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affecting such calculations, particularly at next-to-leading logarithmic (NLL) accuracy,

is that of non-global logarithms as well as logarithms induced by jet definition, as we

pointed out in an earlier work [3]. In this paper, we extend our previous calculations by

independently deriving the full jet-radius analytical form of non-global logarithms, in the

anti-kt jet algorithm. Employing the small-jet radius approximation, we also compute, at

fixed-order, the effect of jet clustering on both C2
F and CFCA colour channels. Our findings

for the CFCA channel confirm earlier analytical calculations of non-global logarithms in

soft-collinear effective theory [5]. Moreover, all of our results, as well as those of [3],

are compared to the output of the numerical program EVENT2. We find good agreement

between analytical and numerical results both with and without final state clustering.
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1 Introduction

Event and jet shape variables have long served as excellent tools for testing QCD and

improving the understanding of its properties (for a review, see [7]). Event/jet shape

distributions have been used to extract some prominent parameters in QCD including

the strong coupling and the quark-gluon colour ratio [8]. Due to the fact that shape

variables are, by construction, linear in momentum, they exhibit a strong sensitivity to non-

perturbative (NP) effects [7, 9]. They have thus been exploited to gain a better analytical

insight into this QCD domain [7, 10]. Furthermore, jet shapes have been used not only to

study the jet structure of hadronic final states, including jet multiplicities, jet rates and

jet profiles (ref. [11] and references therein), but also the subjet structure, or substructure,
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of the jets themselves (for a recent example, see [1]). The latter subject has received

significant attention in recent years, particularly in the area of boosted objects with the

aim to separate the decay products of Beyond Standard Model (BSM) particles from QCD

background at LHC (for a review, see [12]).

Although shape variables are, by construction, Infrared and Collinear (IRC) safe, fixed-

order perturbative (PT) calculations break down in regions of phase space where the shape

variable is small. These regions correspond to gluon emissions that are soft and/or collinear

to hard legs and lead to the appearance of large logs that spoil the PT expansion of the

shape distribution [11] (and references therein). While measured shape distributions have

a peak near small values of the shape variable and then go to zero, fixed-order analytical

distributions diverge. To deal away with these divergences and successfully reproduce the

experimentally-seen behaviour, one ought to either perform an all-orders resummation of

the large logs, matched to fixed-order result, or rely on Monte Carlo event generators. We

are concerned, in the present paper, with the resummation method as it paves the way for a

better understanding of QCD dynamics including the process of multiple gluon radiation.

The general form of resummed distributions for observables that have the property of

exponentiation can be cast as [11]

Σ(v) = C(αs) exp[Lg1(αsL) + g2(αsL) + αs g3(αsL) + · · · ] +D(v) (1.1)

where L = ln(1/v), C(αs) is an expansion in αs with constant coefficients that can be

inferred from fixed-order calculations and D(v) collects terms that are proportional to

powers of the shape variable v. The function g1 resums all the leading logs (LL) αn
sL

n+1,

while g2 resums the next-to-leading logs (NLL) αn
sL

n and so on.

There are two types of jet shape observables:1 global and non-global [13]. Global

observables are shape variables that are sufficiently inclusive over the whole final state phase

space. The resummation of such variables, e.g., thrust, heavy jet mass and broadening, up

to NLL accuracy have long been performed [14, 15]. The resultant resummed distributions

were then matched with NLO fixed-order results for a better agreement with measurements

over a wide range of values of the shape variable [14, 16]. In the recent past, the NNLL

+ NLO distribution has been obtained for energy-energy correlation [17], as well as NNLL

+ NNLO [18, 19] for the thrust distribution [20], both in e+e− annihilation processes in

QCD. Within the framework of Soft and Collinear Effective Theory (SCET) [21, 22], the

N3LL resummation for various event/jet variables have been performed [23, 24] and used,

after matching to NNLO, for a precise determination of the coupling constant αs. The

extracted value is consistent with the world average with significant improvements in the

scale uncertainty.

At hadron colliders, what one often measures instead is jets, which only occupy patches

of the phase space. The corresponding jet shape variables are thus non-inclusive, or non-

global, and the resummation becomes highly non-trivial even at NLL level. Consider, for

example, measuring the normalised invariant mass, ρ, of a subset of high-pt jets in multijet

events. A veto is applied on final state soft activity to keep the jet multiplicity fixed. Jets

are only defined through a jet algorithm, which generally depends on some parameters

1From the point of view of our calculations in this paper.
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such as the jet size R [25]. We are thus faced with a multi-scale (ρ, hard scale, veto, jet

size) problem where potentially large logs in the ratios of these scales appear. In addition

to the Sudakov leading logs, αn
s ln

n+1ρ, coming from independent primary gluon emissions,

there are large subleading non-global logs (NGLs) of the form αn
s ln

n(a/b), where a and b

are two different scales, coming from secondary2 correlated gluon emissions.

We argued in [3] that in the narrow well-separated jets limit, the non-global structure

of the ρ distribution, at hadronic colliders, becomes much like that of e+e− hemisphere jet

mass [13]. This is mainly due to the fact that non-global logs arise predominantly near the

boundaries of individual jets. We had therefore considered e+e− dijet events where only

one of the jets is measured while the other is left unmeasured. We found, in the anti-kt
algorithm [26], NGLs in the ratio ρQ/2R2E0 as well as 2E0/Q where E0 and Q are the

veto and hard scale respectively. These logs were completely missed out in [1, 2]. The

resummation of these NGLs to all-orders had been approximated to that of the hemisphere

mass [13] up to terms vanishing as powers of R. Furthermore, we pointed out, by explicitly

computing the jet mass (without jet veto) distribution under clustering, that different jet

definitions differ at NLL due to clustering-induced large logs. Here we compute these logs,

which we refer to as clustering logs (CLs), for the jet mass with a jet veto distribution.

Within the same context of e+e− multijet events, Kelley et al. [4] (version 1) proposed

that if one measures the masses of the two highest-energy jets, instead of a single highest-

energy jet as done in [3], then the resulting distribution is free from NGLs. This is clearly

not correct since the latter shape observable, which we shall refer to, following [27], as

threshold thrust,3 is still non-global. To clearly see this consider, for example, the following

gluonic configuration in e+e− dijet events at O(α2
s). A gluon k1 is emitted by hard eikonal

legs into the interjet energy region, Ω. k1 then emits a softer gluon k2 into, say the quark

jet region. This configuration then contributes to the quark jet mass. The corresponding

virtual correction, whereby gluon k2 is virtual, does not, however, contribute to the quark

jet mass. Hence, upon adding the two contributions one is left with a real-virtual mis-

cancellation resulting in logarithmic enhancement of the jet mass distribution. The latter

is what we refer to as NGLs. The other, antiquark, jet receives identical enhancement. Thus

the sum of the invariant masses of the two jets does indeed contain NGLs contribution.

The latter is actually twice that of the single jet mass found in [3].

Moreover, the authors of [4] (version 1) claimed that the anti-kt and Cambridge-Aachen

(C-A) [28] jet algorithms only differ at NNLL for the threshold thrust.4 From our calcu-

lation in [3] for the jet mass, which is not — with respect to clustering — much different

from the threshold thrust, we know that the latter statement is incorrect. Nonetheless, an

explicit proof will be presented below. Now, what is interesting in [4] and triggers the cur-

rent work, is that the total differential threshold thrust distribution computed in the C-A

algorithm and which contains neither NGLs nor CLs contributions, seemed to somehow

agree well with next-to-leading (NLO) program EVENT2 [29].

2These are emissions that are not radiated off primary hard legs.
3This name is more appropriate at hadron colliders where at threshold the final state jets are back-to-

back and there is no beam remnant [27].
4This claim has been removed from version 2.
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In this paper we shall shed some light on the result of [4] by considering the individual

colour, C2
F , CFCA and CFTRnf , contributions to the total differential distribution as well

as the effect of C-A clustering. We show that at O(α2
s) both NGLs and CLs are present

and that the above agreement with EVENT2 is, on one side merely accidental,5 and on the

other side due to the fact that the interval of the threshold thrust considered in [4] does

not correspond to the asymptotic region where large logs are expected to dominate. The

current work may be regarded as an extension to [3]. It includes: (a) computing the full

R dependence of the leading NGLs coefficient in the anti-kt, (b) computing the small R

approximation of the latter as well as the leading CLs coefficient in the C-A algorithm and

(c) checking our findings, as well as those of [3], against EVENT2. It turns out, from the

latter comparison, that the above approximation is actually valid for quite large values of R.

While the current paper was in preparation, a paper by Hornig et al. [5] appeared

in arXiv which studied NGLs in various jet algorithms, including anti-kt and C-A, within

SCET. On the same day, Kelley et al. published version 2 of [4] in which they realised that

this distribution is not actually free of NGLs and computed the corresponding coefficient

in the anti-kt algorithm. Our findings on NGLs, which were independently derived using

a different approach to both papers, confirm the results of both SCET groups. Clustering

effects on primary emission sector are unique to this paper.

The organisation of this paper is as follows. In section 2 we compute the full logarithmic

part of the LO threshold thrust distribution. We then consider, in section 3, the fixed-

order NLO distribution in the eikonal limit and compute the NGLs’ coefficient, in both

anti-kt and C-A jet algorithms. In the same section we derive an expression for the CLs’

first term as well. Note that our calculations for the C-A algorithm are performed in

the small R limit. Section 4 is devoted to LL resummation of our jet shape including an

exponentiation of the NGLs’ and CLs’ fixed-order terms. The latter exponentiation suffices

for our purpose in this paper, which is to compare the analytical distribution with EVENT2 at

NLO. It also provides a rough estimate of the size and impact of NGLs and CLs on the total

resummed distribution. In appendix C, the corresponding resummation in SCET [4, 27, 30]

is presented. Numerical distributions of the threshold thrust obtained using the program

EVENT2 are compared against analytical results and the findings discussed in section 5. In

light of this discussion, we draw our main conclusions in section 6.

2 Fixed-order calculations: O(αs)

After briefly reviewing the definition of the threshold thrust observable, or simply the jet

mass with a jet veto, presented in [4, 27], a general formula for sequential recombination

jet algorithms is presented. We then move on to compute the LO integrated distribution

of this shape variable. At this order, all jet algorithms are identical. Note that partons

(quarks and gluons) are assumed on-mass shell throughout.

5As we shall see in section 5, while individual colour contributions do not agree with EVENT2 their sum

does, but only in the shape variable range and for the jet-radius considered in [4]. Outside the latter range

or for other smaller jet-radii they do not agree.
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2.1 Observable and jet algorithms definitions

Consider e+e− annihilation into multijet events. First, cluster events into jets of size

(radius) R with a jet algorithm. After clustering, label the momenta of the two hardest

jets pR and pL and the energy of the third hardest jet E3. The threshold thrust is then

given by the sum of the two leading jets’ masses after events with E3 > E0 are vetoed [4],

τE0 =
m2

R +m2
L

Q2
=

ρR + ρL
4

. (2.1)

ρR and ρL are the jet mass fractions for the two leading jets respectively. We have shown

in [3] that the single jet mass fraction, ρ, is a non-global shape variable. Thus τE0 must

obviously be a non-global variable too.

A general form of sequential recombination algorithms at hadron colliders is presented

in [25]. The adopted version for e+e− machines may be summarised as follows [25]: starting

with a list of final state pseudojets with momenta pi,
6 energies Ei and angles θi w.r.t. c.m

frame, define the distances

dij = min
(
E2p

i , E2p
j

)2(1− cos θij)

R2
, diB = E2p

i , (2.2)

where p can be any (positive or negative) continuous number. At a given stage of clustering,

if the smallest distance is dij then i and j are recombined together. Otherwise if the smallest

distance is diB then i is declared as a jet and removed from the list of pseudojets. Repeat

until no pseudojets are left. The recombination scheme we adopt here is the E-scheme, in

which pairs (ij) are recombined by adding up their 4-momenta. Two pseudojets, i and j,

are merged together if

2(1− cos θij) < R2. (2.3)

The anti-kt, C-A and kt algorithms correspond, respectively, to p = −1, p = 0 and p = 1

in eq. (2.2). We shall only consider the first two algorithms, anti-kt and C-A in this paper.

Calculations for the inclusive kt are identical to those for the C-A algorithm as shown in [3].

With regard to notation, the jet-radius in [4], which we shall denote Rs, is given in terms

of R by

Rs = R2/4 . (2.4)

Here we work with Rs instead of R.

To verify that the definition (2.1) is just the thrust in the threshold (dijet) limit, hence

the name, we begin with the general formula of the thrust,

τ = 1−max
n̂

∑
i |pi.n̂|∑
i |pi|

, (2.5)

where the sum is over all final state 3-momenta p and the maximum is over directions

(unit vectors) n̂. In the threshold limit, enforced by applying a veto on soft activity, e+e−

6pµi may be the momenta of individual particles or each pµi may be the total momentum of the particles

whose paths are contained in a small cell of solid angle about the interaction point, as recorded in individual

towers of a hadron calorimeter.
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annihilates into two back-to-back jets and the thrust axis, the maximum n̂, coincides with

jet directions. At LO, an emission of a single gluon, k, that is collinear to, and hence

clustered with say, pR, produces the following contribution to the thrust

τ ≃ ERω

Q
(1− cos θkpR) +

ELω

Q
(1− cos θkpL) +

ω2

Q2
(1− cos θkpR)(1− cos θkpL) , (2.6)

where ER(L) is the energy of the hard leg pR(L), ω the gluon’s energy and we have discarded

an O(τ2) term. Recalling that the first two terms in the r.h.s. of eq. (2.6) are just the mass

fractions ρR and ρL, respectively, at LO and neglecting the third term (quadratic in ω) one

concludes that

τ ≃ τE0 . (2.7)

This relation can straightforwardly be shown to hold to all-orders.

2.2 LO distribution

In [3] we computed the LO distribution of the jet mass fraction, ρ, in the small R (Rs)

limit using the matrix-element squared in the eikonal approximation. In this section, we

use the full QCD matrix-element to restore the complete Rs dependence of the singular

part of the τE0 distribution. The general expression for the integrated and normalised τE0

distribution, or equivalently the τE0 shape fraction, is given by

Σ(τE0 , E0) =

∫ τE0

0
dτ ′E0

∫ E0

0
dE3

1

σ

d2σ

dτ ′E0
dE3

, (2.8)

where σ is the total e+e− → hadrons cross-section. The perturbative expansion of the

shape fraction Σ in terms of QCD coupling αs may be cast in the form

Σ = Σ(0) +Σ(1) +Σ(2) + · · · , (2.9)

where Σ(0) refers to the Born contribution and is equal to 1. The derivation of the first

order correction, Σ(1), to the Born approximation is presented in appendix A. The final

result reads

Σ(1)(τE0 , E0) =
CFαs

2π

[
− 2 ln2τE0 +

(
− 3 + 4 ln

Rs

1−Rs

)
lnτE0

]
Θ

(
Rs

1 +Rs
− τE0

)
+

+
CFαs

2π

[
− 1 +

π2

3
− 4 ln

Rs

1−Rs
ln
2E0

Q
+ fE0(Rs)

]
, (2.10)

where we have used eq. (A.2) to change the normalisation in eq. (2.8) from σ to σ0. The

reason for this change is that the matrix-element we have used in EVENT2 is normalised to

the Born cross-section.7 The only difference between the two normalisations at O(αs) is

in the one-loop constant. If we normalised to σ we would have found CF (−5/2 + π2/3)

instead of CF (−1 + π2/3). The function fE0(Rs) is given by

fE0(Rs) = −2 lnRs ln
Rs

1−Rs
+2Li2(Rs)− 2Li2(1−Rs) +

8E0

Q
ln

Rs

1−Rs
+O

(
E2

0

Q2

)
. (2.11)

7Note that there are three sets of matrix-elements included in the program, of which only one is not

normalised to the Born cross-section.
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Notice that eqs. (2.10) and (2.11) are identical to eqs. (1) and (2) of [4] v1 and the sum of

the αs parts of eqs. (65) and (66) in [5] provided that the jet radius in the latter, which

we refer to as R̄, is related to Rs by: tan2(R̄/2) = Rs/(1 − Rs). It is worthwhile to note

that in the limit Rs → 1/2 the τE0 distribution (2.10) reduces to the well known thrust

distribution [31] with upper limit τ < 1/3. For Rs < 1/2 the threshold thrust distribution

includes, in addition to thrust distribution, the interjet energy flow distribution [32] too,

Σ
(1)
E flow(E0) =

CFαs

2π

[
− 4 ln

Rs

1−Rs
ln

(
2E0

Q

)
+O

(
E0

Q

)]
. (2.12)

Here the interjet region (rapidity gap), referred to in literature as ∆η, is defined by the

edges of the jets. Specifically, it is related to the jet-radius Rs by

∆η = −ln

(
Rs

1−Rs

)
. (2.13)

The important features of the τE0 distribution that are of concern to the present paper

are actually contained in the second order correction term Σ(2), which we address in the

next section.

3 Fixed-order calculations: O(α2

s
)

We begin this section by recalling the formula of the matrix-element squared for the e+e−

annihilation into two gluons, e+e− −→ q(pa) + q̄(pb) + g1(k1) + g2(k2) in the eikonal

approximation. Let us first define the final state partons’ 4-momenta as

pa =
Q

2
(1, 0, 0, 1) ,

pb =
Q

2
(1, 0, 0,−1) ,

k1 = ω1(1, sin θ1 cosφ1, sin θ1 sinφ1, cos θ1) ,

k2 = ω2(1, sin θ2 cosφ2, sin θ2 sinφ2, cos θ2) , (3.1)

where the angles θi are w.r.t. pa direction (which lies along the z-axis) and we assume the

energies to be strongly ordered: Q ≫ ω1 ≫ ω2. This is so that one can straightforwardly

extract the leading NGLs. Contributions from gluons with energies of the same order,

Q ≫ ω1 ∼ ω2, are subleading and hence beyond our control. The recoil effects are negligible

in the former regime and are thus ignored throughout. The eikonal amplitude reads [11],

Sab(k1, k2) = C2
FWP + CFCAWS , (3.2)

where WP and WS stand for primary and secondary emission amplitudes respectively. If we

define the antenna function wij(k) = 2(ij)/(ik)(kj) then the latter amplitudes are given by

WP = wab(k1)wab(k2) =
16

ω2
1ω

2
2 sin θ

2
1 sin θ

2
2

, (3.3)
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and

WS =
wab(k1)

2

[
wa1(k2) + wb1(k2)− wab(k2)

]
,

=
8

ω2
1ω

2
2 sin θ

2
1 sin θ

2
2

[
1− cos θ1 cos θ2

1− cos θ12
− 1

]
. (3.4)

For completeness, the two-parton phase space is given by

dΦ2(k1, k2) =

[ 2∏

i=1

ωidωi
sin θidθidφi

2π

](
αs

2π

)2
. (3.5)

It is worth noting that the primary emission, WP , contribution to the τE0 distribution is

only fully accounted for by the single-gluon exponentiation in the anti-kt algorithm case.

If the final state is clustered with a jet algorithm other than the latter, Wp integration over

the modified phase space, due to clustering, leads to (see below) new logarithmic terms that

escape the naive single-gluon exponentiation. On the other hand, the secondary amplitude

WS contribution is completely missing from the latter Sudakov exponentiation in both

algorithms.

First we outline the full α2
s structure of the τE0 distribution up to NLL level in the

anti-kt including the computation of the NGLs coefficient. After that, we investigate the

effects of final state partons’ clustering on both primary and secondary emissions. The

C-A algorithm is taken as a case study to illustrate the main points. Calculations where

the final state is clustered with other jet algorithms should proceed in an analogous way

to the C-A case.

3.1 τE0 distribution in the anti-kt algorithm

The anti-kt jet algorithm works, in the soft limit, like a perfect cone. That is, a soft gluon

ki is clustered to a hard parton pj if it is within an angular distance 2
√
Rs (= R), from

the axis defined by the momentum of the latter. This feature of the algorithm greatly

simplifies both fixed-order and resummation calculations. Considering all possible angular

distances between (k1, k2) and (pa, pb) we compute below the corresponding contributions

to primary and secondary pieces of the τE0 distribution. Note that we use LL and NLL

to refer to leading and next-to-leading logs of τE0 (and not 2E0/Q) in the exponent of the

resummed distribution (discussed in section 4).

3.1.1 C2
F term

The LL contribution to the τE0 distribution comes from diagrams corresponding to two-

jet final states. That is diagrams where both real gluons, k1 and k2, are clustered with

the hard partons pa and pb. Diagrams where one of the two gluons is in the interjet

region, and hence not clustered with either hard parton, contribute at NLL level. Other

gluonic configurations lead to contributions that are beyond our NLL control and thus not

considered. The C2
F part of the O(α2

s) τE0 distribution may be found by expanding the

exponential of the LO result (2.10). The full expression including the running coupling

– 8 –
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(a)

k2

k1 (b)

k2 k1

(c)

k2

k1

Figure 1. Schematic representation of gluonic arrangement giving rise to NGLs. We have only

shown the NGLs contributions to the pR-jet. Identical contributions apply to the pL-jet.

at two-loop in the MS will be presented in section 4. For the sake of comparison to the

clustering case, we only report here the the LL term, which reads

Σ
(2)
P (τE0 , E0) = 2C2

F

(
αs

2π

)2
ln4(τE0) . (3.6)

Next we consider the derivation of the CFCA contribution to the τE0 distribution

including the full jet-radius dependence.

3.1.2 CFCA term and NGLs

In the anti-kt algorithm the non-global logarithmic contribution to the τE0 distribution

is simply the sum of that of the single jet mass fraction, ρ, with a jet veto distribution

studied in [3].8 This is in line with the near-edge nature of non-global enhancements. In

two-jet events, the well separated9 jets receive the latter enhancements independently of

each other. Possible final state gluonic arrangements relevant to NGLs at second order are

depicted in figure 1. The all-orders resummed NGLs distribution may be written in the

form [13]

S(t) = 1 + S2 t
2 + · · · = 1 +

∑

n=2

Sn t
n, (3.7)

with t being the evolution parameter defined in terms of the coupling αs by

t =
1

2π

∫ kmax
t

kmin
t

dkt
kt

αs(kt) ,

=
αs

2π
ln

(
kmax
t

kmin
t

)
, (3.8)

where the exact form of the upper and lower limits, kmax
t and kmin

t , depend on the gluonic

configuration and the second line in (3.8) assumes a fixed coupling. To make contact with

interjet energy flow calculations [33, 34], we work in this particular section with hadronic

variables (kt, η, φ) instead of e+e− variables (E, θ, φ). The pseudo-rapidity η and transverse

momentum kt (both measured w.r.t. incoming beam direction) are related, respectively, to

8Here we go beyond the small Rs approximation assumed in [3].
9Such that the jet-radius is much smaller than the jets’ separation; Rs ≪ (1− cos θij), where θij is the

angle between jets i and j.
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the angle and energy by10

η = −ln

(
tan

θ

2

)
, E = kt cosh(η) (3.9)

Using the secondary emissions eikonal amplitude (3.4) in terms of the new variables, the

NGLs coefficient S2 reads

S2 = −4CFCA

∫
dΦ(2)

[
cosh(η1 − η2)

cosh(η1 − η2)− cos(φ1 − φ2)
− 1

]
, (3.10)

where the phase space measure, dΦ(2), is of the general form given in eq. (3.5) with the

kt integrals included in the definition of t (3.8) and new restrictions coming from the jet

shape definition. For configuration (a) in figure 1, it reads

dΦ(2)
a =

∫ ∆η
2

−∆η
2

dη1
dφ1

2π
× 2

∫ +∞

∆η
2

dη2
dφ2

2π
Θ

(
ln

kt2
QτE0

− η2

)
Θ
(
E0 − kt1 cosh(η1)

)
, (3.11)

where the interjet (gap) region, ∆η is given in eq. (2.13). Due to boost invariance of

rapidity variables the latter region has been centred at η = 0. Moreover, the factor 2

in (3.11) accounts for the pL-jet contribution. Since neither the integrand nor the integral

measure in eq. (3.10) depends explicitly on the azimuthal angles (φ1, φ2), we use our

freedom to set φ1 = 0, average over φ2 and then perform the rapidity integration. The

resultant expression for S2 in configuration (a) at the limit τE0 → 0 reads,

S2,a = −4CFCA

[
π2

12
+ ∆η2 −∆η ln(e2∆η − 1)− 1

2
Li2(e

−2∆η)− 1

2
Li2(1− e2∆η)

]
(3.12)

An identical expression was found for the NGLs’ coefficient in the interjet energy flow dis-

tribution [33].11 The fact that S2,a is the same for τE0 and interjet energy flow distributions

means that the NGLs’ coefficient only depends on the geometry of the phase space and

not on the observable itself. This is of course only true in the limit where the jet shape

variable goes to zero. The difference between the jet shape variables amounts only to a

difference in the logarithm’s argument.

It should be understood that there are Θ-function constraints on kt1 and kt2 resulting

from rapidity integrations not explicitly shown in eq. (3.12). Performing the remaining

trivial kt integrals yields

t2a =

(
αs

2π

)2
ln2

(
2E0Rs

QτE0

)
Θ

(
2E0

Q
− τE0

Rs

)
, (3.13)

where a factor of 1/2 has been absorbed in S2,a (3.12).

Now consider configuration (b) in figure 1. Adding up the corresponding virtual cor-

rection, one obtains the following phase space constraint

Θ

(
η1 − ln

(
kt1
QτE0

))
Θ

(
kt2 −

E0

cosh(η2)

)
. (3.14)

10Otherwise, one can redefine the partons’ 4-momenta in terms of η and kt and use the antenna function

expressions of WP and WS to rewrite them in terms of the hadronic variables.
11Our jet-radius, Rs, is given in terms the parameter c, used in [33], by the relation: 1− c = 2Rs.
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The phase space measure dΦ
(2)
b is analogous to dΦ

(2)
a in (3.11) with 1 ↔ 2 and the

two Θ-functions in (3.11) replaced by those in eq. (3.14). The limits on η1 are then

+∞ > η1 > max[∆η/2, ln(kt1/QτE0)]. If we impose the constraint given in eq. (3.13),

i.e., 2E0/Q ≫ τE0/Rs, then the lower limit becomes η1 > ln(kt1/QτE0). The NGLs coeffi-

cient S2,b thus reads

S2,b = −4CFCA

∫ +∞

ln
kt1

QτE0

dη1

∫ ∆η
2

−∆η
2

dη2[coth(η1 − η2)− 1] , (3.15)

where we have averaged the eikonal amplitude Ws over φ2 and moved kts’ Θ-functions onto

the integral of the evolution parameter tb, which is given at α2
s by

t2b =

(
αs

2π

)2
ln2

(
2E0

Q

)
Θ

(
2E0

Q
− τE0

Rs

)
. (3.16)

The S2,b t
2
b contribution is then beyond our NLL accuracy. In fact, S2,b vanishes in the

limit τE0 → 0 as can be seen from eq. (3.15).

The last contribution to NGLs at O(α2
s) comes from configuration (c) in figure 1. Upon

the addition of the virtual correction, one is left with the constraint

Θ
(
QτE0 − kt1e

−η1
)
Θ
(
kt2e

+η2 −QτE0

)
. (3.17)

The corresponding NGLs coefficient and evolution parameter read

S2,c = −4CFCA

∫ +∞

max
[
ln

kt1
QτE0

,∆η
2

] dη1
∫ −∆η

2

−ln
kt2

QτE0

dη2[coth(η1 − η2)− 1] , (3.18)

t2c =

(
αs

2π

)2
ln2

(
τE0 e

∆η/2
)
. (3.19)

Since we have assumed strong ordering, kt1 ≫ kt2, then the lower limit of η1 in (3.18) is

ln(kt1/QτE0). Consequently the coefficient S2,c vanishes in the limit τE0 → 0. For this

reason, this configuration will not be considered.

We conclude that in the regime 2E0/Q ≫ τE0/Rs, the only non-vanishing contribution

to the NGLs comes from the phase space configuration (a). Other configurations, (b) and

(c), vanish in the limit τE0 → 0. Hence

S2 = S2,a , t = ta . (3.20)

In figure 4 we plot S2 as a function of the jet-radius Rs. At the asymptotic limit ∆η → +∞
(or equivalently Rs → 0) S2 saturates at −CFCA 2π2/3. This value (or rather half of it)

is used as an approximation to S2 in [3]. From eq. (3.12), we can see that the correction

to such an approximation is less than 10% for jet-radii smaller than Rs ∼ 0.28, which is

equivalent to R ∼ 1. Furthermore, eq. (3.12) confirms the claim made in the same paper

that NGLs do not get eliminated when the jet-radius approaches zero. One may naively

expects that when the jet size shrinks down to 0 (Rs → 0) there is no room for gluon k2
to be emitted into. This means that τE0 becomes inclusive and hence S2 vanishes. To the

contrary, S2 reaches its maximum in this limit.
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Few important points to note:

• If we choose to order the energy scales in the Θ-functions of (3.13) and (3.16) the op-

posite way, i.e., 2E0/Q ≪ τE0/Rs then configuration (b) becomes leading, in NGLs,

while the contribution from configuration (a) vanishes. That is t2b in eq. (3.16)

becomes

t2b =

(
αs

2π

)2
ln2

(
2E0Rs

QτE0

)
Θ

(
τE0

Rs
− 2E0

Q

)
, (3.21)

and S2,b = S2,a in eq. (3.12). We do not consider this regime here though.

• If, on the other hand, we do not restrict ourselves to any particular ordering of the

scales, as it is done in refs. [5] and [4], then both configurations (a) and (b) would

contribute to the leading NGLs. Adding up t2a, in (3.13), and t2b , in (3.21), the Θ-

functions sum up to unity and one recovers the result reported in the above mentioned

references. Notice that it is a straightforward exercise to show that eq. (3.12) is equal

to fOL + fOR given in eq. (28) of [5] in the case where RL = RR = R (= R̄ given in

section 2). Moreover, the coefficient fCA

NGL given in eq. (B2) of [4] v2 is related to S2,a

by fCA

NGL = −8× S2,a.

• Setting the cut-off scale E0 ∼ τE0Q in ta, eq. (3.13), and tb, eq. (3.21), would diminish

NGLs coming from both configurations (a) and (b) and the threshold thrust becomes

essentially a global observable. This is unlike the observation made in the study of

the single jet with a jet veto distribution [3] where the above choice of E0 kills the

NGLs near the measured jet but introduces other equally significant NGLs near the

unmeasured jet.

In the next subsection we recompute both C2
F and CFCA contributions to the τE0

distribution under the C-A clustering condition. For the CFCA term, we only focus on

configuration (a) and do not attempt to address the subleading contributions coming from

configurations (b) and (c).

3.2 τE0 distribution in the C-A algorithm

The definition of the C-A algorithm is given in eq. (2.2) with p = 0. Unlike the anti-kt
algorithm, which successively merges soft gluons with the nearest hard parton, the C-A al-

gorithm proceeds by successively clustering soft gluons amongst themselves. Consequently,

a soft parton may in many occasions be dragged into (away from) a jet region and hence

contributing (not contributing) to the invariant mass of the latter. The jet mass, and

hence τE0 , distribution is then modified. It is these modifications, due to soft-gluons self-

clustering, that we shall address below.

Any clustering-induced contribution to the τE0 distribution will only arise from phase

space configurations where the two soft gluons, k1 and k2, are initially (that is, before

applying the clustering) in different regions of phase space. Configurations where both

gluons are within the same jet region, gluon k1 is in one of the two jet regions and gluon

k2 is in the other or both gluons are within the interjet region are not altered by clustering
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C−Aalg

k1

k2

k1 + k2

k2k1

k1

k2
k1

k2

virtual corrections

+ + +

Figure 2. A schematic representation of a three-jet final state after applying the C-A algorithm on

real emission along with virtual correction diagrams. The two gluons are clustered in the E-Scheme

(see section 2). Identical diagrams hold for the pL-jet.

and calculations of the corresponding contributions will yield identical results to the anti-kt
algorithm. We can therefore write the τE0 distribution in the C-A algorithm, at O(α2

s), as

Σ
(2)
C−A(τE0 , E0) = Σ

(2)
anti−kt

(τE0 , E0) + δΣ(2)(τE0 , E0) . (3.22)

It is the last term in eq. (3.22) that we compute in the present subsection. Starting at

configurations with two gluons in two different regions, the jet algorithm either:

(A) recombines the two soft gluons into a single parent gluon if the clustering condi-

tion (2.3) is satisfied. The latter parent gluon will either be in one of the two jet

regions or out of both of them (and hence in the interjet region).

(B) or leaves the two gluons unclustered, if the clustering condition is not satisfied. This

case is then identical to the anti-kt one but with a more restricted phase space. This

restriction comes from the fact that for the two gluons to survive the clustering they

need to be sufficiently far apart. Quantitatively, their angular separation should satisfy

the relation

(1− cos θ12) > 2Rs . (3.23)

Below, we examine the contributions from configurations (A) and (B) to the C2
F and

CFCA colour pieces of the τE0 distributions. All calculations are performed in the small

Rs approximation using the e+e− variables (ω, θ, φ).

3.2.1 C2
F term

Consider the gluonic configuration in (A) where the harder gluon k1 is in the interjet region

and the softer gluon k2 is in the pR-jet region. We account for the pL-jet region through

multiplying the final result by a factor of two. Applying the C-A algorithm (2.2), the

smallest distance is dmin = d12. Hence gluon k1 pulls gluon k2 out of the pR-jet region

and form a third jet, as depicted in figure 2. The latter is then vetoed to have energy less
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k1 + k2
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k1k1
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k1
k2

virtual corrections

+ + +

Figure 3. A schematic representation of a two-jet final state after applying the C-A algorithm on

real emission along with virtual correction diagrams. The two gluons are clustered in the E-Scheme

(see section 2). Identical diagrams hold for the left (pL-) jet.

than E0. The corresponding clustering angular function, in the small angles limit, reads

ΘC−A(1, 2) = Θ(θ21 − 4Rs)Θ(4Rs− θ22)Θ(θ22 − θ212) ,

= Θ(4θ22 cos
2φ2 − θ21)Θ(θ21− 4Rs)θ(4Rs− θ22)Θ

(
θ22−

Rs

cos2 φ2

)
Θ

(
cosφ2 −

1

2

)
.

(3.24)

Adding up the corresponding virtual corrections, where one or both of the gluons are

virtual, one obtains the following constraint on the phase space

Θ(E0 − ω1 − ω2)−Θ(E0 − ω1) + Θ

(
ω2

2Q
θ22 − τE0

)
. (3.25)

Since we are working in the strong energy-ordered regime, ω1 ≫ ω2, only the last Θ-

function survives. The new contribution to the C2
F piece of the τE0 distribution is then

given by

CP
2 t2p = 8

∫ Q/2

QτE0
2Rs

dω2

ω2

∫ Q/2

ω2

dω1

ω1

∫ π
3

−π
3

dφ2

2π

∫ 2θ2 cosφ2

2
√
Rs

dθ1
θ1

∫ Rs/ cosφ2

2
√
Rs

dθ2
θ2

,

= 0.73C2
F

(
αs

2π

)2
ln2

(
Rs

τE0

)
. (3.26)

This result is identical to12 that found in [3] for a single jet mass (without a jet veto) distri-

bution. The reason for this is that the clustering requirement only affects the distribution

to which the softest gluon contributes. Which is in both cases the jet mass distribution.

The second possible configuration that corresponds to case (A) is where gluon k1 is

in, say, the pR-jet region and the softer gluon k2 is in the interjet region. If the two gluons

are clustered, i.e., gluon k1 pulls in gluon k2, then upon adding real emission and virtual

correction diagrams, depicted in figure 3, one obtains the following phase space constraint

−Θ

(
τE0 −

ω1

2Q
θ21

)
Θ

(
ω2

2Q
θ22 − τE0

)
+Θ(ω2 − E0) , (3.27)

12It is actually twice.
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where we have assumed small angles limit and employed the LL accurate approximation

Θ

(
τE0 −

ω1

2Q
θ21 −

ω2

2Q
θ22

)
≃ Θ

(
τE0 −

ω1

2Q
θ21

)
Θ

(
τE0 −

ω2

2Q
θ22

)
. (3.28)

Given the fact that ω1 ≫ ω2 and θ1 and θ2 must be close to each other to be clustered, i.e.,

they should satisfy condition (3.23), then the first two Θ-functions in eq. (3.27) are sub-

stantially suppressed and one is only left with the veto on ω2. Applying the C-A algorithm

one obtains an identical clustering function to eq. (3.24). Hence the CLs’ coefficient for

this configuration is equal to CP
2 given in eq. (3.26). That is CP

2 = 0.73C2
F . The evolution

parameter does however change. It is now given, at O(α2
s), by

t
′2
p =

(
αs

2π

)2
ln2

(
2E0

Q

)
. (3.29)

This contribution is then beyond our NLL control. Note that the CLs contribution in

eq. (3.29) is equal to what one would find for interjet energy flow distribution provided

that the rapidity gap is defined through eq. (2.13).

Let us now turn to case (B) where the two gluons are not merged together. If gluon k1
is in the interjet region and gluon k2 is in one of the two jet regions then the corresponding

phase space constraint reads

Θ

(
2QτE0

ω2
− θ22

)
Θ(ω1 − E0)[1−ΘC−A(1, 2)] . (3.30)

The limits on θ2-integral are then given by: min(4Rs, 2QτE0/ω2) > θ22 > 0. Imposing the

constraint 2E0/Q ≫ τE0/Rs, it is straightforward to see that the above constraint yields

NNLL contribution and thus beyond our control. Similarly, the configuration where gluon

k1 is in the jet region and gluon k2 is in the interjet region yields subleading logs.

Hence the C2
F piece of the clustering-induced correction term δΣ(2), in eq. (3.22), up

to NLL, reads

δΣ(2)(τE0 , E0) = CP
2 t2p . (3.31)

Next we compute the CFCA piece of δΣ(2).

3.2.2 CFCA term

Consider the gluonic configuration (a) depicted in figure 1. Applying the C-A clustering

algorithm on the latter yields two possibilities. Namely the two gluons are either clustered

or not. The former case completely cancels against virtual corrections and thus does not

contribute to NGLs. It is when the two gluons survive the clustering, the latter case, that

a real-virtual mismatch takes place and NGLs are induced. The corresponding evolution

parameter is equal to t of the anti-kt case, eq. (3.20). The clustering condition is simply

one minus that in eq. (3.24). The NGLs’ coefficient can then be written, using the eikonal

amplitude (3.4), as

SC−A
2 = S2 + δΣ

(2)
CFCA

, (3.32)
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Figure 4. Non-global coefficient S2 in the anti-kt and C-A algorithms.

where S2 is given in eq. (3.20) and

δΣ
(2)
CFCA

= 8CFCA

∫ 2θ2 cosφ2

√
Rs

dθ1
sin θ1

∫ 2
√
Rs

√
Rs

cosφ2

dθ2
sin θ2

∫ π/3

−π/3

dφ2

2π

[
1− cos θ1 cos θ2

1− cos θ12
− 1

]
×

×Θ

(
Rs

τE0 cosφ2
− Q

2ω2

)
. (3.33)

We can perform the θ1-integral analytically and then resort to numerical methods to evalu-

ate the remaining θ2 and φ2 integrals. The result, in terms of the jet-radius Rs, is depicted

in figure 4. −SC−A
2 saturates at around 0.44× 2π2/3CFCA ∼ 2.92CFCA, i.e., a reduction

of about 55% in S2. This is due to the fact that for the two gluons to survive clustering

they need to be sufficiently far apart (θ12 > R = 2
√
Rs). The dominant contribution to

S2 comes, however, from the region of phase space where the gluons are sufficiently close.

This corresponds to the collinear region of the matrix-element; θ1 ∼ θ2. Hence the further

apart the two gluons get from each other, the less (collinear) singular the matrix becomes

and thus the smaller the value of NGLs’ coefficient.

Note that the C-A coefficient SC−A
2 = 2× f

C/A
OR , where f

C/A
OR is given by eq. (38) in [5],

at least in the small jet-radius region. Noticeably, the two results coincide at both limits

Rs → 0 and Rs → 1/2 (equivalently R → 0 and R →
√
2 in [5]). In fact, the coefficient

SC−A
2 is valid, as we shall see in section 5, for quite large jet-radii; up to Rs ∼ 0.3 (equivalent

to R ∼ 1 in [5]).

The fixed-order NLL logarithmic structure of the τE0 distribution should by now be

clear for both jet algorithms. In order to assess the phenomenological impact of NGLs and

clustering requirement on the final cross-section, it is necessary to perform an all-orders

treatment, which we do below.
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4 Resummation of τE0
distribution

Resummation, which is essentially the organisation of large logs arising from soft and/or

collinear radiation to all-orders, is based on the factorisation property of the pQCD matrix-

element squared for multiple gluon radiation. This is only true for independent primary

emissions though. Including secondary correlated emissions, the picture dramatically

changes and the resummation can only be performed at some limits, e.g. large-Nc limit [35].

In the standard method [14, 36, 37], resummation is carried out in Mellin (Laplace) space

instead of momentum space. Only at the end does one transform the result back to the

momentum space through (inverse Mellin transform),

ΣP (τE0 , E0) =

∫
dν

2ıπν
eντE0

∫
dµ

2ıπµ
eµE0 Σ̃P (ν

−1, µ−1) , (4.1)

where P stands for primary emission. With regard to non-global observables, the important

point to notice is that the resummation of NGLs is included as a factor multiplying the

single-gluon Sudakov form factor, ΣP , [13]

Σ(τE0 , E0) = ΣP (τE0 , E0)S(t) . (4.2)

In this section, we first consider resummation of τE0 distribution in events where the final

state jets are defined in the anti-kt algorithm and, second, discuss the potential changes to

the resummed result when the jets are defined in the C-A algorithm instead.

4.1 Resummation with anti-kt algorithm

As stated in the introduction and proved in section 2, the τE0 observable is simply the sum

of the invariant masses of the two highest-energy (or highest-pt for hadron colliders) jets.

Therefore the τE0 resummed Sudakov form factor is just double that computed in [3], for

a single jet mass. That is, up to NLL level we have

ΣP (τE0 , E0) =
exp

[
− 2

(
RτE0

(τE0) + γER′
τE0

(τE0)
)]

Γ
(
1 + 2R′

τE0
(τE0)

) exp[−RE0(E0)] . (4.3)

The full derivation of (4.3) as well as the resultant expressions of the various radiators are

presented in the small jet-radius limit in ref. [3]. To restore the full Rs dependence we make

the replacement R2/ρ 7→ Rs/(τE0(1− Rs)) such that when expanded eq. (4.3) reproduces

at O(αs) the LO distribution (2.10).

To account for NGLs at all-orders in αs, it is necessary to consider an arbitrary en-

semble of energy-ordered, soft wide-angle gluons that coherently radiate a softest gluon

into the vetoed region of phase space [13].13 The analytical resummation of NGLs is then

plague with mathematical problems coming from geometric and colour structure of the

gluon ensemble. Two methods have been developed to address this issue: a numerical

Monte Carlo evaluation [13, 33] and a non-linear evolution equation that resums single

13In our case the vetoed region is the jet region. Due to symmetry, we can choose one jet region and

multiply the final answer by a factor of two.
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logs (SL) at all-orders [38]. Both methods are only valid in the large-Nc limit. In the latter

limit and for small values of the jet-radius Rs, we argued in [3] that the form of S(t) should

be identical to that found in the hemisphere jet mass case [13]. Since in the present paper

we are not confined to the small Rs limit, we need to modify and re-run the Monte Carlo

algorithm, presented in [13], for medium and large values of the jet-radius should we seek

to resum the τE0 NGLs distribution. The latter task is, however, beyond the scope of this

paper. Here, we are only aiming at comparing the analytical results with fixed-order NLO

program EVENT2. It suffices in this case to simply exponentiate the first NGLs’ term in

eq. (3.20),

S(t) = exp(S2 t
2) . (4.4)

The distribution (4.2) is of the generic form given in eq. (1.1). Explicitly, it reads

Σ(τE0 , E0) =

(
1 +

∞∑

k=1

Ck

(
αs

2π

)k)
exp

[ ∞∑

n=1

n+1∑

m=0

Gnm

(
αs

2π

)n
L̃m

]
+Dfin(τE0) , (4.5)

where Ck is the kth loop-constant, L̃ = ln(1/τE0) and Dfin ≡ D, which vanishes in the

limit τE0 → 0. In order to determine the coefficients Gnm at NLO and up to NLL, we need

to expand the radiators, as well as the Γ function, in eq. (4.3) up to second order in the

fixed coupling αs = αs(Q). The results are presented in appendix. B. Although we have

provided the NNLL coefficient, G21 in eq. (B.1), we do not claim that it is under control.

Nonetheless, it does capture all Rs-dependent terms.14 The missing terms fromG21 include:

a) coefficients of L̃ which are independent of ln(Rs/(1−Rs)) for all colour channels. These

can be borrowed from thrust distribution [20, 39, 40]. b) Although G21 has a subleading

NGLs’ term in the CFCA colour channel, which comes solely from the expansion of t

(eq. (3.20)), the full expression in this channel as well as in the CFTRnf channel is still

missing. To properly compute the latter, one has to extend both the matrix-elements (3.2)

and the phase space to include hard emission. Such a task will be considered elsewhere. It is

worthwhile to mention that full subleading NGLs have recently been computed analytically

within SCET framework for the hemisphere mass variable [39, 40].15 The two-loop constant

C2 has also been computed for the latter variable as well as the thrust [20, 39].

To make contact with SCET calculations, we provide in appendix C the full formula

of the Sudakov form factor for the τE0 primary distribution including determination of the

Gnm coefficients in SCET.

Next we comment on the form of resummation when final state jets are defined in the

C-A algorithm.

4.2 Resummation with C-A algorithm

With regard to primary emission piece, resumming logs induced by clustering is a cum-

bersome but doable task. It has been performed, for example, in [41] for interjet energy

14As can be seen from comparison to the SCET result (appendix C), which only contains the primary

emission piece and is valid to NNLL.
15Recall that for the leading NGLs the corresponding coefficient for the hemisphere mass distribution

corresponds to setting Rs = 0 in S2,a (3.12).
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flow distribution where final state jets are defined in the inclusive kt algorithm. The final

result of the resummed radiator was written as an expansion in the jet-radius and the

first four terms were determined. For secondary emissions, the resummation of NGLs has

only been possible numerically and in the large-Nc limit. It has again been carried out for

the above mentioned energy flow distribution in [34]. We expect that analogous, to the

interjet energy flow, analytical treatment and numerical evaluation can be achieved for the

resummation of CLs and NGLs, respectively, for the τE0 variable. We postpone this work

to future publications.

For the sake of comparing to EVENT2, it is sufficient to simply exponentiate the fixed-

order terms SC−A
2 and CP

2 , just as we did with the anti-kt algorithm case. Due to the

fact that logarithmic contributions induced by clustering arise mainly from soft wide-angle

gluons, we expect them — clustering-induced logs — to factorise from the primary form

factor at all-orders. Therefore, the resummed distribution, whereby clustering is imposed

on the final state, may be written as

Σ(τE0 , E0) = ΣP (τE0 , E0)S
C−A(t)CP (tp) , (4.6)

where SC−A is of the form (4.4) with S2 replaced by SC−A
2 and, in analogy with the NGLs’

factor, the CLs’ factor reads

CP (tp) = exp(CP
2 t2p) , tp =

∫ Q/2

QτE0
/2Rs

dkt
kt

αs(kt)

2π
. (4.7)

In figure 5 we plot the resummed differential distributions, dΣ(τE0 , E0)/dτE0 =

(1/σ0)dσ/dτE0 , computed from eq. (4.3) for the anti-kt algorithm and from eq (4.6) for the

C-A algorithm at different values of Rs. The dependence on E0 has been discussed in [3]

where the all-orders NGLs resummed expression was employed. There are several points

to note. Firstly the effect of NGLs is a suppression of the total cross-section relative to the

primary result. This suppression is diminished by decreasing the value of Rs. For example,

at E0 = 0.1Q the Sudakov peak is reduced due to NGLs by about 4.02%, 3.42%, 2.62%

and 1.35% for Rs = 0.30, 0.12, 0.04 and 0.0025 (equivalent to R = 1.1, 0.7, 0.4 and 0.1)

respectively. These values are only meant to give an idea of the effect of varying the jet-

radius parameter on both NGLs and CLs corrections to the total cross-section, since we are

only working with an approximation of the latter and not the full all-orders result. It has

been shown in [34], for the interjet energy distribution, that the NGLs resummed factor

S(t) at all-orders is much smaller (thus larger suppression of primary-only result) and of

different shape, as a function of t, to the fixed-order exponentiated result.

Secondly the effect of clustering is reducing the phenomenological significance of NGLs.

This reduction becomes larger, hence the NGLs suppression on the Sudakov peak becomes

smaller, as one moves towards smaller values of Rs. For the same jet veto E0 = 0.1Q, the

Sudakov peak is reduced by 0.62%,16 0.80%, 0.63% and 0.22% for Rs = 0.30, 0.12, 0.04 and

0.0025 respectively (values are only an estimate of the impact of clustering). Comparing to

16The discrepancy at Rs = 0.30 is due to the fact that we have employed the small angles approximation

in the C-A calculations.
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Figure 5. Comparison of analytical resummed differential distribution dΣ/dτE0
where: only pri-

mary term included (4.3), primary and NGLs factor included in the anti-kt algorithm (4.3) and

primary + NGLs + CLs factors included (4.6). The plots are shown for various jet-radii with a jet

veto E0 = 0.1Q. The coupling is taken at the Z mass to be αs(MZ) ≃ 0.118. The plots are only

meant to give a rough estimate of the effects of NGLs in non-clustered as well as clustered final

states.

the anti-kt case, we see that the effect of NGLs has been reduced by more than 70% for Rs =

0.12, 0.04 and Rs = 0.0025. This observation suggests that instead of resumming NGLs,

which is a daunting task even numerically, one should, perhaps, attempt at eliminating

them at each order through requiring final state clustering and looking for the optimal

value of the jet-radius, and may be the jet veto too, such that non-global corrections are

wiped out. In our rough approximation, we find that NGLs are completely eliminated,

leaving only the primary Sudakov form factor, at Rs . 3× 10−5 (equivalent to R . 0.01).

Although this value is very small and not of any practical significance, including the full all-

orders resummed results for both NGLs and CLs might result in practically larger values.

Whether this is indeed the case remains to be investigated. If it turns out that the optimal

radius is relatively large, 0.04 . Rs (0.4 . R), then final state clustering will be the key to

solve the NGLs subtlety of non-global observables.

In the next section, we compare our analytical calculations to EVENT2. In particular,

we focus on establishing the presence of NGLs and CLs in the τE0 distribution at NLO.
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5 Numerical results

The τE0 numerical distribution has been computed using the fixed-order NLO QCD pro-

gram EVENT2. The program implements the Catani-Seymour subtraction formalism for

NLO corrections to two- and three-jet events observables in e+e− annihilation. Final state

partons have been clustered into jets using the FastJet library [42]. The latter provides an

implementation of the longitudinally invariant kt, Cambridge-Aachen (CA) and anti-kt jet

finders along with many others. Cone algorithms such as SISCone [43] are also implemented

as plugins for the package. It should be noted that the e+e− version of the aforementioned

algorithms employs the following clustering condition for a pair of partons (ij)

1− cos θij < 1− cos(R̃) , (5.1)

where R̃ is the jet-radius parameter used in FastJet.17 Compared to eqs (2.3) and (2.4),

R̃ = cos−1(1 − 2Rs). The exact numerical distributions (1/σ0)(dσe/dL), with L = −L̃ =

ln(τE0),. for the three colour channels, C2
F , CFCA and CFTRnf , have been obtained with

1011 events in the bin range 0 > L > −14. We have used four values for the jet-radius:

Rs = 0.50, Rs = 0.30, Rs = 0.12 and Rs = 0.04, with an energy veto E0 = 0.01Q.

Standard deviations on individual bins range from 10−4% to 10−2%.

We plot the difference between the numerical and analytical distributions at both LO

and NLO,

r(L) =
dσe
σ0dL

− dσr,2
σ0dL

, (5.2)

where dσr,2/σ0dL is given in eq. (B.6). Recall that at small values of the jet shape, τE0 ,

the finite remainder function Dfin(τE0) is vanishingly small and will thus be ignored. For

the case where the jet shape is global (Rs = 0.50 and the threshold thrust reduces to

thrust), we expect a full cancellation of singular terms and thus r should be a constant

line corresponding to the NNLL coefficient (H21 in eq. (B.5)). For Rs < 0.5, the jet shape

is non-global and we expect r to have a slope if NGLs contribution is excluded. If our

analytical calculations of the NGLs’ coefficient, both for anti-kt and C-A algorithms, are

correct then upon adding the latter to H22 the slope should vanish and r becomes flat

signalling a complete cancellation of terms up to NLL level. Similar behaviour should be

seen with the CLs’ coefficient CP
2 for the C-A algorithm case. Considering figures 6–14,

we make the following observations:

• At LO, the distribution is independent of the jet definition. From eq. (B.5) we have

H11 = −3 + 4LRs = −4, −8.51, −14.75, −20.95 ; for Rs = 0.5, 0.3, 0.12, 0.04 .

(5.3)

Compared to the numerical results shown in figure 6 we see a complete agreement.

The cut-off in figure 6 is due to the fact that at LO τE0 < Rs/(1 +Rs) (eq. (2.10)).

17In FastJet’s manual R̃ is allowed to go up to π. Since we are interested in two-jet events the jet size

cannot be wider than a hemisphere. Thus we restrict R̃ to be less than π/2.
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Figure 6. The difference between EVENT2 and τE0
LO distribution for various jet radii in both

anti-kt (left) and CA (right) algorithms.
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Figure 7. The CFCA part of the difference between EVENT2 and (left) τE0
primary (global)

distribution and (right) τE0
distribution including NGLs for various jet radii in anti-kt algorithm.

• For the NLO distribution in the anti-kt algorithm, figure 7 (left) illustrates the exis-

tence of NGLs. The flatness of the r(L) curve, in figure 7 (right), at L below about

−9 indicates a complete cancellation up to single log level. The C2
F and CFTRnf

pieces are shown in figure 8. In table 1 we provide both numerical and analytical,

taken from SCET calculations (C.4), values of the NNLL coefficient, H21, at the con-

sidered Rs values for the three colour channels. It is evident from the table that there

are subleading Rs-dependent NGLs for both CFCA and CFTRnf channels. Such logs

have been analytically computed in [39] for the hemisphere jet mass. Our numerical

results show that they are also present for finite-size jets.18 The primary C2
F channel

is free from such subleading NGLs as numerical and analytical values of H21 in the

anti-kt coincide.

Notice that while the x-axis in all figures shown in this section corresponds to

ln(τE0) = log(τE0), i.e., the natural logarithm of the jet shape, that of [5] corre-

sponds to the logarithm of base 10, log10(ρ) ∼ log(ρ)/2, ρ ≡ τE0 , of the jet shape.

Given this, figure 7 above is equivalent to figure 7 of [5]. Neither C2
F , CFTRnf plots

nor subleading NGLs were considered in [5].

18As would be anticipated, since the finite-size jet mass is an extension to the hemisphere mass.
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Figure 8. The (left) C2
F and (right) CFTRnf piece of the difference between EVENT2 and τE0

distribution for various jet radii in the anti-kt algorithm.

CFTRnf piece of CFCA piece of C2
F piece of

Rs Jet alg Hnum
21 Hanalyt

21 Hnum
21 Hanalyt

21 Hnum
21 Hanalyt

21

0.50
anti-kt 5.20± 0.14 5.00 −7.26± 0.22 −7.04 −12.40± 0.57 −12.68

C-A 4.99± 0.19 −6.97± 0.11 −12.99± 0.67

0.30
anti-kt 13.92± 0.15 7.80 −88.35± 0.26 −11.45 62.73± 0.51 62.20

C-A 11.24± 0.08 −48.46± 0.31 76.38± 0.50

0.12
anti-kt 15.75± 0.12 8.54 −106.80± 0.34 −8.89 384.04± 0.90 385.27

C-A 13.65± 0.08 −51.46± 0.35 405.48± 0.57

0.04
anti-kt 12.86± 0.19 5.66 −107.67± 0.28 3.59 1017.93± 0.53 1022.43

C-A 10.60± 0.23 −45.67± 0.23 1044.33± 1.24

Table 1. H21 numerical vs analytical values for all three colour pieces. The numerical values were

obtained through fitting the flat curve r(L̃) with the function (see eq. (B.7))Hnum
21 +e−L̃(B+C e−L̃).

The analytical values, Hanalyt
21 , are taken from eqs. (B.5) and (C.4) which only include the primary

emission contribution with neither non-global nor clustering terms. Rs = 0.50 corresponds to the

global case and we expect the analytical and numerical values to be the same.

• The asymptotic region, i.e., the region where large logs are expected to dominate over

non-logarithmic contributions, corresponds to L less than about −9 (for figures 7, C2
F

piece in figure 8 and may even be less for the CFTRnf piece in figure 8) and seems

to decrease further as Rs becomes smaller. A similar effect is seen in the thrust

distribution, figure 9, where the numerical distribution has been obtained using the

full definition (2.5).

• Considering the clustering case with C-A algorithm, figures 10 and 11 illustrate the

presence of CLs in the C2
F channel. Clearly, the addition of CLs makes the remainder

r flat in the region L . −9. To strengthen this observation even more, we plot in

figure 12 the difference between EVENT2 distributions in anti-kt and C-A algorithms,

(dσanti−kt
e /dL−dσC−A

e /dL)/σ0, for all colour pieces. The slopes for the C
2
F and CFCA

indicate that an NLL positive Rs-dependent term, and possibly an NNLL term as
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Figure 9. The various colour pieces of the difference between EVENT2 and thrust distribution using

the full definition (2.5). The pQCD resummed analytical expression for thrust distribution can be

found in, for example, [11].

well, have been induced by clustering. This is confirmed in table 1. Moreover, the

fact that the difference between the latter distributions in the CFTRnf piece is non-

vanishing implies an NNLL impact of clustering.

Furthermore, we note from figure 11 that CP
2 seems to slightly vary with the jet-

radius parameter Rs. This can be seen for large values of Rs (Rs = 0.3) where our

small angles approximation (3.24) is not expected to apply.

• Similar analyses to those carried in the anti-kt algorithm apply to the CFCA piece of

the τE0 distribution in the C-A algorithm. Including the NGLs makes the r(L) curve

looks convincingly flat in the region L . −9, particularly for smaller values of Rs, as

shown in figure 13. Recall that we have used the small Rs limit in carrying out the

computation of SC−A
2 , eq. (3.32). Our findings agree with those reported in [5] for

jet-radii up to Rs ∼ 0.3 (R ∼ 1).

For completeness, the CFTRnf piece of the r(L) in the C-A algorithm is depicted in

figure 14. As shown in table 1, clustering requirement again reduces the impact of

the subleading NGLs in both CFCA and CFTRnf channels.

In summary, we have confirmed through explicit comparison to exact numerical distri-

butions the existence of large NGLs and large CLs for the τE0 distribution at NLL and
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Figure 10. The C2
F part of the difference between EVENT2 and (left) τE0

primary (global) dis-

tribution and (right) τE0
distribution including CLs for various jet radii in the C-A algorithm.
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Figure 11. Zoomed-in plots for the C2
F part of the difference between EVENT2 and analytical τE0

distribution with and without CLs for (left) Rs = 0.12 and (right) Rs = 0.3 in the C-A algorithm.

beyond. In light of these findings, the surprising cancellation between primary-only ana-

lytical distribution and EVENT2 presented in [4] v1 may be explained as follows. While each

colour part (C2
F , CFCA and CFTRnf ) separately does not agree with EVENT2, as shown in

figures 10, 11, 13 and 14, their sum seems to agree with EVENT2 (recall that in of [4] v1

only the sum of the three colour factors is plotted against EVENT2). Such an unexpected

agreement can arise from the following possible sources:

• The ln(τE0) region considered in [4] v1 does not correspond to the asymptotic region

where large logs are expected to dominate over non-logarithmic terms. Thus the

agreement shown in plot 1 of [4] v1 does not convey any message and all one can

say is that the non-logarithmic terms in the range [−9, 0] happen to cancel out (see

figure 15).

• NGLs are significantly reduced in the C−A algorithm especially for a jet radius

Rs = 0.3 (which is the one considered in [4] v1), as clearly seen in figures 4 and 13

(left). For smaller jet radii, there is a clear disagreement between the result of [4] v1

and EVENT2 as shown in figure 15.
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Figure 12. Plots of the three colour pieces of the difference between two EVENT2 distributions

corresponding to anti-kt and C-A algorithms for various jet radii. We only show C2
F and CFTRnf

results at three values of the jet-radius due to large errors in these colour channels.
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Figure 13. The CFCA part of the difference between EVENT2 and (left) τE0
primary (global)

distribution and (right) τE0
distribution including NGLs for various jet radii in the C-A algorithm.

We have also shown that clustering the final state partons with the C-A algorithm yielded

a significant reduction in NGLs impact, at NLL and beyond, albeit inducing large CLs, at

NLL and beyond, in the primary emission sector.
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Figure 14. The CFTRnf piece of the difference between EVENT2 and τE0
distribution for various

jet radii in C−A algorithm.
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Figure 15. Difference between the sum of the three colours and EVENT2 for various jet radii.

6 Conclusion

The jet mass with a jet veto, or simply the threshold thrust, is an example of a wider class

of non-global observables. These have the characteristic of being sensitive to radiation into

restricted regions of phase space, or sensitive to radiation into the whole phase space but

differently in different regions. For such observables the universal Sudakov form factor fails

to reproduce the full logarithmic structure even at NLL accuracy. New contributions that

are dependent on various variables such as the jet size and jet definition appear at this

logarithmic level. In this paper, we have elaborated on these very contributions for the

aforementioned observable.

Considering secondary emissions, we have computed the full analytical expression of

the first term, S2, in a series of missing large logs, namely NGLs. The coefficient depends, as
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anticipated, on the jet size and saturates at its maximum in the limit where the latter, i.e.,

jet size, vanishes. This saturation value was used in [3] as an approximation to the full value

in the small Rs limit. It turns out that the approximation is valid for quite a wide range

of Rs. The formula for S2 has been checked against full exact numerical result obtained

by the program EVENT2. The difference between the analytical and numerical differential

distributions was shown to be asymptotically flat signalling a complete cancellation of

singular terms up to NLL level. This has all been done for final states defined in the

cone-like anti-kt jet algorithm.

To illustrate the dependence of NLL on the jet definition, we have investigated the

effects of applying the C-A algorithm on e+e− final states. The impact of soft partons

clustering is two-fold. On one side, it reduces the size of NGLs through shrinking the

phase space region where the latter dominantly come from. i.e., the region where the

emitter and emitted soft partons are just in and just out of the jet. On the other side, it

gives rise to new NLL logarithmic contributions, CLs, in the primary emission sector. In

the small jet-radius limit, the corresponding coefficient at second order has been shown,

through comparison to EVENT2, to be independent of Rs.

Furthermore, our numerical analyses with EVENT2 have shown that the asymptotic

region where the said large logs, in both anti-kt and C-A jet algorithms, dominate cor-

responds to L . −9 and decreases for smaller values of the jet-radius. As a by-product,

we have found that there are subleading NGLs in both CFCA and CFTRnf pieces as well

as subleading CLs in the C2
F piece of the τE0 distribution. Clustering impact on NGLs

has been observed to extend to NNLL level too. Regarding NGLs in CFCA channel in

both jet algorithms, our findings serve as a confirmation of the corresponding calculations

performed within SCET in [5].

Based on our rough approximation to NLL resummation, which is exponentiating the

fixed-order result for both NGLs and CLs, it has been shown that it may be possible to

completely eliminate the non-global correction to the primary Sudakov form factor at all-

orders for events where final states clustering is applied. This elimination can be achieved

by tuning the jet-radius parameter, Rs, of the jet algorithm as well as the jet veto E0. If

such optimal values of Rs and E0 are of practical significance, that is R ∼ 0.4 or so and

E0 ≫ ΛQCD, then the single-gluon exponentiation should be sufficient in describing the

experimental data. A concrete answer of whether such optimal values exist can only be

established once an all-orders resummation of primary, NGLs and CLs is performed. We

postpone this investigation to future publications.

As mentioned earlier in section 3 and shown in [3], the inclusive kt jet algorithm behaves

in an identical way to C-A algorithm with regard to the threshold thrust distribution. It

would be interesting to conduct similar studies for events defined in IRC cone algorithms

such as the SISCone. In principle, one expects to see analogous effects not only for the

threshold thrust but for all shape variables that are of non-global nature. Moreover, we

reserve the extension of the findings of this paper to hadron-hadron collisions to future

work. Apart from complications due to coloured initial state, we expect the gross features

of this paper to apply.
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A Derivation of LO distribution

In the present section we outline the derivation of the full logarithmic part of the LO τE0

integrated distribution (2.10). For the emission of a single gluon, i.e., e+e− → q q̄ g, we

define the kinematic variables, xi = 2pi.Q/Q2 = 2Ei/Q and yij = 2pi.pj/Q
2 = 1 − xk

where i, j, k = 1(q), 2(q̄), 3(g). The O(αs) matrix-elements squared can be computed by

considering two Feynman graphs corresponding to real emission of the gluon g off the

two hard legs q, q̄. Applying the appropriate QCD Feynman rules and supplementing the

three-body phase space factor, the corresponding differential distribution is given by

d2σ(1)

σdx1dx2
=

CFαs

2π

x21 + x22
(1− x1)(1− x2)

, (A.1)

where σ is the total hadronic cross-section. Up to O(α2
s), it is given in terms of the Born

cross-section, σ0, by the relation [44]

σ

σ0
= 1 +

αs

2π

[
3CF

2

]
+

(
αs

2π

)2
K2 +O(α3

s) , (A.2)

with

K2 = −C2
F

3

8
+ CFCA

(
123

8
− 11ζ3

)
+ CFTRnf

(
− 11

2
+ 4ζ3

)
. (A.3)

The integration region, which is originally 1 ≥ x1, x2 ≥ 0 and x1 + x2 ≥ 1 and which leads

to divergences, gets modified by introducing the jet shape variable. For three partons in

the final state, τE0 is zero unless two partons are clustered together. Therefore τE0 is non-

vanishing only in two-jet events. For the latter events, there are six ways of ordering the

energy fractions xi corresponding to six regions of phase space that needs to be integrated

over. Due to x1 ↔ x2 symmetry of the matrix-elements (A.1), one can only consider three

regions and multiply the result by a factor of 2. These regions correspond to; x1 > x2 >

x3, x1 > x3 > x2 and x3 > x1 > x2. The threshold thrust is then given by

τE0 = (1− x1)Θ(x1 − x2, x2 − x3)Θ(2Rs − 1 + cos θ23)+

+ (1− x1)Θ(x1 − x3, x3 − x2)Θ(2Rs − 1 + cos θ23)+

+ (1− x3)Θ(x3 − x1, x1 − x2)Θ(2Rs − 1 + cos θ12) , (A.4)

where Θ(a − b, b − c) = Θ(a − b)Θ(b − c). To obtain the full logarithmic contribution it

is sufficient to only consider regions where the gluon is the softest parton (x3 = min(xi)).

Other regions, last term in r.h.s. of eq. (A.4), only contributes non-logarithmically. Adding

up real and virtual contributions, in (2.8), one is only left with the virtual corrections in
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the range Θ(1−x1− τE0). The corresponding angular function in (A.4) may be written in

terms of the energy fractions as,

1− cos θ23 =
2(1− x1)

x2x3
≈ 2(1− x1)

x3
, (A.5)

where the last approximation follows from the fact that the gluon is the softest, x1, x2 ≫ x3.

Hence the two-jet contribution to the first order shape fraction Σ(1) is given by

Σ(1)(τE0 , E0) = −CF αs

2π

∫ 1−τE0

1−Rs(1−τE0
)
dx2

∫ x2−1+Rs(2−x2)
Rs

1+τE0
+x2

dx1
x21 + x22

(1−x1)(1−x2)
Θ

(
Rs

1+Rs
−τE0

)
.

(A.6)

In case of events with three-jets in the final state, the energy of the softest jet is

vetoed to be less than E0. The corresponding phase space constraint, left after real-virtual

mis-cancellation, on the differential cross-section (A.1) reads

−Θ

(
x3 −

2E0

Q

)
Θ

(
1− x1
x3

−Rs

)
Θ

(
1−Rs −

1− x1
x3

)
. (A.7)

Noting that x1 + x2 + x3 = 2, one can obtain the corresponding integration limits on x1
and x2. Adding up the result of the latter integration with that of eq. (A.6) and making

use of the following dilogarithm identities [45]

Li2(x) + Li2(1− x) =
π2

6
− ln(x) ln(1− x) ,

Li2(x) + Li2

(
1

x

)
=

π2

3
− 1

2
ln2(x) , (A.8)

one obtains eq. (2.10).

B Gnm coefficients

The resultant coefficients from the expansion of the exponent in the resummed integrated

distribution, eq. (4.5), are

G12 = −2CF ,

G11 = CF (3− 4LRs) ,

G10 = CF

[
− 4LRsLE0 +

f̄0(Rs)

2

]
,

G23 = CF

(
4

3
TRnf − 11

3
CA

)
,

G22 = −4π2

3
C2
F + CFCA

(
π2

3
− S0(Rs)−

169

36
− 22

3
LRs

)
+ CFTRnf

(
11

9
+

8

3
LRs

)
,

G21 = −C2
F

8π2

3
LRs − CFCA

[
2S0(Rs)LE0 −

(
2π2

3
− 2S0(Rs)− 134

9
− 11

3
LRs

)
LRs

]
+

+CFTRnf

(
4

3
LRs +

40

9

)
LRs , (B.1)
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where LRs = ln(Rs/(1− Rs)) and LE0 = ln(2E0/Q). The factor f̄0(Rs) only captures the

first term of f0 given in eq. (2.11). We simply replace f̄0 7→ f0 when comparing to the

numerical distribution. Moreover, we have introduced, for shorthand, the function S0(Rs)

given by (cf. eq. (3.12)),

S2 = −CFCA S0(Rs) . (B.2)

The one-loop constant is given by, eq. (2.10),

C1 = CF

(
− 1 +

π2

3

)
. (B.3)

Expanding the total resummed distribution in eq. (4.5) to O(α2
s) and up to NLL we have

Σr,2(L̃) = 1 +

(
αs

2π

)(
H12L̃

2 +H11L̃+H10

)

+

(
αs

2π

)2(
H24L̃

4 +H23L̃
3 +H22L̃

2 +H21L̃+H20

)
, (B.4)

where (recall that L̃ = ln(1/τE0) ⇒ τE0 = e−L̃)

Dfin

(
e−L̃

)
=

(
αs

2π

)
d1
(
e−L̃

)
+

(
αs

2π

)2
d2
(
e−L̃

)
,

H12 = G12 ,

H11 = G11 ,

H10 = G10 + C1 + d1(τE0) ,

H24 =
1

2
G2

12 ,

H23 = G23 +G12G11 ,

H22 = G22 + (G10 + C1)G12 +
1

2
G2

11 ,

H21 = G21 + (G10 + C1)G11 ,

H20 = G20 +
1

2
G2

10 + C1G10 + C2 + d2(τE0) . (B.5)

Differentiating (B.4) w.r.t. L̃, the NLO differential distribution reads

dΣr,2

dL̃
=

1

σ0

dσr,2

dL̃
= δ(L̃)Dδ +

(
αs

2π

)
DA(L̃) +

(
αs

2π

)2
DB(L̃) , (B.6)

where the singular (logarithmic) terms are given by

Dδ = 1 +

(
αs

2π

)
[G10 + C1] +

(
αs

2π

)2[
G20 +

1

2
G2

10 + C1G10 + C2

]
,

DA(L̃) = 2H12L̃+H11 +
d

dL̃
d1
(
e−L̃

)
,

DB(L̃) = 4H24L̃
3 + 3H23L̃

2 + 2H22L̃+H21 +
d

dL̃
d2
(
e−L̃

)
. (B.7)
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C Threshold thrust distribution in SCET

The resummation of the threshold thrust in SCET is presented in the current section for

comparison with pQCD. We shall only present the final form of the resummed result taken

from refs. [4, 27, 30]. For a full derivation and more in depth discussion one should consult

the latter references. The only task we have performed here is the expansion of the full

resummed distribution to O(α2
s).

C.1 Resummation

The general formula of the resummed distribution for the threshold thrust is given by [4, 30]

dΣSCET(τE0 , R)

dτE0

=
dσSCET

σ0dτE0

= exp[4S(µh, µj) + 4S(µs, µj)− 4AH(µh, µs) + 4AJ(µj , µs)]

×
(

Rs

1−Rs

)−2AΓ(µω ,µs)(Q2

µ2
h

)−2AΓ(µh,µj)

H(Q2, µh)S
out
R (ω, µω)

×
[
j̃

(
ln
µsQ

µ2
j

+ ∂η, µj

)]2
s̃inτE0

(∂η, µs)
1

τE0

(
τE0Q

µs

)η e−γEη

Γ(η)
.

(C.1)

See [4, 30] for full notation. In order to compute the fixed-order expansion of (C.1) up

to O(α2
s), all scales should be set equal (µh = µj = µs = Q). In this limit, the evolution

factors S,AJ and AH vanish. The differentiation w.r.t. η is carried out using the explicit

form of j̃ and s̃inτE0
. The final result of the integrated distribution may be cast in the generic

form (4.5) with the constants and coefficients of the logs given by

C1 = CF

(
− 1 +

π2

3

)
, (C.2)

C2 = C2
F

(
1− 3π2

8
+

π4

72
− 6ζ(3)

)
+ CFCA

(
493

324
+

85π2

24
− 73π4

360
+

283ζ(3)

18

)
+

+CFTRnf

(
7

81
− 7π2

6
− 22ζ(3)

9

)
+ C in

2 + Cout
2 , (C.3)

and

G12 = −2CF ,

G11 = −CF (3− 4LRs) ,

G10 = CF

(
− 4LRsLE0 +

f0(Rs)

2

)
,

G23 = CF

(
11

3
CA − 4

3
TRnf

)
,

G22 = −4π2

3
C2
F + CFCA

(
π2

3
− 169

36
− 22

3
LRs

)
+ CFTRnf

(
11

9
+

8

3
LRs

)
,
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G21 = C2
F

[
− 3

4
− π2 + 4ζ(3) +

8π2

3
LRs

]
+

+CFCA

[
− 57

4
+ 6ζ(3)−

(
2π2

3
− 134

9
− 11

3
LRs

)
LRs

]
+

+CFTRnf

[
5−

(
4

3
LRs +

40

9

)
LRs

]
,

G20 = C2
F

[
− f2

0

8
+
(
2π2 − 16ζ(3)

)
LRs −

(
11π2

6
+

f0
2

)
L2
Rs

− L2
Rs

]
+

+CFCA

[
11π2

9
LRs −

11

6
LRsL

2
E0

− LE0

(
11f0
12

+

[
134

9
− 2π2

3

]
LRs +

11

6
L2
Rs

)]
+

+CFTRnf

[
− 4π2

9
LRs +

2

3
LRsL

2
E0

+ LE0

(
f0(Rs)

3
+

40

9
LRs +

2

3
L2
Rs

)]
. (C.4)

Considering primary emission, the only missing piece in the distribution is the two-loop

constants in the soft function, namely C in
2 and Cout

2 .
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