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1 Introduction

In recent years there have been remarkable advances in our understanding of N = 2

supersymmetric gauge theories in four dimensions. One highlight is a conjectural relation

between these theories and conformal field theories (CFT) in two dimensions, formulated

by Alday, Gaiotto and Tachikawa [1] (AGT) and generalized thereafter by others [2–6]. In

essence, the AGT conjecture asserts a correspondence between certain quantities in two

types of theories. One is N = 2 theory obtained by compactifying the six-dimensional

(2, 0) superconformal theory on a Riemann surface C [7–9]. The other is CFT on C with

W-algebra symmetry [10].

In view of the nature of the N = 2 theory involved, it is clear that the AGT corre-

spondence should have its origin in six dimensions. A nice explanation would be as follows.

Take the (2, 0) theory defined on the product R
4 × C. Compactified on C, the theory

reduces to an N = 2 theory on R
4. If instead we somehow “compactify” it on R

4, we

get a theory on C. This latter theory is, presumably, a CFT with W-algebra symmetry.

Unlike an overall scaling of the metric, scaling the metric of R4 or C separately is not

a symmetry. Certain quantities are, however, protected under separate compactification,

hence can be computed in either effective theory. The comparison would then lead to the

correspondence.

This scenario sounds plausible, and there are pieces of evidence supporting its valid-

ity [11–13]. Nevertheless, it seems that we still lack a satisfactory explanation of how exactly

the alleged W-algebra arises from six dimensions. In this paper we address this issue.

Our setup is the following. We consider the (2, 0) theory of type g on M ×C, where g

is a simply-laced real simple Lie algebra and M is a four-manifold. If M and C are curved,

to preserve at least one supersymmetry we need to twist the theory. In section 2, we

argue that the theory becomes topological on M and holomorphic on C after the twisting

is done; in other words, it depends on the geometry of the spacetime only through the

smooth structure of M and the conformal structure of C. Roughly speaking, this means
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that we obtain a chiral CFT on C “with values in a topological field theory on M” [14].

The chiral algebra of this theory is the object of our interest.

In section 3, we show that the chiral algebra contains a W-algebra when M = R
4,

if the twisted theory indeed has the above property. The type of the W-algebra is pre-

cisely the one relevant for the AGT correspondence, namely the one that results from the

quantum Drinfeld-Sokolov reduction of the affine Lie algebra ĝ with respect to a principal

sl2 embedding [15, 16]; see appendix for a brief review of quantum Drinfeld-Sokolov re-

duction. Since the chiral algebra is protected under compactification, the same W-algebra

symmetry must be present in the effective theory on C, justifying the crucial assumption

in the aforementioned argument. Our reasoning also applies to the case where there are a

number of supersymmetric codimension-two defect operators inserted at points on C. This

is actually part of the original conjecture. Furthermore, we can place another such defect

operator on R
2 × C ⊂ M × C, in which case the relevant W-algebra changes. This covers

the generalization of the conjecture proposed in [5, 6], which involves N = 2 theories with

a surface operator extending along R
2 ⊂ R

4.

Therefore, by studying the chiral algebra of the (2, 0) theory, we gain a fairly clear

picture of the origin of W-algebras that appear in the AGT correspondence and its gener-

alization incorporating surface operators. We leave some questions unanswered, however.

The most important one is about the Ω-deformation [17]. For a complete treatment, we

must tame infrared divergences coming from the noncompactness of the spacetime. We will

assume that this is done by some regularization procedure,1 but the AGT conjecture picks

a particular one. That is to turn on the Ω-deformation, which confines quantum excitations

within an effectively compact region in R
4. What special role does the Ω-deformation play

in our story, other than merely providing an infrared regulator? Although we propose a

possible explanation in section 4, a definitive answer will have to wait until the appearance

of a six-dimensional realization of the Ω-deformation.

Lastly, let us point out that in principle our chiral algebra can be much larger than just

the W-algebra, and may contain other interesting structures. It deserves to be explored

more deeply.
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W-algebras can be obtained by turning on the Ω-deformation and then removing it. In the presence of the

Ω-deformation, it is known that the level of ĝ is given by k = −h∨ + ǫ2/ǫ1, where h∨ is the dual Coxeter

number of g and ǫ1, ǫ2 are deformation parameters. In the limit ǫ1 → 0, we have k → ∞ and the quantum

W-algebra reduces to a classical W-algebra. The opposite limit ǫ2 → 0 is also a classical limit, via the

duality of W-algebras sending k + h∨
→ (k + h∨)−1 [10]. (The limit in which both ǫ1 and ǫ2 are taken to

zero but ǫ2/ǫ1 remains finite appears to be more subtle.) In general, the level would depend on a specific

regularization scheme that we employ.
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2 Chiral algebra from the (2,0) theory

Let us see how a chiral algebra can arise from the (2, 0) theory on M ×C. First of all, we

need to twist the theory.

The theory has the R-symmetry Spin(5)R under which the sixteen supercharges trans-

form in the spinor representation. Due to the product structure of the spacetime the

holonomy is Spin(4)M × Spin(2)C ∼= SU(2)l × SU(2)r × U(1)C . Correspondingly, we split

Spin(5)R into Spin(3)R ∼= SU(2)R and Spin(2)R ∼= U(1)R. Under SU(2)l×SU(2)r×U(1)C×

SU(2)R ×U(1)R, the supercharges transform as

(
(2, 1)1/2 ⊕ (1, 2)−1/2

)
⊗
(
21/2 ⊕ 2−1/2

)
. (2.1)

The twisting is done in two steps. The first step is to identify the diagonal U(1)′C ⊂ U(1)C×

U(1)R with the holonomy group of C. This gives eight supercharges that are scalars on C

and so preserved by the curvature of C. These transform under SU(2)l×SU(2)r×SU(2)R as

(2, 1, 2)⊕ (1, 2, 2). (2.2)

Thus we get N = 2 supersymmetry on M (which is generally broken by the curvature of

M). The second step is to replace SU(2)r by the diagonal SU(2)′r ⊂ SU(2)r × SU(2)R.

Then we are left with one supercharge that is a singlet under SU(2)l × SU(2)′r × U(1)′C .

We call it Q; it has U(1)R charge 1/2.

It is crucial to understand whether Q obeys Q2 = 0 or not. One way to determine this

is to note that if we compactify the theory on C right after the first step, then the second

step is nothing but the familiar Donaldson-Witten twist [18] applied to the N = 2 theory

on M . In that case we know that Q2 is not zero, but equal to the gauge transformation

generated by an adjoint scalar σ. For the U(1)R charges to match, σ must come from a

scalar Φ of charge 1 in the (2, 0) theory. After the twisting, Φ is a one-form which can be

written as Φ = Φzdz, where z is a local holomorphic coordinate on C. Hence we expect

that in six dimensions, Q2 is given by some sort of gauge transformation specified by the

one-form Φ, that reduces in four dimensions to the gauge transformation by σ.

In the abelian case, such a symmetry is indeed known. The abelian (2, 0) theory has

a two-form “gauge field” B (with values in a vector bundle) whose field strength H = dB

is self-dual. (More precisely, B is something called a connection on an abelian gerbe.) The

symmetry in question acts by

B → B + dΛ (2.3)

with Λ a one-form. If Biz is identified with the component Ai of the gauge field A of the

N = 2 theory on M , this transformation reduces to the ordinary gauge transformation

A → A + dMΛz upon dimensional reduction on C. Since there are no other conceivable

symmetry to which Q2 can be equated, we should have Q2 = 0 up to the two-form gauge

transformation (2.3) with Λ = Φ.
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How to generalize the above symmetry to the nonabelian case is a bit mysterious.

Still, given the fact that the nonabelian theory can be perturbed to an abelian theory or

compactified to a nonabelian N = 2 theory, it is very likely that a generalization does

exist. So let us assume that we have Q2 = 0 up to some “gauge transformation.” With

this relation at hand, we can now define the Q-cohomology of “gauge-invariant” operators

or states. The Q-cohomology classes of operators and states are the physical objects in the

twisted theory.

Since the twisted theory can be compactified to a topologically twisted N = 2 theory

on M , we expect it to be also topological on M . We can see how the physics depends on

the geometry of C by reversing the steps in the twisting. If we twist first along M , then

we get two supercharges that are scalars on M . These transform under U(1)C ×U(1)R as

(−1/2,±1/2), (2.4)

showing that we have (0, 2) supersymmetry in two dimensions. The twisting along C then

turns one of the supercharges into a scalar on C, which we call Q. Twisted (0, 2) theories

have the antiholomorphic degrees decoupled. Hence, we expect that the twisted theory is

holomorphic on C.

The theory being topological on M and holomorphic on C, Q-cohomology classes of

local operators are independent of the position in M and vary holomorphically on C.

Moreover, two of them can be multiplied by operator product expansion (OPE), with

the coefficients being holomorphic functions on C. Therefore, these Q-cohomology classes

form a chiral algebra, an OPE algebra of holomorphic fields, in the sense of two-dimensional

CFT. The locality on M actually plays no role here, so we may also include in the chiral

algebra Q-cohomology classes of operators that are local on C but nonlocal on M . Such

nonlocal operators will be important to us.

So far we have made two assumptions (apart from the very existence of the (2, 0) theory

and some of their properties), that we haveQ2 = 0 up to some “gauge transformation” by Φ,

and that the twisted theory is topological onM and holomorphic on C. A strong support for

these assumptions comes from the existence of an analogous twist forN = 2 superconformal

gauge theory on the product Σ×C of two Riemann surfaces, introduced by Kapustin [19]

in the course of generalizing geometric Langlands duality. When M = Σ × Σ′, our twist

reduces to that of Kapustin via compactification on Σ′. Kapustin’s theory has Q2 = 0,

which is consistent with our formula for the abelian case since the transformation (2.3)

for Λ = Φ gives a trivial gauge transformation when dimensionally reduced to Σ × C.

Furthermore, Kapustin’s theory is topological on Σ and holomorphic on C.

3 Identifying the W-algebra

Our chiral algebra originated from twisted (0, 2) supersymmetry in two dimensions. This

is encouraging, because the chiral algebra of a twisted (0, 2) theory often contains a W-

algebra. For example, the chiral algebra of the A-model contains the Virasoro algebra,

which is the W2 algebra. (In fact, it contains the (2, 0) superconformal algebra [20].) A

more interesting example is provided by the theory obtained from the A-model by killing
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the left-moving fermions. If we take the target space to be the flag manifold of a simple

Lie group, the chiral algebra of this model contains the corresponding affine Lie algebra of

critical level at the level of perturbation theory [20, 21].2

That said, we ask: how does a W-algebra associated to ĝ arise in the chiral algebra of

the twisted theory for M = R
4?

To answer this question, let us think of the (2, 0) theory as if it were a gauge theory,

with gauge group G whose Lie algebra is g, and with all the fields valued in the adjoint

representation. We choose a framing of field configurations at the infinity of R4. That

is to say, we regard two configurations to be physically identical if and only if they are

related by a gauge transformation that is identity at infinity. Let G∞ be the group of

gauge transformations that are global on R
4, which is just the group of maps from C to

G. This is a physical symmetry of the theory, rather than a gauge symmetry. As we now

see, the conserved currents associated with this symmetry give rise to the affine currents

of ĝ in the chiral algebra.

Let {ta} be an antihermitian basis of g, and consider a gauge transformation

exp(ǫfta) ∈ G∞ with ǫ an infinitesimal parameter and f a real function on C. Under

this transformation the gauge field changes by δA = ǫf [ta, A] + ǫdCfta. To find the

corresponding conserved current, we promote ǫ to an arbitrary function supported on

an open set in R
4 × C, and look at the coefficient of dǫ in the variation of the action.

By gauge invariance, we may as well compute the variation under the transformation

δA = ǫdCfta − d(ǫf)ta = dǫfta, which is the difference between the transformation with

ǫ promoted to a function afterwards (hence no longer a symmetry) and the gauge trans-

formation exp(ǫfta). This makes it clear that the conserved current takes the form fja.

Define operators

Ja =

∫

R4

⋆4ja,z, Ja =

∫

R4

⋆4ja,z̄, (3.1)

where ⋆4 is the four-dimensional Hodge star operator, sending 1 to the volume form of R4.

If we choose a local cylindrical coordinate w = σ + iτ such that z = exp(−iw) and regard

τ as time, then the integral ∫
dσ f(zJa + z̄Ja) (3.2)

gives the conserved charge. Since Q is a gauge singlet, this commutes with Q for any choice

of f , which implies that zJa + z̄Ja is Q-closed. But Ja and Ja are functionals of the fields

with no explicit dependence on the coordinate, so it must be that they are both Q-closed.

Then Ja must be Q-exact. For it transforms nontrivially under antiholomorphic scaling

on C, which would contradict the holomorphy of the twisted theory if it did not vanish in

the Q-cohomology. Going back to the expression (3.2) and setting f = 1, we find that the

zero mode of Ja acts by ta in the Q-cohomology.

Therefore, for each ta, we obtain in the chiral algebra a holomorphic current Ja whose

zero mode acts by ta. The collection {Ja} of such currents generate ĝ, as promised. A

2Nonperturbatively, the chiral algebra vanishes once instanton corrections are taken into account [21–

23]. The chiral algebra of the flag manifold model apparently has an intimate connection with geometric

Langlands duality [24–26].
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similar construction was in fact found by Johansen [27] in the context of holomorphically

twisted N = 1 theories defined on the product of two Riemann surfaces. For those theories,

each flavor symmetry gives rise to an affine Lie algebra in the Q-cohomology.

We have given a heuristic argument that the chiral algebra of the (2, 0) theory on

R
4 × C, framed at infinity, contains ĝ as a subalgebra. Of course, the (2, 0) theory is

not really a gauge theory, and the above reasoning does not apply as it is. But it does

apply once we compactify the theory on a circle — for then we have five-dimensional

maximally supersymmetric Yang-Mills theory with gauge group G! Hence, if M = S1×R
3

for example, we do get the affine currents Ja, but this time defined by integration over R3

in the five-dimensional theory.

For M = R
4, however, a similar construction may not give the whole ĝ. One way

to compactify the theory on a circle in R
4 is to bend R

4 into the product of a cigar and

R
2, and make the cigar very narrow. Such a geometry was considered in [28] in relation

to the quantum Hitchin system, and also in [29] in relation to Khovanov homology. This

procedure reduces R
4 to R+ × R

2, so introduces a boundary at the origin of the half-line

R+. The boundary condition here is not our choice; it is specified by the six-dimensional

theory since there was no boundary at the beginning. Global symmetries can change this

boundary condition. This is not a problem if one wants to deal with the conserved currents

placed at a point away from the boundary, in which case one derives Ward identities by

considering local transformations supported in the neighborhood of that point. But if one

considers the currents placed on the boundary, the Ward identities are no longer the same

because of the boundary contribution. This is the situation we face if we define the Ja by

integration over R+ ×R
2, a submanifold which intersects with the boundary. In order not

to spoil our argument, we should project out those Ja that act nontrivially on the boundary

state created by the compactification. It is this projection that we will find implements

quantum Drinfeld-Sokolov reduction.

Thus, we are in need of understanding the boundary conditions of the maximally

supersymmetric Yang-Mills theory. There are really two kinds of boundaries in the

spacetime R+ × R
2 × C. One is the boundary coming from six dimensions. This is

{∞} × R
2 × C ∪ R+ × {∞} × C, located at the infinity of R+ × R

2. The other is the

boundary created by the compactification. This is {0} × R
2 × C, located at the origin of

R+. Relevant to the projection is only the latter, as the conserved currents used to define

the Ja are never placed at infinity which, strictly speaking, is not part of the spacetime.

But understanding the boundary condition for the former tells us something important

about the latter, so we turn to it first.

At infinity, we impose half-BPS boundary condition (that is, preserving half of the

supersymmetry) because we want N = 2 supersymmetry when we compactify the theory

on C. This is given as follows [8]. The R-symmetry Spin(5)R acts on the five scalars φi

of the theory by SO(5) rotations. In order to twist the theory, we have split Spin(5)R into

Spin(3)R, rotating (φ1, φ2, φ3), and Spin(2)R, rotating (φ4, φ5). After the twisting, φ4+ iφ5

becomes the component of a (1, 0)-form ϕ along C. The boundary condition at infinity is

that Ai = φi = 0 for i = 1, 2, 3, and for the remaining components the pair (A,ϕ) solves
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the Hitchin equations on C:

FA + [ϕ,ϕ†] = 0, ∂̄Aϕ = 0. (3.3)

Notice that this boundary condition is invariant under Spin(3)R.

The boundary condition at the origin of R+ is determined by the boundary condition

of the original six-dimensional theory, whose dimensional reduction we just described. As

such, it must be invariant under any symmetry (except the gauge symmetry, which is not

a physical symmetry) preserved by the boundary condition at infinity, especially Spin(3)R.

It turns out that we have a slightly unusual condition here: as the three scalars φ1, φ2, φ3

approach the origin y = 0, they develop a singularity according to the Nahm equation

dφi

dy
+ ǫijk[φj , φk] = 0. (3.4)

More precisely, the three scalars must behave near y = 0 as

φi ∼
ti
y

(3.5)

up to an Spin(3)R transformation, where the ti ∈ g form a standard basis of a principal

su2 subalgebra satisfying the commutation relations [ti, tj ] = ǫijktk [29, 30].

Now we look for a W-algebra inside the chiral algebra. From our previous discussion,

we guess that it is generated by those Ja that kill the boundary state at the origin of R+,

specified by the Nahm pole (3.5). The residue of the pole defines via complexification an

embedding ρ : sl2 → gC, which is a basic ingredient of quantum Drinfeld-Sokolov reduction.

This strongly suggests that the W-algebra associated to the pair (ĝ, ρ) is hidden somewhere

in the chiral algebra.

Obvious candidates for the generators are the Ja corresponding to the elements of G∞

that leave the Nahm pole invariant, but these only generate the sl2-invariant subalgebra

of ĝ. We can find more generators if we exploit the Spin(3)R freedom in the boundary

condition. To see what this freedom makes the total set of generators be, we use a little

trick. First, we enlarge the theory by a subgroup H of the complexification G∞
C

of G∞.

By this we mean the following. The boundary conditions define in the field configuration

space a subspace over which the path integral is performed. We consider the orbit of

this subspace in the complexified field space generated by the action of H, and perform

the path integral over it. After we enlarge the theory, we gauge H to account for the

overcounting. For this operation not to change the physics, no real elements of H should

leave invariant the boundary conditions (of the pre-enlarged theory); otherwise, gauging

H would identify different configurations satisfying the same boundary conditions, which

are physically distinct in the original description. And yet, for the resulting gauge-fixed

algebra to be nicely described, we want H to be large enough so that the whole ĝ lies in

the chiral algebra of the enlarged theory.

Let us define t± = t1± it2 and t0 = t3 so that they obey the standard sl2 commutation

relations, and split gC as gC = g+ ⊕ g0 ⊕ g− according to the eigenvalue of t0, just as

one does in quantum Drinfeld-Sokolov reduction. Then, a good choice of H is G∞
+ , the
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subgroup of G∞
C

corresponding to g+. Clearly its elements change the boundary condition

at y = 0, so enlarging by G∞
+ and gauging it does not change the physics. Moreover, the

enlarged theory has the whole ĝ in the chiral algebra. To see this, note that Ja ∈ ĝ+

lie in the chiral algebra since the boundary condition of the enlarged theory is manifestly

invariant under G∞
+ , and so does J− = 2J1 − J+ since J1 acts on the Nahm pole by an

Spin(3)R transformation rotating around the 1-axis. Thus, by applying J− successively

on Ja ∈ ĝ+, we can generate all the Ja that belong to an sl2 multiplet of nonzero highest

weight. Adding the sl2 singlets, we obtain ĝ.

Now gauging G∞
+ , we find that the chiral algebra contains a subalgebra given by the

BRST cohomology computed in ĝ. We can fix the gauge, for example, by setting the g+-

valued part of the gauge field A to zero at infinity. The gauge that is directly related to

quantum Drinfeld-Sokolov reduction is defined by requiring that the operator J = Jata
take the form

J = t+ +
∑

ta∈g0⊕g−

Jata. (3.6)

Assuming that the level k of ĝ is nonzero and finite (which we believe is generically true

from the AGT conjecture), J/k transforms under G∞
+ in the same way as Az does, so we

can first set the g+-valued part of J to zero. Then we can set J+ = 1 to reach the desired

form, locally on C. To set J+ = 1 globally, in general we need to twist the theory further

by identifying the diagonal of U(1)C × U(1)ρ with the holonomy of C, where U(1)ρ is the

U(1) subgroup of G∞ generated by t0. After that, J+ can be thought of as a section of

a trivial bundle and equated with a global section. The residual gauge freedom is the

antiholomorphic elements of G∞
+ which we could apply right after we set the g+-part of J

to zero. We can fix it if we want, but this is not necessary.

The above gauge-fixing procedure precisely reproduces3 the constraints imposed by

the quantum Drinfeld-Sokolov reduction of ĝ with respect to the principal sl2 embedding

ρ. Therefore, the gauge-fixed algebra is the W-algebra associated to (ĝ, ρ). This was what

we wanted to see.

Our argument readily generalizes to the case where the (2, 0) theory has a number of

half-BPS codimension-two defect operators [8, 9] inserted at points on C. This is simply

because we can define the Ja away from those points. (If we place Ja in the neighborhood

of one of the insertion points, then we can use the Ward identity to deduce the action of

Ja on the defect operator there.) In the five-dimensional description, the defects create

singularities in the gauge field so that the fields transform by nontrivial monodromies as

they go around the insertion points. Defect operators of this type change the N = 2

theory on the four-dimensional side of the AGT correspondence, while introducing vertex

operators on the two-dimensional side.

We can insert yet another defect operator at the tip of the cigar. Upon compactification

on C, this one becomes a half-BPS surface operator in the N = 2 theory. It creates a

singularity of the form A ∼ αdθ at the tip, where α is in the Lie algebra of a maximal

3To recast the standard BRST formalism (see [31] for example) in the form used in [16], one sets the

gauge-fixing condition Fα = −2i(Jα
− δα+) for tα ∈ g+, adds the BRST transformation of fαβ

γbαbβc
γ +

bαB
α to the action, and integrates Bα out.
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torus T ⊂ G and θ is the azimuthal coordinate of the cigar. The gauge group is broken on

the surface to the maximal subgroup L ⊂ G commuting with α, called the Levi subgroup.

If the theory is instead compactified on the circle of the cigar, the monodromy is lost but

something else happens: the Nahm pole changes. For example, when there is a “full”

surface operator [32] for which L = T, the Nahm pole is zero and we get ĝ in the chiral

algebra, as is consistent with the results found in [32, 33]. In general, it is believed that

the Nahm pole in the presence of a defect operator is one whose t+ is a principal nilpotent

element in the complexification of the Lie algebra of L.4 (In the case of g = AN , this

conclusion was essentially obtained in [34].) This explains the appearance of the W-algebra

associated to this sl2 embedding in the generalization of the AGT correspondence proposed

in [5, 6].

4 Role of the Ω-deformation

Even though we have identified the W-algebra in the chiral algebra of the (2, 0) theory, one

mystery remains: what is the role of the Ω-deformation in our story? We conclude this

paper by giving a possible answer to this question.

Suppose that we can introduce some operation in the (2, 0) theory on R
4 × C that

reduces to the Ω-deformation when the theory is compactified on C. However that is

realized, this “six-dimensional Ω-deformation” must exploit in some way or another the

rotations in two orthogonal two-planes in R
4. Then, it would modify the relation Q2 = 0

(modulo a “gauge transformation”) by adding to the right-hand side the conserved charges

generating these rotations. This is what happens in the case of the usual Ω-deformation in

four dimensions. To define the Q-cohomology in such a situation, we have to project the

algebra of operators to the subalgebra of Q2-closed operators. This projection would be

harmless if the (2, 0) theory were a gauge theory, so that we could define the Ja directly in

six dimensions in a manner that is manifestly rotation invariant. In reality, we need first go

down to five dimensions, whereby we lose one of the directions in which the Ω-deformation

is performed. Because of this reduction it is far from obvious whether Ja would survive

the Ω-deformation or not.

There is, however, a sufficient condition for a given Ja to survive. In going down to five

dimensions, we took M to be the product of a cigar and R
2, and sent the radius of the cigar

to zero. For definiteness, suppose that the cigar was made of a half-cylinder R+×S1 capped

with a hemisphere. We could turn on the Ω-deformation on the cigar using the rotations

around its axis. A peculiar property of the Ω-deformation is that we can cancel such a

deformation on the flat cylinder part by a change of variables [28]. In this “undeformed”

description, the effect of the Ω-deformation localizes on the hemisphere, so the Ω-deformed

Q obeys Q2 = V for some conserved charge V whose current is supported there. After

we compactify the theory, the cigar becomes R+ and some boundary state |Ψ〉 appears at

y = 0. Since V is now supported at y = 0, the statement that Ja is V -closed is equivalent

to saying that 〈Ψ′|[V, Ja]|Ψ〉 = 0 for any states |Ψ′〉 placed at a y-slice infinitesimally close

to y = 0. Noting that |Ψ〉 is Q- and hence V -closed as the boundary conditions of the

4I thank Yuji Tachikawa for explaining this point to me.
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original theory were chosen that way, we see that this happens if Ja|Ψ〉 = 0. Therefore, Ja
is V -closed if it kills the boundary state created by the compactification.

So it seems to be a good idea to project out those Ja that act nontrivially on |Ψ〉. But

this projection is exactly what we did to avoid the boundary contribution! Then, this could

be a more fundamental reason as to why we should carry out the projection: to define the

chiral algebra in the presence of the Ω-deformation.

In fact, in the absence of the Ω-deformation or defect operator, we could do away with

the projection altogether by choosing a different way to compactify the theory. For example,

the U(1) action on R
4 ∼= C

2 defined by (z1, z2) → (eiθz1, e
iθz2) gives a smooth quotient

without boundary, C2/U(1) ∼= R
3. For such a choice the issue of emergent boundary does

not occur, and we expect to get the full ĝ.5 One of the motivations behind our choice was

that it would make our construction compatible with this hypothetical Ω-deformation of

the (2, 0) theory.

A Quantum Drinfeld-Sokolov reduction

Given an affine Lie algebra ĝ and an embedding ρ : sl2 → gC, quantum Drinfeld-Sokolov

reduction [16] produces a vertex algebra isomorphic, up to a shift in level, to a subalgebra

of the universal enveloping algebra U(ĝ) of ĝ. This is achieved by imposing constraints on

the affine currents by means of BRST gauge fixing. The resulting algebra is the W-algebra

associated to the pair (ĝ, ρ), denoted by W (ĝ, ρ).

The choice of the sl2 embedding gives a decomposition of gC into sl2 multiplets. Take

a basis {t+, t0, t−} of the sl2 subalgebra satisfying

[t+, t−] = 2t0, [t0, t±] = ±t±, (A.1)

and extend it to a complete basis {ta} of gC. We assume that ta have an integer spin (that

is, [t0, ta] = sata for some sa ∈ Z), and write g+, g0, and g− for the subalgebras of spin

positive, zero, and negative, respectively. Then the constraints imposed by the quantum

Drinfeld-Sokolov reduction are

Ja = 0 (A.2)

for all ta ∈ g+ except t+, and

J+ = 1. (A.3)

Here we have raised the index of Ja using the Killing form. These constraints may be

thought of as coming from gauge fixing a certain variant of gauged WZW model [43],

5As a variation of this construction, take M to be the ALE space obtained by a hypekähler resolution

of the orbifold C
2/Zk. This space may be thought of as an S1

× R-fibration over C, where the fiber at

z ∈ C is given by the equation u2 + v2 = −
∏k

i=1
(z − ai) with u, v, ai ∈ C and the ai distinct. The

quotient by the S1-action is R3. So again, we expect to get ĝ. This expectation fits nicely with I. Frenkel’s

conjecture that the cohomology of the moduli space of framed G-instantons on C
2/Zk should carry a level k

representation of ĝ, which has been partially proved by Licata [35] and led Braverman and Finkelberg [36]

to propose geometric Langlands duality for complex surfaces. See [37–40] for physical explanations on this

point. In the case k = 1, we have argued that turning on the Ω-deformation reduces ĝ (which now has a

different level) to a W-algebra. For a general value of k, it should reduce ĝ, possibly combined with other

subalgebras of the chiral algebra, to a parafermionic W-algebra [41, 42].
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hence can be imposed using the BRST formalism. The BRST cohomology computed in

U(ĝ) is W (ĝ, ρ).

One subtlety in the above procedure is that the constraint J+ = 1 breaks conformal

invariance if we use the standard Sugawara energy-momentum tensor T , under which Ja
have conformal weight one. We remedy this problem by adding −∂J0 to T . This shifts the

conformal weight of Ja by −sa, thereby making J+ weight zero.
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