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1 Introduction

A useful probe of the properties of various field theories that has received increased interest

in recent times is the entanglement entropy, with applications being pursued in diverse areas

such as condensed matter physics, quantum information, and quantum gravity. One of the

main motivators, in the context of strongly coupled field theories (perhaps modeling novel

new phases of matter), is that the entanglement entropy may well act as a diagnostic of

important phenomena such as phase transitions, in cases where traditional order parameters

may not be available.

Within a system of interest, consider a region or subsystem and call it A, with the

remaining part of the system denoted by B. A definition of the entanglement entropy of A
with B is given by:

SA = −TrA(ρA ln ρA) , (1.1)

where ρA is the reduced density matrix of A given by tracing over the degrees of freedom

of B, ρA = TrB(ρ), where ρ is the density matrix of the system. When the system is in
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(a) The strip. (b) The disc.

Figure 1. Diagrams of the two shapes we will consider for region A. This is the case of AdS4,

and here, z denotes the radial direction in AdS4. In one dimension higher we will generalize these

shapes to a box and a round ball, and in one dimension fewer, we will consider an interval.

a pure state, i.e., ρ = |Ψ〉〈Ψ|, the entanglement entropy is a measure of the entanglement

between the degrees of freedom in A with those in B.
It is of interest to find ways of computing the entanglement entropy in various strongly

coupled systems, in diverse dimensions, and under a variety of perturbations, such as the

switching on of external fields, or deformations by relevant operators. A powerful tool for

studying such strongly coupled situations is gauge/gravity duality, which emerged from

studies in string theory and M-theory. The best understood examples are the conjectured

AdS/CFT correspondence and its numerous deformations [1–4] (see e.g., ref. [5] for an early,

but still very useful, review). There has been a great deal of activity for over a decade now,

applying these tools to strongly coupled situations of potential interest in condensed matter

and nuclear physics, for example. Fortunately, there has been an elegant proposal [6, 7]

for how to compute the entanglement entropy in systems with an Einstein gravity dual

(or, more generally, a string or M-theory dual in the large N limit and large t’ Hooft

limit), which provides a new way to calculate the entanglement entropy using geometrical

techniques (for a review see ref. [8]). In an asymptotically Anti-de Sitter (AdS) geometry,

consider a slice at constant AdS radial coordinate z = a. Recall that this defines the dual

field theory (with one dimension fewer) as essentially residing on that slice in the presence

of a UV cutoff set by the position of the slice. Sending the slice to the AdS boundary

at infinity removes the cutoff (see ref. [5] for a review). On our z = a slice, consider a

region A. Now find the minimal-area surface γA bounded by the perimeter of A and that

extends into the bulk of the geometry. (Figure 1 shows examples of the arrangement we

will consider in this paper.) Then the entanglement entropy of region A with B is given by:

SA =
Area(γA)

4GN
, (1.2)

where GN is Newton’s constant in the dual gravity theory.

This prescription for the entropy coincides nicely with various low dimensional compu-

tations of the entanglement entropy, and has a natural generalization to higher dimensional

theories. Note that there is no formal derivation of the prescription. Steps have been made,

such as in refs. [9, 10], but they are not complete. However, there is a lot of evidence for the
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proposal. See e.g., refs. [11–16]. A review of several of the issues can be found in ref. [8].

Further progress has been made recently in ref. [17].

In this paper we shall assume that this holographic prescription does give the correct

result for the entanglement entropy in systems with gravity duals, and proceed to examine

the interesting question of how the entanglement entropy behaves when a system is per-

turbed by an operator that triggers a Renormalization Group (RG) flow. For simplicity,

we will work with flows that connects two conformal field theories, and we will consider

(for concreteness) a four dimensional example and one in three dimensions. Such examples

are extremely natural to study using holographic duality since (at large N) it is possible

to find geometries that represent the full flow from the maximally supersymmetric theory

to theories with fewer super symmetries. (This was first proposed in refs. [18, 19], and

several examples have since been found.) Flow between field theory fixed points corre-

spond to flows between fixed points of the supergravity scalar potential. The examples we

will study begin with the four dimensional case of the flow [20–22] to the Leigh-Strassler

point [23, 24], which results from giving a mass to one of the N = 1 chiral multiplets that

make up the N = 4 Yang Mills gauge multiplet. We then continue with the three dimen-

sional generalization of it discussed in ref. [25]. The gravity dual of the four dimensional

flow connects AdS5 × S5 at the r = +∞ extreme of a radial coordinate r to AdS5 ×M5

at r = −∞, where the space M5 results from squashing the S5 along the flow. There are

two of the 42 supergravity scalars switched on at the latter endpoint, and correspondingly

the characteristic radius of the AdS5 in the IR is larger than that of the UV theory: The

gravity dual for the three dimensional flow has related structures, this time connecting an

AdS4 × S7 UV geometry to an AdS4 × M7 in the IR, where M7 results from squashing

the S7 along the flow.

Before studying the specific examples, however, we step back and try to anticipate

some of the key physics that we should expect from the entanglement entropy in this type

of situation, more generally. Generically, holographic RG flow involves a flow from one dual

geometry in the UV to another in the IR, separated by an interpolating region that can

be thought of as a domain wall separating the two regions. The key to understanding the

behaviour of the content of the holographic entanglement entropy formula is to then un-

derstand how the computation incorporates the structure of the domain wall, and how the

field theory quantities it extracts are encoded. To anticipate how to mine this information,

we do an analytic computation of the proposed entanglement entropy (1.2) in an idealized

geometry given by a sharp domain wall separating two AdS regions with different values

for the cosmological constant. Working in various dimensions (AdS5, AdS4, and AdS3,

pertaining to flows in four, three, and two dimensional field theories), we find a fascinating

and satisfying structure, seeing how the entanglement entropy tracks the change in degrees

of freedom under the flow, and several other features. We expect that these features will be

present in a wide range of examples, and we confirm our results in the examples mentioned

above.

The outline of this paper is as follows. In section 2 we carry out the study of the

entanglement entropy in the presence of the idealized (i.e., sharp domain wall) holographic

RG flow model, and discover how the physics is organized in the results. Then, ready
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to study examples, we review the four dimensional Leigh-Strassler RG flow of interest,

and its dual AdS5 flow geometry in section 3. We explicitly solve (numerically) the non-

linear equations that define the geometry and scalars in the interpolating dual supergravity

flow. We then compute the entanglement entropy and extract the physics, comparing to

our predictions from section 2. Section 4 presents the analogous studies for the three

dimensional field theory, with the AdS4 dual flow geometry. We end with a discussion in

section 5.

2 Entanglement entropy and a sharp domain wall model

As mentioned in the introduction, the generic holographic RG flow involves a flow from

one dual geometry in the UV to another in the IR, separated by an interpotating domain

wall. In all examples, understanding the behaviour of holographic entanglement entropy,

as proposed in equation (1.2), requires us to understand how the area formula incorporates

the structure of the domain wall in terms of field theory quantities. So we start by doing

an analytic computation in an idealized geometry given by a sharp domain wall in AdS.

In general, the location of the wall, and its thickness, are determined by field theory

parameters corresponding to the details of the relevant operator — for example, in the

case of the Leigh-Strassler flow and its generalization we later study, the detail in question

is the bare value of the mass given to the chiral multiplet. A sharp domain wall is of course

not a supergravity solution, and falls somewhat outside the usual supergravity duality to

any (large N) theory, but nevertheless is a clean place to start to capture how the physics

is organized. We expect it to capture a great deal of the key physics of holographic RG

flow, as regards how the entanglement entropy formula works.

We use the following background metric:

ds2 = e2A(r)(−dt2 + d~x2) + dr2, (2.1)

with

A(r) =

{

r/RUV , r > rDW

r/RIR , r < rDW
. (2.2)

Here −∞ < r < +∞, and ~x is either four, three, or two coordinates (the spatial coordinates

of the dual field theory), depending upon whether we are in AdS5, AdS4, or AdS3, the cases

we will consider. Also, RIR > RUV. The length scale of AdS on either aide of the wall is

set by RUV in the UV at r > rDW and RIR in the IR at r < RDW.

2.1 The ball and AdS5

We begin by studying a region A in the three spatial dimensions which is a round ball of

radius ℓ. Using a radial coordinate ρ in the spatial dimensions, the area of the surface, γ,

that extends into the bulk is given by:

Area = 4π

∫ ℓ

0
dρ ρ2e3A(r)

(

1 + e−2A(r)r′(ρ)2
)1/2

, (2.3)
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where the function r(ρ) defines the enbedding. We can calculate the equations of motion

that result from minimizing this “action,” and we find that the solution is given by:

r(ρ) =



















−RUV

2
ln

(

ℓ2 + ǫ2 − ρ2

R2
UV

)

, ρ ≥ ρDW

−RIR

2
ln

(

ℓ2 + ǫ2 − ρ2 +R2
IRe

−2
rDW

RIR −R2
UVe

−2
rDW

RUV

R2
IR

)

, ρ < ρDW

(2.4)

where rDW is the position of the domain wall in the AdS radial direction, and ρDW is the

spatial radial position where r(ρDW) = rDW and is given by:

ρ2DW = ℓ2 + ǫ2 −R2
UVe

−2
rDW

RUV . (2.5)

Note that, rather than integrating out to r = +∞, we integrate out to large positive radius

rUV, defining our UV cutoff, with small ǫ defined by:

rUV = −RUV ln

(

ǫ

RUV

)

. (2.6)

Note that with the solution given for ρ(ρ), we are assuming that ℓ is larger than a critical

radius ℓcr such that our surface extends past the doman wall into the second AdS region.

The critical radius ℓcr is given by setting ρDW = 0 in the above:

ℓ2cr = R2
UVe

−2
rDW

RUV − ǫ2. (2.7)

Substituting the solution back into equation (2.3), we can analytically calculate the area

of our minimal surface, γA, and hence the entanglement entropy via equation (1.2). This

gives a long expression that we will not display here. For our purposes it is enough to first

expand the area for small ǫ:

Area

4π
=

R3
UV

2

[

ℓ2

ǫ2
+ ln

(

ǫ

ℓ

)]

+
R3

UV

4
[1− 2 ln(2)]

−1

2
e
2
rDW

RUV RUVℓ

√

ℓ2 −R2
UVe

−2
rDW

RUV +
1

2
R3

UV tanh−1





√

ℓ2 −R2
UVe

−2
rDW

RUV

ℓ





+
RIR

2
e
2
rDW

RIR

√

ℓ2 −R2
UVe

−2
rDW

RUV

√

ℓ2 +R2
IRe

−2
rDW

RIR −R2
UVe

−2
rDW

RUV

−R3
IR

2
tanh−1





√

√

√

√

ℓ2 −R2
UVe

−2
rDW

RUV

ℓ2 +R2
IRe

−2
rDW

RIR −R2
UVe

−2
rDW

RUV



+O(ǫ) . (2.8)
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We find it useful to rewite it in a suggestive way:

Area

4π
=

R3
UV

2

[

ℓ2

ǫ2
+ ln

(

ǫ

ℓ

)]

+
R3

UV

4
[1− 2 ln(2)]

−1

2
e
2
rDW

RUV RUVℓ

√

ℓ2 − ℓ̃2cr +
1

2
R3

UV tanh−1





√

ℓ2 − ℓ̃2cr

ℓ





+
RIR

2
e
2
rDW

RIR

√

ℓ2 − ℓ̃2cr

√

ℓ2 − ℓ̃2cr +R2
IRe

−2
rDW

RIR

−R3
IR

2
tanh−1





√

√

√

√

ℓ2 − ℓ̃2cr

ℓ2 − ℓ̃2cr +R2
IRe

−2
rDW

RIR



+O(ǫ) , (2.9)

where

ℓ̃2cr = R2
UVe

−2
rDW

RUV = ℓ2cr +O(ǫ2) . (2.10)

There are a number of notable features of this expression. First, we see the results from pure

AdS5 in the first line. There, we see the usual UV divergent terms and the ℓ-independent

constant that results from the fact that the ball preserves some of the conformal invariance

of AdS5. Second, the terms that have RIR as coefficients (the last two lines) always have

ℓ2 appearing in the combination:

ℓ̃2 = ℓ2 −R2
UVe

−2
rDW

RUV = ℓ2 − ℓ2cr +O(ǫ2) . (2.11)

We are tempted to interpret this ℓ̃ as the effective ball radius as seen in the IR, as opposed

to the simple ℓ seen in the UV. Furthermore, the combination:

ǫ̃ = RIRe
− rDW

RIR (2.12)

appears in a manner analogous to how the UV cut-off ǫ appears. (This might not be clear

in our ǫ expansion of the above equation. One way to see that it does appear as ǫ does is

to look at equation (2.4).) Now ǫ̃ is not necessarily small, but we will see that it is useful

to think of it as the cut-off in the IR theory. With these observations in mind, we rewrite

the last three lines of equation (2.9) as follows:

− R3
UV

2

ℓℓ̃

ℓ̃2cr
+

1

2
R3

UV tanh−1

(

ℓ̃

ℓ

)

+
R3

IR

2

ℓ̃2

ǫ̃2

√

1− ǫ̃2

ℓ̃2
− R3

IR

2
tanh−1





1
√

1 + ǫ̃2

ℓ̃2



 . (2.13)

Let us focus on the terms proportional to R3
IR. If we expand these terms assuming that

ǫ̃/ℓ̃ ≪ 1, i.e., the effective length in the putative IR theory is larger than the IR cutoff,

which also means that the length is such that the surface extends very far past the wall

into the IR AdS space, we get:

R3
IR

2

[

ℓ̃2

ǫ̃2
+ ln

(

ǫ̃

ℓ̃

)]

+
R3

IR

4
[1− 2 ln(2)] +O(ǫ̃/ℓ̃) . (2.14)

Pleasingly, this is exactly the result we would have obtained if we were purely in the IR

theory!
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So far therefore, we have seen how the entanglement entropy formula encodes key

behaviours of both the UV and the IR theories, in terms of the appropriate scales, ǫ/ℓ and

ǫ̃/ℓ̃. The boundary of AdS5 at r = +∞ is the UV region and the quantities of the UV

theory appear accordingly. From the point of view of the IR theory, the domain wall acts

(for ǫ̃/ℓ̃ small) as the effective UV region, with ǫ̃/ℓ̃ acting as the effective regulator.

We are left with understanding the first two terms in equation (2.13). These two terms

mix the properties of the UV and the IR regions, and are more subtle. We associate them

with the region around the domain wall, which connects the UV and IR regions (through

and abrupt change in our idealized example). It is prudent to try to understand the role of

these terms toward the end of the flow, and so we do a large ℓ expansion of them, giving:

− R3
UV

2

ℓℓ̃

ℓ̃2cr
+

1

2
R3

UV tanh−1

(

ℓ̃

ℓ

)

= −R3
UV

2

[

ℓ2

ℓ̃2cr
+ ln

(

ℓ̃cr
ℓ

)]

+
R3

UV

4
[1 + 2 ln(2)] +O(1/ℓ) .

(2.15)

So we see that these terms give contributions very analogous to our UV and IR results,

where here the reference scale is played by ℓ̃cr. (Note that the constant term is actually

different than the UV and IR constant terms’ form.) At fixed ǫ or ǫ̃, we may think of this

as a new set of divergences.

Now that we have an understanding of the contributions of the various pieces to the

area, we combine everything together again and consider the large ℓ (and small ǫ) expansion:

Area

4π
=

R3
UV

2

[

ℓ2

ǫ2
+ ln

(

ǫ

ℓ

)]

+
ℓ2

2

(

R3
IR

ǫ̃2
− R3

UV

ℓ̃2cr

)

+
R3

UV

2
ln

(

ℓ

ℓ̃cr

)

− R3
IR

2
ln

(

ℓ

ǫ̃

)

+
R3

UV

2
+

R3
IR

4
− 1

2
R3

IR

ℓ̃2cr
ǫ̃2

− 1

2
R3

IR ln(2) +O

(

1

ℓ
, ǫ

)

=
R3

UV

2

[

ℓ2

ǫ2
+ ln

(

ǫ

ℓ̃cr

)]

+
ℓ2

2

(

R3
IR

ǫ̃2
− R3

UV

ℓ̃2cr

)

− R3
IR

2
ln

(

ℓ

ǫ̃

)

+
R3

UV

2
+

R3
IR

4
− 1

2
R3

IR

ℓ̃2cr
ǫ̃2

− 1

2
R3

IR ln(2) +O

(

1

ℓ
, ǫ

)

. (2.16)

The first key result here is that we no longer have a ln(ℓ) scaling associated with the

UV theory. The remaining ln(ℓ) dependence has a coefficient that is only associated with

the IR theory and that is independent of the domain wall. In a non-RG flow scenario,

the coefficient of such a term is determined by the central charge of the theory (see e.g.,

refs. [7, 26]), but here we see that the coefficient has shifted from its UV value (associated

with the UV central charge) to its IR value (associated with the IR central charge). The

second thing to note is that the area law associated with the UV cut-off (the first ℓ2 term)

is joined by a second area law. Its coefficient is sourced by the details of the domain wall.

For clarity, we display this term here:

ℓ2

2

(

R3
IR

ǫ̃2
− R3

UV

ℓ̃2cr

)

=
ℓ2

2

(

RIRe
2
rDW

RIR −RUVe
2
rDW

RUV

)

. (2.17)

We expect this new area law to be a robust feature of RG flow geometries, but anticipate

that the coefficient’s precise form will be different as we move away from the thin wall limit
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we are in here. The above result predicts that the coefficient grows more positive as rDW

is pushed to the UV. In realistic RG flows, while the domain wall position and sharpness

cannot be varied arbitrarily, it is expected to get thinner toward the UV and so at least

in that regime we should recover positivity. Finally, the constant terms in the last line of

equation (2.16) are a mixture of both the UV, IR, and domain wall physics.

2.2 The disc and AdS4

We can repeat the same procedure for AdS4, pertaining to RG flows in 2 + 1 dimensional

theories. As our system A we consider a circular disc of radius ℓ. The solution for the

surface embedding are exactly as in equation (2.4). We can calculate the minimal area and

expand for small ǫ to get:

Area

2π
= R2

UV

ℓ

ǫ
−R2

IR −RUVe
rDW

RUV ℓ+RIRe
rDW

RIR

√

ℓ2 −R2
UVe

−2
rDW

RUV +R2
IRe

2
rDW

RIR +O(ǫ) .

(2.18)

We see the reappearance of many of the key players that we saw in the AdS5 case, such as

ℓ̃, ℓ̃cr and ǫ̃, appearing in similar types of term. For ℓ = ℓ̃cr, we recover the pure UV result

(proportional to ℓ/ǫ) and also the constant −R2
UV, the constant ensured by the fact that

the disc preserves some conformal invariance, as expected. For large ℓ, we have:

Area

2π
= R2

UV

ℓ

ǫ
−R2

UV

ℓ

ℓ̃cr
+R2

IR

ℓ

ǫ̃
−R2

IR +O(ǫ, 1/ℓ) . (2.19)

So in the AdS4 case, the constant term shifts from its UV result to its IR result −R2
IR.

Again, in addition to the usual UV area law (proportional to ℓ/ǫ), we have a new area law

controlled by the domain wall:

ℓ

(

R2
IR

ǫ̃
− R2

UV

ℓ̃cr

)

, (2.20)

which should be compared to the example from AdS5 in equation (2.17). The same com-

ments we made for the new area law there apply here: It is not necessarily positive, but

we expect it to get more positive as the domain wall is sent to the UV, where generically

it gets thinner.

2.3 The case of AdS3

Next we consider the case of AdS3, pertaining to flows in 1 + 1 dimensions. We use a

spatial interval of length 2ℓ for our region A. The area is given by:

Area

2
= −RUV ln

(

ǫ

ℓ

)

+RUV ln(2)−RUV tanh−1





√

ℓ2 −R2
UVe

−2
rDW

RUV

ℓ





+RIR tanh−1





√

√

√

√

ℓ2 −R2
UVe

−2
rDW

RUV

ℓ2 −R2
UVe

−2
rDW

RUV +R2
IRe

−2
rDW

RIR



+O(ǫ) (2.21)

In the large ℓ limit, this gives

Area

2
= −RUV ln

(

ǫ

ℓ̃cr

)

−RUV −RIR ln

(

ǫ̃

ℓ

)

+RIR ln(2) +O(ǫ, 1/ℓ) , (2.22)
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where ℓ̃cr and ǫ̃ are defined in equations (2.10) and (2.12) respectively. So again we see

that the universal coefficient (in front of the natural logarithm) becomes the IR factor in

the large ℓ limit. The IR cutoff replaces the UV cutoff just as observed before.

2.4 The strip and AdS4

We next consider an area A that is a strip in AdS4, to compare our results for the disc. We

take the strip to be of finite width ℓ in the x direction, and of length L in the remaining

direction, which will be taken to be large, making an infinite strip. The area is given by:

Area = 2L

∫ ℓ/2

0
dx e2A(r)

√

1 + e−2A(r)r′(x)2 . (2.23)

Since there is no explicit dependence on x, there is a constant of motion in the dynamical

problem associated to minimizing the area. However, we must be careful since the constant

of motion on either side of the domain wall is not the same:

e2A(r)

√

1 + e−2A(r)r′(x)2
=

{

e
2 r∗
RUV , r > rDW

e
2 r∗
RIR , r < rDW

(2.24)

On the IR side, the constant is simply given by r′(x) = 0, which occurs at a radial position

we will denote as r∗. The constant on the UV side is determined by asking that r′(x) = 0

when r∗ = rDW, which is the critical situation before our embedding enters the IR AdS.

We can in turn calculate the area and length in terms of r∗ and expand for small ǫ:

Area

2L
=

R2
UV

ǫ
−RUVe

rDW

RUV

√

1− e
4
r∗−rDW

RUV +RIRe
rDW

RIR

√

1− e
4
r∗−rDW

RIR

−e
r∗

RIR

√
πRIRΓ

(

7
4

)

3Γ
(

5
4

) − 1

3
e
−3

rDW

RUV
+4 r∗

RUV RUV2F1

(

1

2
,
3

4
,
7

4
, e

4
r∗−rDW

RUV

)

+
1

3
e
−3

rDW

RIR
+4 r∗

RIR RIR2F1

(

1

2
,
3

4
,
7

4
, e

4
r∗−rDW

RIR

)

. (2.25)

ℓ

2
= e

− r∗
RIR

√
πRIRΓ

(

7
4

)

3Γ
(

5
4

) +
1

3
e
−3

rDW

RUV
+2 r∗

RUV RUV2F1

(

1

2
,
3

4
,
7

4
, e

4
r∗−rDW

RUV

)

−1

3
e
−3

rDW

RIR
+2 r∗

RIR RIR2F1

(

1

2
,
3

4
,
7

4
, e

4
r∗−rDW

RIR

)

. (2.26)

Here, we see the appearance of the Gauss hypergeometric function:

2F1(a, b, c; z) ≡
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt . (2.27)

The large ℓ limit corresponds to taking r∗ → −∞, which gives us:

Area

2L
=

R2
UV

ǫ
−RUVe

rDW

RUV +RIRe
rDW

RIR +O(ǫ,−1/r∗) . (2.28)

So we see that that the constant term here is exactly the new area law’s coefficient that

we saw in the disc case, in equation (2.20). Again, far enough in the UV, for large enough

mass, our analysis suggests that this coefficient is positive.
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2.5 The box and AdS5

Returning to AdS5, we consider for region A a box in AdS5, in order to compare to the

round ball we studied before. Here the finite width is again ℓ and the two other sides are

of length L, which we again take to be large. The computation proceeds in a similar way.

The area gives:

Area

2L2
=

R3
UV

2ǫ2
− 1

2
RUVe

2
rDW

RUV

√

1− e
6
r∗−rDW

RUV +
1

2
RIRe

2
rDW

RIR

√

1− e
6
r∗−rDW

RIR

−e
2 r∗
RIR

√
πRIRΓ

(

5
3

)

8Γ
(

7
6

) − 1

8
e
−4

rDW

RUV
+6 r∗

RUV RUV2F1

(

1

2
,
2

3
,
5

3
, e

6
r∗−rDW

RUV

)

+
1

8
e
−4

rDW

RIR
+6 r∗

RIR RIR2F1

(

1

2
,
2

3
,
5

3
, e

6
r∗−rDW

RIR

)

, (2.29)

and taking the r∗ → −∞ limit gives:

Area

2L2
=

R3
UV

2ǫ2
− 1

2
RUVe

2
rDW

RUV +
1

2
RIRe

2
rDW

RIR +O(ǫ,−1/r∗) . (2.30)

Again, we have that the constant term has the same coefficient as the new area law term

for the ball case, as seen in equation (2.17).

3 The four dimensional holographic RG flow

3.1 The holographic dual gravity background

In field theory terms, the RG flow is defined by an N = 1 supersymmetric deformation

of the N = 4 supersymmetric Yang Mills theory given by introducing a mass term for

one of the chiral multiplets. This relevant deformation causes the N = 4 theory to flow

to an N = 1 fixed point in the IR called the Leigh-Strassler fixed point [22–24]. For the

SU(N) theory at large N , there is an holographic dual of this physics [20], represented by

a flow between two five dimensional anti-de Sitter (AdS5) fixed points of N = 8 gauged

supergravity in five dimensions. One point has the maximal SO(6) symmetry, and the

other has SU(2) × U(1), global symmetries of the dual field theories. The relevant five

dimensional gauged supergravity action is [20, 21, 27]:

S =
1

16πG5

∫

d5x
√−g

(

R− 2(∂χ)2 − 12(∂α)2 − 4P
)

, (3.1)

with

P =
1

2R2

(

1

6

(

∂W

∂α

)2

+

(

∂W

∂χ

)2)

− 4

3R2
W 2, (3.2)

where the superpotential W is given by:

W =
1

4ρ2
(

cosh(2χ)(ρ6 − 2)− (3ρ6 + 2)
)

(3.3)
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with ρ = exp(α). The scalar field χ is dual to an operator of dimension three in the field

theory while the scalar field α is dual to a dimension two operator:

α :
4
∑

i=1

Tr(φiφi)− 2
6
∑

i=5

Tr(φiφi) , χ : Tr
(

λ3λ3 + ϕ1[ϕ2, ϕ3]
)

+ h.c. , (3.4)

where ϕk = φ2k−1 + iφ2k, k = 1, . . . , 3. Here φi (i = 1, . . . , 6) are the six scalars in the

N = 4 multiplet, and the λk (three of that adjoint multiplet’s four fermions) are N = 1

partners of the ϕk, forming the three chiral multiplets. This combination of operators is

exactly what is needed to reproduce the deformation. The geometry in five dimensions, of

domain wall form, can be parametrised in the following manner:

ds21,4 = e2A(r)(−dt2 + dx21 + dx22 + dx23) + dr2. (3.5)

The supergravity equations of motion yield the following flow equations:

dα

dr
=

eα

6R

∂W

∂α
=

1

6R

(

e6α
(

cosh(2χ)− 3
)

+ cosh(2χ) + 1

e2α

)

,

dχ

dr
=

1

R

∂W

∂χ
=

1

2R

(

(e6α − 2) sinh(2χ)

e2α

)

,

dA

dr
= − 2

3R
W = − 1

6R

cosh(2χ)(e6α − 2)− (3e6α + 2)

e2α
. (3.6)

In these coordinates, the UV is at r → +∞ and the IR is at r → ∞, as in earlier sections.

In either limit, the right hand side of the first two equations vanish, and the scalars run

to specific values (α = 0, χ = 0 at one end, α = 1
6 ln 2, χ = 1

2 ln 3 at the other), while A(r)

becomes r
R in the UV and 25/3

3
r
R in the IR, defining an AdS5 in each case, and hence a

conformally invariant dual field theory at each end. This is a fat, smooth version of our

simple thin domain wall model of the previous sections. Here RUV = R and RIR = 3R/25/3.

To study the UV behavior of the fields, we find it convenient to define a coordinate z̃

given by:

z̃ = e−r/R (3.7)

and we find the asymptotic behavior of the fields near z̃ = 0 (UV AdS boundary):

χ(z̃) = z̃

(

a0 + z̃2
(

− a30 − 4a0a1 + ln(z̃)
8

3
a30

)

+O(z̃4)

)

,

α(z̃) = z̃2
(

a1 + ln(z̃)

(

− 2

3
a20

))

+O(z̃4) ,

A(z̃) = − ln(z̃) +A0 −
1

6
a20z̃

2 +O(z̃4) . (3.8)

The constant a0 is related to the mass of the Φ3 multiplet via [28]:

m3 =
2a0
R

. (3.9)

To study the IR behavior of the fields, we define a coordinate ũ given by:

ũ = eλr/R, (3.10)
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where λ = 25/3(
√
7−1)

3 . The asymptotic (near ũ = 0) behavior in the IR is given by:

χ(ũ) =
1

2
ln(3) + ũb0 +O(ũ2) ,

α(ũ) =
1

6
ln(2) + ũ

(
√
7− 1

6

)

b0 +O(ũ2)

A(ũ) =
1√
7− 1

ln(ũ) +B0 +O(ũ2) . (3.11)

3.2 Numerically solving for the flow

To solve the flow numerically (as we will need to do in order to compute the entanglement

entropy), it is convenient to work with a coordinate:

x = z̃2, (3.12)

and employ a shooting method to solve the equations. To shoot from the IR we take

xmax = 106, and towards the UV we take x = ǫ, where we use ǫ = 10−12. To get good

numerical stability, we define new fields (β, η),

α(x) = xβ(x) , χ(x) = x1/2η(x) , A(x) = −1

2
ln(x) + a(x) , (3.13)

such that near the AdS boundary, the leading behavior of these fields is given by:

η(x) = a0 +O(x) , β(x) = a1 −
1

3
a20 ln(x) +O(x) , a(x) = A0 −

1

6
a20x+O(x2) .

(3.14)

In the IR, we use the results in equation (3.11) (up to O(ũ4)) as our shooting conditions

(we have the freedom of choosing the parameter b1, which is always less than zero). We

can then extract the values of a0 and a1 at the AdS boundary for our solution. Note that

the choice of B0 will determine the choice of A0. We can choose to eliminate the constant

A0 by appropriately rescaling our coordinate z̃. In particular, if we solve our equations

with B0 = 0, we can extract the constant A0, and then simply perform the following

transformation to eliminate it from our metric:

z̃ → eA0 z̃ . (3.15)

Finally, as indicated in ref. [21], there are constants of the motion regardless of the choice

of b1 (and subsequently, the choice of (a0, a1)), given by:

− b1a
λ
0 ≈ 0.1493 ,

√
6a1
a20

+

√

8

3
ln(a0) ≈ −1.4696 . (3.16)

These constants, for a given flow, set the size and position of the domain wall separating

the two AdS5 regions of the geometry.

It is instructive to look at the results to get a sense of what a real domain wall looks

like in these solutions. We plot (in the original radial coordinate r) the metric function

A(r)/r, and also −A(r)′ in figure 2. The wall noticeably gets thinner as it moves toward

the UV. While it would be instructive to track the wall toward the UV for very large values

of the mass, it becomes harder to control the numerical accuracy in that regime.

– 12 –
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Figure 2. Samples of the domain wall behaviour. The lowest (blue solid) curve corresponds to

b1 → −3), next lowest (green dot-dashed) curve is with b1 = −2, and the top (red dashed curve)

is with b1 = −1. The UV is to the right, and the mass increases with increasing (toward the

positive) b1.

3.3 The holographic entanglement entropy

3.3.1 The box

The metric we need is given by:

ds21,4 =
R2

z2
e2(a(z̃)−a(0))(−dt2 + dx21 + dx22 + dx23) +

R2

z2
dz2. (3.17)

It is important to notice that we are working here in a rescaled z coordinate. z̃ is the

coordinate of the previous section, with z̃ = z exp(a(0))/R. This will mean that the mass

of the chiral multiplet (controlled by the scalar χ; see equation (3.9)) will now not be set

by a0, but by ea(0)a0.

We consider a strip of infinite extent in the (x2, x3) directions and finite extent in the

x1 direction. We take as coordinates and ansatz for our surface embedding:

ξ1 = x1 , ξ2 = x2 , ξ3 = x3 , z ≡ z(x1) . (3.18)

The area of the surface is then given by:

Area = R3L2

∫ ℓ/2

−ℓ/2
dx1

e3(a(z̃)−a(0))

z3

(

1 + e−2(a(z̃)−a(0))z′(x1)
2
)1/2

. (3.19)

Since there is no explicit dependence on the coordinate x1, a constant of the “motion” is:

P = L − z′(x1)
∂L

∂z′(x1)
=

e3(a(z̃)−a(0))

z(x1)3
√

1 + e−2(a(z̃)−a(0))z′(x1)2)
. (3.20)

We can evaluate this constant at the turning point x1 = 0 (with corresponding value

z(0) = z∗) and rewrite our area integral in terms of z:

Area = 2R3L2

∫ z∗

ǫ
dz

e2(a(z̃)−a(0))

z3
√

1− e−6(a(z̃)−a∗) z
6

z6
∗

, (3.21)
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Figure 3. Blue solid curve is pure AdS5 result (corresponds to b1 → −∞), green dot-dashed curve

is with b1 = −2, and the red dashed curve is with b1 = −1.

where we have defined our UV cutoff ǫ as z(±ℓ/2) = ǫ. Given the solution for the back-

ground, this expression for the area can be simply integrated numerically. Furthermore,

we can write z∗ in terms of ℓ as:

ℓ

2
=

∫ z∗

ǫ
dz

e−(a(z̃)−a(0))

√

e6(a(z̃)−a∗) z
6
∗

z6
− 1

. (3.22)

For the case of pure AdS (which simply corresponds to taking a(z̃) = a∗ = a(0) in our

equations), equation (3.21) has a single divergent term near the AdS boundary proportional

to ǫ−2. For the flow geometry, the non-trivial behavior of a(z̃) produces a new divergence

in addition to the pure AdS one. Expanding the exponential in the numerator, we find

that near the AdS boundary, the divergent terms produced by the integral are:

AreaUV = 2R3L2

∫

ǫ

1− a2
0

3R2 e
2a(0)z2

z3
= R3L2

(

1

ǫ2
+

2a20
3R2

e2a(0) ln

(

ǫ

R

))

. (3.23)

The ln(ǫ) divergence is new. Such new divergence terms associated with the function a(z)

are expected in d ≥ 4.

We will only be interested in the finite contribution (beyond this UV divergent term)

to the entanglement entropy, and we will denote this finite contribution by s such that:

4G
(5)
N S = Area =

(

R3L2

ǫ2
+

2a20RL2

3
e2a(0) ln

(

ǫ

R

)

+ 2RL2s

)

. (3.24)

To perform these integrals numerically, we find that using ǫ = 10−5 and using the

coordinate y = z3 gives reliable results. We present some results in figure 3. The key

result is that we find that the entanglement entropy for the flow geometry asymptotes (for

large ℓ/R) to a constant value not equal to zero, as was predicted by the sharp domain

wall analysis. The value of the asymptotic constant, which we denote by s∞, can be

understood as stemming from the parts of the surface in the interpolating region from one

AdS geometry to the other. With our normalization of s as defined in equation (3.24), the

interpolating part of the surface contributes as:

s∞ = R2

∫ z∗

ǫ
dz

e2(a(z̃)−a0)

z3
. (3.25)
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Figure 4. Value of the asymptotic (ℓ/R → ∞) entanglement entropy for changing multiplet mass.

Recall that the multiplet mass is proportional to ea(0)a0.

Taking z∗ → ∞, we find that the finite contribution of this area matches extremely well

the finite value for the entanglement entropy curves in figure 3. We present the dependence

of s∞ on the multiplet mass in figure 4. We see that for large mass, the value increases as

predicted, while for small mass, it actually decreases. We can understand this behavior as

follows. The sharp domain wall analysis of the previous section applies when the mass is

large and correspondingly the domain wall’s thickness is small. For small mass, the wall

is fat, and so we can expect deviations (in this case, very large) from our predictions. As

the mass increases, the sharp domain wall approximation is approached, and our results

fit better. Although we have a clear understanding of this asymptotic behavior from our

sharp domain wall analysis, where we argued it mixes the UV and IR physics around the

domain wall, in this example we can completely characterize the behaviour in terms of the

chiral multiplet mass. We define a function Ω as follows:

Ω = Ω0

(

ea(0)a0
)−1

, (3.26)

where Ω0 ≈ 0.6592R and is a constant which we found from fitting to the data. Using this

function, we write the entanglement entropy as:

4G
(5)
N S = Area =

(

R3L2

ǫ2
+

2a20RL2

3
e2a(0) ln

(

ǫ

Ω

)

+ 2RL2sadj

)

, (3.27)

where sadj now asymptotes to zero. We show this in figure 5. A nice feature of the function

Ω is that it captures the IR/UV domain wall physics in terms of a single length scale which

naturally normalizes the new UV divergence. This length scale emerges naturally from

our holographic calculation, and it would be difficult (yet worthwhile) to independently

calculate it in the dual field theory. Furthermore the non-UV divergent parts of the entropy

now asymptotes to zero for large ℓ, as appropriate for the entanglement entropy for the

box region in this limit since there will only be the region A remaining.

3.3.2 The ball

The metric we need is given by:

ds21,4 =
R2

z2
e2(a(z)−a(0))(−dt2 + dr2 + r2dΩ2

2) +
R2

z2
dz2. (3.28)
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Figure 5. The adjusted entanglement entropy. Blue solid curve is pure AdS5 result (corresponds

to b1 → −∞), green dot-dashed curve is with b1 = −2, and the red dashed curve is with b1 = −1.

The curves do not perfectly overlap when inspected at a higher magnification.

We consider a three dimensional ball with radius ℓ, so take as coordinates and ansatz for

our surface embedding:

ξ1 = r , ξ2 = θ , ξ3 = φ , z ≡ z(r) . (3.29)

The area of the surface is then given by:

Area = 4πR3

∫ ℓ

0
dr

r2e3(a(z̃)−a(0))

z(r)3

(

1 + e−2(a(z̃)−a(0))z′(r)2
)1/2

. (3.30)

Since there is an explicit r dependence, there is no conserved quantity (as was the case for

the strip), so the extremal area must be found by solving the equations of motion derived

from the above action:

z′′(r) +
2e−2(a(z̃)−a(0))

r
z′(r)3 +

(

3

z(r)
− 8e2a(0)z(r)a′(z̃)

)

z′(r)2

+
2

r
z′(r) +

3e2(a(z̃)−a(0))
(

1− 2e2a(0)z(r)2a′(z̃)
)

z(r)
= 0 , (3.31)

with the boundary conditions:

z(0) = z∗ , z(ℓ) = ǫ . (3.32)

In order to study the UV divergences of equation (3.30), it is convenient to define a new

coordinate:

y(r) =
1

ℓ

√

ℓ2 + ǫ2 − r2 . (3.33)

The reason for this particular choice is that, in the pure AdS geometry, the embedding

z(r) has a solution given by z(r) = ℓy(r). In terms of y, the embedding has asymptotic

solution given by:

z(y) = ℓy + z2y
3 − ℓ3

6R2
e2a(0)a20y

3 ln(y) + · · · (3.34)

where z2 is a constant chosen such that the solution satisfies z′(y = 1) = 0.
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Figure 6. Results for the ball with radius ℓ. Blue solid curve is for −b0 = 3, green dot-dashed

curve is for −b0 = 2, and red dashed curve is for −b0 = 1.
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Figure 7. Entanglement entropy without the leading ℓ2 contribution. Blue solid curve is for

−b0 = 3, green dot-dashed curve is for −b0 = 2, and red dashed curve is for −b0 = 1.

Let us define as before a quantity s as follows:

Area

4π
= R3

(

ℓ2

2ǫ2
+

1

2
ln

(

ǫ

ℓ

)

+
ℓ2

3R2
e2a(0)a20 ln

(

ǫ

R

)

+ s

)

. (3.35)

Our numerical results for s are shown in figure 6. As expected from our sharp domain

wall analysis, the asymptotic behavior is dominated by an ℓ2 behavior. Furthermore, upon

subtraction of this behavior, we find our expected ln(ℓ) behavior (see figure 7). In fact, the

large ℓ behavior of the adjusted entanglement entropy is very well approximated by the

expression:

lim
ℓ→∞

s ≈ a

(

ℓ

R

)2

+ b ln

(

ℓ

R

)

+ c . (3.36)

Comparing to equation (2.16), the coefficients a and c should be interpreted as being a

complicated function of the domain wall data (and hence the mass term), whereas the

coefficient b should simply be related to the central charge of the IR theory. We show the

dependence of a, b, and c on the mass in figure 8. First, we see that the coefficient of the

area term a decreases with increasing mass, which deviates from our domain wall analysis.

However, our mass range displayed here is actually in the same region where the analogous
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Figure 8. Values of the fit coefficients of equation (3.36).
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the ball results and the red squares are the strip results.

results for the box were decreasing. This is all traceable (as it was then) to being far from

the thin domain wall regime. In fact it is apparent that our results are just about to turn

around, as happened for the box. We may ask whether we can capture the behavior of

this coefficient with a function Ω, defined in a similar way to that which we did for the

box (see equation (3.26) and discussion below it). This turns out to be the case, and we

compare the function Ω for the strip and for the ball in figure 9 (where we again let the

data determine the value Ω0) and we find that the results are remarkably close, suggesting
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Figure 10. The coefficient of ln(ℓ) for large ℓ. The solid line is the value of −R3
IR/R

3.

that indeed this is a physical length scale in the theory. Since the only other scale in the

theory is the multiplet mass, we expect that Ω is set by the inverse of the value of this mass

after it has renormalized under RG flow to its value set by the scale at the domain wall.

Finally, it is interesting to check whether the coefficient of the ln(ℓ) term of the en-

tanglement entropy indeed matches our expectation that for large enough ℓ it should be

equal to −R3
IR/2R

3 (compare the definition of s in equation (3.35), and b in equation (3.36)

and (2.16)). We present this check in figure 10. Indeed, we find that our results are very

close to the expected value, and in fact the results get better with larger mass. It is not

entirely unexpected that the results deviate somewhat for smaller mass. With smaller

masses, one needs to go to larger ℓ (and larger AdS radial position) to enter the IR AdS,

and larger ℓ is increasingly hard to explore numerically.

4 The three dimensional holographic RG flow

4.1 The holographic dual gravity background

We consider the 2+1 flow of ref. [25]. It is the analogue of the Leigh-Strassler flow we

studied earlier. The IR fixed point is the N = 2 fixed point studied in [29, 30]. Starting

with an ansatz for the metric of the form:

ds21,3 = e2A(r)(−dt2 + dx21 + dx22) + dr2, (4.1)

the flow equations are given by:1

A′(r) = − 1

R
W ,

ρ′(r) =
1

16R

(

cosh(2χ) + 1
)

+ ρ8
(

cosh(2χ)− 3
)

ρ
,

χ′(r) =
1

4R

(ρ8 − 3) sinh(2χ)

ρ2
. (4.2)

1We use a different definition of the AdS radius R than the authors of ref. [25]. The reason for this is

such that the asymptotic behavior in terms of the coordinate r are the same for our previous analysis.
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To study the UV asymptotics, we define a coordinate z̃ via:

z̃ = e−r/R, (4.3)

and find that the fields have the following asymptotics:

A(z̃) = − ln(z̃)− z̃2

4
(12a21 + a20) +O(z̃3) ,

χ(z̃) = z̃a0 − 6a1a0z̃
2 +O(z̃3) ,

α(z̃) = z̃a1 +

(

2a21 −
a20
4

)

z̃2 +O(z̃3) . (4.4)

In the IR, we define a coordinate ũ via:

ũ = eλr/R, (4.5)

where λ = 33/4(
√
17− 1)/4. The asymptotics of the field is given by:

A(ũ) =
2√

17− 1
ln(ũ) +B0 +O(ũ2) ,

χ(ũ) =
1

2
cosh−1(2) + b0ũ+O(ũ2) ,

α(ũ) =
1

8
ln(3) +

√
17− 1

8
√
3

b0ũ+O(ũ2) . (4.6)

Note that this gives that RIR = 2R/33/4.

4.2 The entanglement entropy

We follow a similar analysis as before for calculating the entanglement entropy and in light

of our detailed calculations presented for AdS5, we will be brief here. For the strip, we

define a quantity s via:

4GNS = Area =

(

R2L

ǫ
+ 2RLs

)

(4.7)

and we plot the result in figure 11(a). Similarly for the disc (of radius ℓ), we define s via:

4GNS = Area = 2πR2

(

ℓ

ǫ
+ s

)

(4.8)

and we plot the result in figure 11(b). As expected, there is no new divergent term, and the

entanglement entropy has a non-zero coefficient associated with the area of the boundary

for large ℓ. Furthermore, fitting the large ℓ behavior for the disc result to the functional

form aℓ+ b gives a result for b of approximately −0.79 which is close to the value of −R2
IR,

the value we would have predicted in the IR AdS from the thin domain wall analysis (see

equation (2.19) and discussion below it). Using the strip data, we calculate the dependence

of the coefficient on the mass and present it in figure 12. We find that the dependence is

linear in the mass range explored. The linear behavior again suggests that we can interpret

the coefficient in terms of the mass of the multiplet. The slope is negative. We expect that
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Figure 11. Results for the strip of width ℓ and the disc of radius ℓ. Solid blue is the pure AdS4
result, green dot dashed is in a background with −b0 = 0.01, and red dashed is in a background

with −b0 = 0.001.
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Figure 12. The coefficient of ℓ for large ℓ. The blue circles are the numerical results, while the

red dashed curve is the linear best fit.

we are somewhat away from the mass regime where we connect with the thin domain wall

analysis for physics controlled by the domain wall region. The regime of larger mass ought

to show that the coefficient increases towards positivity (see equations (2.20) and (2.28)).

It is currently too difficult to extract reliable numerical results in that regime however, and

so we cannot test this as we did for the case of one dimension higher.

5 Conclusions

We were able to uncover how the holographic entanglement entropy formula encodes a

number of field theory features along an RG flow using the key feature of an holographic

RG flow, its domain wall. In the thin wall limit where we study an idealized flow between

two AdS regions (and hence a flow between fixed point theories) we were able to extract,

in various dimensions, rather pleasing formulae showing how the field theory data appear

separated out according to the various natural scales in the problem. Using two known RG

flows between fixed points, we were able to test our formulae in real examples and found

that where we could, several of the features we expected to be robust were confirmed. This

included the form of the growth of the entropy upon approach to the IR, which we found
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defined a new area law supplementing the ones known for the UV behaviour. We were

also able to see (in the thin domain wall limit) how the entropy naturally encodes (in its

asymptotics) the (renormalized) length scale corresponding to the presence of the relevant

operator that was switched on.

Our overall goal is to understand the entanglement entropy in this holographic setting

well enough to use it as another diagnostic tool for studying the properties of strongly

coupled field theories, and so we consider this study of RG flow to be a useful step along

the way. Having analytically characterized, as we have done, the kinds of behaviour that

can appear (in various dimensions), we expect that holographic studies of the entanglement

entropy in more complicated theories will be aided by our results. Many such examples

will, by their very nature, be only accessible with numerical approaches, and so analyzing

of the results for the entropy may be subtle. This is where we expect a lot of the intuition

here to help bring things sharply into focus, since such features as the entropy’s approach to

the end of the flow have now been unpacked in terms of the general features of holographic

flow geometries.
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