data. Here, as in the

following, the NLO curve includes the gg → γγ subprocess. In the lower frame, we plot

the ratio MC/data and the yellow band gives the one sigma variation of data. All the

plots comparing the results of Herwig++ with experimental results were made using the

Rivet [105] package.

It is of interest to study the transverse momentum of the γγ-pair, because it is not

infrared safe for pγγ
⊥ → 0. The qq̄ → γγ and gg → γγ processes present a loss of balance

between the corresponding real emission and virtual contribution, which results in large

logarithms at every order in perturbation theory. In addition, the fragmentation compo-
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Figure 5. The (a) invariant mass and (b) transverse momentum of the γγ-pair. The solid blue

line shows the POWHEG approach, while the dashed red curve shows the result of the Herwig++

shower at LO. We show the NLO cross section provided by DIPHOX (magenta dotted line) and

RESBOS (green dashed-dotted line). The data are from ref. [83] and the curves are plotted with

Rivet [105]. In the lower panel, the yellow band describes the one sigma variation of data.

nents introduce an extra convolution that smears out this singularity. Since DIPHOX is

based on a fixed, finite order calculation it is not suitable for the study of infrared sensitive

observables and it fails in the description of these observables at low pγγ
⊥ , as it is shown in

figure 5b (dotted magenta line). Resummation for diphoton production in hadron-hadron

collision has been provided at all orders in αs in ref. [106] and implemented in RESBOS, as

the corresponding distribution (dashed-dotted green line) shows in the same figure. The

Herwig++ parton shower resums the effect of enhanced collinear emission to all orders

in αs in the leading-logarithmic (LL) approximation and results in a finite behaviour for

pγγ
⊥ → 0 (red dashed line). However, the LO distribution does not correctly describe the

data. In presence of POWHEG correction the distribution (solid blue line) stays finite at

low pγγ
⊥ and is in good agreement with the CDF data [83].

In addition, Herwig++ distributions, with and without POWHEG corrections, are

compared to the data of ref. [84]. In figure 6, we show the transverse momentum of the

diphoton pair for two ranges of invariant mass of the γγ-pair, Mγγ ; in figure 6a 50 GeV <

Mγγ < 80 GeV and in figure 6b 80 GeV < Mγγ < 350 GeV. For the same ranges of Mγγ

we plot the azimuthal angle distribution between the photons in figure 7a and figure 7b

respectively and the polar angle between the photons in figure 8a and figure 8b. For all

distributions we see that the LO Herwig++ ditributions (red dashed line) do not correctly

describe the data. The POWHEG approach improves the simulation and provides a good

description of D0 data [84].

To estimate the effect of our implementation on theoretical uncertainties, we plot scale

variation for the azimuthal angle distribution between the photons with 50 GeV < Mγγ <

80 GeV (figure 9). The scale variation is between 1/2 and twice the scale for the bands
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Figure 6. Transverse momentum of the diphoton system for (a) 50 GeV < Mγγ < 80 GeV and

(b) 80 GeV < Mγγ < 350 GeV. The distribution for the POWHEG formalism (solid blue line) is

plotted together with the distribution for the Herwig++ parton shower (dashed red line). The data

are from ref. [83] and the lower frame is as described in figure 5
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Figure 7. Azimuthal angle between the photons for (a) 50 GeV < Mγγ < 80 GeV and (b)

80 GeV < Mγγ < 350 GeV. The solid blue line shows the result for the Herwig++ shower with

POWHEG corrections, while the red dashed line gives the result from the Herwig++ parton shower.

The data are from ref. [83] and the lower frame is as described in figure 5

and the NLO variation is not much smaller than the LO one because there is only a small

scale uncertainty in the LO qq̄ → γγ component. Most of the variation is in the γjet

contribution and its uncertainty is essentially the same at NLO in our approach.
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Figure 8. Polar scattering angle between the photons for two ranges of Mγγ : 50 GeV < Mγγ <

80 GeV (a) and 80 GeV < Mγγ < 350 GeV (b). The solid blue line describes the Herwig++ result

with POWHEG corrections, the dashed red line does not include matrix element corrections. The

data are from ref. [83] and the lower frame is as described in figure 5.

Figure 9. In the present figure we show scale variation for the azimuthal angle between the photons

for 50 GeV < Mγγ < 80 GeV.

6 Conclusion

In the present work the POWHEG NLO matching scheme has been extended and applied

to γγ-production in hadron collisions. The QED singularities are not treated by including

fragmentation functions but rather by simulating the LO cross section for the corresponding

process and then showering it. The simulation contains a full treatment of the truncated

shower which is needed to correctly generate radiation with transverse momentum that is

smaller than the one of the hardest emission.
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The implementation of the process was tested by comparing the results with the fixed-

order DIPHOX program which is in good agreement with the results of our approach for

observables which are not sensitive to multiple QCD radiation.

We find that without a correction to describe the hard QCD radiation there is a

deficit of radiation in the simulation. The POWHEG approach overcomes this problem

and provides a good description of the data of refs. [83, 84]. A remarkably good description

is obtained for infrared sensitive observables, like the transverse momentum of the γγ-pair

at low pγγ
⊥ , which demonstrates the resummation of logarithmic enhancement provided by

the Herwig++ parton shower.

This is the first NLO simulation of a process involving photons and provides an im-

portant new tool for the study of promt photon production. The simulation will be made

available in a forthcoming version of the Herwig++ simulation package.

References

[1] A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche, et al., General-purpose

event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599]

[INSPIRE].
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