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Abstract: We consider circular non-BPS Maldacena-Wilson loops in five-dimensional

supersymmetric Yang-Mills theory (d = 5 SYM) both as macroscopic strings in the D4-

brane geometry and directly in gauge theory. We find that in the Dp-brane geometries for

increasing p, p = 4 is the last value for which the radius of the string worldsheet describing

the Wilson loop is independent of the UV cut-off. It is also the last value for which the

area of the worldsheet can be (at least partially) regularized by the standard Legendre

transformation. The asymptotics of the string worldsheet allow the remaining divergence

in the regularized area to be determined, and it is found to be logarithmic in the UV cut-

off. We also consider the M2-brane in AdS7 × S4 which is the M-theory lift of the Wilson

loop, and dual to a “Wilson surface” in the (2, 0), d = 6 CFT. We find that it has exactly

the same logarithmic divergence in its regularized action. The origin of the divergence

has been previously understood in terms of a conformal anomaly for surface observables

in the CFT. Turning to the gauge theory, a similar picture is found in d = 5 SYM.

The divergence and its coefficient can be recovered by summing the leading divergences in

the analytic continuation of dimensional regularization of planar rainbow/ladder diagrams.

These diagrams are finite in 5− ǫ dimensions. The interpretation is that the Wilson loop is

renormalized by a factor containing this leading divergence of six-dimensional origin, and

also subleading divergences, and that the remaining part of the Wilson loop expectation

value is a finite, scheme-dependent quantity. We substantiate this claim by showing that

the interacting diagrams at one loop are finite in our regularization scheme in d = 5

dimensions, but not for d ≥ 6.
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1 Introduction, main results, and conclusions

The Maldacena-Wilson loop [1, 2] continues to be a remarkably useful observable in the

context of the gauge-gravity duality. In the context of AdS/CFT, the circular Wilson

loops [3–6] have proven to be amenable to exact calculation using the techniques of local-

ization [7–10], providing hard predictions for a range of stringy and M-theoretic phenomena

including semi-classical fundamental strings and membranes, D-branes, and bubbling ge-

ometries [11–19]. Continuing these successes outside the regime of conformal symmetry, in

particular to maximally supersymmetric Yang-Mills (SYM) theories in dimensions other

than four, is an important step towards understanding the gauge-gravity duality in these

far-less-explored contexts.

In this paper we will consider the circular Maldacena-Wilson loop with constant scalar

coupling (see (3.1) for a definition) in d = 5 SYM. In this five-dimensional context the

circular Wilson loop preserves no global supersymmetries. The first and most obvious

question is whether the d = 5 theory is sensible, since by standard power-counting it is a

non-renormalizable theory. We will follow the procedure of using dimensional reduction

from N = 1, d = 10 SYM to 2ω dimensions. Since we are above rather than below four

dimensions (where dimensional regularization actually renders integrals over loop momenta

UV-finite), this procedure is viewed as an analytic continuation from convergent results at

d < 4 to d = 5. Despite this questionable regularization scheme, we find that we can make

contact with the string dual, i.e. a fundamental string in the D4-brane geometry [20], and

its M2-brane lift.

It appears that in the Dp-brane geometries, for increasing p, p = 4 (corresponding

to d = 5 SYM) is in some sense a final outpost. In the work [21], the embedding func-

tions for strings dual to 1/4 BPS circular Wilson loops with trivial expectation value (a

generalization of the Zarembo loops [22]) in SYM for 2 ≤ d ≤ 8 were presented. There
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Figure 1. Profiles of string duals of 1/4 BPS circular Wilson loops (2.3) in the Dp-brane geome-

tries (2.2). The holographic U direction is the vertical axis, the boundary radial coordinate r is the

horizontal axis. There is a marked difference between p > 4 and p ≤ 4. Taken from [21].

is a stark division in the behaviour of the worldsheets as they approach the boundary of

the geometry precisely between p = 4 and p ≥ 5. Specifically, for p ≤ 4, the radius R

of the worldsheet (dual to the radius of the Wilson loop contour), assumes a constant

value as the boundary is approached. For p > 4 this is no longer true and a UV cut-off

must explicitly be added in order to define R — or equivalently — R becomes a function

of the UV cut-off, see figure 1, taken from [21]. The figure shows a plot of the string

profile with the holographic direction plotted on the vertical axis, and a boundary ra-

dial direction plotted on the horizontal axis. In section 2.1 we review the details of these

solutions.

It turns out that this behaviour is generic, in the sense that it persists for the duals

of non-BPS circular Wilson loops, which unlike the 1/4 BPS ones, have a constant cou-

pling to the scalar fields of SYM. In section 2.2, we carry out the analysis of the string

worldsheets for these Wilson loops. Although we are unable to find exact solutions for the

embeddings, we can find their asymptotic behaviour as the boundary is approached. Using

this information we show that R is independent of the UV cut-off only for p < 5, as for the

BPS solutions.

The area of the worldsheets describing the Wilson loops is infinite for any p. In

the AdS5 × S5 case (i.e. p = 3), this divergence is well understood and is removed by a

Legendre transformation [23]. In the case of the 1/4 BPS loops in the Dp-brane geome-

tries, the same Legendre transformation simply eliminates the area entirely, giving the

trivial expectation value for the Wilson loop e0 = 1. For the non-BPS Wilson loops,

we find that again p = 4 is a special value. It is the last value for which the Leg-

endre transformation removes the (in this case leading) divergence of the area, leaving

a log(UV cut-off) divergence and a finite piece. The asymptotics of the string world-

sheet allow the determination of the coefficient of the log, while the finite piece is not

obtainable. It is, in any case not well defined, since a shift in the UV cut-off would af-

fect it. The details of these calculations are given section 2.2. We quote the result here

– 2 –



J
H
E
P
0
2
(
2
0
1
2
)
0
5
2

for convenience1

〈W 〉 = (prefactor) · exp(−Sreg.) = (prefactor) · exp

(

g2N

16πR
logUmax.

)

· (finite) , (1.1)

where Umax. is the cut-off in the holographic direction, see (2.2), and where “prefactor”

refers to the semi-classical dressing of the main exponential portion of the partition func-

tion, see [21] for a discussion.

The fact that the p = 4 case shares these two “nice” features with its lower dimensional

cousins, i.e. regularizable worldsheet area and radius independent of the cut-off, certainly

resonates with recent speculations about the possible finiteness of d = 5 SYM [24, 25]. We

will see that, using dimensional regularization analytically continued to five-dimensions,

the gauge theory makes contact with this behaviour of the string dual. Specifically, we

perform an analysis of the planar rainbow/ladder diagrams in section 3. The “loop-to-

loop” propagator P (τ1, τ2) (3.3) has the following behaviour

P (τ1, τ2) ∝
1

sin2ω−4 τ12
2

, (1.2)

where τ12 = τ1− τ2 is the difference between the Wilson loop contour parameter at the two

points where the propagator is joined, and the dimension d = 2ω. We find that a certain

sub-class of planar rainbow/ladder diagrams contributes the highest divergence, order-by-

order in the perturbative expansion. This allows us to sum-up all of these contributions,

finding

〈W 〉perturbative = (prefactor) · exp

(

g2N

16πR

1

ǫ

)

· (finite) , (1.3)

where ǫ = 5 − 2ω. Equating logUmax. with 1/ǫ we find an exact match. In fact if we set

2ω = 5 and use instead a point-splitting regularization δ of the Wilson loop contour, we

obtain − log δ in place of 1/ǫ, see section 3. We will suggest that the subleading divergences

should be associated with the prefactor of the exponential term in the Wilson loop VEV.

Note that for d = 2ω slightly below 5, the loop-to-loop propagator integrates to a finite

quantity. This appears to be a gauge theory reflection of the fact that d = 5 is the last

sensible setting for the Wilson loop in the string dual described above. We might then

expect that the interacting diagrams are at least subleading, if not finite. Evaluating the

O(g4) corrections, in section 3.2, we find that they are indeed finite when 2ω is set (i.e.

analytically continued) to 5, but not for 2ω ≥ 6. Again, we see that the gauge theory

picture is sensible (at least in our regularization scheme), like in the string case, for the

last time at d = 5, as the dimension is increased.

The D4-brane geometry cannot be trusted at arbitrarily close distances to the bound-

ary, and at a certain point the M-theory description takes over2 and the background ge-

ometry becomes AdS7 × S4. The lift of the non-BPS circular Wilson loop is an M2-brane

1Note that U has dimensions of energy. There is of course a scale (not shown) giving a dimensionless

argument for the logarithm. It is set by the minimum value of U plumbed by the worldsheet, which is in

turn related to the radius of the loop.
2This happens for g2U ∼ N1/3.

– 3 –



J
H
E
P
0
2
(
2
0
1
2
)
0
5
2

and is considered in section 2.2.2. The action of this M2-brane may be regularized via

an analogous Legendre transformation and has precisely the same logarithmic term as the

string in the D4-brane geometry. This logarithmic divergence may be viewed as a conformal

anomaly of the dual surface operator in the d = 6 (2, 0) CFT [26–29]. It is remarkable that

we have recovered this anomaly directly in d = 5 SYM, especially given recent speculations

that the d = 6 CFT might be captured entirely by d = 5 SYM [24, 25, 30–32].

There are various extensions of the present work which could be considered. There

is a kind of conformal symmetry at play in the Dp-brane backgrounds and the associated

SYM theories [33]. It would be interesting to understand whether this symmetry can be

used to obtain the circular Wilson loop considered here as a transformation of the 1/2 BPS

straight line [21] (which has trivial expectation value), as is the case in d = 4 [4]. This

may provide an alternate derivation of the leading divergence in terms of a (generalized)

conformal anomaly (in this case directly in d = 5 SYM). The exponential factor dressing

the Wilson loop expectation value is very reminiscent of Wilson loop renormalization in

four dimensions [34–37]. This suggests that there is perhaps a way to give physical meaning

to the finite part of the expectation value, through a subtraction scheme. It would also be

interesting to consider correlators with local operators. This calculation has been carried

out for the spherical Wilson surface in AdS7×S4 in [38], where, unlike for the expectation

value of the surface itself, finite results are obtained. Here one would require the explicit

solution for the M2-brane describing the Wilson loop; the techniques for computing holo-

graphic correlation functions in the Dp-brane backgrounds are also available [39, 40]. It

is also interesting to ask to what extent contact can be made with the 1/2 BPS circular

Wilson loop in N = 4, d = 4 SYM through dimensional reduction, especially as regards

the S-duality of the latter as discussed in [25], and whether localization techniques have

any application to the calculation of the five-dimensional Wilson loop expectation value.

Finally, we note that we have not considered non-perturbative corrections to the Wilson

loop. It would be very interesting to explore their effect on the expectation value.

2 String duals of BPS and non-BPS Wilson loops

In this section we will look at the generalization of the circular Zarembo loops studied

in [21], remarking that the string duals require a cut-off in order to be defined in the

Dp-brane backgrounds for p > 4. We will then continue with a generalization of these

arguments to regular circular Wilson loops, which, apart from the conformal case p = 3,

are non-BPS.

2.1 1/4 BPS Wilson loops

In the work [21], string solutions were found which are dual to Maldacena-Wilson loops in

d-dimensional SYM with circular contours and with scalar couplings which also describe a

(great) circle

xµ = R (cos τ, sin τ, 0, . . . , 0) , ΘI = (− sin τ, cos τ, 0, . . . , 0) . (2.1)
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The string duals are fundamental strings in the Dp-brane geometries [20]3

ds2 = α′

(

U (7−p)/2

Cp
dx2q +

Cp

U (7−p)/2
dU2 + Cp U

(p−3)/2 dΩ2
8−p

)

,

eφ = (2π)1−pg2
(

C2
p

U7−p

)(3−p)/4

, C2
p = g2N 26−2pπ(9−3p)/2 Γ

(

7− p

2

)

.

(2.2)

We let dx2q = dr2 + r2dϕ2 + dx2
Rp−1 , and dΩ8−p = dθ2 + cos2 θ dφ2 + sin2 θ dΩ2

6−p. We then

set ϕ = φ to one of our string worldsheet coordinates, and let r, U , and θ depend only on

the other one. Then the string solutions are expressed as (for p ≤ 7)

r(U) =























√

2C2
p

5−p

√

Up−5
min. − Up−5 , p < 5

√

2C2
p

p−5

√

Up−5 − Up−5
min. , p > 5

√

2C2
5 log U

Umin.
, p = 5

, sin θ =
Umin.

U
, (2.3)

and describe a string which wraps a hemisphere in the S8−p and ends along a circular

contour of radius R at the boundary (U = Umax. ≫ 1) of the remainder of the geometry.

The worldsheet smoothly closes-off at U = Umin. where r(U) = 0.

We now remark that in the cases where p ≥ 5, the radius of the Wilson loop depends

upon the cut-off Umax.

R =























√

2C2
p

5−p

√

Up−5
min. , p < 5

√

2C2
p

p−5

√

Up−5
max. − Up−5

min. , p > 5
√

2C2
5 log Umax.

Umin.
, p = 5

. (2.4)

Thus the Wilson loops may be defined in the gravity duals to SYM in d ≤ 5 dimensions

without recourse to a UV cut-off; the same is not true for d > 5.

The 1/4 BPS Wilson loops considered in this section are rather special objects which

have trivial (unit) expectation value.4 In section 2.2 we will consider non-BPS circles for

which this is not the case.

2.2 Non-BPS Wilson loops

In section 2.1 we showed that certain 1/4 BPS circular Wilson loops in d-dimensional SYM

had string duals which could be defined without recourse to a UV cut-off if d = p+ 1 ≤ 5.

Here we will consider a circular Wilson loop with a constant coupling to the scalars, so

that the string dual sits at a point on the S8−p. For p 6= 3 this object preserves no global

supersymmetries. We will not be able to solve for the string embedding, but we will derive

its asymptotic form as the boundary is approached. This we will use to analyze the leading

divergences in the worldsheet area.

3The definition of Cp and the dilaton are consistent with the normalization of the SYM action S =
1

g2

∫
dp+1x 1

4
F a
µνF

aµν + . . ..
4This is because the Legendre transformation (2.9) exactly cancels the bare action [21].
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We consider a fundamental string ending in a circular contour on the boundary of the

Dp-brane geometry (2.2). We let dx2q = dr2+r2dϕ2+dx2
Rp−1 , and take our string worldsheet

to be parameterized by U and ϕ. Using the ansatz whereby r(U), the Nambu-Goto action is

S =

∫

dU r

√

1 +
U7−p

C2
p

r′2 , (2.5)

where f ′ ≡ ∂Uf and we have integrated over ϕ since the Lagrangian is independent of it.

One can then easily verify that for p ≤ 4, near the boundary at U = ∞

r(U) = R−
1

5− p

C2
p

R

1

U5−p
+ . . . (2.6)

is a solution to the equation of motion. In the full solution, the worldsheet closes-off at

some minimum value of U , Umin.. The radius R is then related to Umin., in much the same

way as the solutions presented in section 2.1. As we saw in that section, here there is a

similar marked difference for p > 4. When we take p > 4 we find that r(U) diverges as

U → ∞, requiring the radius of the Wilson loop to be defined at some cut-off Umax.. For

example for p = 5 one finds5

r(U) = R−
C2
5

R
log

Umax.

U
+ . . . . (2.7)

In this situation, as in section 2.1, R is a function of both Umin. and Umax.. Thus the

radius of the Wilson loop is affected by changes to the cut-off. Given the apparent non-

renormalizability of supersymmetric Yang-Mills in d > 4 dimensions, one would have ex-

pected this behaviour to set-in already at p = 4. The fact that it is postponed to p ≥ 5 is

interesting, given recent speculations that SYM in d = 5 may be a finite theory.

2.2.1 Regularized area of the worldsheet

We would now like to analyze the divergence in the area of the worldsheet corresponding to

the non-BPS circular Wilson loops. The area of a Wilson loop is regularized via a Legendre

transformation using the Y coordinates defined as

dU2

U2
+ dΩ2

8−p =
dYIdYI

Y2
, YI = Uθ̂I , θ̂I θ̂I = 1 , I = 1, . . . , 9− p . (2.8)

Then the regularized area of the worldsheet Σ is defined as [23]

Sreg. = S −

∫

dτ dσ ∂σ

(

YI δL

δ∂σYI

)

= S −

∫

dτ YI δL

δ∂σYI

∣

∣

∣

∣

∂Σ

,

(2.9)

where the τ coordinate parametrizes the boundary contour, and L indicates the Lagrangian

density, so that S =
∫

dτdσL. We then find that

Sreg. =

∫ Umax.

Umin.

dU r

√

1 +
U7−p

C2
p

r′2 −
U r

√

1 + U7−p

C2
p
r′2

∣

∣

∣

∣

∣

U=Umax.

. (2.10)

5Similar behaviour, i.e. r(U) diverging as U → ∞ is found for p > 5.
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Specializing to p = 4 we may calculate the regularized area of the worldsheet using (2.6).

One finds6

S =

∫ Umax.

dU

(

R−
C2
4

2RU
+ . . .

)

= RUmax. −
C2
4

2R
logUmax. + finite ,

Sreg. = −
C2
4

2R
logUmax. + finite .

(2.11)

The situation is vastly different for p > 4. For example, for p = 5, using (2.7), we

find that7

S =
√

C2
5 +R2 Umax. + finite ,

U r
√

1 + U7−p

C2
p
r′2

∣

∣

∣

∣

∣

U=Umax.

=
R2

√

C2
5 +R2

Umax. , (2.12)

and therefore the regularization procedure does not remove the leading divergence.8 This

may be an indication that SYM in dimensions only greater than five are non-renormalizable.

Using (2.11), the Wilson loop expectation value for p = 4 is given by

〈Wcircle〉 = V e−Sreg. = V exp

(

g2N

16πR
logUmax.

)

· (finite) , (2.13)

where we have indicated the appearance of an unknown, and we will argue from gauge

theory, also divergent prefactor V , which can in principle be determined using semi-classical

methods.

In section 3 we will recover the exponential factor in (2.13) by summing planar rain-

bow/ladder diagrams, and posit that the remaining finite factor is provided by interacting

diagrams. Before doing so we would like to consider the uplift of the p = 4 case to M-theory,

where we will see a six-dimensional origin of the exponential factor.

2.2.2 M-theory lift

For strong coupling, defined as g2U ≫ N1/3, the IIA D4-brane geometry is replaced by the

M-theory background AdS7 × S4 with a boundary direction x6 periodicially identified on

a circle of radius R6 = g2/(8π2) [20]. The metric on this space may be expressed as9

ds2 = 4(πN)2/3l2p

(

dŨ2

Ũ2
+ Ũ2(dr2 + r2dφ2 + dx26 + dx2a) +

1

4
dΩ2

4

)

, (2.14)

where a = 1, . . . , 3. We then consider an M2-brane with worldvolume coordinates {Ũ , φ, x6}

(i.e. wrapped on x6) and take r(Ũ). Shrinking the M-theory circle x6 to zero size, we recover

the IIA fundamental string describing the circular Wilson loop in the D4-brane geometry.

6The boundary term in the Legendre transformation also contributes to the finite piece.
7The conditions under which a Legendre transform can remove the leading divergence has been analyzed

in great detail in [41]. The results given here are a special case of that analysis.
8Again, the same general behaviour, i.e. leading divergences not removed by the Legendre transformation,

is found for p > 5.
9The coordinate Ũ is related to the U coordinate of the D4-brane geometry via Ũ2 = 2πU/(g2N),

see [20].
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The boundary surface of the M2-brane is S1 × S1, i.e. the Wilson loop circle times the x6
circle. Integrating over x6 and φ we obtain

SM2 = 8πNR6

∫

dŨ r Ũ
√

1 + Ũ4r′2 , (2.15)

where we have used the M2-brane tension T = l−3
p /(2π)2. We then find that the equation

of motion for large Ũ is solved by

r(Ũ) = R−
1

4Ũ2R
+ . . . . (2.16)

The action of the M2-brane then evaluates to

SM2

8πNR6
=

∫ Ũmax.

dŨ

(

R Ũ −
1

8R Ũ
+ . . .

)

=
1

2
R Ũ2

max. −
1

8R
log Ũmax. + finite . (2.17)

The Legendre transformation may be implemented in analogy with the fundamental string

case. One defines variables Y I such that

dŨ2

Ũ2
+

1

4
dΩ2

4 =
1

4

(

dV 2

V 2
+ dΩ2

4

)

=
dY IdY I

4Y 2
,

Y I = V θ̂I , θ̂I θ̂I = 1 , I = 1, . . . , 5 ,

(2.18)

so that V = Ũ2. Then the action is regularized via

SM2 reg. = SM2 −

∫

d2τ dσ ∂σ

(

Y I δL

δ∂σY I

)

= SM2 −

∫

d2τ Y I δL

δ∂σY I

∣

∣

∣

∣

∂Σ

,

(2.19)

where the boundary surface ∂Σ is parameterized by the two τ coordinates. This removes

the leading divergence10 from (2.17). We then find that the expectation value of our Wilson

surface is

〈Wsurface〉 = Ṽ exp(−SM2 reg.) = Ṽ exp

(

πNR6

R
log Ũmax.

)

· (finite) , (2.20)

where we have included an unknown semi-classical prefactor Ṽ as in the string case. Us-

ing the fact that Ũ ∼ U1/2 (see footnote 9), and the identification g2/(8π2) = R6, the

string (2.13) and M-theory (2.20) results match, at least for the exponential factor contain-

ing the logarithmic divergence and for the finite part, since the action (2.15) is equivalent

to the string action (2.5) with p = 4. The prefactor is sensitive to fluctuations of the

classical solutions and could be different between M and string theory.

A similar logarithmic divergence is seen in the spherical M2-brane solution in AdS7×S4

presented in [42] (section 5). The metric on AdS7 is taken as dU2/U2 + U2dx2i and the

solution is

xi(U, θ, φ) =
√

R2 − U−2(sin θ cosφ, sin θ sinφ, cos θ, 0, 0, 0) . (2.21)

10As in the string case the boundary term in the Legendre transformation also contributes a finite term.
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The M2-brane action then evaluates to

SM2 = 4N

(

R2U2
max. − log(2RUmax.)−

1

2

)

. (2.22)

Again, the regularization procedure (2.19) removes the leading term. Then we are left

with a logarithmic divergence, causing the expectation value to be scale-dependent. Since

M-theory on AdS7 × S4 is dual to the (2, 0) d = 6 CFT, this scale dependence might

appear surprising. As mentioned in the introduction, it has been understood as a conformal

anomaly suffered by sub-manifold observables corresponding to k-branes for even k (such as

Wilson surfaces) in CFT’s [26–29]. We may therefore interpret the logarithmic divergence

in (2.13) as arising in d = 5 SYM, via dimensional reduction, from this d = 6 anomaly.

It is remarkable that, given the recent speculations that the (2, 0) CFT in six dimensions

might actually also be described by five-dimensional SYM [24, 25, 30–32], we are able to

recover this exponential term by summing planar ladder diagrams directly in d = 5 SYM,

see section 3.

3 Gauge theory analysis

3.1 Exponential factor from planar diagrams

In this section we will recover (2.13) by summing ladder diagrams in Euclidean five-

dimensional SYM, finding the exact exponent. The Wilson loop is defined in the gauge

theory as follows

W =
1

N
TrP exp

∮

dτ
(

iẋµAµ + |ẋ|ΘIΦI

)

, (3.1)

where ΦI with I = 1, . . . , 5 are the five real scalars of the SYM theory, Aµ is the gauge field,

and P indicates path ordering. The trace will be taken in the fundamental representation

of the gauge group SU(N), whose generators T a are normalized by Tr(T aT b) = δab/2.

We take xµ = R (cos τ, sin τ, 0, 0, 0) and ΘI = const.. Using dimensional reduction

from N = 1, d = 10 SYM to d = 2ω dimensions [3], the Feynman-gauge propagators are

as follows

〈Aa
µ(x)A

b
ν(0)〉 = Γ(ω − 1)

g2

4πω

δabδµν
x2ω−2

, 〈Φa
I (x) Φ

b
J(0)〉 = Γ(ω − 1)

g2

4πω

δabδIJ
x2ω−2

. (3.2)

The fundamental object of interest is the loop-to-loop propagator which refers to the 1-

gluon + 1-scalar exchange between two locations xµ1 = xµ(τ1) and xµ2 = xµ(τ2) on the

Wilson loop contour

〈(

iẋµAa
µ + |ẋ|ΘIΦa

I

)

(x1)
(

iẋµAb
µ + |ẋ|ΘIΦb

I

)

(x2)
〉

=
g2Γ(ω − 1)

πωR2ω−4

δab 2
1−2ω

sin2ω−4 τ1−τ2
2

. (3.3)

We see that an integral over τ1 and τ2 will produce a 1/(5 − 2ω) ≡ 1/ǫ divergence as τ2
approaches τ1. Alternatively, we could set 2ω = 5 and regulate this divergence using point-

splitting, i.e. by cutting the integral off at τ1 − τ2 = δ. We will continue by considering

both regularizations.
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Figure 2. Examples of (q, k)-graphs. On the left a (2, 3)-graph is shown; on the right a (4, 4)-graph

is shown.

Summing the planar rainbow/ladders was done for the d = 4 theory in [3], the difference

here is that our loop-to-loop propagator is not constant. For this reason we will need to

take a closer look at the diagrams. It was shown in [3], that the number Nk of planar

rainbow/ladder diagrams with k propagators is given by the kth Catalan number

Nk = Ck =
(2k)!

k!(k + 1)!
. (3.4)

It will be important for our considerations to further subdivide the diagrams by the number

of outermost propagators they contain, see figure 2. An outermost propagator is defined as

a propagator which encloses, between itself and the Wilson loop contour, no other propa-

gators. Let us denote the diagrams with q outermost propagators and k total propagators

as (q, k)-graphs. It is obvious that q ∈ [2, k]. The multiplicity Mq,k of the (q, k)-graphs is11

Mq,k =
2 k!(k − 2)!

q!(q − 2)!(k − q)!(k − q + 1)!
, (3.5)

and one can verify that
k
∑

q=2

Mq,k = Nk , (3.6)

as it must.

One finds that there is an association, at a given loop-level (i.e. fixed k), between the

divergence of a graph and its q-value, the maximum divergence coming from the maximum

value of q, i.e. q = k. Indeed we find that

(q, k)-graph ∝

{

(1ǫ )
q + subleading , dim. red.

(log δ)q + subleading , point-split.
. (3.7)

We would therefore like to sum-up the most divergent diagrams, the (k, k)-graphs. It

turns-out that the integration associated to these graphs has a simple closed form at the

leading order in small-ǫ. The integral is as follows

Ik,k =
2π

2k

∫ 2π

0
dθ2k−1

∫ θ2k−1

0
dθ2k−2 . . .

∫ θ2

0
dθ1

1

sin1−ǫ θ1
2

k
∏

j=2

1

sin1−ǫ θ2j−1−θ2j−2

2

, (3.8)

11There is only one (1, 1)-graph — the only graph with one propagator — and so the formula applies

only to diagrams with two or more propagators.
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in dimensional reduction, or

Ik,k =
2π

2k

∫ 2π−δ

δ
dθ2k−1

∫ θ2k−1−δ

δ
dθ2k−2 . . .

∫ θ2−δ

δ
dθ1

1

sin θ1
2

k
∏

j=2

1

sin
θ2j−1−θ2j−2

2

, (3.9)

in point-splitting regularization, so that the contribution in perturbation theory is

(

g2N Γ(ω − 1)

22ωπωR2ω−4

)k

Ik,k Mk,k , (3.10)

where we have included the planar colour factor (N/2)k. We find that

Ik,k =
2π

2k

(

2

{

1
ǫ

− log δ

)k

(2π)k−1

(k − 1)!
+ subleading , (3.11)

and therefore, using the fact that Mk,k = 2, we have that the contribution is12

1

k!

(

g2N

16πR

)k
{

(

1
ǫ

)k

(− log δ)k
, (3.12)

which therefore sums to

exp

(

g2N

16πR

{

1
ǫ

− log δ

)

, (3.13)

and identifying the UV cut-off Umax. with exp(1/ǫ) (or 1/δ, in the point-split case), we

find that we have recovered exactly the exponential factor found from the string theory

analysis (2.13).

We have neglected the subleading divergences, which amount to lower powers of ǫ−1’s

or log δ’s at each loop-order. Since these must sum-up to something less divergent than the

exponential factor (3.13), it is natural to associate them with the prefactor V appearing

in (2.13). It would be interesting to find a way to verify this idea from the string or M-

theoretic perspective. These subleading divergences are of course scheme-dependent, as a

redefinition of ǫ can be used to tune the subleading coefficients.

3.2 Interacting diagrams at one loop

The one-loop analysis of Wilson loops in SYM theories obtainable via dimensional reduction

from N = 1, d = 10 SYM appeared originally in [3]. In [43], a more general presentation

was made of the same results. The two diagrams to be considered are shown in figure 3.

The trivalent graph Σ3 is built from the following function, a result of integrating over the

position of the triple-vertex

G(x1, x2, x3) =
Γ(2ω − 3)

26π2ω

∫ 1

0
dα dβ dγ (αβγ)ω−2δ(1− α− β − γ)

×
1

[

αβ(x1 − x2)2 + βγ(x2 − x3)2 + αγ(x1 − x3)2
]2ω−3 ,

(3.14)

12In the k = 1 case the integral I1,1 has a compensatory factor of 2, accounting for the fact that M1,1 = 1.
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Figure 3. The one-loop, non-ladder/rainbow diagrams at O(g4). One the left is Σ3, and on the

right Σ2. Internal solid lines refer to scalar and gauge fields, while the greyed-in bubble represents

the one-loop correction to the propagator.

while the one-loop-corrected propagator graph Σ2 may be added to Σ3 using an integration-

by-parts trick [3]

Σ3+Σ2 = −
g4N2

4

∮

dτ1 dτ2 dτ3 ǫ(τ1 τ2 τ3)
[

D(τ1, τ3) ẋ2 ·∂x1
G−∂τ1

(

D(τ1, τ3)G
)]

, (3.15)

where ǫ(τ1 τ2 τ3) refers to antisymmetric path-ordering given by +1 for τ1 > τ2 > τ3 and

totally antisymmetric in the τi, and where D(τ1, τ2) = |ẋ1||ẋ2| − ẋ1 · ẋ2 is the numerator of

the loop-to-loop propagator (3.3). Plugging in the circular contour, we find

Σ2 +Σ3 = (4− 2ω)
g4N2 Γ(2ω − 3)

3 · 22ω+3π2ωR4ω−8

∫ 1

0
dα dβ dγ δ(1− α− β − γ)

×

∮

dτ1 dτ2 dτ3 ǫ(τ1 τ2 τ3)
(αβγ)ω−2(sin τ13 + sin τ32 + sin τ21)

[αβ(1−cos τ12)+βγ(1−cos τ23)+αγ(1−cos τ13)]2ω−3
.

(3.16)

For d = 2ω = 5 this is a finite13 integral which can be evaluated numerically. Stripping-off

the factor to the left of the integral signs in (3.16), we find a value of −499 ± 3 using a

standard Monte-Carlo integration of 109 steps. We find however that for d ≥ 6, the integral

is divergent.
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