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1 Introduction

In 2009, a remarkable relation, so called “AGT conjecture” [1] was proposed between the

Nekrasov partition function of N = 2 SU(2) gauge theory in 4D [2, 3] and the conformal

block of the Liouville theory in 2D, relating the Ω-background parameters ǫ1 and ǫ2 and

instanton expansion parameters with background charge of the Liouville theory and mod-

ular parameter of the conformal block. In addition, the vacuum expectation value of the

Coulomb branch parameter (VEV of the adjoint scalar) is related with the momentum of

the primary field of the intermediate channel. Soon after this relation was generalized to

SU(N) gauge group in [4] and [5, 6].

After this conjecture, various works have been performed using the Selberg integral and

Jack polynomials such as in [7–12] and references therein. The Nekrasov partition function

is obtained in the limit ǫ1 + ǫ2 = 0 corresponding to the c = 1 Liouville theory (which is
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also called β = 1 limit, which will be elaborated later). Nevertheless, the conjecture seems

to go beyond this limit β 6= 1 and the Selberg integral provides a nice tool to this approach.

Similarly related but a little different approach we are going to investigate in this paper

is to view the partition function in terms of Penner type matrix model. This was initially

proposed in [13] for four flavor case and generalized to less flavor cases in [14] noting

that the Liouville conformal block can be reproduced in terms of the β-deformation of

hermitian matrix model. In this matrix model, the gauge parameters and the Ω-background

parameters determines the matrix couplings, the deformed parameter β and the size of the

matrix N . These matrix models and related topics have widely been studied in [15]–[25].

The free energy of the β-deformed matrix model is generally expanded in powers of

the coupling g corresponding to the genus expansion

F ≡ 4g2 logZ =
∞∑

n=0

Fn(Λ) g
n, (1.1)

where Λ is a parameter involved in the matrix potential and interpreted as a dynamical

scale of the corresponding gauge theory.1 When β = 1, the genus expansion terms Fn

are vanishing for odd n. The planar free energy F0(Λ) was shown to be equivalent to the

Seiberg-Witten prepotential [7, 14, 21], and the genus one correction F2(Λ) was also shown

to be consistent with the Nekrasov partition function [18].

When β 6= 1, the genus expansion terms Fn(Λ) in (1.1) is not vanishing also for odd

n. This is easily seen in the loop equation of the β-deformed one such as given in [26].

In this paper, we apply the usual loop equation technique to the relatively simple model,

namely, the β-deformed matrix models for NF = 2, 3, 4 for SU(2) gauge group case and

evaluate the half-genus correction F1(Λ), closely following the method employed in [21]

but generalizing to β 6= 1 case and evaluate F1(Λ). In fact, the loop equation was initially

studied in [24] and only an integral expression is presented. In this paper, we will calculate

the explicit expression of the first half-genus correction to the free energy and compare

the result with the corresponding Nekrasov partition function with general Ω-background,

including higher instanton contributions.

The rest of this paper is organized as follows. In section 2, we briefly review the matrix

models for NF = 2, 3 and 4, and evaluate the resolvent of the matrix models using the loop

equation for β-deformed case. At the planar limit, the filling fraction is identified with the

Coulomb branch parameter. However, it is noted that the relation is to be modified at the

order of O(g). In section 3, we concentrate on the NF = 2 case and evaluate the half-genus

correction to the free energy. In section 4 and 5, we generalize the previous argument to the

NF = 3 and 4 cases, respectively. Section 6 is the summary and discussion. In appendix A,

Penner type matrix model is constructed from the AGT conjecture. In appendix B, the

derivation of the loop equation is reviewed for general β. In appendix C, the explicit

expression for the Nekrasov partition function is shown for NF = 2, 3 and 4 for comparison

with the matrix model results.

1When the corresponding gauge theory has four flavors, Λ should be identified with the exponential of

a UV gauge coupling.
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2 Penner type models and half-genus corrections

In this section, we describe the Penner type matrix models proposed in [13, 14] to set up

our approach. Then, we solve the loop equation and find the expressions of the resolvent

for the planar and half-genus correction. In addition, the Coulomb branch parameter is

given in terms of filling fraction.

2.1 Penner type models for SU(2) gauge theories

Penner type matrix model was proposed in [13] for the NF = 4 case and later generalized

in [14] to NF = 2, 3 cases. The partition function Zmatrix of the matrix model is defined as

Zmatrix =

(
N∏

I=1

∫
dλI

)
∆2β

N exp

[√
β

g

∑

I

V (λI)

]
, (2.1)

where g is a coupling constant of the matrix model, β is a deformation parameter and

∆N =
∏

I<J(λI − λJ) is the Vandermonde determinant. When β = 1, this reduces to

the usual hermitian matrix model with a coupling g and λI is the eigenvalues of the

hermitian matrix.

According to the AGT conjecture, the parameters g and β are related to the Ω-

background parameters ǫ1, ǫ2 of the gauge theory2

ǫ1 = 2g
√

β, ǫ2 = − 2g√
β
. (2.2)

The matrix size N is identified with the number of screening charges in Liouville theory

and is related to the the mass parameters of the gauge theory. The details depend on the

number of flavors as explained below.

The free energy of the matrix model is defined by

Fmatrix ≡ 4g2 logZmatrix = (−ǫ1ǫ2) logZmatrix, (2.3)

and is expanded in powers of g as

Fmatrix = Fmatrix
0 +

ǫ+
2
Fmatrix
1 +O(g2), (2.4)

where ǫ+ = ǫ1 + ǫ2 is the order of g and the half-genus correction Fmatrix
1 is of our chief

concern. In comparison to F1(Λ) in (1.1), we see gF1 =
ǫ+
2 Fmatrix

1 .

The explicit form of the potential V (z) depends on the number of flavors NF in gauge

theory. When NF = 4, the potential is given by

V (z) =
(
m0 +

ǫ+
2

)
log z +m1 log(z − 1) +m2 log(z − q), (2.5)

where q in (2.5) is identified with the exponential of a UV marginal coupling in the gauge

theory. The mass parameters m0,m1 and m2 (and with additional m∞) are associated to

2We use the notation g as one half of the topological string coupling gs.
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the Cartan sub-algebra of SO(8) flavor symmetry and are related to the masses µI of the

four anti-fundamental hypermultiplets by

µ1 = m1 +m∞, µ2 = m1 −m∞, µ3 = m2 +m0, µ4 = m2 −m0. (2.6)

We put potential term proportional to ǫ+ in (2.5) so that the mass parameter relation

in (2.6) is maintained (see appendix A). The matrix size N is determined by the relation

µ1 + µ3 + 2
√
βgN = 0. (2.7)

which corresponds to the neutrality condition in the presence of the background charge

of the Liouville theory. At the planar limit as explicitly shown in [13] the ǫ+ dependent

correction can be neglected.

The case with NF = 3 is obtained if one takes the limit µ4 → ∞ while keeping Λ3 ≡ µ4q

finite so that a single hypermultiplet is decoupled [14, 27]. The resulting potential is given

as (neglecting a divergent constant term)

V (z) =
(
µ3 +

ǫ+
2

)
log z +m1 log(z − 1)− Λ3

2z
. (2.8)

Here Λ3 is a dimensionful parameter, and identified with the dynamical scale of the resulting

gauge theory. The potential for NF = 2 is obtained from NF = 3 case further by taking

the limit µ2 → ∞ with (Λ2)
2 ≡ µ2Λ3 fixed.3

V (z) =
(
µ3 +

ǫ+
2

)
log z +

Λ2

2

(
z +

1

z

)
. (2.9)

Note that the relation (2.7) is not changed by the limiting process since µ1 and µ3 are

required to be finite in this limit.

2.2 Loop equation and spectral curve

We now discuss half-genus correction to the resolvent of the Penner type matrix models.

The resolvent is defined by

W (z) ≡
√
βg

〈
∑

I

1

z − λI

〉
, (2.10)

which can be expanded in powers of g:

W (z) =
∞∑

n=0

W̃n(z) g
n (2.11)

The resolvent satisfies the β-deformed version of the loop equation [26, 28, 29]. For our

purpose of studying the half-genus correction, we may neglect O(g2) (see appendix B)

to get

W (z)2 +
ǫ+
2
W ′(z) +W (z)V ′(z)− f(z)

4
= 0, (2.12)

3The sign of Λ2 is different from that in [14], but it is just the matter of convention.
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where f(z) is defined by

f(z) ≡ 4
√

βg

〈
∑

I

V ′(z)− V ′(λI)

z − λI

〉
. (2.13)

It is noted that W̃n(z) for odd n does not vanishing when β 6= 1, resulting in the “half-genus

expansion”, rather than the usual genus-expansion for the case of β = 1.

To solve the loop equation (2.12), we divide the potential into two parts [24]:

V (z) = V0(z) +
ǫ+
2
V1(z) (2.14)

with V0(z) and V1(z) = log z, O(g0). Putting the resolvent of the form

W (z) = W0(z) +
ǫ+
2
W1(z) +O(g2), (2.15)

one has

(W0)
2 + V ′

0W0 −
f

4
= 0, (2.16)

(2W0 + V ′
0)W1 +W ′

0 +W0V
′
1 = 0, (2.17)

whose solution is given as

W0(z) =
−V ′

0(z) +
√

V ′
0(z)

2 + f(z)

2
, (2.18)

W1(z) = −W ′
0(z) +W0(z)V

′
1(z)

2W0(z) + V ′
0(z)

. (2.19)

Now, the resolvent defines the spectral curve

x ≡ 2W (z) + V ′(z) = x0 +
ǫ+
2
x1 +O(g2), (2.20)

where x0 is the the planar contribution

(x0)
2 = V ′

0(z)
2 + f(z) (2.21)

and x1 is the half-genus correction

x1 =
−x′0(z) + V ′′

0 (z) + V ′
0(z)V

′
1(z)

x0(z)
. (2.22)

The above Penner type potentials present two cuts in the spectral curve and it is

proposed in [13] that the Coulomb branch parameter a of the gauge theory is to be identified

with the “filling fraction” of the matrix model

a =
1

2πi

∮

A
xdz, (2.23)

where A denotes a cycle surrounding a branch cut associated to x. This proposal is

explicitly checked in [21] for β = 1 and (2.23) reproduces a correct UV behavior a ∼ √
u

where u denotes the VEV of the adjoint scalar in gauge theory.
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On the other hand, the half-genus corrections of the matrix model forces one to modify

the identification into

a =
1

2πi

∮

A
xdz +

ǫ+
2
. (2.24)

This modification is necessary to keep the asymptotic behavior a ∼ √
u in the UV limit

of the gauge theory. This is because the half-genus correction of the filling fraction does

not vanish as u → ∞ and the second term in (2.24) cancels the non-vanishing half-genus

correction.

To elaborate on this modification, we redefine a = a0 +
ǫ+
2 a1 +O(g2), so that

a0 ≡
1

2πi

∮

A
x0dz, a1 ≡

1

2πi

∮

A
x1dz + 1. (2.25)

Here a1 can be put into more useful form if one uses (2.22)

a1 = − 1

2πi

∮

A
d(log x0) +

1

2πi

∮

A

V ′′
0 (z) + V ′

0(z)V
′
1(z)

x0(z)
dz + 1. (2.26)

The first term gives just −1 due to the monodromy of the logarithmic function, which

encircles a square-root branch cut associated with x0. This enforces one to modify the

identification of the Coulomb branch parameter (2.24) so that this contribution is canceled

out. Thus, one has the expression

a1 =
1

2πi

∮

A

V ′′
0 (z) + V ′

0(z)V
′
1(z)

x0(z)
dz. (2.27)

In the next sections, we evaluate the free energy of the matrix models by using a0 and

a1 and compare with the Nekrasov partition function for NF = 2, 3, 4 cases.

3 NF = 2 case

The potential (2.9) (omitting the subscript of Λ2 for simplicity) is given as

V0(z) = µ3 log z +
Λ

2

(
z +

1

z

)
, V1(z) = log z. (3.1)

To find the spectral curve we evaluate f(z) (2.13) in form [14, 21]

f(z) =
c1
z

+
c2
z2

, (3.2)

where c1 and c2 are given by

c1 = 2
√
βgNΛ = −(µ1 + µ3)Λ, c2 = 2

√
βg

N∑

I=1

〈
Λ

λI

〉
. (3.3)

The explicit form of c1 is obtained due to the relation (2.7). Since c1 has no half-genus

correction, the planar spectral curve has the same expression as in the β = 1 case [21]:

(x0)
2 =

(
µ3

z
+

Λ

2

(
1− 1

z2

))2

+
c1
z

+
c2
z2

=
Λ2

4

P4(z)

z4
, (3.4)
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where P4(z) is a polynomial of degree four of the form

P4(z) = z4 − 4µ1

Λ
z3 +

4

Λ2

(
µ2
3 + c2 −

Λ2

2

)
z2 − 4µ3

Λ
z + 1. (3.5)

This shows that the spectral curve is parameterized by a single complex paramter c2, which

will be interpreted as the moduli parameter of the gauge theory [14, 21]. Hereafter, we set

µ1 = µ3 = m just for simplicity. Then P4(z) becomes

P4(z) = z4 − 4m

Λ
z3 +

4

Λ2

(
m2 + c2 −

Λ2

2

)
z2 − 4m

Λ
z + 1. (3.6)

The Coulomb branch parameter a is obtained from the filling fraction (2.24). The

planar contribution a0 was evaluated in [21] using the series expansion of hypergeometric

function and has the form

a0 =
√
A

(
1− m2

4A2
Λ2 − (A2 − 6m2A+ 15m4)

64A4
Λ4 − 5(3m2A2 − 14m4A+ 21m6)

256A6
Λ6

−15(A4 − 28m2A3 + 294m4A2 − 924m6A+ 1001m8)

16384A8
Λ8 +O(Λ10)

)
(3.7)

where A ≡ m2 + c2 − Λ2

2 . The half-genus correction a1 is easily obtained if one notices the

relation4 a1 = − ∂a0
∂m

∣∣∣
A: fixed

because a0 and a1 have the form

a0 =
1

2πi

∮

A

Λ

2z2

√
P4(z)dz (3.8)

a1 =
1

2πi

∮

A

(
1

z
+ z

)
dz√
P4(z)

. (3.9)

This follows from (2.27) and (3.1). Therefore, we finally obtain

a1 =
m

2A3/2
Λ2 − 3m

(
A− 5m2

)

16A7/2
Λ4 +

5
(
3A2m− 28Am3 + 63m5

)

128A11/2
Λ6

−105
(
m
(
A3 − 21A2m2 + 99Am4 − 143m6

))

2048A15/2
Λ8 + · · · (3.10)

Note that a1 vanishes in the limit of A → ∞ so that a ∼
√
A asymptotically. This is

natural because A ≡ m2+ c2− Λ2

2 is identified with the VEV of the adjoint scalar [21] and

the limit A → ∞ corresponds to the UV limit in gauge theory.

The free energy (2.3) can be obtained using the relation

Λ
∂

∂Λ
Fmatrix = 2g

√
βΛ
∑

I

〈
λI +

1

λI

〉
= c2 + 2g

√
βΛ
〈∑

I

λI

〉
. (3.11)

Noting the asymptotic behavior of the resolvent W (z) ∼ √
βgN/z +

√
βg〈∑I λI〉/z2 +

O(1/z3) one finds the terms of order O(z−2) in the loop equation (2.12)

2g
√

β〈
∑

I

λI〉 = c2 + (µ2
3 − µ2

1) +O(g2). (3.12)

4Similar structure has been noticed in [30] in the semi-classical approach of the system for each NF ’s.
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Since we put µ1 = µ3 = m, (2.12) reduces to

Λ
∂

∂Λ
Fmatrix = 2c2 +O(g2) = 2(A−m2) + Λ2 +O(g2). (3.13)

To integrate the right-hand side with respect to Λ, one needs to find the explicit form

of A. Using the filling fraction a = a0 +
ǫ+
2 a1 given in (3.7) and (3.10) one finds

A =

(
a2 +

m2

2a2
Λ2 +

a4 − 6a2m2 + 5m4

32a6
Λ4 +

5a4m2 − 14a2m4 + 9m6

64a10
Λ6

+
5a8 − 252a6m2 + 1638a4m4 − 2860a2m6 + 1469m8

8192a14
Λ8 + · · ·

)

+
ǫ+
2

(
−m

a2
Λ2 +

3a2m− 5m3

8a6
Λ4 − 5a4m− 28a2m3 + 27m5

32a10
Λ6

+
63a6m− 819a4m3 + 2145a2m5 − 1469m7

1024a14
Λ8 + · · ·

)

+O(g2). (3.14)

Putting this result into (3.13), we obtain the free energy of the form Fmatrix = Fmatrix
0 +

ǫ+
2 Fmatrix

1 +O(g2) where Fmatrix
0 is the planar contribution

Fmatrix
0 (a,m) = 2(a2 −m2) log Λ +

a2 +m2

2a2
Λ2 +

a4 − 6a2m2 + 5m4

64a6
Λ4

+
5a4m2 − 14a2m4 + 9m6

192a10
Λ6

+
5a8 − 252a6m2 + 1638a4m4 − 2860a2m6 + 1469m8

32768a14
Λ8 + · · · (3.15)

and Fmatrix
1 is the half-genus correction

Fmatrix
1 (a,m) = −m

a2
Λ2 +

3a2m− 5m3

16a6
Λ4 − 5a4m− 28a2m3 + 27m5

96a10
Λ6

+
63a6m− 819a4m3 + 2145a2m5 − 1469m7

4096a14
Λ8 + · · · . (3.16)

Here Fmatrix
0 is the same as evaluated in [21] and agrees with the Seiberg-Witten prepoten-

tial of the corresponding gauge theory, while Fmatrix
1 perfectly agrees with the half-genus

correction to the Nekrasov partition function with parameters µ1 = µ3 = m. (The corre-

sponding Nekrasov partition function is given in (C.15) for comparison.)

4 NF = 3 case

For NF = 3 case, the corresponding potential of the matrix model is given by (2.8) with

the definition (2.14)

V0(z) = µ3 log z +m1 log(z − 1)− Λ

2z
, V1(z) = log z. (4.1)

– 8 –
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f(z) has the following expression

f(z) =
c1
z

+
c2

z − 1
+

c3
z2

, (4.2)

and c1, c2 and c3 are given by

c1 = −4
√
βg

N∑

I=1

〈
µ3 + ǫ+/2

λI
+

Λ

2λ2
I

〉
, c2 = −4

√
βg

N∑

I=1

〈
m1

λI − 1

〉
,

c3 = −2
√
βg

N∑

I=1

〈
Λ

λI

〉
. (4.3)

The symmetry of the partition function 〈∑I V
′(λI)〉 = 0 leads to the condition

c1 + c2 = 0. (4.4)

Another constraint on c2 and c3 follows from the asymptotic behavior of the loop equa-

tion (2.12) where the resolvent has the asymptotic behavior W (z) =
√
βgN/z +O(1/z2).

Noting that the derivative of the potential is V ′(z) = (µ3 +m1 + ǫ+/2)/z + O(1/z2) and

f(z) = (c2 + c3)/z
2 + O(1/z3) with c1 + c2 = 0 one has the left-hand side of the loop

equation at the order of O(1/z2)

c2 + c3 = 4
√
βgN

(√
βgN + µ3 +m1

)
= m2

∞ − (µ3 +m1)
2, (4.5)

where in the second equality we used equation (2.7). The two constraints (4.4) and (4.5)

allow one independent parameter, for which we choose c3.

The planar spectral curve has the form

(x0)
2 =

P4(z)

4z4(z − 1)2
, (4.6)

where P4(z) is a polynomial of degree four which is given by

P4(z) = 4m2
∞z4 − 4(B −m1Λ−m2

1 +m2
∞)z3

+(4B − 4m1Λ + Λ2 − 4µ3Λ)z
2 + 2Λ(2µ3 − Λ)z + Λ2, (4.7)

with B = c3 − µ3Λ + µ2
3. Hereafter, for simplicity, we set m1 = m∞ = 0 and µ3 = m as

in [21]. Then P4(z) becomes a third order polynomial of z as

P4(z) = −4Bz3 + (4B + Λ2 − 4mΛ)z2 + 2Λ(2m− Λ)z + Λ2. (4.8)

The Coulomb branch parameter identified as (2.24) has the planar contribution

a0 = −
√
B

(
1 +

m

4B
Λ− B + 3m2

64B2
Λ2 +

m

256B3
(5m2 +B)Λ3

− 1

16384B4
(3B2 + 30m2B + 175m4)Λ4

+
m

65536B5
(9B2 + 70m2B + 441m4)Λ5 +O(Λ6)

)
(4.9)
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and the half-genus correction a1 (2.27) has the form

a1 =
Λ

2πi

∮

A

1√
P4(z)

(
1

z
− 1

)
dz. (4.10)

As in NF = 2 case, one has

a1 = − ∂a0
∂m

∣∣∣∣
B

+ Λ
∂a0
∂B

∣∣∣∣
m

. (4.11)

by noting

∂a0
∂m

∣∣∣∣
B: fixed

= − Λ

2πi

∮

A

dz

z
√
P4(z)

, (4.12)

∂a0
∂B

∣∣∣∣
m: fixed

= − 1

2πi

∮

A

dz√
P4(z)

, (4.13)

where we treated m and B in (4.8) as independent variables. Hence, a1 is given as follows:

a1 = − Λ

4
√
B

+
mΛ2

32B3/2
−
(
B + 3m2

)
Λ3

256B5/2
+

(
9Bm+ 25m3

)
Λ4

4096B7/2

−
(
9B2 + 90Bm2 + 245m4

)

65536B9/2
Λ5 +

m
(
75B2 + 490Bm2 + 1323m4

)

524288B11/2
Λ6 + · · · . (4.14)

Note that a1 vanishes in the limit B → ∞, which guarantees the asymptotic behavior

a ∼ a0.

Now, we evaluate the free energy of the matrix model

Λ
∂

∂Λ
Fmatrix = −2

√
βg
∑

I

〈
Λ

λI

〉
= c3 = B +mΛ−m2. (4.15)

In order to integrate this, we solve the inverse function of a(B,m) as

B =

(
a2 − mΛ

2
+

a2 +m2

32a2
Λ2 +

a4 − 6m2a2 + 5m4

8192a6
Λ4 +

5a4m2 − 14a2m4 + 9m6

262144a10
Λ6 + · · ·

)

+
ǫ+
2

(
−Λ

2
− m

16a2
Λ2 +

3a2m− 5m3

2048a6
Λ4 − 5a4m− 28a2m3 + 27m5

131072a10
Λ6 + · · ·

)

+O(g2). (4.16)

By integrating (4.15) one obtain the free energy of the form

Fmatrix
0 = (a2 −m2) log Λ +

mΛ

2
+

a2 +m2

64a2
Λ2

+
a4 − 6m2a2 + 5m4

32768 a6
Λ4 +

5a4m2 − 14a2m4 + 9m6

1572864 a10
Λ6 + · · · (4.17)

Fmatrix
1 =−Λ

2
− m

32a2
Λ2 +

3a2m− 5m3

8192 a6
Λ4 − 5a4m− 28a2m3 + 27m5

786432 a10
Λ6 + · · · . (4.18)

Here Fmatrix
0 was evaluated in [21] and is equal to the Seiberg-Witten prepotential ofNF = 3

gauge theory. On the other hand, the half-genus correction Fmatrix
1 is newly evaluated here

and perfectly coincides with the half-genus correction to the Nekrasov partition function

of SU(2), NF = 3 gauge theory for our parameters m1 = m∞ = 0, µ3 = m (see (C.13)

in appendix C).
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5 NF = 4 case

For NF = 4 gauge theory, the matrix model is given by (2.5) with

V0(z) = m0 log z +m1 log(z − 1) +m2 log(z − q), V1(z) = log z, (5.1)

so that V (z) = V0(z) + (ǫ+/2)V1(z). The function f(z) defined in (2.13) is now written as

f(z) =
∑2

i=0
ci

z−qi
where ci’s are given by

c0 = −4
√
βg
∑

I

〈
m0 + ǫ+/2

λI

〉
, c1 = −4

√
βg
∑

I

〈
m1

λI − 1

〉
,

c2 = −4
√
βg
∑

I

〈
m2

λI − q

〉
. (5.2)

From the symmetry of the system
∑

I〈V ′(λI)〉 = 0, it follows that

2∑

i=0

ci = 0. (5.3)

From the residues at infinity, we find an another constraint

c1 + qc2 = 4
√
βgN

(
√
βgN +

2∑

i=0

mi

)
= m2

∞ −
(

2∑

i=0

mi

)2

, (5.4)

where in the second equality (2.7) is used. Thus, essentially there is a single free parameter,

for which we take c0.

The planar spectral curve is exactly what was obtained in [21]:

(x0)
2 =

P4(z)

z2(z − 1)2(z − q)2
, (5.5)

where P4(z) is a degree four polynomial of z.5 Hereafter, setting m0 = m∞ = 0 and

m1 = m2 = m for simplicity (which provides the equal mass for hypermultiplets µi = m

for i = 1, · · · , 4), one has P4(z) of the third order polynomial

P4(z) = Cz3 +
{
(1− q)2m2 − C(1 + q)

}
z2 + Cqz, (5.6)

where we defined C ≡ qc0.

The Coulomb branch parameter is given by (2.25). The planar contribution a0 was

already calculated in [21], which is written in our notation as

a0 = i
√
C

(
h0(q)− h1(q)

m2

C
− h2(q)

3

m4

C2
− h3(q)

5

m6

C3
− h4(q)

7

m8

C4
+O

(
m10

C5

))
, (5.7)

5For the explicit expression of P4(z) for general mass parameters, see equation (3.39) in [21].
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where hi(q) is defined in terms of the expansion coefficients of a hypergeometric function [21]

h0(q) = 1 +
1

4
q +

9

64
q2 +

25

256
q3 +

1225

16384
q4 +O(q5), (5.8)

h1(q) =
1

2
+

1

8
q +

1

128
q2 +

1

512
q3 +

25

32768
q4 +O(q5), (5.9)

h2(q) =
3

8
+

27

32
q +

27

512
q2 +

3

2048
q3 +

27

131072
q4 +O(q5), (5.10)

h3(q) =
5

16
+

125

64
q +

1125

1024
q2 +

125

4096
q3 +

125

262144
q4 +O(q5). (5.11)

The half-genus correction a1 is given by (2.27)

a1 = −m(1 + q)

2πi

∮

A

dz√
P4(z)

− m(1− q)2

2πi

∮

A

dz√
P4(z)

z

(z − 1)(z − q)
. (5.12)

This integral is expressed in terms of a0:

∂a0
∂C

∣∣∣∣
m: fixed

=
1

4πi

∮

A

dz√
P4(z)

, (5.13)

∂a0
∂m

∣∣∣∣
C: fixed

=
m(1− q)2

2πi

∮

A

dz√
P4(z)

z

(z − 1)(z − q)
. (5.14)

Hence, we finally obtain

a1 = − 2m(1 + q)
∂a0
∂C

∣∣∣∣
m

− ∂a0
∂m

∣∣∣∣
C

= i

[
g1(q)

m√
C

+ g3(q)
m3

C3/2
+ g5(q)

m5

C5/2
+ g7(q)

m7

C7/2
+ · · ·

]
. (5.15)

where gi(q) are functions of q defined in terms of hi(q). The first few components are given

by

g1(q) = (−h0(q) + 2h1(q)− h0(q)q), (5.16)

g3(q) =
4h2(q)− 3(1 + q)h1(q)

3
, (5.17)

g5(q) =
6h3(q)− 5(1 + q)h2(q)

5
, (5.18)

g7(q) =
8h4(q)− 7(1 + q)h3(q)

7
. (5.19)

To find the free energy Fmatrix of the matrix model one can use the equation

∂

∂q
Fmatrix = 4g

√
βm2

〈
Tr

1

q −M

〉
= 4m2W (z)|z=q . (5.20)

From the loop equation (2.12), we find that W (z) in the vicinity of z = q

W (z) =
c2
4m2

+O(z − q), (5.21)
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which implies that

∂

∂q
Fmatrix = c2 =

1

(1− q)

(
4m2 − C

q

)
. (5.22)

Here C is obtained from a(C) as

C(a) = −a2
(

1

h0(q)2
− 2h1(q)

h0(q)

m2

a2
+

2h0(q)h2(q)− 3h1(q)
2

3

m4

a4

−10h0(q)h1(q)
3 − 10h0(q)

2h1(q)h2(q) + 2h0(q)
3h3(q)

5

m6

a6
+ · · ·

)

+
ǫ+m

2

(
2(1 + q)h0(q)− 4h1(q)

h0(q)
+

8h0(q)h2(q)− 12h1(q)
2

3

m2

a2

−12h0(q){5h1(q)3 − 5h0(q)h1(q)h2(q) + h0(q)
2h3(q)}

5

m4

a4
+ · · ·

)

+ O(g2). (5.23)

This is used to integrate (5.22) to get the free energy Fmatrix as

Fmatrix
0 = (a2 −m2) log q +

a4 + 6a2m2 +m4

2a2
q

+

(
13a8 + 100a6m2 + 22a4m4 − 12a2m6 + 5m8

)

64a6
q2

+
23a12 + 204a10m2 + 51a8m4 − 48a6m6 + 45a4m8 − 28a2m10 + 9m12

192a10
q3

+
1

32768a14
(
2701a16 + 26440a14m2 + 7164a12m4 − 9000a10m6

+12190a8m8 − 13384a6m10 + 10908a4m12 − 5720a2m14 + 1469m16
)
q4

+O(q5), (5.24)

Fmatrix
1 = −2m(a2 +m2)

a2
q − 9a6m+ 11a4m3 − 9a2m5 + 5m7

8a6
q2

−38a10m+ 51a8m3 − 72a6m5 + 90a4m7 − 70a2m9 + 27m11

48a10
q3

− 1

2048a14
(
1257a14m+ 1791a12m3 − 3375a10m5 + 6095a8m7 − 8365a6m9

+8181a4m11 − 5005a2m13 + 1469m15
)
q4 + O(q5). (5.25)

Here Fmatrix
0 was calculated in [21] and shown to be equivalent to the Seiberg-Witten pre-

potential of NF = 4 superconformal gauge theory. The newly found half-genus correction

Fmatrix
1 coincides with the half-genus correction to the corresponding Nekrasov partition

function (C.11) for µi = m.

6 Summary and discussions

In this paper, we investigate the β-ensemble of the matrix model known as Penner type

matrix model. By solving the loop equation generalized to β 6= 1 we explicitly evaluate
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Fmatrix
1 . The result perfectly agrees with the Nekrasov partition function with general

Ω-background parameters ǫ1, ǫ2, corresponding to the N = 2, SU(2) gauge theories with

NF = 2, 3 and 4 flavors.

It is noted that the relation of the filling fraction with the Coulomb branch parameter is

to be modified as in (2.24) at the order of half-genus expansion, which reduces to the original

one proposed in [13] in the planar limit. The modification is understood as a condition

of the UV limit of the gauge theory so that the the correction to the Coulomb branch

parameter need to vanish at each order of (half-) genus expansion as the corresponding

scale parameter becomes infinite.

The loop equation provides a systematic way of finding the (half-) genus expansion

of the theory. The merit of the expansion is that even at this first non-trivial order, the

higher instanton contribution can be obtained by the simple algebraic algorithm. To go

to high genus expansion, one needs to solve the lower genus result of multi-point resolvent

and the result will be reported in the near future. In addition, the extension of the analysis

to the multi-matrix model is highly desired so that the Selberg integral approach of the

SU(N) gauge theory [12] is to be compared.
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A AGT conjecture and matrix model

We briefly review the AGT conjecture [1] and its relation with the Penner type matrix

models which is viewed as dual to d = 4,N = 2 gauge theories [13] for the setup of our

convention in the manuscript.

A.1 AGT relation

The authors of [1] pointed out that Nekrasov partition functions of d = 4,N = 2, SU(2)

gauge theories is identified with conformal block of of the four-point correlation function

of the Liouville theory,

〈V
m̃∞+Q

2
(∞)Vm̃1

(1)Vm̃2
(q)V

m̃0+
Q
2
(0)〉Liouville

= c(µI , ǫi)
∣∣∣q

Q2/4−∆m̃2
−∆

m̃0+
Q
2

∣∣∣
2
∫

a2da
∣∣∣ZSU(2)

Nekrasov(a, µI , ǫi)
∣∣∣
2

(A.1)

where Vα(z) = e2αφ(z) is a vertex operator of dimension ∆α = α(Q − α). Q = b + 1/b

is the Liouville background charge and b is the parameter in the Liouville potential e2bφ.

Z
SU(2)
Nekrasov(a, µI , ǫi) in the right-hand side is the Nekrasov partition function of N = 2, NF =

4, SU(2) gauge theory and depends on the Coulomb branch parameter a, masses of four

hyper multiplets µI , and the Ω-background parameters ǫ1 and ǫ2. The prefactor c(µI , ǫi)

depends only on µI and ǫi.
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q in (A.1) is the exponential of the UV gauge coupling and the relation (A.1) is com-

plete if the Liouville parameters are given in terms of the gauge field parameters. If one

introduces a mass scale ~ (which was set to be 1 in [1]) so that ~m̃a ≡ ma, one has

µ1 = m1 +m∞, µ2 = m1 −m∞, µ3 = m2 +m0, µ4 = m2 −m0 . (A.2)

Ω-background parameters ǫi are identified with the Liouville parameter b as

ǫ1 = ~b, ǫ2 = ~/b, (A.3)

so that the background charge is written as Q = (ǫ1 + ǫ2)/~ = ǫ+/~.

A.2 Dijkgraaf-Vafa’s proposal of matrix model

Inspired by the AGT relation, a matrix model description was proposed in [13]. Note that

the Liouville correlation can be evaluated perturbatively

〈(
N∏

I=1

∫
dλIdλI e2bφ(λI)

)
V
m̃∞+Q

2
(∞)Vm̃1

(1)Vm̃2
(q)V

m̃0+
Q
2
(0)

〉
(A.4)

where the expectation values is evaluated in terms of the free field description 〈φ(z)φ(w)〉 =
−1/2 log(z − w)2 or 〈e2α1φ(z)e2α2φ(w)〉 = |z − w|−4α1α2 . The number N of integrals comes

from the perturbation of the Liouville potential and is viewed as screening integrals. The

non-vanishing contribution is obtained if the number of screening charge satisfies the neu-

trality condition
2∑

i=0

m̃i + m̃∞ + bN = 0. (A.5)

The correlation (A.4) is given as (up to the q-independent prefactor)

∣∣∣q
2(m0+ǫ+/2)m2

~2 (1− q)
2m1m2

~2 I4

∣∣∣
2

where

I4 =

∫ [ N∏

I=1

dλI

]
∏

I<J

(λI − λJ)
−2b2 exp

(
−2b

~

∑

I

V (λI)

)
(A.6)

V (z) =
(
m0 +

ǫ+
2

)
log z +m1 log(z − 1) +m2 log(z − q). (A.7)

Note that I4 is not well defined unless the integration ranges and parameters b and

~ are to be appropriately arranged to make I4 convergent. To fix this problem, one may

consider the integrals with b2 = −β and ~b = 2g
√
β (or b = i

√
β, ~ = −2ig) so that

integration is well defined even when any two of the integration variables coincide. This

defines the partition function of matrix model

Zmatrix ≡
∫ [ N∏

I=1

dλI

]
∏

I<J

(λI − λJ)
2β exp

(√
β

g

∑

I

V (λI)

)
(A.8)
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where λI is the eigenvalue of the hermitian matrix and the size of the matrix N is given

from the neutrality condition (A.5) or (2.7). However, the matrix model is not the usual

one unless β = 1 and is called β-deformed matrix model, or Penner type matrix model.

As seen in section 2, Zmatrix depends on a single parameter which is not in the po-

tential V (z) and the parameter can be chosen as the filling fraction. The origin of the

ambiguity comes from I4 in (A.6) where one needs to arrange the integration range ap-

propriately, whose origin also traces back to the perturbation expansion of the Liouville

correlation (A.4). This ambiguity does not appear if one evaluate the Liouville correla-

tion using the conformal block as put in (A.1). To resolve this discrepancy, one may view

the perturbation as the one with the fixed filling fraction so that the integration ranges

are chosen so that N1 number of integration ranges from 0 to q and N − N1 number of

integration ranges from 1 to ∞ resulting the filling fraction is related with the N1/N .

According to AGT, VEV of SU(2) gauge group is identified with the Liouville momen-

tum a of the conformal block in (A.1). On the other hand, the Seiberg-Witten curve is

“quantized” and the VEV is identified with the filling fraction of the S-W curve. In this

sense, it is very natural [13] that the Coulomb branch parameter of the gauge theory is

identified with the filling fraction of the matrix model. With this interpretation in mind,

one may identify Zmatrix with ZNekrasov as follows:

Zmatrix = q
(m0−m2)

2
−2m2ǫ+

~2 (1− q)−
2m1m2

~2 Z
SU(2)
Nekrasov. (A.9)

On the other hand, it was pointed out in [1] that the Nekrasov partition functions of

SU(2) and U(2) gauge theories are related by

Z
SU(2)
Nekrasov(a, µI , ǫi) = (1− q)

(µ1+µ2)(µ3+µ4)

2~2 Z
U(2)
Nekrasov(~a, µI , ǫi), (A.10)

Note that the U(2) gauge theory has two independent Coulomb branch parameters ~a =

(a1, a2), but we set a1 = −a2 = a in the right-hand side of (A.10). Note also that our µI are

masses of anti-fundamental hyper multiplets, as states in appendix C. By combining (A.9)

and (A.10), we obtain

Zmatrix = q
(m0−m2)

2
−2m2ǫ+

~2 Z
U(2)
Nekrasov, (A.11)

up to a prefactor which is independent of q and a.

B β-deformed version of loop equations

We present the derivation of the loop equation for β-deformed Penner type models, follow-

ing [28] (see also [26, 29]). We start from the partition function of the form

Z =

∫ [ N∏

I=1

dλI

]
∆2β

N e
√
β/g

∑N
I=1 V (λI) (B.1)

and consider the change of the integration variable as λI → λI +
ǫ

λI−z . This changes the

expression of the integrand as well as the measure. Collecting terms proportional to ǫ, we
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obtain

0 = −
N∑

I,J=1

〈
β

(λI − z)(λJ − z)

〉
−

N∑

I=1

〈
1− β

(λI − z)2

〉

−
√
β

g
V ′(z)

N∑

I=1

〈
1

z − λI

〉
+

√
β

g

N∑

I=1

〈
V ′(z)− V ′(λI)

z − λI

〉
. (B.2)

Here, the first and second terms come from the variations of the measure and ∆2β
N , while

the third and fourth terms are from the variation of the potential V (λI). By defining

multi-point (connected) resolvent as

W (z1, · · · , zs) = β

(
g√
β

)2−s
〈
∑

I1

1

z1 − λI1

· · ·
∑

Is

1

zs − λIs

〉

conn

(B.3)

the equation (B.2) gives the loop equation for the β-deformed matrix model

0 = g2W (z, z) +W (z)2 + g

(√
β − 1√

β

)
W ′(z) + V ′(z)W (z)− f(z)

4
(B.4)

f(z) = 4g
√

β

N∑

I=1

〈
V ′(z)− V ′(λI)

z − λI

〉
. (B.5)

Note that the first term in (B.4) is O(g2), while the third term is O(g) which contributes

to the half-genus correction. Omitting higher order term, one has the loop equation up to

half-genus correction with ǫ+ = 2g(
√
β − 1/

√
β)

W (z)2 +
ǫ+
2
W ′(z) + V ′(z)W (z)− f(z)

4
= 0. (B.6)

C Nekrasov partition function

We present the Nekrasov partition function [2, 3] of U(2) gauge theories for the comparison

with the matrix result. The Nekrasov partition function is factorized into the following

three contributions:

Z = ZclassZ1−loopZinst, (C.1)

where Zclass and Z1−loop are the classical and 1-loop contributions, respectively. In the

following, the instanton part is elaborated for NF = 4, 3, 2 cases.

C.1 NF = 4 theory

Zinst =
∑

~Y

q|
~Y |Zvec(~a, ~Y )Zafund(~a, ~Y , µ1)Zafund(~a, ~Y , µ2)Zafund(~a, ~Y , µ3)Zafund(~a, ~Y , µ4),

(C.2)
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where the sum runs over pairs of Young diagrams ~Y = (Y1, Y2) and ~a = (a1, a2) denotes

the Coulomb branch parameter while µi are mass parameters of four fundamentals. The

vector multiplet contribution Zvec(~a, ~Y ) is given by

Zvec(~a, ~Y ) =
2∏

i,j=1

∏

s∈Yi

E(ai − aj , Yi, Yj , s)
∏

t∈Yj

(ǫ+ − E(aj − ai, Yj , Yi, t)), (C.3)

where s and t run over all the boxes in Yi and Yj , respectively. The constituent E(a, Yi, Yj , s)

is defined by

E(a, Yi, Yj , s) = a− ǫ1LYj (s) + ǫ2(AYi(s) + 1). (C.4)

The arm-length AY (s) and leg-length LY (s) are defined by

AY (s) = λk − l, LY (s) = λ′
l − k, (C.5)

where (k, l) is the coordinate of the box s in Y . The two integers λk and λ′
k denote the

heights of k-th column of Y and Y T , respectively.

The anti-fundamental hyper multiplet contribution is replaced by

Zafund(~a, ~Y , µ) =

2∏

i=1

∏

s∈Yi

(φ(ai, s) + µ), (C.6)

where φ(a, s) ≡ a + ǫ1(k − 1) + ǫ2(l − 1) when s is on the position (k, l) in Y . Note that

in [21] the last two factors in (C.2) were given as

Zfund(~a, ~Y ,−µ3)Zfund(~a, ~Y ,−µ4), (C.7)

where Zfund(~a, ~Y , µ) is a contribution from a fundamental hypermultiplet with mass µ,

which is equivalent to our expression if ǫ+ = 0

Zafund(~a, ~Y , µ3)Zafund(~a, ~Y , µ4) (C.8)

because Zafund(~a, ~Y , µ) ≡ Zfund(~a, ~Y , ǫ+ − µ).

From now on we concentrate on the case of ~a = (a,−a) of interest. Defining the free

energy of instantons by

F inst ≡ (−ǫ1ǫ2) logZinst. (C.9)

we can expand F inst in powers of g (with the relation (2.2))

F inst = F inst
0 +

ǫ+
2
F inst
1 +O(g2). (C.10)
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In addition, if we put µI = m as treated in the text, we have

F inst
0 =

a4 + 6a2m2 +m4

2a2
q +

13a8 + 100a6m2 + 22a4m4 − 12a2m6 + 5m8

64a6
q2

+
23a12 + 204a10m2 + 51a8m4 − 48a6m6 + 45a4m8 − 28a2m10 + 9m12

192a10
q3

+
1

32768a14
(
2701a16 + 26440a14m2 + 7164a12m4 − 9000a10m6

+12190a8m8 − 13384a6m10 + 10908a4m12 − 5720a2m14 + 1469m16
)
q4

+O(q5),

F inst
1 = −2m

(
a2 +m2

)

a2
q − 9a6m+ 11a4m3 − 9a2m5 + 5m7

8a6
q2

−38a10m+ 51a8m3 − 72a6m5 + 90a4m7 − 70a2m9 + 27m11

48a10
q3

− 1

2048a14
(
1257a14m+ 1791a12m3 − 3375a10m5 + 6095a8m7 − 8365a6m9

+8181a4m11 − 5005a2m13 + 1469m15
)
q4 + O(q5). (C.11)

C.2 NF = 3 theory

The instanton part is given by

Zinst =
∑

~Y

Λ
|~Y |
3 Zvec(~a, ~Y )Zafund(~a, ~Y , µ1)Zafund(~a, ~Y , µ2)Zafund(~a, ~Y , µ3), (C.12)

where µ1, µ2 and µ3 are the masses of three hyper multiplets and Λ3 is a dynamical scale.

The Coulomb branch parameter ~a generally has two independent components. However,

as we have seen in appendix A, we only need to consider the case of ~a = (a,−a) in this

paper. The half-genus expansion of the free energy has the form

F inst
0 =

m

2
Λ +

a2 +m2

64a2
Λ2 +

a4 − 6a2m2 + 5m4

32768a6
Λ4 +

5a4m2 − 14a2m4 + 9m6

1572864a10
Λ6 + · · · ,

F inst
1 =−Λ

2
− m

32a2
Λ2 +

m
(
3a2−5m2

)

8192 a6
Λ4 − m

(
5a4−28a2m2+27m4

)

786432 a10
Λ6 + · · · . (C.13)

where we set µ1 = µ2 = 0 and µ3 = m. Note that the first term in F0 and F1 is independent

of the Coulomb branch parameter a.

C.3 NF = 2 theory

The instanton partition function is given (with ~a = (a,−a))

Zinst =
∑

~Y

Λ
2|~Y |
2 Zvec(~a, ~Y )Zafund(~a, ~Y , µ1)Zafund(~a, ~Y , µ3). (C.14)
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The half-genus expansion of the free energy has the form

F inst
0 =

a2 +m2

2a2
Λ2 +

a4 − 6a2m2 + 5m4

64a6
Λ4 +

5a4m2 − 14a2m4 + 9m6

192 a10
Λ6

+
5a8 − 252a6m2 + 1638a4m4 − 2860a2m6 + 1469m8

32768 a14
Λ8 + · · · ,

F inst
1 = −m

a2
Λ2 +

m
(
3a2 − 5m2

)

16a6
Λ4 − m

(
5a4 − 28a2m2 + 27m4

)

96 a10
Λ6

+
m
(
63a6 − 819a4m2 + 2145a2m4 − 1469m6

)

4096 a14
Λ8 + · · · (C.15)

where we set µ1 = µ3 = m.
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