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1 Introduction

Nobody really knows what M-theory is, although quite a lot is known about its various lim-

its. These include the five ten-dimensional string theories, along with eleven-dimensional

supergravity which describes the low energy effective action of the IIA string at strong

coupling. In fact the low energy effective actions of the different string theories given by

their respective supergravities contain both nonperturbative and perturbative information.

As such, the U-duality web relating these theories can be tested in detail using the super-

gravity description. Common to all these theories is a notion of spacetime described either

by a vielbein or a metric together with various gauge fields and fermions which propagate

in the spacetime. It seems strange that in a theory that is supposed to unify the forces

of nature, one treats the gravitational field geometrically whereas others are painted on to

the geometrical spacetime. Our aim here is to develop a more democratic approach.

Such an approach was advocated in [1] where it was conjectured that the non-linear

realisation of a certain Kac-Moody algebra called E11 is an extension of eleven dimensional

supergravity. In [1], spacetime is not encoded in an E11 covariant way. Spacetime can be

introduced by considering the non-linear realisation of the semi-direct product of E11 with

its a fundamental representation, usually called the first fundamental representation [2].

This semi-direct product is explained in detail later. Semi-direct product constructions
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are well known, for example, the Poincaré group is just the semi-direct product of the

Lorentz group and its vector representation, that is the spacetime translations. The first

fundamental representation contains as its first component the spacetime translations, then

a two and five form as well as an infinite number of other objects. There is considerable

evidence to suggest that all brane charges are contained in this representation [2–5] and

for each field in the E11 part of the non-linear realisation, there is a corresponding element

in this representation [3]. The inclusion of the first fundamental representation in the non-

linear realisation leads to a generalised spacetime with a coordinate for every brane charge

and for every field. Thus for the metric we find the usual coordinates xa of spacetime, for

the three form new coordinates xa1a2 and for the six form new coordinates xa1...a6 and so

on [2]. The E11 part of the formulation is also democratic in the sense that E11 contains

all the duality symmetries together with all the corresponding fields [6].

To understand better this development, it is useful to recall some of the background.

In the early days of particle physics, with the recognition of the importance of symmetries,

non-linear realisations played an important role. In particular, Goldstone’s theorem states

that if a rigid symmetry G is spontaneously broken to a subgroup H, then there are

(dimG − dimH) massless particles. Furthermore it was realised that the dynamics of

these particles is controlled by the non-linear realisation of G with local subgroup H.

In the case of the chiral symmetry, the group G is SU(2) ⊗ SU(2), the subgroup H is

the diagonal subgroup SU(2) and the three massless particles are the three pions in the

limit of zero mass. The dynamics of the pions can be accounted for by this non-linear

realisation [7–11]. The general formulation of such non-linear realisation for any group is

given in references [12–14].

Of course it was only later that the importance of gauge symmetries was understood,

and it was realised that pions were made of quarks subject to forces controlled by an

SU(3) gauge theory. However, this only serves to illustrate that in the context of sponta-

neously broken symmetries, non-linear realisations provide a way of finding the underlying

symmetry even though the fundamental degrees of freedom are not known.

The non-linear realisations used in the early days of particle physics, and just discussed

above, are essentially a coset construction of G with respect to H and spacetime is a

dummy variable as far as group theory is concerned. The sigma model usually describes

this coset construction. However, one can also construct non-linear realisations in which

the group contains generators associated with spacetime and in particular the spacetime

translations. For these non-linear realisations spacetime arises naturally as it parametrises

the part of the group element that includes the generators associated with spacetime.

One early paper using this method was [15] where the non-linear realisation with G =

GL(4,R) and H = O(3, 1) was studied in the context of general relativity. However, it

was Borisov and Ogievetsky [16] who showed that general relativity in four dimensions

could be reformulated as a non-linear realisation of the groups G = GL(4,R) ⋉ I4 and

H = O(3, 1). Here GL(4,R)⋉ I4 is the semi-direct product of the groups GL(4,R) and the

group I4 of spacetime translation generators. It is the inclusion of the latter that lead to the

presence of the spacetime coordinates in the theory. In fact the dynamics of this non-linear

realisation was only unique up to a few constants and these were fixed to precisely the
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Figure 1. The E11 Dynkin diagram with node D deleted.

right values if one demanded that the theory be also invariant under the conformal group,

also non-linearly realised. Another use of such non-linear realisations was by Volkov and

Akulov [17] who used it to compute the dynamics of the massless fermion that results from

the breaking of supersymmetry and postulated that it could be a neutrino.

The E11 conjecture arises from the recognition that the eleven dimensional supergravity

theory is a non-linear realisation and that this leads to an algebra including the spacetime

translations [18]. When the spacetime translations are omitted from the algebra, it can be

extended to a Kac-Moody algebra and the smallest such algebra is E11 [1]. As the non-

linear realisation involves the spacetime generators, it cannot be a sigma model. To include

the spacetime translations in a covariant manner the first fundamental representation of

E11, denoted by l1, is considered. This is the smallest E11 representation that contains

spacetime translations. The original and early papers introduce the spacetime generators

by hand and so only included the first component of the l1 representation.

An earlier work that formulates the gauge fields of the maximal supergravity theories

as a non-linear realisation using a graded algebra is [19–21]. The non-linear realisation

in [19–21] does not contain any spacetime generators.

A theory in d dimensions1 can be found [1, 4, 22–26] by taking the non-linear realisation

of E11⋉l1 with the decomposition of E11 into the subalgebra GL(D)⊗Ed, whereD = 11−d.

This can be done by deleting node D in the E11 Dynkin diagram in figure 1.

The Ed factor in the subalgebra GL(D) ⊗ Ed is the well known Ed symmetry2 [27–

29] which has been known to be a symmetry of the maximal supergravity theory in D

dimensions for many years. Thus these symmetries naturally emerge. The GL(D) factor

in the subalgebra, together with the spacetime translations in D dimensions which are

contained in the l1 representation give rise to gravity in D dimensions as they should

according to [16]. Indeed this confirms that we have found a theory in D dimensions. In the

decomposition of E11 into Ed one finds the expected fields of D dimensional supergravity

as well as a hierarchy of form fields [23, 30], which play an important role in gauged

supergravities, as well as an infinite number of higher level fields. The l1 representation

is also decomposed into representations of GL(D) ⊗ Ed and in addition to the spacetime

translations in D dimensions one finds an infinite number of coordinates beginning with

some coordinates, which are scalars under GL(D) but transform under Ed indeed in d =

4, 5, 6, 7, 8 dimensions they belong to the 10, 16, 27, 56 and 248 ⊕ 1 representations of

1In this paper d corresponds to the directions in which the duality acts. In [1, 4, 22–26], the comple-

mentary view is taken whereby d is 11− d of this paper.
2Throughout this paper, we are considering the split forms of the exceptional groups, usually de-

noted Ed(d).
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D d G H

3 8 E8 SO(16)

4 7 E7 SU(8)

5 6 E6 USp(8)

6 5 SO(5,5) SO(5)×SO(5)

7 4 SL(5) SO(5)

8 3 SL(3)×SL(2) SO(3)×SO(2)

9 2 SL(2) SO(2)

10 1 SO(1,1) 1

Table 1. The duality groups that appear on the reduction of 11-dimensional supergravity to

D−dimensions.

SL(5), SO(5,5), E6, E7 and E8 respectively [4, 31]. The non-linear realisation of E11 ⋉ l1
not only gives rise to generalised spacetime, but it also leads to a generalised vielbein which

is determined in terms of the E11 fields and depends on the generalised spacetime. In this

paper, the theory in d dimensions is considered. We explicitly construct the generalised

vielbeins and the corresponding dynamics.

For future reference, in table 1 we recall the U-duality groups in the various dimensions.

In fact one can formulate the dynamics of strings, membranes etc in the presence of the

background fields as an E11⋉ l1 non-linear realisation [31]. The difference compared to the

non-linear realisation used to construct the supergravity theories was in the choice of local

subalgebra. In [31] the coordinates of the generalised spacetime specifies the dynamics of

the brane.

An enlarged spacetime also appeared in the context of the first quantised string [32–34]

and membrane [35] where the usual spacetime is extended to include additional coordinates

describing string winding modes. The aim in the case of the string is to make the T-

duality symmetry manifest by introducing additional coordinates corresponding to string

winding modes. This is then extended to the membrane in [35], where new coordinates

are introduced corresponding to membrane windings, so that the U-duality group is made

manifest. The work in [35] is further developed in [36] for the SL(5) duality group to a

give duality-invariant dynamics for fields living on a space whose coordinates belong to the

ten dimensional representation of SL(5). The invariant dynamics is constructed using a

generalised metric given in terms of the background supergravity fields, and later extended

to the duality group SO(5,5) in [37]. The usual way in which duality groups appear is where

one dimensionally reduces eleven dimensional supergravity. The duality group then acts

on the components of the fields in the Kaluza-Klein directions. In [36, 37] the opposite

approach is taken; the duality group acts on the space where the fields have spacetime

dependence, i.e. no Killing directions are assumed.

In [38], the non-linear realisation of E11⋉ l1 decomposed to GL(4)⊗E7 is constructed.

The part of the l1 representation that is kept leads to the usual coordinates of the four di-

mensional spacetime and also the coordinates which are scalars under GL(4) but transform

as a 56 dimensional representation of E7. The non-linear realisation is then used in [38] to

construct an invariant action.
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In the present paper, we will show how the results of [36, 37] can be derived in a

very straightforward way from the E11 ⋉ l1 non-linear realisation discussed above. Indeed

we construct the non-linear realisation E11 ⋉ l1 decomposed to GL(D) ⊗ Ed suitable to

d dimensions. We restrict the l1 representation to contain only the coordinates that are

scalars under GL(D), which turn out to transform as the 10, 16, 27 and 56 dimensional

representations of SL(5), SO(5,5), E6 and E7 respectively. We construct invariant actions

where the fields are defined on these generalised spacetimes.

In section 2, we revisit four dimensions and the SL(5) duality group. The generalised

metric in this case was constructed in [36] using M2-brane considerations. In section 2,

the non-linear realisation of the SL(5) motion group is used to construct the generalised

metric, which is the same as in [36] up to a conformal factor. The purpose of this section

is to illustrate non-linear realisation for a familiar group before considering the non-linear

realisation of E11 ⋉ l1. We give a review of E11 and its first fundamental representation in

section 3. In this section, we also review the non-linear realisation of E11⋉ l1. In section 4,

the example of four dimensions is revisited to show how the non-linear realisation of E11⋉l1
can be used to find the generalised metric and the dynamics. The non-linear realisation of

E11 ⋉ l1 produces a generalised metric that differs from the generalised metric in section 2

by a crucial conformal factor. The precise value of the conformal factor in the latter

case is such that the generalised metric cannot be used to construct the dynamics. This

suggests that the duality groups in lower dimensions must be viewed as subgroups of a

larger group. We show that the generalised metric that is derived from the non-linear

realisation of E11 ⋉ l1 can be used to construct the dynamics and naturally incorporates

the correct measure. In sections 5, 6 and 7, we proceed to carry the same procedure in

five, six and seven dimensions. In each case we find the generalised metric and formulate

the dynamics in terms of this object to give a duality invariant action that reproduces the

usual 11-dimensional supergravity action. In appendix B, we outline the difference between

constructing the non-linear realisation of the duality groups in d = 4, 5, 6 and 7 dimensions

and the non-linear realisation of E11 ⋉ l1.

2 SL(5) generalised metric

In this section we consider in detail the duality group SL(5) and give a rather pedestrian

presentation. This will allow us to study the SL(5) duality group and the ten dimensional

spacetime that occurs in this case in isolation. We will just present the algebra rather than

derive it from E11 ⋉ l1, we will explain in detail the way the non-linear realisation leads to

the generalised metric and the corresponding dynamics. This will allow one to gain some

understanding of the technical aspects of the non-linear realisations used without all the

complications of the E11 ⋉ l1 algebra.

The starting point of the non-linear realisation method is the duality group, from

which we form the corresponding motion group. The semi-direct product of a group with

a representation of the group defines the motion group [39–43]. For example, the Poincaré

group is the motion group of the Lorentz group. The SL(5) algebra itself is given by 24

tracefree generators. In the fundamental representation of SL(5), the generators can be
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chosen to be
(

M I
J

)P

Q
= −δPJ δ

I
Q +

1

5
δIJδ

P
Q.

The indices I, J = 1, . . . 5 and are the generator labels, while P,Q are matrix indices which

also run from 1 to 5 because we are in the fundamental representation. It can be explicitly

checked that the generators satisfy the expected SL(5) commutation relations

[M I
J ,M

K
L] = δKJ M I

L − δILM
K
J . (2.1)

We will construct the motion group of SL(5) where the translation generators form a

ten-dimensional representation. This is similar to the construction of the Poincaré group

from the Lorentz group. The translation generators form the 10 of SL(5), which we denote

by PIJ , where the indices again run from 1 to 5 and P is antisymmetric in these indices so

that we have ten generators.

The translation generators all commute with each other, and their commutation rela-

tions with the group generators and the translation generators are

[M I
J , PKL] = −2 δI[KP|J |L] +

2

5
δIJPKL. (2.2)

The coefficient of the first term on the right-hand side is fixed by the Jacobi identities,

while the coefficient of the second is determined by the requirement that the generators M

are tracefree.

The SL(5) duality group first appeared when a Kaluza-Klein reduction of eleven-

dimensional supergravity was made on a flat 4-torus. In our picture, SL(5) appears as

a group which controls the geometry of the 4-manifold itself. Unlike Kaluza-Klein reduc-

tion, the 4-manifold is not associated with any Killing vectors. The fields depend on the

coordinates in the directions of the 4-manifold. We will ignore the dependence of all fields

on directions orthogonal to the 4-manifold. This is opposite to Kaluza-Klein reduction.

Thus, if we were considering eleven-dimensional supergravity there will be seven directions

that are ignored. However, as was found in [36], the four directions must be augmented

by the six winding directions associated with the M2 branes charges. There a total of

ten dimensions of the extended space associated with the four physical spatial directions.

The ultimate interpretation of these extra dimensions is presently a little unclear but is

discussed in [44], where the local symmetries of M-theory is explored in the context of

generalised geometry. This approach leads to the physical section condition for M-theory

generalised geometry. The extra dimensions are M-theoretic generalisations of the winding

coordinates found in doubled field theory [45–48].

To make the relation to the usual fields and coordinates clear, we will decompose the

SL(5) group into its SL(4) × U(1) subgroup. The SL(4) corresponds to the usual four

spatial directions. We let

M I
J =



























M i
j

M5
j =

1

6
ǫjklmRklm

M i
5 =

1

6
ǫiklmRklm

. (2.3)
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The indices labelled by i, j, . . . are GL(4) indices that run from 1 to 4. Note that

M5
5 = −

4
∑

i=1

M i
i,

by the tracelessness of M I
J . The generator

∑

M i
i which we will denote by M , gives the

scaling of generators in the GL(4) decomposition and so determines their U(1) charge. The

generator M i
j can be shifted by M, and indeed we will shift

M i
j → Ki

j = M i
j − δijM. (2.4)

The dilatation is now given by

K ≡
∑

Ki
i = −3M,

which generates the U(1) subgroup of SL(5). With this choice,

[K,Rklm] = 3Rklm, [K,Rklm] = −3Rklm and [K,Ki
j ] = 0,

so that K counts the index of the GL(4) representations, in other words, its U(1) charge.

Other choices can of course be made, but these will result in more complicated commutation

relations between the Ki
j generator and generalised translation generators.

We can now rewrite the SL(5) algebra in terms of the GL(4) and U(1) generators

[Ki
j ,K

l
m] = δljK

i
m − δimK l

j , [Ri1...i3 , Rj1...j3 ] = 18 δ
[i1i2
[j1j2

K
i3]
j3]

− 2 δi1...i3j1...j3
K, (2.5)

[Ki
j , Rk1...k3 ] = −3 δi[k1Rk2k3]j , [Ki

j , R
k1...k3 ] = 3 δ

[k1
j Rk2k3]i; (2.6)

all other commutators vanish. The fully antisymmetrised Kronecker delta function is de-

fined to be

δ
i1...ip
j1...jp

= δ
[i1
j1

. . . δ
ip]
jp

=
1

p!

(

δi1j1 . . . δ
ip
jp
+ (all remaining even permutations of i1 . . . ip)

− (all odd permutations of i1 . . . ip)
)

,

making a total of p! terms in the parentheses.

Now that we have the SL(5) algebra, we similarly write the translation generators

PIJ =











Pi5 = Pi

Pij =
1

2
ǫijklZ

kl
. (2.7)

The 10-dimensional representation in terms of a GL(4) decomposition is made in order

to relate the translation generators to the generators of ordinary spatial translations in

four-dimensions Pi, together with the generalised translations Zij , which correspond to

windings of the M2-brane.
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Now, from equation (2.2), the rest of the commutation relations of the algebra are

[Ki
j , Pk] = −δikPj −

1

5
δijPk, [Ki

j , Z
kl] = 2 δ

[k
j Z |i|l] − 1

5
δijZ

kl, (2.8)

[Rijk, Pl] = 0, [Rijk, Z
mn] = 3! δmn

[ij Pk],

[Rijk, Pl] = 3 δ
[i
l Z

jk], [Rijk, Zmn] = 0. (2.9)

Note that for the translation generators the U(1) generator K does not count the index of

the generator as it did for the SL(5) generators;

[K,Pi] =
9

5
Pi and [K,Zij ] =

11

5
Zij .

In figure 2, the weight diagram of the ten-dimensional representation of SL(5) is pre-

sented. The weight diagram is generated by subtracting positive roots from the weights

(equivalently adding negative roots to the weights). The generators

Ki
j , R

k1...k3 , Rk1...k3

are associated to the roots of SL(5)

αij , αk1...k3 ,−αk1...k3 .

The root lattice is generated by adding arbitrary multiples of positive roots to these.

For example,

α12 + α23 = α13 and α12 + α234 = α134,

from which the commutators

[K1
2,K

2
3] = K1

3 and [K1
2, R

234] = R134

can be constructed. Similarly, the translation generators Pi and Zij are associated to the

weights labelled by xi and xij in figure 2. The xi and xij then become coordinates of the

extended space. The commutation relations of the motion group of SL(5) encode how the

roots act on the weights. The negative roots

αij , for i < j, and αk1...k3

act on the 10-dimensional weight diagram by lowering the weights, while the positive roots

αij , for i > j, and − αk1...k3

raise the weights. In figure 2, for example, α23 acts on the weight x34 to give x24. In terms

of a commutation relation, this is

[K2
3, Z

34] = Z24,

which is consistent with the second equation in (2.8).
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(0 0 1 0)

α12

(0 1 -1 1)

α23 α234

(1 -1 0 1) (0 1 0 -1)

α34 α23
α234

(-1 0 0 1) (1 -1 1 -1)

α234 α12
α34

(-1 0 1 -1) (1 0 -1 0)

α12 α34

(-1 1 -1 0)

α23

(0 -1 0 0)

x1

x2

x3

x4

x23

x13

x12

x34

x24

x14

α13 α134

Figure 2. The weight diagram of the 10-dimensional representation of SL(5).

We need to find the normalisation of the translation generators, which set the conven-

tions for the tangent space metric. Let3

tr(PIJPKL) = 2 δIJ,KL = (δIKδJL − δILδJK),

and by inserting the translation generators given in equation (2.7) we find that

tr(PiPj) = δij , tr(ZijZkl) = 2 δij,kl, tr(PiZ
kl) = 0, (2.10)

where

δij,kl =
1

2
(δikδjl − δilδjk).

The generalised metric is constructed using the non-linear realisation method. We

start by writing the group element

gl = ex
iPie

1√
2
xklZ

kl

,

3Our treatment of the normalisation of generators in this section is motivated purely by convenience. A

more rigorous treatment involves the definition of the Cartan involution of P and is described in appendix A.
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where xi are the conventional coordinates, and xkl are the “winding coordinates.” The

coefficient of the each exponent is such that the tangent space metric takes the canonical

form, i.e.

tr(g−1
l dglg

−1
l dgl) = δijdx

idxj + δkl,mndxkldxmn. (2.11)

The group element that defines the fields is

gE = eh
j
i Ki

je
1
3!
CijkR

ijk

.

Cijk is the 3-form potential of M-theory restricted to the 4-space and hi
j determines

the vielbein.

The generalised vielbein, E, is given by the Maurer-Cartan form of gl conjugated by gE

LAEΠ
AdzΠ = g−1

E g−1
l dglgE , (2.12)

where LA = (Pi, Z
kl/

√
2) and dzΠ = (dxµ, dxµν). Latin letters indicate tangent space

indices, while Greek letters label spacetime indices. The normalisation of LA has been

arranged so that tr(LALB) = δAB. In terms of the generalised vielbein, the generalised line

element is given by

Tr(LAEΠ
AdzΠLBEΣ

BdzΣ) = EΠ
AEΣ

BδABdz
ΠdzΣ.

Consequently, the generalised metric is

MΠΣ = EΠ
AEΣ

BδAB. (2.13)

One can regard the 1-forms EΠ
AdzΠ as an orthonormal basis in our generalised tan-

gent space.

The Cartan metric of gl gives the generalised tangent space metric, equation (2.11). It

can be thought of as the generalised metric of flat space with vanishing 3-form potential.

Conjugating the Maurer-Cartan form by eh
j
i Ki

j gives the vielbein for curved space and

further conjugation by e
1
3!
CijkR

ijk

gives the dependence of the generalised vielbein on the

3-form potential.

We now find the result of conjugating g−1
l dgl by the group element corresponding to

the K generator. The Maurer-Cartan form of gl is

g−1
l dgl = dxiPi +

1√
2
dxklZ

kl. (2.14)

Using the Hadamard formula4

eXY e−X = eadXY,

4The adjoint map ad is defined by (adnX)Y = [X[X[X . . . [X,Y ]]] . . . ], where there are n commuta-

tors [49].

– 10 –



J
H
E
P
0
2
(
2
0
1
2
)
1
0
8

we can evaluate

e−h j
i Ki

jdxmPmeh
l
k
Kk

l = dxk
∞
∑

n=0

(−1)n

n!
h j1
i1

. . . h jn
in

[

Kin
jn , [. . . [K

i1
j1
, Pk] . . . ]

]

,

= dxi
∞
∑

n=0

1

n!

n
∑

m=0

1

5m

(

n

m

)

(trh)m(hn−m) j
i Pj ,

= dxi
∞
∑

m=0

1

5mm!
(trh)m

∞
∑

n=0

1

n!
(hn) j

i Pj ,

= det(eh)1/5(eh) j
µ dxµPj , (2.15)

where in going to the second line we have used the first commutation relation in the line

of equations labelled (2.8), and in the last equality we have used det(eh) = etr(h). We can

identify eh with the vielbein corresponding to usual spatial metric. In the last line, we have

used a Greek letter as an index on dx because a distinction should be made between the

index on the translation generator which should be thought of as a tangent space index,

and the index on the dx, which is a space index. Space is thus endowed with the metric

gµν = (eh) i
µ (eh) j

ν δij . (2.16)

The remaining term in the Maurer-Cartan form, (2.14), can be conjugated by the

group element of the K generator in a similar way. For the dxklZ
kl term we can again use

the Hadamard formula and find

e−h j
i Ki

jdxmnZ
mneh

l
k
Kk

l

=
∞
∑

n=0

(−1)n

n!
dxmn (ad(hK))n Zmn,

= dxmn

∞
∑

n=0

(−1)n

n!

n
∑

m=0

m
∑

p=0

(

n

m

)(

m

p

)

(hp)i
m(hm−p)j

n

(

−1

5
trh

)n−m

Zij . (2.17)

The easiest way to prove the second equality is to use induction on n. We then interchange

the summations in equation (2.17), taking care of the limits of the summations, to write

the expression on the right-hand side as a product of three exponentials

e−h j
i Ki

jdxmnZ
mneh

l
k
Kk

l = det(eh)1/5(e−h)i
µ(e−h)j

ν dxµνZ
ij . (2.18)

As above, the indices on the translation generators are tangent space indices and the indices

on the differential 2-form are space indices. (e−h) µ
i is the inverse vielbein corresponding

to the metric g in equation (2.16).

We have constructed the generalised vielbein in a space with metric g. To find the

dependence of the generalised vielbein, and metric, on the 3-form potential C, we will

conjugate by the group element corresponding to the Rijk generator. The commutation

relations of the Rijk generator with the translation generators are given in equations (2.9),

from which it can be seen that Rijk sends the translation generators into one another —
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more precisely, P is sent to Z. The generator Rijk has the opposite effect. Therefore,

unlike before when conjugation by the group element corresponding to K leads to an

infinite series, in this case the sum will truncate because the commutation relation of Rijk

and Zmn vanishes. So there will only be a finite order dependence on the 3-form potential.

We begin by conjugating the term proportional to Pi, (2.15),

e−
1
3!
Cj1...j3

Rj1...j3
e−hk

lKk
ldxiPie

hk
lKk

le
1
3!
Cj1...j3

Rj1...j3

= det(eh)1/5(eh)µ
i dxµ

(

Pi −
1

3!
Cj1...j3 [R

j1...j3 , Pi]

+
1

2

1

(3!)2
Cj1...j3Ck1...k3 [R

j1...j3 , [Rk1...k3 , Pi]] + . . .

)

= det(eh)1/5(eh)µ
i dxµ

(

Pi −
1

2
CijkZ

jk

)

, (2.19)

using commutation relations (2.9). As stressed earlier, the series truncates.

The conjugation of the term proportional to Zij is trivial because [Rijk, Zmn] = 0.

g−1
h g−1

l dglgh = det(eh)1/5(eh)µ
i dxµ

(

Pi −
1

2
CijkZ

jk

)

+
1√
2
det(eh)1/5(e−h)i

µ(e−h)j
ν dxµνZ

ij . (2.20)

To find the generalised vielbein we need to compare the above expression with equa-

tion (2.12). Hence the generalised vielbein is

EΠ
A = (dete)1/5

(

eµ
i − 1√

2
eµ

jCji1i2

0 eµ1
[i1e

µ2
i2]

)

. (2.21)

Tangent space indices are written with Latin letters and Greek letters are spatial indices.

We have also abbreviated the spatial vielbein eh to e. The position of the indices on e

indicate whether it is the spatial vielbein or inverse vielbein. If the spatial index is lowered,

i.e. eµ
i, then this is the vielbein, and if the spatial index is raised, i.e. eµi, then this is the

inverse vielbein.

Now from the generalised vielbein we can easily calculate the generalised metric, using

equation (2.13),

MKL = g1/5





gµν +
1
2Cµ

ijCνij − 1√
2
Cµ

ν1ν2

− 1√
2
Cµ1µ2

ν gµ1µ2,ν1ν2



 , (2.22)

where g = (dete)2 is the determinant of the metric gµν . This is the same metric as in [36,

50, 51] except for the factor of g1/5. This latter factor comes from the term proportional

to δij in the commutation relations of [Ki
j , Pk] and [Ki

j , Z
kl], equation (2.8). The precise

value of this coefficient was fixed by requiring that the SL(5) generator M I
J is traceless

in equation (2.2). It is important to note that for this particular coefficient, i.e. power

of g multiplying the metric, we obtain a generalised metric that does not describe the

dynamical theory (see appendix B). In the next sections, we will consider the groups
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Figure 3. The E11 Dynkin diagram

governing generalised geometry as coming from E11, in which case the factor of the term

proportional δij in the commutators of K and P,Z is different. This results in a change in

the factor multiplying the metric to g−1/2, rather than g1/5. The corresponding generalised

metric can be used to construct the dynamics and naturally incorporates the measure in

precisely the correct way.

We will now review the non-linear realisation of E11⋉l1 and find the generalised metrics

for the SL(5), SO(5,5), E6 and E7 duality groups from the E11 ⋉ l1 non-linear realisation.

3 A review of E11 and its first fundamental representation and their

non-linear realisation

In this section, we will review previous work on the original E11 conjecture [1]: its appli-

cation to ten [1, 22, 52] and lower dimensions [4, 23–26]; the development of E11 as an

algebra [53, 54]; its first fundamental representation and its relation to brane charges [2–

5, 31]; and finally the non-linear realisation of E11 ⋉ l1 [2, 24, 31, 55, 56]. We collect

together results that are found in different papers in a single place and we will take the

opportunity to give a user friendly presentation. Some of this review is taken from the

forthcoming book [57].

The E11 algebra consists of an infinite number of generators and, like all Kac-Moody

algebras, it is completely determined by its Cartan matrix, or equivalently its Dynkin

diagram given in figure 3.

Upon deleting the eleventh node of the E11 Dynkin diagram we find the Dynkin dia-

gram for SL(11). We can therefore classify the generators of E11 in terms of this subalgebra,

or to put it another way, we can decompose the adjoint representation of E11 into represen-

tations of SL(11). The resulting decomposition of E11 can be labelled in terms of a grading

usually termed the level. Generators with non-negative levels are given, in increasing order,

by [1, 54]

Ka
b(0), R

a1a2a3(1), Ra1a2...a6(2), Ra1a2...a8,b(3), . . . , (3.1)

where a, a1, a2, . . . , b, . . . = 1, 2, . . . , 11 and the number in brackets is the level of the re-

spective generator. The last generator satisfies the constraint

R[a1a2...a8,b] = 0.

Of course, the sequence does not terminate, reflecting the fact that E11 is infinite dimen-

sional. The level zero generators Ka
b obey the GL(11) algebra; the enlargement of SL(11)

to GL(11) arises in the same way as the SL(5) case in section 2. The Cartan subalgebra
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generator associated with node eleven remains as part of the group even though that node

in the Dynkin diagram has been deleted. The algebra of the GL(11) generators is given by

[Ka
b,K

c
d] = δcbK

a
d − δadK

c
b. (3.2)

The E11 algebra also contains an infinite number of generators of negative level which are

partners of those with positive level but have their indices downstairs;

Ra1a2a3(−1), Ra1a2...a6(−2), Ra1a2...a8,b(−3), . . . , (3.3)

with an identical constraint on the last generator. The generators of positive level are

associated with negative roots in the Chevalley-Serre basis. Similarly, those of negative

level are associated to positive roots. Those of zero level contain both positive and negative

roots as well as the entire Cartan subalgebra.

By construction the generators of equations (3.1) and (3.3) belong to representations

of GL(11) and so their commutators with the generators Ka
b are as their index structure

suggests. We list the commutators of the first few generators with K below [1]:

[Ka
b, R

c1...c3 ] = 3δ
[c1
b R|a|c2c3], (3.4)

[Ka
b, Rc1...c3 ] = −3δa[c1R|b|c2c3], (3.5)

[Ka
b, R

c1...c6 ] = 6δ
[c1
b R|a|c2...c6], (3.6)

[Ka
b, Rc1...c6 ] = −6δa[c1R|b|c2...c6], (3.7)

[Ka
b, R

c1...c8,d] = 8δ
[c1
b R|a|c2...c8],d + δdbR

c1...c8,a, (3.8)

[Ka
b, Rc1...c8,d] = −8δa[c1R|b|c2...c8],d − δadRc1...c8,b. (3.9)

The commutators of E11 preserve the level, and it turns out that all the positive level

generators can just be found from the multiple commutators of Ka
b and Ra1a2a3 and all the

negative generators from the multiple commutators of Ka
b and Ra1a2a3 . The commutators

of some of the positive level generators are given by

[Rc1...c3 , Rc4...c6 ] = 2Rc1...c6 , [Ra1...a6 , Rb1...b3 ] = 3Ra1...a6[b1b2,b3]. (3.10)

Similarly some of the commutators of the negative definite level generators are given by

[Rc1...c3 , Rc4...c6 ] = 2Rc1...c6 , [Ra1...a6 , Rb1...b3 ] = 3Ra1...a6[b1b2,b3]. (3.11)

Finally, the commutation relations between the positive and negative generators of up to

level three are given by [2]

[Ra1...a3 , Rb1...b3 ] = 18δ
[a1a2
[b1b2

Ka3]
b3] − 2δa1a2a3b1b2b3

D, (3.12)

[Rb1...b3 , R
a1...a6 ] =

5!

2
δ
[a1a2a3
b1b2b3

Ra4a5a6], (3.13)

[Ra1...a6 , Rb1...b6 ] = −5!.3.3δ
[a1...a5
[b1...b5

Ka6]
b6] + 5!δa1...a6b1...b6

D, (3.14)

[Ra1...a3 , R
b1...b8,c] = 8.7.2(δ[b1b2b3a1a2a3R

b4...b8]c − δ[b1b2|c|a1a2a3R
b3...b8]), (3.15)

[Ra1...a6 , R
b1...b8,c] =

7!.2

3
(δ[b1...b6a1...a6R

b7b8]c − δc[b1...b5a1...a6 Rb6b7b8]), (3.16)
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where D =
∑

bK
b
b. There are similar formulae when higher or lower level generators

are involved.

By examining the above commutators one can see that the level is nothing more that

the number of times the generator Ra1a2a3 minus the number of times the generator Ra1a2a3

occurs. For the purposes of this paper this definition will suffice, but a precise description

of the level is as follows. Each generator is associated with a root of E11, which can be

expressed as a sum of simple roots. Each node of the Dynkin diagram is associated with

a simple root. The level refers to the GL(11) decomposition which picks out the eleventh

node in figure 3. Associated to the eleventh node is the simple root α11. The level is

the coefficient of α11 when the root associated to that generator is written as the sum of

simple roots.

For the purposes of this paper all that is required to know about the E11 algebra is

the above commutation relations. The reader who is interested in a more detailed account

of E11 from the definition of a Kac-Moody algebra may consult [1] and the later papers on

E11 referenced in this paper. As we will see shortly, the non-linear realisation of the E11

algebra leads to the fields found in the massless bosonic sector of M-theory.

In early papers on E11, in addition to the group element belonging to E11, spacetime

was introduced into the group element by including a factor of ex
aPa , where Pa are the

generators of spacetime translations. The generators Pa were taken to have non-trivial

commutators with the GL(11) generators Ka
b of E11, but trivial commutators with all the

non-zero level generators. It was realised from the beginning that this was an ad hoc and

incomplete step.

Later, it was proposed to incorporate spacetime by using a representation of E11 [2],

which was denoted by the l1 representation. This representation generalises the notion of

spacetime translation generators. The l1 representation, when decomposed into represen-

tations of SL(11), has the content [2–4]

LA = {Pa, (0);Z
a1a2(1);Za1...a5(2);Za1...a7,b(3), Za1...a8(3);

Za1...a8,b1b2b3(4), Za1...a9,(bc)(4), Za1...a9,b1b2(4), Za1...a10,b(4), Za1...a11(4);

Za1...a9,b1...b4(5), Za1...a8,b1...b6(5), Za1...a9,b1...b5(5), . . . }. (3.17)

The numbers in brackets are the levels of the generators which just counts the number

of times the generator Rabc acts on the highest value component in Pa. One sees that

at the very lowest level it contains the spacetime translations Pa and then some gener-

ators that have the index structure to be the central charges in the eleven dimensional

supersymmetry algebra as well as an infinite number of higher level objects. From the

mathematical viewpoint, the l1 representation has the highest weight Λ1 which obeys the

relations (Λ1, αa) = δa1 where αa are the simple roots of E11. This is just the fundamental

representation associated with node one. The deduction of the above content, (3.17), from

this definition is explained in [2–4].

At the lowest levels the l1 representation contains objects that have the correct index

structure to be the brane charges; that is Pa,Z
ab,Za1...a5 . . . associated with the point

particle, M2 brane and M5 brane, respectively. At level three Za1...a7,b probably represents
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the KK monopole (or D6-brane) charge. It has been conjectured that the l1 representation

contains all brane charges and there is now a substantial amount of evidence for this

conjecture [2–5].

The generators of equations (3.1) and (3.3) correspond to the SL(11) decomposition

of E11, which is the one appropriate to the eleven dimensional theory. To find the theory

in d dimensions we should carry out the decomposition of the adjoint representation of

E11 into representations of the direct product of the duality group in d dimensions and

GL(D), where D = 11 − d [4, 23–26]. This can be found from equations (3.1) and (3.3)

by simply carrying out the dimensional reduction by hand as will be done in this paper.

Deleting the D−th node, for D = 1, . . . 8, we obtain direct products of the duality groups

E10, E9, E8, E7, E6, SO(5,5), SL(5) and SL(2)×SL(3) with GL(D), respectively. The same

decomposition is required for the l1 representation and the results [4, 5, 31] are given in

table 2. Some of the entries in the table agree with those previously found by taking an

explicit charge and using U-duality to find the other members of the multiplet [58–60].

It was proposed [2] that the dynamics should be a non-linear realisation of semi-direct

product of E11 and generators that belonged to the l1 representation, the motion group of

E11; denoted by E11 ⋉ l1. This algebra contains the generators of equations (3.1), (3.3)

and those of equation (3.17) which we now take to be generators and call the generalised

translation generators. The commutators for the low level generators of the l1 representa-

tion with Ra1a2a3 are determined up to constants by demanding that the levels match and

so we can take [2]

[Ra1a2a3 , Pb] = 3δ
[a1
b Za2a3], (3.18)

[Ra1a2a3 , Zb1b2 ] = Za1a2a3b1b2 , (3.19)

[Ra1a2a3 , Zb1...b5 ] = Zb1...b5[a1a2,a3] + Zb1...b5a1a2a3 (3.20)

The normalisation of the generators is fixed by these relations, see appendix A for a detailed

explanation. The commutators of the generalised translation generators with those of

GL(11) are given by

[Ka
b, Pc] = −δacPb +

1

2
δabPc, (3.21)

[Ka
b, Z

c1c2 ] = 2δ
[c1
b Z |a|c2] +

1

2
δabZ

c1c2 , (3.22)

[Ka
b, Z

c1...c5 ] = 5δ
[c1
b Z |a|c2...c5] +

1

2
δabZ

c1...c5 . (3.23)

Some of the remaining commutators are given by [2]

[Ra1a2a3 , Pb] = 0, (3.24)

[Ra1a2a3 , Z
b1b2 ] = 6δb1b2[a1a2

Pa3], (3.25)

[Ra1a2a3 , Z
b1...b5 ] =

5!

2
δ[b1b2b3a1a2a3Z

b4b5], (3.26)

[Ra1a2a3 , Z
b1...b7,d] = 378δd[b1b2a1a2a3Z

b3...b7], (3.27)
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D G Z Za Za1a2 Za1...a3 Za1...a4 Za1...a5 Za1...a6 Za1...a7

8 SL(3)⊗ SL(2) (3,2) (3,1) (1,2) (3,1) (3,2) (1,3) (3,2) (6,1)

(8,1) (6,2) (18,1)

(1,1) (3,1)

(6,1)

(3,3)

7 SL(5) 10 5 5 10 24 40 70 —

1 15 50 —

10 45 —

5 —

6 SO(5, 5) 16 10 16 45 144 320 — —

1 16 126 — —

120 — —

5 E6 27 27 78 351 1728 — — —

1 27 351 — — —

27 — — —

4 E7 56 133 912 8645 — — — —

1 56 1539 — — — —

133 — — — —

1 — — — —

3 E8 248 3875 147250 — — — — —

1 248 30380 — — — — —

1 3875 — — — — —

248 — — — — —

1 — — — — —

Table 2. Table giving the representations of the symmetry group G of the form charges in the l

multiplet up to and including rank D − 1 in D = 8 dimensions and below [4, 5, 31].

[Ra1...a6 , Pb] = −3δ
[a1
b Z ...a6], (3.28)

[Ra1...a6 , Zb1b2 ] = −Zb1b2[a1...a5,a6] − Zb1b2a1...a6 . (3.29)

These commutators can be largely determined by demanding that the level is preserved

and that the Jacobi identities hold. The factor of 1
2 in the terms proportional to δab in

equations (3.21)–(3.23) are fixed by the Jacobi identities once it is found to be present in

the first equation, (3.21). These terms follow from the fact that the l1 representation is
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a highest weight representation of E11. If one considers the analogous representation for

subalgebras such as E10, or even the finite dimensional En series one finds factors other

than 1
2 . Indeed the corresponding factor for En is 1

n−9 (n 6= 9). E9 is an exception because

it’s an affine algebra, so its Cartan matrix has vanishing determinant.

To carry out explicit computations of the E11 ⋉ l1 non-linear realisation at low levels,

one only needs the above commutators and one does not have to absorb the general theory

of Kac-Moody algebras.

As explained in the introduction the non-linear realisation we are using here is not a

sigma model as the l1 representation are generators associated with spacetime and they

introduce the coordinates of the generalised spacetime into the theory. How to construct

such non-linear realisations is illustrated by example in [1, 18] and many of the later papers

on E11 even though only the generators of spacetime translations Pa are used. The non-

linear realisation of E11 ⋉ l1 was used in [24] to construct all five dimensional gauged

supergravities and in [55] and [56] to construct the IIA ten dimensional supergravity in

the NS-NS and R-R sectors respectively. The next section uses it to construct the four

dimensional theory at level zero but keeping only the scalar coordinates in the ten of SL(5).

That section may be read at the same time as the abstract material below. The material

in this section may also be compared with section 2 which covers the SL(5) case without

the complications of the E11 ⋉ l1 algebra.

The non-linear realisation is built from the group element

g = glgE . (3.30)

In eleven dimensions the group element gE takes the form

gE = . . . e
1
6!
Ca1...a6Ra1...a6e

1
3!
Ca1a2a3Ra1a2a3eha

bKa
be

1
3!
Ca1a2a3R

a1a2a3
e

1
6!
Ca1...a6R

a1...a6
. . . .

(3.31)

Using equation (3.17), the group element gl, in eleven dimensions, takes the form

gl = ex
aPae

1√
2
xabZ

ab

e
1√
5
xa1...a5Z

a1...a5
. . . . (3.32)

The precise choice of the normalisation is explained in appendix A.

Thus the non-linear realisation of E11 ⋉ l1 introduces a generalised spacetime with

coordinates [2, 24, 31]

zΠ = {xa, ;xa1a2 ;xa1...a5 ;xa1...a7,b, xa1...a8 ;xa1...a8,b1b2b3 , xa1...a9,(bc), xa1...a9,b1b2 ,
xa1...a10,b, xa1...a11 ;xa1...a9,b1...b4,c, xa1...a8,b1...b6 , xa1...a9,b1...b5 , . . . }, (3.33)

where the first coordinate xa is the coordinate of the spacetime we are so used to. However

the multiplet contains an infinite number of additional coordinates. As a result of the way

they have arisen, there is a one to one correspondence between the generators of equa-

tion (3.17) and the coordinates of equation (3.33) so that each coordinate is automatically

associated with a brane charge. In particular, the usual coordinates xa are associated with

the generators Pa of spacetime translations, the coordinates xab with the charge Zab of

the M2 brane and so on. One can show [3] that for every field there is a corresponding
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brane charge, for example ha
b, Ca1a2a3 , . . . correspond to Pa, Z

ab, . . ., respectively. As a

result every field now has a corresponding coordinate associated with it; we can think of

the usual spacetime coordinates xa as being associated with the metric, the coordinates

xab as associated with the three form field Ca1a2a3 , etc. Thus this construction generalises

spacetime to take account of the objects within it. Einstein’s theory corresponds to the

lowest level. We take the fields ha
b, Ca1a2a3 , . . . to depend on all of the coordinates xa, xab

etc. Introducing the generator Pa on its own, as mentioned above, is just the lowest order

approximation.

The group element in lower dimensions is easily written down using the generators of

E11 as decomposed into representations of GL(D)⊗ Ed where D = 11− d. As mentioned

above, elements of l1 are given in table 2. We find, in table 2, the scalar, vector, and

higher rank generators in D−dimensions contained in the l1 representation. In particular,

we find that the scalar charges in the l1 representation in d = 4, 5, 6, 7 dimensions belong

to the 10, 16, 27 and 56 representations of SL(5), SO(5,5), E6 and E7 respectively [4, 31].

In this paper we will be interested in the non-linear realisation at level zero with respect

to the deleted node. With this restriction only a finite number of fields and coordinates

will remain.

A non-linear realisation is specified by a choice of algebra and subalgebra, called the

local subalgebra. In our case the algebra is E11 and we will denote the local subalgebra

by I(E11). By definition, the non-linear realisation is just a dynamics which is invariant

under the transformations

g → g0g, g0 ∈ E11 ⋉ l1, and g → gh, h ∈ I(E11) (3.34)

In this equation g0 is a rigid transformation, and so does not depend on the generalised

spacetime, while h is a local transformation which does depend on the generalised space-

time. The local subalgebra I(E11) is taken to be a maximal subalgebra that is invariant

under Cartan involution. This subalgebra of E11 is generated by

Ka
b − ηbcη

adKc
d, Ra1a2a3 − ηa1b1ηa2b2ηa3b3Rb1b2b3 ,

Ra1a2...a6 + ηa1b1 . . . ηa6b6Rb1b2...b6 , . . . , (3.35)

where η is the Minkowski metric. The Cartan involution invariant subgroups of the groups

SL(n), SO(n, n), E6 and E7 are their maximally compact subgroups, which are SO(n),

SO(n)⊗SO(n), USp(8) and SU(8) respectively, provided the d dimensions are all spacelike.

Hence at the lowest level the local subalgebra is just the Lorentz group. We may therefore

use the local transformation of equation (3.34) to bring the group element gE in eleven

dimensions into the form

gE = eha
bKa

be
1
3!
Ca1a2a3R

a1a2a3
. . . . (3.36)

This mostly contains the generators of the Borel subalgebra of E11 which are the generators

given in equation (3.1). The exception is the field at level zero, i.e. ha
b where we have chosen

not to fix all of the local Lorentz group. The Cartan involution I takes, up to a sign, a

generator with a positive level to a generator with a negative level and with the same
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set of indices but downstairs, that is it takes a contravariant to a contragredient SL(11)

representation. More technically it takes a generator with a positive root α to a generator

with the negative root −α, for example I(Ra1...a3) = −Ra1...a3 and I(Ra1...a6) = Ra1...a6 .

Furthermore, it maps the generators of the Cartan subalgebra into themselves. For a more

formal definition see, for example, [1] and many later papers on E11 .

As we explained to find the non-linear realisation in eleven dimensions we delete node

eleven and decompose E11 ⋉ l1. At level zero this algebra becomes GL(11)⋉ Pµ where Pµ

are just the usual spacetime translations in eleven dimensions. At level zero I(E11) is just

the Lorentz group. Thus in this case the generalised spacetime has the coordinates xa and

so is just our familiar spacetime. The only fields are ha
b. In fact the non-linear realisation,

after the adjustment of a few constants that are not determined, leads to eleven dimensional

gravity. It turns out that eh viewed as a matrix is just the vielbein [16] just as was shown

in section 2. In what follows it will be useful to recall that the non-linear realisation of the

semi-direct product of GL(d) and spacetime translations leads to d-dimensional gravity, as

was shown long ago for the case of four dimensions [16].

Under a rigid g0 ∈ E11 and a local H ∈ I(E11), the different parts of the group element

transform as

gl → g0gl(g0)
−1, and gE → g0gE (3.37)

gl → gl, and gE → gEh, (3.38)

respectively, as the l1 generators form a realisation of E11. As a result the coordinates

transform under G as

zΠLΠ → g0z
ΠLΠ(g0)

−1 (3.39)

To give a more concrete meaning to the above rigid transformations we will carry them

out for g0 = e
1
3!
aa1a2a3R

a1a2a3 where aa1a2a3 is a constant parameter. Using equation (3.37)

and equations (3.32) and (3.36), we find that

δxa = 0, δxab =
1√
2
aabcx

c, δha
b = 0,

δCa1a2a3 = aa1a2a3 − 3ab[a1a2ha3]
b, δCa1...a6 = 0. (3.40)

To construct the dynamics from the non-linear realisation, it is usual to first construct

the Cartan form. The Cartan form belongs to the Lie algebra and so in our case the algebra

E11 ⋉ l1. As such, it can be written as

V ≡ g−1dg = dzΠEΠ
ALA + dzΠGΠ,∗R

∗ (3.41)

where LA are the generators of the l1 representation and R∗ are the generators of E11 in

equation (3.1) and (3.36) with ∗ denoting the appropriate set of indices. When we write

the sums involving the LA generators we are including the square root of the combinatorial

factors that occur in the group element in equation (3.32). Since the generators LA form

a representation of E11, the Cartan form is given by

V = g−1
E dzALAgE + g−1

E dgE (3.42)
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where we have assumed that the generators LA mutually commute. We may write

dzΠEΠ
ALA = g−1

E dzALAgE = dzT · E · L (3.43)

where in the last line we have used an obvious matrix notation in that the matrix E has

the elements EΠ
A. The remaining part of the Cartan form is given by

dzΠGΠ,∗R
∗ = g−1

E dgE (3.44)

and it is just the Cartan form of E11.

The Cartan form (3.41) is obviously inert under the rigid g0 transformations of equa-

tion (3.34). Note that the generators of the l1 representation can carry either a Π or an

A index depending on the context; this is not a change carried out with the vielbein and

LA = LΠδ
Π
A . As the l1 generators form a representation of E11 it follows that dzΠEΠ

A and

dzΠGΠ,∗ are separately invariant under these rigid transformations. However, the coordi-

nates, and so dzΠ, do transform under g0 and as a result EΠ
A and GΠ,∗ are not invariant

under g0 transformations.

Under a local transformation g → gh of equation (3.41) the Cartan forms transform

as V → h−1Vh+h−1dh. To find quantities that only transform under the local subalgebra

we can rewrite V as

V = g−1dg = dzΠEΠ
A(LA +GA,∗R

∗) (3.45)

where we recognise that GA,∗ = (E−1)A
ΠGΠ,∗. Since dzΠEΠ

A and R⋆ are inert under rigid

g0 transformations, it follows that GA,∗ are also inert under g0 transformations and just

transform under local transformations. As such they are useful quantities with which to

construct the dynamics as one need only solve the problem of finding objects which are

invariant under the local symmetry. For objects in the coset directions of V , the h−1dh

terms in the transformation of equation (3.41) are absent and we may think of GA,∗ as

transforming covariantly — in effect they are the covariant derivatives of the fields. Thus

working with the Cartan forms one only has to solve the problem of find invariants under

the local transformations h. In fact the situation is a little more subtle as we have used

the local subgroup to choose our group element to belong to the Borel subgroup and then

a g0 transformation requires a local compensating transformation. However, as the final

dynamics is invariant under local transformations these are automatically taken care of.

Since the generators of the l1 representation transform as a representation of E11 we

can write equation (3.39) as

zΠLΠ → g0z
ΠLΠ(g0)

−1 = zΠD(g−1
0 )Π

ΛLΛ (3.46)

where D(g−1
0 )Π

Λ is the corresponding matrix representation. More formally we can define

the action of the l1 representation of E11, to which the generators LΠ belong, by

U(k)(LΠ) ≡ k−1LΠk = D(k)Π
ΛLΛ,

where k ∈ E11. As a result we find that in matrix notation

dzT → dzT ′ = dzTD(g−1
0 ),
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or putting in the indices

dzΠ → dzΠ′ = dzΛD(g−1
0 )Λ

Π. (3.47)

Consequently, the derivative ∂Π = ∂
∂zΠ

in the generalised spacetime transforms as

∂′
Π = D(g0)Π

Λ∂Λ.

Examining equation (3.43), we note that the generalised vielbein E in matrix form is

given by

EΠ
Λ = D(gE)Π

Λ. (3.48)

As the Cartan form is inert under rigid transformations, its action on the coordinates

must be compensated by a corresponding change on the lower index of E, using equa-

tion (3.47), we find this to be given by EΠ
A′ = D(g0)Π

ΛEΛ
A. Thus the lower index is a

world index, while EΠ
A′ transforms on its upper index by a local h transformation and so

we can think of the upper index as a tangent index. Consequently, we can think of EΠ
A

as a generalised vielbein which controls the geometry of the generalised spacetime.

In almost all the E11 papers the dynamics has been constructed using the Cartan

forms. However, one can also proceed in another way and this was done in [36, 55] which

we now follow. Let us define

M ≡ gEIc(g
−1
E ), (3.49)

where Ic is the Cartan involution. It is easy to see, using equation (3.38) that M is

inert under local transformations as by definition Ic(h) = h. However, under a rigid

transformation M → M ′ = g0MIc(g
−1
0 ) under rigid transformations. Using E = D(gE),

we find that M in the l1 representation is given by

D(M) = D(gE)D(Ic(g
−1
E )) = EE# (3.50)

where E# = Ic(D(g−1
E )), which for many groups it is just the transpose. Writing out the

indices explicitly we find that

D(M)ΠΛ = (EE#)ΠΛ (3.51)

and we can write its rigid transformation as

D(M)ΠΛ → D(g−1
0 )Λ

ΓD(M)ΓΘD(Ic(g
−1
0 ))Π

Θ. (3.52)

Using this method, the problem of finding invariants reduces to constructing g0 invariants

from M . In the subsequent sections we will carry this procedure out in detail for the

various dimensions. If we restrict ourselves to two spacetime derivatives then the most

general invariant Lagrangian up to boundary terms is given by [36, 55]

L = c1M
ST∂SM

PQ∂TMPQ + c2M
ST∂SM

PQ∂PMTQ

+ c3M
MNMST (MPQ∂SMPQ)(∂MMNT )

+ c4M
ST (MMN∂SMMN )(MPQ∂TMPQ) + c5MRQ∂SM

SR∂PM
PQ (3.53)
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where c1, . . . , c5 are constants, and MST denotes (M−1)ST . The term with coefficient c5
never gives rise to a U(1) gauge-invariant result. One can therefore set c5 equal to zero

with impunity. Boundary terms may be included in terms of the generalised metric [65].

The non-linear realisation introduces the generalised spacetime, but since it also spec-

ifies the dynamics, at least up to a few constants, it also determines the geometry of the

generalised spacetime. However, it is important to understand that the non-linear realisa-

tion as described above, and used in the papers on E11, is not what is usually described

as a sigma model. The latter corresponds to a non-linear realisation in which the group

contains no generators associated with any spacetime. As a result the coordinates are in-

troduced by hand and act as dummy variables upon which the fields depend. In contrast

the non-linear realisation described here has generators which lead to the introduction of

spacetime into the group element and so the generalised spacetime plays a central role in

the way the dynamics is formulated.

We note that the conjectured theory based on E10 [61–64] is quite different. It uses a

non-linear realisation that is equivalent to that which is usually known as a sigma model.

In this formulation the fields only depend on time and it is hoped that spacetime will

emerge at higher levels in the algebra.

The Lagrangian of equation (3.53) contains five undetermined constants and, since it

is to be integrated over a generalised spacetime, it is of a rather unfamiliar form. One

may like to find a theory that contains only the spacetime that is familiar to us. Although

up to this stage the procedure has been very systematic, how to proceed further is not

completely clear. One approach used in the non-linear realisation of GL(D) ⋉ I4 to find

gravity [16] is to demand some extra symmetries such as conformal symmetry. This step,

taken together with the original non-linear realisation is equivalent to demanding general

coordinate invariance. This procedure was also followed in the E11 approach [1, 18] and

many subsequent papers. This procedure has been generalised in the work of [38] which

considered the non-linear realisation of E11 ⋉ l1 applied to seven dimensions. In [38] the

field dependence on the resulting generalised spacetime was restricted to be only over the

usual coordinates of spacetime and then the action was required to be invariant under

general coordinate invariance and gauge symmetries. This is the strategy we will adopt

here. One finds in all known cases that one can adjust the constants so that this is possible.

4 Four dimensions: SL(5) revisited

In this section, we carry out the non-linear realisation of E11 ⋉ l1 appropriate to four

dimensions at the lowest level. That is we will systematically carry out the method given

in the previous section applied to this case. To find the four-dimensional theory we delete

node seven of the E11 Dynkin diagram to leave the algebra GL(7)⊗SL(5), see figure 4, and

decompose E11 ⋉ l1 into this subalgebra. The subalgebra SL(5) is the well known duality

group in the reduction to seven dimensions.

In this paper we are interested in the lowest level result. The simplest way to find

the low level algebra is to carry out by hand the dimensional reduction on the generators

of E11 ⋉ l1 given in equations (3.1), (3.3) and (3.17). Letting i, j, · · · = 1, 2, 3, 4 be the
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|
• − • − . . . − ⊗ − • − • − •
1 2 7 8 9 10

Figure 4. The E11 Dynkin diagram appropriate to four dimensions

indices corresponding to the four dimensions we find that the only generators of E11, (3.1)

and (3.3), that remain are

Ki
j , R

i1i2i3 , Ri1i2i3 and Ka
b, a, b = 1, 2 . . . 7 (4.1)

of GL(7). We are using the convention that i, j, k, . . . are tangent indices in the four

dimensional space and a, b, c, . . . are tangent indices in the seven dimensional space. The

generators listed in (4.1) have level zero. We observe that the level zero generators have no

mixed indices. For the decomposition corresponding to deleting node seven, the generators

Ki
a (Ka

i) have level 1 (-1) and multiple commutators of these generators together with

the above generators at level zero will lead to all of the E11 Kac-Moody algebra. More

technically a generator has level n if its corresponding root, when expressed in terms of

simple roots, contains the simple root α7 with factor n.

Keeping only level zero generators we find, using equations (3.2), (3.4), (3.5) and (3.12),

that the generators of equation (4.1) obey the algebra

[Ki
j ,K

k
l] = δkjK

i
l − δilK

k
j ,

[Ki
j , R

k1k2k3 ] = 3δ
[k1
j R|i|k2k3],

[Ki
j , Rk1k2k3 ] = −3δi[k1R|j|k2k3],

[Ri1i2i3 , Rj1j2j3 ] = 18δ
[i1i2
[j1j2

K
i3]
j3]

− 2δi1i2i3j1j2j3

(

∑

j

Kj
j +

∑

a

Ka
a

)

;

[Ka
b,K

d
c] = δdbK

a
c − δacK

d
b

with all remaining commutators being zero. To see that this really is the algebra GL(7)⊗
SL(5) we should redefine the generators of SL(4) to be K̃i

j = Ki
j − 1

5δ
i
j

∑

aK
a
a and then

the generators K̃i
j , R

i1i2i3 and Ri1i2i3 generate SL(5). The generators Ka
b, a, b = 1, 2 . . . 7

obey the algebra of GL(7) and commute with those of SL(5).

The generators of SL(5) are contained in the generators M I
J , I, J = 1 . . . , 5, the iden-

tification with those above being

M I
J =



























M i
j = K̃i

j −
1

3

∑

k

K̃k
k, i, j = 1, . . . , 4

M i
5 =

1

3!
ǫij1j2j3Rj1j2j3 j1, j2, j3 = 1, . . . , 4

M5
i =

1

3!
ǫij1j2j3R

j1j2j3 j1, j2, j3 = 1, . . . , 4

, (4.2)
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whereupon we find the standard algebra of SL(5), namely

[M I
J ,M

K
L] = δKJ M I

L − δILM
K

J . (4.3)

Since the SL(5) generators M I
J are traceless we have defined M5

5 = −
∑

i=1M
i
i.

We now consider the l1 representation at lowest level. Carrying out the dimensional

reduction on equation (3.17) we find that it contains

Pi, Z
ij , i, j = 1, 2, 3, 4 and Pa, a = 1, 2 . . . 7. (4.4)

The commutators of the generators of equation (4.4) are found using equa-

tions (3.18), (3.19), (3.21), (3.22), (3.24), (3.25) to be

[Ki
j , Pl] = −δilPj +

1

2
δijPl, (4.5)

[Ki
j , Z

kl] = 2δ
[k
j Z |i|l] +

1

2
δijZ

kl, (4.6)

[Ri1i2i3 , Pj ] = 3δ
[i1
j Zi2i3], (4.7)

[Ri1i2i3 , Zkl] = 0, (4.8)

[Ri1i2i3 , Pj ] = 0, (4.9)

[Ri1i2i3 , Z
jk] = 6δjk[i1i2Pi3]; (4.10)

[Ka
b, Pc] = −δacPb +

1

2
δabPc (4.11)

as well as

[Ka
b, Pl] =

1

2
δabPl, [Ka

b, Z
ij ] =

1

2
δabZ

ij , [Ki
j , Pa] =

1

2
δijPa. (4.12)

All the remaining commutators are zero. We also take all the generators in the l1 repre-

sentation to commute with themselves.

We can package the generators of equation (4.4) with i, j, . . . indices into PIJ =

−PJI , I, J = 1, . . . , 5, where

PIJ =







Pi5 = Pi i = 1, . . . , 4

Pij =
1

2
ǫijklZ

kl i, j, k, l = 1, . . . , 4
. (4.13)

Using equations (4.5)–(4.10), the commutator of PIJ with the generators of SL(5) can be

written as

[M I
J , PLM ] = −δILPJM − δIMPLJ +

2

5
δIJPLM . (4.14)

We recognise that the generators PLM belong to the 10-dimensional representation of SL(5).

Furthermore, one finds that [M I
J , Pa] = 0, hence the Pa are SL(5) singlets, but transform

as the 7-dimensional representation of GL(7). This is very similar to what is done in

section 2. The difference being that here the algebra is derived from E11. We find that it

– 25 –



J
H
E
P
0
2
(
2
0
1
2
)
1
0
8

includes the extra seven dimensions of spacetime, and some numerical factors in the algebra

are different. In particular, comparing the equations in (2.8) to equations (4.5) and (4.6),

the coefficient of the terms proportional to δij are different, −1/5 and 1/2 respectively.

At level zero the non-linear realisation of E11⋉ l1 reduces to the non-linear realisation

of (GL(7) ⊗ SL(5)) ⋉ (Pa ⊕ PIJ). The local subalgebra is generated by Ka
b − ηadηbcK

c
d

and Ki
j − Kj

i and Rijk − Rijk respectively. The use of the Minkowski metric ηab to

define the local subalgebra leads to the subgroup SO(1,6) rather than SO(7). Thus the

local subalgebra is SO(1, 6) ⊗ SO(5). In fact SO(7) and SO(5) are the standard Cartan

involution invariant subalgebras of GL(7) and SL(5) and using the Minkowski metric for

the first group results from using a slightly different Cartan involution. The non-linear

realisation is built from the group element glgE of equation (3.30) now restricted to level

zero. Taking into account the local symmetry, the GL(7)⊗SL(5) part of the group element

can be written as

g
(0)
E = ehi

jKi
je

1
3!
Ci1i2i3

Ri1i2i3
eĥa

bKa
b . (4.15)

The superscript 0 just indicates we are at level zero. Hence we find that the non-linear

realisation introduces the fields

hi
j , Ci1i2i3 , and ĥa

b. (4.16)

We note that the field Ci1i2i3 was always denoted as Ai1i2i3 in the previous literature on E11.

The part of the group element arising from the l1 representation is given by

g
(0)
l = e

xiPi+
1√
2
xijZ

ij

ex
aPa . (4.17)

As such we see that the E11⋉ l1 non-linear realisation at level zero introduces a generalised

spacetime with the coordinates

xi, xij and xa, a = 1, . . . , 7. (4.18)

The last coordinates are just the usual seven dimensional spacetime and belong to the

7-dimensional representation of GL(7). The first set of coordinates of equation (4.18) are

associated with the spacetime translation and the membrane charges, respectively, and

transform as a 10 of SL(5); we could write them as XIJ , I, J = 1, 2, . . . , 5. The fields of

equation (4.16) are taken to depend on the coordinates of equation (4.18). Thus at lowest

level the non-linear realisation involves the group element

g(0) = g
(0)
l g

(0)
E = e

xiPi+
1√
2
xijZ

ij

ex
aPaehi

jKi
je

1
3!
Ci1i2i3

Ri1i2i3
eĥa

bKa
b . (4.19)

If would be interesting to construct this non-linear realisation; one would find gravity

in seven dimensions coupled to a part that is the non-linear realisation of SL(5) ⋉ PIJ .

However, in this paper we will consider a simplified non-linear realisation. In a future paper,

we will discuss how the other components of the metric and C appear in the non-linear

realisation and the action. We note that the generators of SL(5) commute with those of

GL(7) and the seven dimensional spacetime translations, i.e with IGL(7) = GL(7)⋉{Pa}.
Indeed the only non-trivial commutator between SL(5) ⋉ {Pi, Z

ij} and IGL(7) is that of
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the generators of GL(7) which scale the {Pi, Z
ij} generators by a 1

2 factor. As such the

SL(5) ⋉ {Pi, Z
ij} transformations of the non-linear realisation do not affect the parts of

the group element belonging to IGL(7), that is they do not affect the spacetime coordinate

xa of the gravity field ĥa
b. As such it is consistent to set the IGL(7) part of the non-linear

realisation to zero, that is set xa = 0 = ĥa
b. This means that we can just consider the

non-linear realisation of SL(5))⋉ {Pi, Z
ij} whose corresponding group element is given by

g(0)′ = e
xiPi+

1√
2
xijZ

ij

ehi
jKi

je
1
3!
Ci1i2i3

Ri1i2i3
= g

(0)′
l g

(0)′
E (4.20)

The prime corresponds to the fact that we have dropped the generators Pa,K
a
b and the

coordinate xa and field ĥa
b. The remaining fields, namely hi

j and Ci1i2i3 now only depend

on the coordinates xi and xij . We note that this would not be possible if one were to

consider E11 ⋉ l1 at higher levels, nonetheless the results provide an interesting laboratory

in which to study the generalised spacetime introduced in the non-linear realisation.

Usually when carrying out a Kaluza-Klein reduction to seven dimensions one neglects

the dependence of the fields on the spacetime coordinates associated with the upper four

dimensions leaving the fields to depend on the seven dimensional spacetime. However, as

discussed previously in this paper, a different approach was adopted in the papers [36, 37]

where one neglected the dependence on the seven dimensions and kept a dependence on the

coordinates associated with the upper space. The simplification of the non-linear realisation

we have just carried out corresponds to this latter approach.

It is now straightforward to construct the non-linear realisation. The vielbein on the

generalised spacetime is given by equation (3.43) which in this case becomes

dz · E · L = (g
(0)′
E )−1(dxiPi +

1√
2
dxijZ

ij)g
(0)′
E . (4.21)

From now on we will drop the 0 superscript and the primes on the group elements with

the understanding that the group elements are at level zero and do not include the IGL(7)

generators. Equation (4.21) is easily evaluated using equations (4.5)–(4.8), and we find that

E = (det e)−
1
2

(

eµ
i − 1√

2
eµ

jCjiii2

0 e−1
µ1µ2

i1i2

)

, (4.22)

where eµ
i = (eh)iµ, and e−1

µ1µ2
i1i2 = e−1[i1

µ1e
−1

µ2
i2]. We are using µ, ν, . . . as world indices in

the four dimensional spacetime. The prefactor follows from the terms with 1
2 prefactors in

equations (4.5) and (4.6), which in turn were inherited from such terms in equations (3.21)

and (3.22). As we mentioned there, this precise prefactor arises from the fact that the l1 is

a representation of E11. We note that if one were to just consider it as a ten dimensional

representation of SL(5) then the factor would be −1
5 rather than 1

2 , as we found in section 2.

We will choose to construct the dynamics from the object defined in equation (3.50)

which for simplicity we now denote by M. Using equation (4.22) and M = EE#, where

here E# = ET ,

M = (det e)−1





gµν +
1
2CµijCν

ij − 1√
2
Cµ

ν1ν2

− 1√
2
Cν

µ1µ2 g−1[µ1|ν1|g−1µ2]ν2



 , (4.23)

– 27 –



J
H
E
P
0
2
(
2
0
1
2
)
1
0
8

where Cµij = eµ
kCkij .

The most general action which is quadratic in generalised spacetime derivatives and in-

variant under the transformations of the non-linear realisation was given in equation (3.53).

It involves five constraints and is unfamiliar in that it is defined over the extended space.

We now adopt the procedure explained at the end of section three. Dropping the depen-

dence of the fields on xij , we now evaluate the terms in the action of equation (3.53) to

find that

g−
1
2MMN (∂MMKL)(∂NMKL)

= 3gµν(∂µg
σ1σ2)(∂νgσ1σ2)−

11

2
gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2)

− gµνgσ1...σ3,τ1...τ3(∂µCσ1...σ3)(∂νCτ1...τ3), (4.24)

g−1/2MMN (∂NMKL)(∂LMMK)

= gµσ(∂µg
ντ )(∂νgστ )− (∂µg

µν)(gστ∂νgστ )−
1

4
gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2)

− 1

2
gµτ1gσ1σ2σ3,ντ2τ3(∂µCσ1...σ3)(∂νCτ1...τ3), (4.25)

g−1/2MRQ∂SM
SR∂PM

PQ (4.26)

= gστ (∂µg
µσ)(∂νg

ντ ) + (∂µg
µν)(gστ∂νgστ ) +

1

4
gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2)

+
1

2
gµσ1gντ1gσ2σ3,τ2τ3(∂µCσ1...σ3)(∂νCτ1...τ3), (4.27)

g−1/2MMN (MKL∂MMKL)(M
RS∂NMRS)

= 49gµν(gσ1σ2∂µgσ1σ2)(g
τ1τ2∂νgτ1τ2), (4.28)

and

g−1/2∂SM
STMPQ∂TM

PQ = −7(∂µg
µν)(gστ∂νgστ )−

7

2
gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2).

(4.29)

Carrying out a gauge transformation on the three form field we find the resulting action is

gauge invariant if

c1 =
1

12
, c2 = −1

2
, c3 = 0, c4 =

1

84
, c5 = 0.

Up to integration by parts, the action is equal to

∫

d4x
√
g

(

R− 1

48
F (4)2

)

, (4.30)

where R is the Ricci scalar of the metric g and F (4) is the field strength of C,F
(4)
ijkl =

4∂[iCjkl]. We note that it is diffeomorphism invariant as well as U(1) gauge invariant. After

integration by parts the neglected boundary piece may be combined with the Gibbons-

Hawking term to produce a boundary term for the generalised spacetime [65].
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Figure 5. The E11 Dynkin diagram appropriate to the SO(5,5) duality

5 Five dimensions: SO(5,5)

The non-linear realisation of the E11 ⋉ l1 algebra will now be used to find the generalised

metric and construct an SO(5,5) duality manifest dynamics, recovering the result of [37]

up to a conformal factor. The conformal factor in [37] was chosen to be a specific value.

However, in this section, we see that the conformal factor is determined by the non-linear

realisation of E11⋉ l1. The construction appropriate for the case of five dimensions is found

by deleting the sixth node of the E11 Dynkin diagram, figure 5, to find the subalgebra

GL(6) ⊗ SO(5,5). As such we decompose E11⋉ l1 into representation of GL(6) ⊗ SO(5,5).

Consider the lowest level generators of E11 given in equations (3.1) and (3.3). The

generators that remain when we truncate to five-dimensions are

Ki
j , R

ijk, Rijk and Ka
b,

where i, j, · · · = 1, . . . , 5 and a, b, · · · = 1, . . . , 6. These generators are all at zero level,

and the mixed index generators are all at higher levels as in the case of SL(5). The

algebra that these generators satisfy is given by the truncation of the E11 algebra, equa-

tions (3.2), (3.4), (3.5) and (3.12), to level zero

[Ki
j ,K

k
l] = δkjK

i
l − δilK

k
j ,

[Ki
j , R

k1k2k3 ] = 3δ
[k1
j R|i|k2k3],

[Ki
j , Rk1k2k3 ] = −3δi[k1R|j|k2k3],

[Ri1i2i3 , Rj1j2j3 ] = 18δ
[i1i2
[j1j2

K
i3]
j3]

− 2δi1i2i3j1j2j3

(

∑

j

Kj
j +

∑

a

Ka
a

)

;

[Ka
b,K

c
d] = δcbK

a
d − δadK

c
b.

The Ka
b clearly generate the GL(6) algebra, while K̃i

j , R
ijk, Rijk generate the SO(5,5)

algebra, where

K̃i
j = Ki

j −
1

4
δij
∑

a

Ka
a.
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We make the following identification

M IJ =



























1

3!
ǫIJklmRklm for I, J = 1, . . . , 5,

K̃I
J−5 −

1

3
δIJ−5

∑

k

K̃k
k for I = 1, . . . , 5 and J = 6, . . . , 10,

1

3!
ǫ(I−5)(J−5)klmRklm for I, J, · · · = 6, . . . , 10,

where k, l,m = 1, . . . , 5 in the above. Now, one can see that the generators M IJ satisfy

the SO(5,5) algebra

[M IJ ,MKL] = ηIKMJL − ηILMJK − ηJKM IL + ηJLM IK ,

where

η =

(

0 15
15 0

)

.

Similarly taking the l1 representation generators, given in equation (3.17), and restrict-

ing the indices to the case we are considering, at the lowest level we find the generators

Pi, Z
ij , Zi1...i5 and Pa,

where again i, j, · · · = 1, . . . , 5 and a, b, · · · = 1, . . . , 6. The first three generators generate

the 16 representation of the SO(5,5) group, which we will call φ16, while Pa generates

translations in the 6-dimensional spacetime. The truncation of the E11 ⋉ l1 algebra, equa-

tions (3.18)–(3.26), gives the commutation relations of these translation generators with

the E11 generators

[Ki
j , Pk] = −δikPj +

1

2
δijPk,

[Ki
j , Z

kl] = 2δ
[k
j Z |i|l] +

1

2
δijZ

kl,

[Ki
j , Z

k1...k5 ] = 5δ
[k1
j Z |i|k2...k5] +

1

2
δijZ

k1...k5

[Ri1i2i3 , Pj ] = 3δ
[i1
j Zi2i3],

[Ri1i2i3 , Zjl] = Zi1i2i3jl,

[Ri1i2i3 , Zj1...j5 ] = 0,

[Ka
b, Pi] =

1

2
δabPi,

[Ka
b, Z

ij ] =
1

2
δabZ

kl,

[Ka
b, Z

i1...i5 ] =
1

2
δabZ

i1...i5 ,

[Ki
j , Pa] =

1

2
δijPa.
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In what follows, we will use the Hodge dual of the Zi1...i5 generator

W =
1

5!
ǫi1...i5Z

i1...i5

for which the commutation relations can be easily found from the commutations rela-

tions above.

As in the previous section, we will construct the non-linear realisation using the SO(5,5)

group element

gE = eh
j
i Ki

je
1
3!
CijkR

ijk

,

which introduces the fields h j
i and Cijk. Furthermore, the non-linear realisation also re-

quires the group element

gl = ex
iPie

1√
2
xklZ

kl

ewW ,

which now has an extra generalised translation generator compared to the SL(5) case. This

introduces the coordinates

xi, xkl and w,

which form the 16 of SO(5,5). In the group elements gE and gl, we have, as before, left

out the generators Ka
b and Pa, respectively. As in the previous section this is a consistent

truncation of generators. Using the group elements gE and gl we construct the group

element of (3.30)

g = e
xiPi+

1√
2
xklZ

kl+wW
eh

j
i Ki

je
1
3!
CijkR

ijk

from which the SO(5,5)⋉φ16 non-linear realisation can be constructed.

The non-linear realisation is carried out in a similar manner to that outlined before,

and ultimately one finds

g−1
h g−1

l dglgh = det(eh)−1/2(eh) i
j dxj

(

Pi −
1

2
CiklZ

kl +
1

24
Cik1k2Ck3k4k5ǫ

k1...k5W

)

+
1√
2
det(eh)−1/2(e−h) k

i (e−h) l
j dxkl

(

Zij − 1

6
Ck1k2k3ǫ

ijk1k2k3W

)

+ det(eh)−3/2dwW. (5.1)

The generalised vielbein can be read off from this expression,

EΠ
A = (dete)−1/2









eµ
i − 1√

2
eµ

jCji1i2
1
4eµ

jXj

0 eµ1
[i1e

µ2
i2] − 1√

2
eµ1

j1e
µ2

j2V
j1j2

0 0 (dete)−1









, (5.2)

where

V ij =
1

3!
ǫijklmCklm and Xi = CijkV

jk.

The tangent space indices are written with Latin letters and Greek letters indicate space

indices. We have also abbreviated the space vielbein eh to e with the notation that eµ
i is

the vielbein and eµi is the inverse vielbein.
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Figure 6. The E11 Dynkin diagram appropriate to the E6 duality.

Hence the generalised metric, M, for the SO(5,5) duality group is

M = g−1/2











gµν +
1
2Cµ

ijCνij +
1
16XµXν

1√
2
Cµ

ν1ν2 + 1
4
√
2
XµV

ν1ν2 1
4g

−1/2Xµ

1√
2
Cµ1µ2

ν +
1

4
√
2
V µ1µ2Xν gµ1µ2,ν1ν2 + 1

2V
µ1µ2V ν1ν2 1√

2
g−1/2V µ1µ2

1
4g

−1/2Xν
1√
2
g−1/2V ν1ν2 g−1











(5.3)

where g = (dete)2 is the determinant of the metric gµν . This is the same generalised metric

as in [37] except for the factor of g. As we mentioned in section 2, and shown in appendix B,

multiplying a metric by an overall factor of g does not change the fact that the generalised

metric will describe the dynamical theory. However, the factor of g−1/2 in the generalised

metric, which one obtains by using the truncated E11 ⋉ l1 algebra, will naturally lead to

the incorporation of the measure in the dynamics.

The generalised metric can now be used to describe the dynamics. The following

expression

1

16
MMN (∂MMKL)(∂NMKL)−

1

2
MMN (∂NMKL)(∂LMMK)

+
11

1728
MMN (MKL∂MMKL)(M

RS∂NMRS),

up to integration by parts, leads to the gauge-invariant and diffeomorphism invariant

combination √
g(R− 1

48
F 2),

where R is the Ricci scalar of the metric g and F = dC is the field strength of the 3-form

potential C.

6 Six dimensions: E6

The non-linear realisation of E11 ⋉ l1 for the case of six dimensions to lowest level follows

in the same way as before. We begin by deleting the fifth node of E11 Dynkin diagram,

see figure 6, to find the subalgebra appropriate to six dimensions, GL(5) ⊗E6.

Truncating the E11 generators, equations (3.1) and (3.3), to the six dimensions at the

lowest level, we find the group generators

Ki
j , R

ijk, Rijk, R
i1...i6 , Ri1...i6 and Ka

b,

where Latin letters from the middle of the alphabet i, j, · · · = 1, . . . , 6, and the start of the

alphabet a, b, · · · = 1, . . . , 5. These generators are those at level zero as before. The algebra
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satisfied by these generators is found by truncating the E11 algebra, equations (3.2), (3.4)–

(3.7) and (3.10)–(3.14), appropriately, in which case we find the algebra

[Ki
j ,K

k
l] = δkjK

i
l − δilK

k
j ,

[Ki
j , R

k1k2k3 ] = 3δ
[k1
j R|i|k2k3],

[Ki
j , Rk1k2k3 ] = −3δi[k1R|j|k2k3],

[Ki
j , R

k1...k6 ] = 6δ
[k1
j R|i|k2...k6],

[Ki
j , Rk1...k6 ] = −6δi[k1R|j|k2...k6],

[Ri1i2i3 , Rj1j2j3 ] = 2Ri1i2i3j1j2j3 ,

[Ri1i2i3 , Rj1j2j3 ] = 2Ri1i2i3j1j2j3 ,

[Ri1i2i3 , Rj1j2j3 ] = 18δ
[i1i2
[j1j2

K
i3]
j3]

− 2δi1i2i3j1j2j3

(

∑

j

Kj
j +

∑

µ

Kµ
µ

)

,

[Ri1...i6 , Rj1...j6 ] = −5!.3.3 δ
[i1...i5
[j1...j5

K
i6]
j6]

+ 5!δi1...i6j1...j6

(

∑

j

Kj
j +

∑

a

Ka
a

)

,

[Ri1i2i3 , Rj1...j6 ] =
5!

2
δ
[j1j2j3
i1i2i3

Rj4j5j6];

[Ka
b,K

c
d] = δcbK

a
d − δadK

c
b.

The Ka
b generate the GL(5) algebra, while the generators

K̃i
j = Ki

j −
1

3
δij
∑

a

Ka
a,

Rijk, Rijk, R
i1...i6 and Ri1...i6 generate the E6 algebra.

The generalised translation generators can be found by considering the generators of

the l1 representation of E11, equation (3.17), at lowest level truncated to six dimensions.

The generators that we find in this case are

Pi, Z
ij , Zijklm and Pa.

The generators with indices labelled by Latin letters from the middle of the alphabet gener-

ate the 27 representation of E6, which we denote φ27, while Pa generates translations along

the extra 5 directions. From equations (3.18)–(3.29), we can write down the commutation

relations for the translation generators, which are

[Ki
j , Pk] = −δikPj +

1

2
δijPk, (6.1)

[Ki
j , Z

kl] = 2δ
[k
j Z |i|l] +

1

2
δijZ

kl, (6.2)

[Ki
j , Z

k1...k5 ] = 5δ
[k1
j Z |i|k2...k5] +

1

2
δijZ

k1...k5 , (6.3)
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[Ri1i2i3 , Pj ] = 3δ
[i1
j Zi2i3], (6.4)

[Ri1i2i3 , Zjl] = Zi1i2i3jl, (6.5)

[Ri1i2i3 , Zj1...j5 ] = 0, (6.6)

[Ri1...i6 , Pj ] = −3δ
[i1
j Zi2...i6], (6.7)

[Ri1...i6 , Zjl] = 0, (6.8)

[Ri1...i6 , Zj1...j5 ] = 0, (6.9)

[Ka
b, Pi] =

1

2
δabPi, (6.10)

[Ka
b, Z

ij ] =
1

2
δabZ

kl, (6.11)

[Ka
b, Z

i1...i5 ] =
1

2
δabZ

i1...i5 , (6.12)

[Ki
j , Pa] =

1

2
δijPa. (6.13)

For convenience, we will again use the Hodge dual of the Zijklm generator

Wp =
1

5!
ǫpijklmZijklm.

Now, we are ready to construct the non-linear realisation of E6 ⋉ φ27. The group

element of (3.36) is

gE = eh
j
i Ki

je
1
3!
CijkR

ijk

e
1
6!
Ci1...i6

Ri1...i6
,

which introduces the fields

h j
i , Cijk and Ci1...i6 .

Note that in six dimensions a new field Ci1...i6 , which is a 6-form potential, is introduced.

This was not present in previous examples because in those cases the dimensions we were

considering were less than six. Further to the group element, gE , there is the group element

gl = ex
iPie

1√
2
xklZ

kl

ew
iWi ,

which introduces the coordinates

xi, xkl and wi.

These form the 27 of E6. It is again consistent to leave out the generators Ka
b and Pa from

the non-linear realisation.

We now calculate the Maurer-Cartan form for the non-linear realisation and hence the

generalised vielbein, equation (3.43). By Hodge dualising equation (6.3), we can find that

[Ki
j ,Wk] = −δikWj +

3

2
δijWk.
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Now, using the above commutation relation and equations (6.1) and (6.2), we conjugate

the Maurer-Cartan form of gl by eh
j
i Ki

j to obtain

e−h j
i Ki

jg−1
l dgle

h l
k
Kk

l = det(eh)−
1
2

(

(eh)µ
i dxµPi +

1√
2
(e−h)i

µ(e−h)j
ν dxµνZ

ij (6.14)

+ det(eh)−1(eh)µ
idwµWi

)

,

where Greek and Latin letters denote spacetime and tangent space indices, respectively.

This gives the dependence of the generalised vielbein on the spacetime metric, and conju-

gating the above expression by e
1
3!
CijkR

ijk

we obtain the dependence on the 3-form potential:

e−
1
3!
CijkR

ijk

e−h j
i Ki

jg−1
l dgle

h l
k
Kk

le
1
3!
CijkR

ijk

= det(eh)−1/2(eh)µ
i dxµPi

+
1√
2
det(eh)−1/2(e−h)i

µ(e−h)j
ν

(

dxµν −
1√
2
Cµνρdx

ρ

)

Zij

+ det(eh)−3/2(eh)µ
i

(

dwµ − 1√
2
V µνρdxνρ +

1

4
CνklV

µkldxν
)

Wi, (6.15)

where we have defined V ijk = 1
3!ǫ

ijklmnClmn. In the deriving the above expression we have

made use of equation (6.4) and a rewriting of equation (6.5),

[Rijk, Zmn] = ǫpijkmnWp.

Note that in the truncation to six-dimensions the commutator of Rijk with Zi1...i5 is zero

because Zi1...l7,a vanishes.

Finally, we conjugate by the group element given by exponentiation of the Ri1...i6 gen-

erator. Note that the only non-vanishing commutation relation of Ri1...i6 with a generalised

translation generator is the commutation relation with Pj , equation (6.7), or equivalently

[Ri1...i6 , Pd] = 3 δ
[i1
d ǫi1...i6]pWp.

This gives us the dependence of the generalised vielbein on the 6-form potential. All in all,

we obtain

g−1
E g−1

l dglgE = det(eh)−1/2(eh)µ
i dxµPi

+
1√
2
det(eh)−1/2(e−h)i

µ(e−h)j
ν

(

dxµν −
1√
2
Cµνρdx

ρ

)

Zij

+ det(eh)−3/2(eh)µ
i

(

dwµ − 1√
2
det(eh)V µνρdxνρ (6.16)

+
1

4
det(eh)CklνV

µkldxν +
1

2
det(eh)Udxµ

)

Wi,

where U is the Hodge dual of the 6-form potential,

U =
1

6!
ǫi1...i6Ci1...i6 .
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Now, we can read off the generalised vielbein from equation (6.16). Using the same

notation as before for the ordinary space vielbein, the generalised vielbein is

EΠ
A = (dete)−1/2









eµ
i − 1√

2
eµ

jCji1i2
1
2eµ

i3U + 1
4eν

i3CµjkV
νjk

0 eµ1
[i1e

µ2
i2] − 1√

2
eµ1

j1e
µ2

j2V
j1j2i3

0 0 (dete)−1ei3µ3









. (6.17)

This generalised vielbein is very similar to the generalised vielbein in the case of the SO(5,5)

duality group. In fact the metric and 3-form potential dependence of the two generalised

vielbein are identical, except for the obvious difference that third generalised coordinate

direction in this case has an index but this is only because we are using the Hodge dual

of Zi1...i5 . The dependence of the generalised vielbein on the 3-form potential only changes

when there is a new generalised coordinate direction in which case higher order terms in

the 3-form potential enter the generalised vielbein. In contrast, though, the generalised

vielbein for the E6 duality group gives the dependence of the generalised vielbein on the

6-form potential.

The generalised metric corresponding to the generalised vielbein, expression (6.17),

is constructed using equation (3.50). The dynamics can then be written in terms of this

generalised metric. The combination

1

24
MMN (∂MMKL)(∂NMKL)−

1

2
MMN (∂NMKL)(∂LMMK)

+
19

9720
MMN (MKL∂MMKL)(M

RS∂NMRS), (6.18)

again, up to integration by parts, reproduces

√
g

(

R− 1

48
F (4)2

)

when derivatives with respect to the extra generalised coordinates are taken to vanish.

The 6-form potential is not dynamical in 6-dimensions as its gauge-invariant field

strength vanishes. When one evaluates the expression in (6.18) one discovers that C(6)

cancels completely, verifying that the 6-form potential does not contribute to the action.

7 Seven dimensions: E7

In this section, we apply the non-linear realisation of E11 ⋉ l1 to seven dimensions. This is

found by deleting the fourth node of the E11 Dynkin diagram, see figure 7, in which case

we find the subalgebra GL(4)⊗E7.

The E11 algebra of generators, equations (3.1) and (3.3), at level zero with respect to

the deletion of node four are

Ki
j , R

ijk, Rijk, R
i1...i6 , Ri1...i6 and Ka

b,
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Figure 7. The E11 Dynkin diagram appropriate to the E7 duality

where the indices labelled i, j, . . . run from 1 to 7, while those labelled by a, b, . . . run from

1 to 4. The commutation relations between these generators can be read off from the E11

algebra, equations (3.2), (3.4)–(3.7) and (3.10)–(3.14),

[Ki
j ,K

k
l] = δkjK

i
l − δilK

k
j ,

[Ki
j , R

k1k2k3 ] = 3δ
[k1
j R|i|k2k3],

[Ki
j , Rk1k2k3 ] = −3δi[k1R|j|k2k3],

[Ki
j , R

k1...k6 ] = 6δ
[k1
j R|i|k2...k6],

[Ki
j , Rk1...k6 ] = −6δi[k1R|j|k2...k6],

[Ri1i2i3 , Rj1j2j3 ] = 2Ri1i2i3j1j2j3 ,

[Ri1i2i3 , Rj1j2j3 ] = 2Ri1i2i3j1j2j3 ,

[Ri1i2i3 , Rj1j2j3 ] = 18δ
[i1i2
[j1j2

Ki3]
j3] − 2δi1i2i3j1j2j3

(

∑

j

Kj
j +

∑

a

Ka
a

)

,

[Ri1...i6 , Rj1...j6 ] = −5!.3.3 δ
[i1...i5
[j1...j5

Ki6]
j6] + 5!δi1...i6j1...j6

(

∑

j

Kj
j +

∑

a

Ka
a

)

;

[Ri1i2i3 , R
j1...j6 ] =

5!

2
δ
[j1j2j3
i1i2i3

Rj4j5j6],

[Ka
b,K

c
d] = δcbK

a
d − δadK

c
b.

The E7 algebra derived from Cartan’s 56-dimensional representation of E7 [66–68], see

appendix C, can be recovered from these relations by shifting the GL(7) generator, Ki
j ,

by the trace of the GL(4) generators Ka
b

K̃i
j = Ki

j −
1

2
δij
∑

a

Ka
a.

The list of l1 generators, equation (3.17), can similarly be truncated to seven dimen-

sions where we find the generators

Pi, Z
ij , Zi1...i5 , Zi1...i7,j and Pa.

The first four generate the 56 representation of E7, denoted φ56, and Pa generate transla-

tions along the four extra directions. The E11 ⋉ l1 algebra, equations (3.18)–(3.29) gives
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the commutation relations of the generalised translation generators with the GL(4)⊗E7

generators. For convenience, we will use the generators

Wij =
1

5!
ǫijk1...k5Z

k1...k5 , W i =
1

7!
ǫj1...j7Z

j1...j7,i, (7.1)

and write the commutation relations in terms of these generators.

[Ki
j , Pk] = −δikPj +

1

2
δijPk, [Ki

j , Z
kl] = 2 δ

[k
j Z |i|l] +

1

2
δijZ

kl,

[Ki
j ,Wkl] = −2 δi[kW|j|l] +

3

2
δijWkl, [Ki

j ,W
k] = δkjW

i +
3

2
δijW

k,

[Rijk, Pl] = 0, [Rijk, Z
mn] = 3! δmn

[ij Pk],

[Rijk,Wmn] =
1

2
ǫijkmnpqZ

pq, [Rijk,W
l] =

1

560
δl[iWjk],

[Rijk, Pl] = 3 δ
[i
l Z

jk], [Rijk, Zmn] =
1

2
ǫijkmnpqWpq,

[Rijk,Wmn] = 2 δ[ijmnW
k], [Rijk,W l] = 0,

[Ri1...i6 , Pj ] = 0, [Ri1...i6 , Z
kl] = 0,

[Ri1...i6 ,Wkl] = −3ǫkl[i1...i5Pi6], [Ri1...i6 , Z
j ] = −3

2
ǫki1...i6Z

kj ,

[Ri1...i6 , Pj ] =
1

2
ǫi1...i6kWjk, [Ri1...i6 , Zkl] =

1

3
ǫi1...i6[kW l],

[Ri1...i6 ,Wkl] = 0, [Ri1...i6 ,W j ] = 0,

[Ka
b, Pi] =

1

2
δabPi, [Ka

b, Z
ij ] =

1

2
δabZ

kl,

[Ka
b,Wij ] =

1

2
δabWij , [Ka

b,W
i] =

1

2
δabW

i

[Ki
j , Pa] =

1

2
δijPa.

In appendix C, we show that the generators

K̃i
j , R

ijk, Rijk, R
i1...i6 , Ri1...i6 and Pi, Z

ij , Zi1...i5 , Zi1...i7,j

do indeed generate the E7 ⋉ φ56 algebra.

We can now construct the non-linear realisation, equation (3.30), for E7⋉φ56 and find

the generalised metric. The objects from which the non-linear realisation is constructed

are the group element, equation (3.31),

gE = eh
j
i Ki

je
1
3!
CijkR

ijk

e
1
6!
Ci1...i6

Ri1...i6
,

which introduces the fields

h j
i , Cijk and Ci1...i6 ,

and the group element, equation (3.32),

gl = ex
iPie

1√
2
xijZ

ij

e
1√
2
wijWije

1
3
wiW

i

,
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which introduces the generalised coordinates

xi, xkl, w
kl and wi.

The generalised coordinates are in the 56 of E7.

Now, the generalised vielbein is constructed from

g−1
E g−1

l dglgE .

Similar calculation to the calculations in the previous sections show that the generalised
vielbein, EΠ

A, is

e−
1

2











eµ
i − 1

√

2
eµ

jCji1i2
1
√

2
eµ

[i3U i4]+ 1
4
√

2
eµ

jXj;
i3i4 1

2eµ
jCji5kU

k − 1
24eµ

jXj;
klCkli5

0 eµ1

[i1e
µ2

i2] − 1
√

2
eµ1

j1e
µ2

j2V
j1j2i3i4 1

√

2
eµ1

[je
µ2

i5]U
j+ 1

4
√

2
eµ1

j1e
µ2

j2Xi5;
j1j2

0 0 e−1eµ3

[i3eµ4

i4] − 1
√

2
eµ3

j1eµ4

j2Cj1j2i5

0 0 0 e−1eµ5
i5











,

(7.2)

where e is the determinant of the vielbein e and

gµν = eiµe
j
νηij ;

V i1...i4 , U i are Hodge duals of the 3-form and 6-form potentials, respectively,

V i1...i4 =
1

3!
ǫi1...i4j1...j3Cj1...j3 , U i =

1

6!
ǫij1...j6Cj1...j6 ;

and

Xi;
jk = CilmV jklm.

The indices labelled by Greek indices in the expression for the generalised vielbein are

tangent space indices and Latin letters label space indices.

We can find that when we restrict the fields to only depend on ordinary space coordi-

nates then

g−1/2MMN (∂MMKL)(∂NMKL)

= 12gµν(∂µg
στ )(∂νgστ )− 62gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2)

− 4gµνgσ1...σ3,τ1...τ3(∂µCσ1...σ3)(∂νCτ1...τ3)

− 1

5!
gµνgσ1...σ6,τ1...τ6(∂µCσ1...σ6 − 20C[σ1...σ3|∂µC|σ4...σ6])

× (∂νCτ1...τ6 − 20C[τ1...τ3|∂νC|τ4...τ6]), (7.3)

g−1/2MMN (∂NMKL)(∂LMMK)

= gµσ(∂µg
ντ )(∂νgστ )− (∂µg

µν)(gστ∂νgστ )

− 1

4
gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2)

− 1

2
gµτ1gσ1σ2σ3,ντ2τ3(∂µCσ1...σ3)(∂νCτ1...τ3)

− 1

4(5!)
gµτ1gσ1...σ6,νσ2...σ6(∂µCσ1...σ6 − 20C[σ1...σ3|∂µC|σ4...σ6])

× (∂νCτ1...τ6 − 20C[τ1...τ3|∂νC|τ4...τ6]), (7.4)
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g−1/2MMN (MKL∂MMKL)(M
RS∂NMRS)

= 562gµν(gσ1σ2∂µgσ1σ2)(g
τ1τ2∂νgτ1τ2). (7.5)

In the above calculations we made use of the following identities

Cνσ1σ2∂µV
σ1σ2τ1τ2 = V σ1σ2τ1τ2∂µCνσ1σ2 +

2

3
δ[τ1ν V τ2]σ1...σ3∂µCσ1...σ3

− 1

2
Xν;

τ1τ2gσ1σ2∂µgσ1σ2 ,

Cσµ1µ2V
σν1...ν3 =

3

2
δ
[ν1
[µ1

Xµ2];
ν2ν3]

which can be proved by Hodge dualising C and V and then contracting the epsilon tensors.

It is also useful to note that

Cν1...ν3V
µν1...ν3 =

1

3!
ǫµν1...ν3σ1...σ3Cν1...ν3Cσ1...σ3

vanishes because the epsilon tensor makes exchanging the set of indices ν1 . . . ν3 and σ1 . . . σ3
an antisymmetric operation.

Now, in equations (7.3)–(7.5), comparing the terms that lead to the Ricci scalar,

which is

R =
1

4
gµν(∂µg

στ )(∂νgστ )−
1

2
gµσ(∂µg

ντ )(∂νgστ )

+
1

2
(∂µg

µν)(gστ∂νgστ ) +
1

4
gµν(gσ1σ2∂µgσ1σ2)(g

τ1τ2∂νgτ1τ2) (7.6)

up to terms that are total derivatives, we conclude that the combination

1

48
MMN (∂MMKL)(∂NMKL)−

1

2
MMN (∂NMKL)(∂LMMK)

+
17

37632
MMN (MKL∂MMKL)(M

RS∂NMRS) (7.7)

leads to the Ricci scalar. In fact, when the fields are allowed to only depend on ordinary

space directions, this reduces, up to integration by parts, to

√
g

(

R− 1

48
F (4)2 − 1

8!
F (7)2

)

,

where
√
g is the measure, F (4) is the field strength of the 3-form potential,

F (4)
µ1...µ4

= 4∂[µ1
Cµ2...µ4],

and F (7) is the field strength of 6-form potential,

F (7)
µ1...µ7

= 7∂[µ1
Cµ2...µ7] + 140C[µ1...µ3

∂µ4Cµ5...µ7].

In the full theory in eleven dimensions one knows that the four and seven form field

strengths are dual. However, here we are considering the theory in seven dimensions,

so we cannot find an eleven-dimensional duality relation. The duality relation between
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these fields should be recovered if one carries out the non-linear realisation of E11 ⋉ l1 in

eleven dimensions. If one included all the components of h,C(3), C(6) rather than just those

where one has E7 indices, then one expects to be able to reproduce the duality relation

between F (4) and F (7). Indeed, E11 ⋉ l1 contains all the fields required to have equations

of motion that are only first order in spacetime derivatives.

The generalised vielbein, expression (7.2), is the same as that found in [38], up to fac-

tors of det e. In [38], the dynamics is constructed in a different way and the other GL(4)

directions are needed in order to construct the action. However, here we formulate the dy-

namics using the generalised metric and find that imposing gauge invariance automatically

results in the action that is invariant under diffeomorphisms, and vice-versa.
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A Normalisation of generators

In this appendix, we will derive an invariant scalar product which has implicitly been used

to construct the actions given in this paper. Acting with the Cartan involution Ic on the

first fundamental representation l1 we can define a new representation Ic(l1) by

Ic(Pa) = −P̄ a, Ic(Z
ab) = −Z̄ab, Ic(Z

a1...a5) = −Z̄a1...a5 , . . . (A.1)

where P̄ a, Z̄ab, Z̄a1...a5 , . . . are elements of the representation Ic(l1).

The Cartan involution Ic takes negative root generators to positive root generators up

to a sign in such a way as to preserve the algebra. A more fundamental definition can be

found in [1], for example. The action of Ic on some of the E11 generators is given by

Ic(K
a
b) = −Kb

a, Ic(R
a1a2a3) = −Ra1a2a3 , Ic(R

a1...a6) = Ra1...a6 . (A.2)

The Cartan involution interchanges upper and lower indices, and possibly involves a change

of sign. Consistency of the commutation rules under Ic determines uniquely the sign.

Given equations (A.1) and (A.2) we can derive the commutation relations between E11

and those of the Ic(l1) representation. For example, acting with the Cartan involution on

the commutator [Ra1a2a3 , Pb] = 3δ
[a1
b Za2a3] we find that

[Ra1a2a3 , P̄
b] = −3δb[a1Z̄a2a3]. (A.3)
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Using equations (3.19), (3.21), (3.24) and (3.25), we find using similar arguments that

[Ra1a2a3 , Z̄b1b2 ] = −Z̄a1a2a3b1b2

[Ka
b, P̄

c] = δcbP̄
a − 1

2
δbaP̄

c,

[Ra1a2a3 , P̄ b] = 0,

[Ra1a2a3 , Z̄b1b2 ] = −6δ
[a1a2
b1b2

P̄ a3].

Given any element A of the l1 representation and any element B of the Ic(l1) we can

form an invariant scalar product denoted (A,B); the invariance means that

([X,A], B̄) = −(A, [X, B̄]), X ∈ E11, A ∈ l1, B̄ ∈ l̄1. (A.4)

Taking X = Ra1a2a3 , A = Pa and B = Z̄b1b2 we find using equation (A.4) and equa-

tion (A.3) that

2δ
[a1a2
b1b2

(Pc, P̄
a3]) = δ[a1c (Za1a2], Z̄b1b2). (A.5)

In fact, choosing our normalisation and using invariance under SL(11) we must set

(Pc, P̄
a) = δac , (A.6)

hence (Za1a2 , Z̄b1b2) = 2δa1a2b1b2
. Using similar arguments, and repeating the above result, we

find that

(Pb, P̄
a) = δab , (Za1a2 , Z̄b1b2) = 2δa1a2b1b2

, (Za1...a5 , Z̄b1...b5) = 5!δa1...a5b1...b5
,

(Za1...a7,c, Z̄b1...b7,d) = 9(7!)δa1...a7b1...b7
δcd. (A.7)

Let us write the scalar product for all generators in the form

(L, L̄) = N, L ∈ l1, L̄ ∈ Ic(l1) (A.8)

where N is a diagonal matrix.

We will now derive an equation for the object M , that we have used to construct

the Lagrangians, in terms of the generalised vielbein E. This will involve the matrix N

just introduced. Let us first recall the technical steps given in section 3 leading to the

appearance of the generalised vielbein in the non-linear realisation. We can write the

group element gl in the form gl = ez
T ·L′

where L′ = CL and C is a diagonal matrix which

takes account of the possible normalisation factors. The Cartan form contains the terms

g−1
l dgl = dzT · L′. Acting with the Cartan involution we find that Ic(gl) = eL̄

′·z̄T and so

Ic(g
−1
l dgl) = L̄′ · dz̄T . It is easy to see that

(g−1
l dgl, Ic(g

−1
l dgl)) = dzT · CNC · dz̄. (A.9)

We take group element k ∈ E11 to act on the generators of the l1 representation as

k−1L′k = D(k)L′ and as a result the part of the Cartan form that contains the generalised

vielbein E is given by

g−1
E (g−1

l dgl)gE = dzT ·D(gE) · L′ ≡ dzT · E · L′. (A.10)
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Using equation (A.10) and (3.50) we find that

(Ic(g
−1
E ))−1g−1

E (g−1
l dgl)gEIc(g

−1
E ) = dzT ·D(gE)D(Ic(g

−1
E )) · L′ ≡ dzT ·M · L′. (A.11)

Let us now consider the object

((Ic(g
−1
E ))−1g−1

E (g−1
l dgl)gEIc(g

−1
E ), Ic(g

−1
l dgl)) = dzT ·M · CNC · dz̄. (A.12)

Using the invariance of the scalar product (A.4), which is equivalent to

(g0Ag
−1
0 , B̄) = (A, g−1

0 B̄g0), A ∈ l1, B̄ ∈ l̄1,

where g0 is an E11 group element, we find that the object on the left-hand side of equa-

tion (A.12) is invariant under both the rigid and local transformations given in equa-

tion (3.37) and (3.38). Using again the invariance of the scalar product and equation (A.8)

we can evaluate this object to find that

dzT ·M · CNC · dz̄ = (g−1
E (g−1

l dgl)gE , Ic(g
−1
E )Ic(g

−1
l dgl)(Ic(g

−1
E ))−1)

= (g−1
E (g−1

l dgl)gE , Ic(g
−1
E g−1

l dglgE))

= (dzT · E · L′, (L̄′)T · ET · dz̄)
= dzT · ECNC · ET · dz̄. (A.13)

Hence we find that MCNC = ECNCET . We will choose C so that CNC = I and then

M = EET (A.14)

This choice also implies that

(L′, L̄′) = I (A.15)

and equation (A.9) becomes

(g−1
l dgl, Ic(g

−1
l dgl)) = dxadx̄a + dxabdx̄ab = . . . . (A.16)

In the case of the SL(5) duality group found in dimension 4, C is the diagonal matrix

with diagonal entries
(

1,
1√
2

)

,

so the group element gl takes the form

e
xiPi+

1√
2
xijZ

ij

in equation (4.17). In dimension 5, the dual of the generator Za1...a5 has been used. The

normalisation of W = 1
5!ǫa1...a5Z

a1...a5 can easily be found from equation (A.7),

(W, W̄ ) = 1,

so in this case C has diagonal entries
(

1,
1√
2
, 1

)

.
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Similarly, in dimension 6, the dual of the Za1...a5 is Wa = 1
5!ǫab1...b5Z

b1...b5 , which from

equation (A.7) has the normalisation

(Wa, W̄
b) = δba,

so in six dimensions C also has diagonal entries
(

1,
1√
2
, 1

)

.

In seven dimensions, we have used the Hodge dual of two of the translation generators,

Wab =
1

5!
ǫabc1...c5Z

c1...c5 , W a =
1

7!
ǫb1...b7Z

b1...b7,a.

The normalisation of these generators is found to be

(Wab, W̄
cd) = 2δcdab, (W

a, W̄b) = 9δab .

Therefore, in the case of seven dimensions C has diagonal entries
(

1,
1√
2
,
1√
2
,
1

3

)

.

B Rescaling of the generalised metric

In this appendix, we show that rescaling a generalised metric by its determinant gives a

generalised metric that also reproduces the dynamical theory. There are some important

caveats that will be explained. Assume that a generalised metric, M, reproduces the

dynamics, when the fields only depend on the ordinary space coordinates and not on the

extra generalised coordinates,

L = c1M
MN (∂MMKL)(∂NMKL) + c2M

MN (∂NMKL)(∂LMMK)

+ c3M
MNMPQ(MRS∂PMRS)(∂MMNQ)

+ c4M
MN (MKL∂MMKL)(M

RS∂NMRS), (B.1)

where c1, . . . , c4 are known real numbers. We also require that the determinant of M is

related to the determinant of the space metric g,

detM = ga, (B.2)

for some real constant a. This is required by gauge-invariance of the theory under gauge

transformations of the potential 3-form and 6-form.

Consider rescaling of the generalised metric M by its determinant, or equivalently g,

M̃ = gαM, (B.3)

where α is a real number. Therefore, M̃−1 = g−αM−1 and so

M̃MN (∂MM̃KL)(∂NM̃KL) = g−αMMN (∂MMKL)(∂NMKL)

− α

a

(

2 +
α

a
D
)

g−αMMN (MKL∂MMKL)(M
RS∂NMRS),
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where D is the dimension of generalised space, and we have used

MKL∂MMKL =
∂M (detM)

detM
= a

∂Mg

g
. (B.4)

Similarly,

M̃MN (∂NM̃KL)(∂LM̃MK)

= g−αMMN (∂NMKL)(∂LMMK)

− 2α

a
g−αMMNMPQ(MRS∂PMRS)(∂MMNQ)

− α2

a2
g−αMMN (MKL∂MMKL)(M

RS∂NMRS),

M̃MN (M̃KL∂MM̃KL)(M̃
RS∂NM̃RS)

=

(

α

a
D + 1

)2

g−αMMN (MKL∂MMKL)(M
RS∂NMRS),

M̃MNM̃PQ(M̃RS∂P M̃RS)(∂MM̃NQ)

=

(

α

a
D + 1

)

g−αMMNMPQ(MRS∂PMRS)(∂MMNQ)

+
α

a

(

α

a
D + 1

)

g−αMMN (MKL∂MMKL)(M
RS∂NMRS).

Hence, as long as
(

α

a
D + 1

)

6= 0,

the rescaled generalised metric also reproduces the action, but with different coefficients

for last two terms, i.e. c1 and c2 will have the same value, but the value of the constants

c3 and c4 will change.

The case where
(

α

a
D + 1

)

vanishes actually corresponds to the case where the generalised metric is derived from

the duality group algebra. For example for the SL(5) duality group, let M denote the

generalised metric

MKL =





gµν +
1
2Cµ

ijCνij − 1√
2
Cµ

ν1ν2

− 1√
2
Cµ1µ2

ν gµ1µ2,ν1ν2



 , (B.5)

then the generalised metric derived from the SL(5) motion group is M̃ = g1/5M, equa-

tion (2.22) in section 2.5 From equation (B.3), α = 1/5, and from equation (B.2), or (B.4),

a = −2. The dimension of the generalised space, D, is 10. Hence

(

α

a
D + 1

)

= 0.

5The M in section 2 is M̃ here.
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SL(5) SO(5,5) E6 E7

α 1/5 1/4 1/3 1/2

a -2 -4 -9 -28

D 10 16 27 56

Table 3. The values of α, a and D for the duality groups considered in this paper.

In contrast, for the generalised metric from the non-linear realisation of E11 ⋉ l1, equa-

tion (4.23), the corresponding values of α, a and D are −1/2,−2 and 10, so

(

α

a
D + 1

)

6= 0.

It can easily be checked that the above statement is also true for the SO(5,5), E6 and

E7 duality groups. In all these cases, let M denote the generalised metric with no factor

of det g in its top-left entry, and M̃ be the generalised metric from the non-realisation of

the duality motion group. Then as can be seen from table 3,

(

α

a
D + 1

)

= 0

in all these cases. Therefore, the generalised metric constructed from the duality group

cannot be used to reproduce the dynamics. However, if the generalised metrics come from

the non-linear realisation of larger groups such as E9, E10 or E11, then the value of α is

different and the generalised metric can be used to construct the dynamics. The particular

advantage of E11 is that it not only solves the above problem, but that it also results in

the correct overall measure.

C E7 motion group from Cartan’s representation

Here, we will briefly review Cartan’s 56-dimensional representation of E7 [66–68] and use

it to find the algebra of the E7 motion group.6 We show that the truncation of the E11⋉ l1
at lowest level to seven dimensions gives the algebra of the E7 motion group.

We will consider the representation of the exceptional Lie group E7 on a 56-dimensional

space parametrised by bivectors, xIJ , and 2-form yIJ , where I, J run from 1 to 8. The

infinitesimal transformations of these under E7 are

xIJ → xIJ + ΛI
KxKJ + ΛJ

KxIK +ΣIJKLyKL (C.1)

yIJ → yIJ − ΛK
IyKJ − ΛK

JyIK +ΣIJKLx
KL, (C.2)

where ΛI
I = 0, and

ΣIJKL =
1

4!
ǫIJKLMNPQΣMNPQ.

The Λ and Σ parametrise the infinitesimal E7 transformations.

6See also appendix B of [27] for a complementary account of E7
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To find the commutation relations of the motion group, we denote an E7 motion group

transformation by

U(Λ,Σ; a, b) = eΛ
J
I
MI

J
+ΣIJKLVIJKL+aIJXIJ+bIJY

IJ

, (C.3)

where XIJyKL = 0, and YIJx
KL = 0. The generators M I

J and VIJKL generate E7 trans-

formations parametrised by ΛI
J and ΣIJKL, respectively, and XIJ generates translations

in the xIJ directions, while YIJ generates translations in the yIJ directions. The transfor-

mation of xIJ and yIJ under the E7 part of U is given, to first order, in equations (C.1)

and (C.2), respectively.

The commutator of two transformations can be used to calculate the commutation re-

lations of the generators. To this end, we calculate the commutator of two transformations

on xIJ and yIJ to second order in the infinitesimal parameters

[Ũ(Λ̃, Σ̃; ã, b̃), U(Λ,Σ; a, b)]xIJ

=

(

[Λ̃,Λ]IK − 1

3
ΘI

K

)

xKJ +

(

[Λ̃,Λ]JK − 1

3
ΘJ

K

)

xIK

− 4
(

Λ̃[I
KΣJMN ]K − Λ[I

KΣ̃JMN ]K
)

yMN + Λ̃I
KaKJ − ΛI

K ãKJ

+ Λ̃J
KaIK − ΛJ

K ãIK + Σ̃IJKLbKL − ΣIJKLb̃KL, (C.4)

where

ΘI
J = Σ̃IKLMΣKLMJ − ΣIKLM Σ̃KLMJ .

There is a similar expression for the commutator of two transformations acting on yIJ

[Ũ(Λ̃, Σ̃; ã, b̃), U(Λ,Σ; a, b)]yIJ

=−
(

[Λ̃,Λ]KI −
1

3
ΘK

I

)

yKJ −
(

[Λ̃,Λ]KJ − 1

3
ΘK

J

)

yIK

+ 4
(

Λ̃K
[IΣJMN ]K − ΛK

[IΣ̃JMN ]K

)

xMN + ΛK
I b̃KJ − Λ̃K

IbKJ

+ ΛK
J b̃IK − Λ̃K

JbIK + Σ̃IJKLa
KL − ΣIJKLã

KL. (C.5)

In the above equations we have used the identity

Σ̃IJKLΣKLMN − ΣIJKLΣ̃KLMN = −2

3
δ
[I
[MΘ

J ]
N ],

which can be proved by Hodge dualising Σ̃ and Σ and then contracting the epsilon tensors,

and expanding out the antisymmetrisations in the resulting Kronecker delta symbols.

Hence, from the above equations, (C.4) and (C.5), we deduce that the commutator of

two transformations Ũ and U is an infinitesimal transformation, as it must be from Lie

theory, and the transformation can be written

[Ũ , U ] =

(

[Λ̃,Λ]− 1

3
Θ

)J

IM
I
J + 4

(

Λ̃I
MΣMJKL − ΛI

M Σ̃MJKL
)

VIJKL

+
(

2Λ̃I
KaKJ − 2ΛI

K ãKJ + Σ̃IJKLbKL − ΣIJKLb̃KL

)

XIJ

+
(

2ΛK
I b̃KJ − 2Λ̃K

IbKJ + Σ̃IJKLa
KL − ΣIJKLã

KL
)

Y IJ . (C.6)

– 47 –



J
H
E
P
0
2
(
2
0
1
2
)
1
0
8

Now using the above equation we can find the commutation relations. For example,

from the above equation

[Ũ(Λ̃, 0; 0, 0), U(Λ, 0; 0, 0)] = e[Λ̃,Λ]
J
I
MI

J . (C.7)

But the Ũ and U can also be written using exponentials, equation (C.3), so the commutator

of the two transformations can also be written as

[Ũ(Λ̃, 0; 0, 0), U(Λ, 0; 0, 0)] = eΛ̃
J
I
MI

J eΛ
L
K
MK

L − eΛ
L
K
MK

LeΛ̃
J
I
MI

J ,

= Λ̃J
IΛ

L
K [M I

J ,M
K
L], (C.8)

using the Baker-Campbell-Hausdorff formula

eXeY = eX+Y+ 1
2
[X,Y ]....

Comparing equations (C.7)and (C.8), we deduce that

[M I
J ,M

K
L] = δILM

K
J − δKJ M I

L. (C.9)

The other commutation relations can be found using the same method and are listed

below:

[M I
J , VABCD] = 4 δI[AV|J |BCD] −

1

2
δIJVABCD, (C.10)

[VABCD, VEFGH ] = − 1

72

(

δJ[AǫBCD]EFGHI − δJ[EǫFGH]ABCDI

)

M I
J , (C.11)

[M I
J , XKL] = 2 δI[KX|J |L] −

1

4
δIJXKL, (C.12)

[M I
J , Y

KL] = −2 δ
[K
J Y |I|L] +

1

4
δIJY

KL, (C.13)

[VABCD, XIJ ] =
1

4!
ǫABCDIJKLY

KL, [VABCD, Y
IJ ] = δKL

[ABXCD]. (C.14)

These are the commutation relations of SL(8) decomposition of the algebra of the E7

motion group. The uppercase Latin indices are in fact SL(8) indices, which is why they

run from 1 to 8. We are, however, interested in the SL(7) decomposition of the algebra of

the E7 motion group. This is because the E7 duality appears upon reduction on a 7-torus,

so we will make the duality act along these seven spatial directions.

It is not difficult to decompose SL(8) representations in terms of SL(7) representations.

We let I = (i, 8), where lowercase Latin letters are SL(7) indices that run from 1 to 7, and

we define

M i
j = −K̃i

j +
1

6
δijD, (C.15)

M8
i =

2

6!
ǫik1...k6R

a1...a6 , M i
8 = − 2

6!
ǫik1...k6Rk1...k6 , (C.16)

Vijk8 =
1

12
Rijk, Vijkl =

1

72
ǫijklmnpR

mnp, (C.17)
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Xi8 =
1√
2
Pi, Xij =

1√
2
Wij ,

Y i8 =
1

3
√
2
W i, Y ij =

1√
2
Zij , (C.18)

where D =
∑

i K̃
i
j . The normalisation has been chosen to match the normalisation of the

E11 ⋉ l1 generators in section 3. In particular, the coefficient of D in the relation between

M i
j and K̃i

j , the first equation in the set of equations (C.16), has been chosen so that the

commutator of K̃i
j and Rijk, Rijk, R

i1...i6 and Ri1...i6 has no trace term.

The commutation relations for the SL(7) decomposition of the E7 motion group are

found by inserting the decomposed generators into the commutation relations (C.10)–

(C.14). Whereupon, the E7 commutation relations are

[K̃i
j , K̃

k
l ] = δkj K̃

i
l − δilK̃

k
j , (C.19)

[K̃i
j , Rklm] = −3 δi[kR|j|lm],

[K̃i
j , R

klm] = 3 δ
[k
j R|i|lm], (C.20)

[K̃i
j , Rk1...k6 ] = −6 δi[k1R|j|k2...k6],

[K̃i
j , R

k1...k6 ] = 6 δ
[k1
j R|i|k2...k6], (C.21)

[Ri1...i3 , Rj1...j3 ] = 2Ri1...i3j1...j3 ,

[Ri1...i3 , Rj1...j3 ] = 2Ri1...i3j1...j3 , (C.22)

[Ri1...i3 , R
j1...j6 ] = 60 δ

[j1...j3
i1...i3

Rj4...j6],

[Ri1...i3 , Rj1...j6 ] = −60 δi1...i3[j1...j3
Rj4...j6], (C.23)

[Ri1...i3 , Rj1...j3 ] = 18 δ
[i1i2
[j1j2

K̃
i3]
j3]

− 2 δi1...i3j1...j3
D, (C.24)

[Ri1...i6 , Rj1...j6 ] = −5!3.3 δ
[i1...i5
[j1...j5

K̃
i6]
j6]

+ 5! δi1...i6j1...j6
D. (C.25)

Furthermore, the commutation relations of the E7 generators with the translation genera-

tors are

[K̃i
j , Pk] = −δikPj −

1

2
δijPk, [K̃i

j , Z
kl] = 2 δ

[k
j Z |i|l] − 1

2
δijZ

kl, (C.26)

[K̃i
j ,Wkl] = −2 δi[kW|j|l] +

1

2
δijWij , [K̃i

j ,W
k] = δkjW

i +
1

2
δijW

k, (C.27)

[Rijk, Pk] = 0, [Rijk, Z
mn] = 3! δmn

[ij Pk], (C.28)

[Rijk,Wmn] =
1

2
ǫijkmnpqZ

pq, [Rijk,W
l] = 9δl[iWjk], (C.29)

[Rijk, Pl] = 3 δ
[i
l Z

jk], [Rijk, Zmn] =
1

2
ǫijkmnpqWpq, (C.30)

[Rijk,Wmn] = 2 δ[ijmnW
k], [Rijk,W l] = 0, (C.31)

[Ri1...i6 , Pj ] = 0, [Ri1...i6 , Z
kl] = 0, (C.32)

[Ri1...i6 ,Wkl] = ǫji1...i6δ
j
[kPl], [Ri1...i6 ,W

k] = −3

2
ǫji1...i6Z

jk, (C.33)

[Ri1...i6 , Pk] = −1

2
ǫji1...i6Wjk, [Ri1...i6 , Zkl] =

1

3
ǫi1...i6[kW l]. (C.34)
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The E7 generators K̃i
j , R

ijk, Rijk, R
i1...i6 , Ri1...i6 and the generalised translation generators

Pi, Z
ij , Zi1...i5 , Zi1...i7,j can be exactly matched to the corresponding generators in section 7,

which were derived from the E11 ⋉ l1 algebra.
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[66] É. Cartan, Sur la structure des groupes de transformations finis et continus, Thése, Paris,
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