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squared curvature of the induced metric on the worldsheet. In higher dimensions, there
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1 Introduction

One-dimensional solitonic objects play an important role in many field theories, both

strongly and weakly coupled — examples include the Abrikosov-Nielsen-Olesen vortex [1, 2]

in the 3 + 1 dimensional Abelian Higgs model, and confining color flux tubes connecting

quark-antiquark pairs in quantum chromodynamics. In any such theory, the string breaks

D−2 translations in a D-dimensional spacetime, so one universally expects D−2 massless

scalars on the worldsheet by Goldstone’s theorem. Furthermore, in the generic case where

there are no additional symmetries, there is nothing to prevent the other modes on the

string worldsheet from becoming massive, so the Nambu-Goldstone bosons are the only

massless excitations of the string. It is then possible, at least in principle, to integrate

out the massive fields in order to obtain a low-energy effective action for these Nambu-

Goldstone modes, that is valid up to the mass of the lightest massive excitation. This

action, which is valid for strings which fluctuate at long wavelengths compared to the

other scales in the theory, is called the “long string effective action”.

The choice of coordinates on the worldsheet of the string is arbitrary, so the effective

action for the worldsheet embedding coordinatesXµ(σa) (µ = 0, · · · , D−1, a = 0, 1) should

be invariant under diffeomorphisms of σa. It is natural to go to a physical gauge for these

diffeomorphism symmetries in which only the physical (transverse) fluctuations of the string

appear in the action. For a string stretched predominantly along the X1 direction in space

(for instance, it could wrap a circle in this direction, or stretch between two boundaries

localized in this direction), a natural choice is the static gauge σ0 = X0, σ1 = X1, which

completely fixes the worldsheet diffeomorphism symmetry, and leaves only the transverse

fluctuations Xi(σa) (i = 2, · · · , D − 1) which are the massless Nambu-Goldstone bosons.

Such a choice is natural when expanding around the solution of a static long string stretched

in the X1 direction. The effective action in the static gauge is a functional of the Xi
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and their derivatives, and has a low-energy expansion in the number of derivatives (terms

involving Xi with no derivatives cannot appear since the Xi are Nambu-Goldstone bosons).

The disadvantage of the static gauge is that the space-time Lorentz symmetry, which is

spontaneously broken by the long string solution that we are expanding around, and by our

static gauge choice, is not manifest. However, this symmetry should still be non-linearly

realized, and this leads to constraints on the long string effective action. One obvious

solution to these constraints is the Nambu-Goto action

SNG = −T

∫

d2σ
√
−h , (1.1)

where T is the string tension, hab ≡ ∂aX
µ∂bXµ is the induced metric on the string world-

sheet, and h ≡ det(hab). This action is diffeomorphism-invariant and Lorentz-invariant, and

thus writing it in the static gauge automatically gives an action with a non-linearly realized

Lorentz symmetry. However, in general there could be more solutions to the constraints,

which would correct the Nambu-Goto action. In particular, any diffeomorphism-invariant

functional of the induced metric, such as
∫

d2σ
√
−hRn where R is the induced curvature,

is also automatically Lorentz-invariant when written in the static gauge, but it is not clear

if such functionals are the only possible Lorentz-invariant actions or not.

The long string effective action was first systematically analyzed in [3], up to four-

derivative order. In this paper constraints on the effective action were derived by requiring

consistency (“open-closed duality”) between different interpretations of its partition func-

tion, involving propagation of the string in different channels. It was shown in [3] that for

D = 3 this uniquely determined the coefficients of terms in the effective action with up to

four derivatives up to an overall constant, implying that the action to this order was equal

to the Nambu-Goto action. It was later realized [4–6] (see also [7]) that the computation

of [3] assumed (through the form of the space-time propagators) Lorentz symmetry, so

that the constraints on the action really came from this symmetry. The procedure of [3]

was subsequently generalized to any D and carried out to the next order in the derivative

expansion in [5]. It was found that at six-derivative order a correction to the Nambu-Goto

action could appear with an arbitrary coefficient c4, but only when D > 3, and it was

verified that this is consistent with computations of the effective string action in a number

of confining gauge theories with known weakly curved holographic duals. It was then noted

in [6] that the constraint of Lorentz invariance could also be imposed by directly requiring

that the action is invariant under a non-linear Lorentz transformation of the transverse

fields Xi, and that this gives equivalent constraints (at least up to six-derivative order) to

the ones found in [5]. This method was then used in [8] to analyze the leading corrections

to the effective action for open strings. The fact that the leading corrections to the string

effective action appear at six-derivative order (for D > 3) or at eight-derivative order (for

D = 3) implies that the deviations of the energy levels of long strings from their Nambu-

Goto values are very small. The leading deviations were explicitly computed in [9], and

they are consistent with the latest lattice results for the spectrum of long confining strings

(see [10] and the references in [9], and see [11] for a recent review).1

1However, there is some unexplained tension between these results and lattice computations in some

three dimensional models, see [12–14] and references therein.
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The non-linearly realized Lorentz transformation relates terms in the effective action of

the schematic form dnXm to other terms with the same value of (n−m). We call the value

of (n−m) the “scaling” of a given term. The terms of scaling zero were shown in [6, 8, 15–

17] to be equivalent to their Nambu-Goto value, to all orders in the derivative expansion.

The leading correction to Nambu-Goto found in [5], of the form d6X4, is related by Lorentz

transformations to other terms of scaling two, of the form d2n+2X2n with n = 3, 4, · · · . Up
to now Lorentz invariance was tested order by order in the derivative expansion, and it is not

clear if a given term (like the c4 term mentioned above) has an all-orders Lorentz-invariant

completion or not. This is obviously an important question, since if there is no such

completion for a given term then this term is not allowed, leading to additional constraints

on the effective action. In this paper we analyze the Lorentz-invariance constraints on the

terms with the lowest scaling that are allowed, to all orders in the derivative expansion. For

D = 3 we find that the leading allowed eight-derivative term (of scaling four) has a unique

Lorentz-invariant completion. For D > 3 we argue (though we do not rigorously prove)

that again the leading allowed correction (the c4 term) has a unique Lorentz-invariant

completion. This implies that the leading allowed corrections which were assumed in the

previous literature are indeed consistent with Lorentz invariance, at least classically.

Other gauge choices for the “long string effective action” can also be made. In particu-

lar, in [18] the effective action was analyzed in the orthogonal gauge, in which the induced

metric is proportional to the Minkowski metric (see also [19–21]). In this gauge Lorentz

invariance is manifest, but diffeomorphism invariance leads to non-trivial constraints. It

was argued (but not rigorously derived) in [18] that these constraints determine the leading

correction to the Nambu-Goto action in this gauge to take the form

β

4π

∫

d2σ
√
−hR

1

�
R , (1.2)

where R is the curvature scalar of the induced worldsheet metric h and β = (26−D)/12.

This is the same as Polyakov’s one-loop determinant for the fundamental bosonic string,

but now written using the induced metric instead of an intrinsic worldsheet metric as

in [22]. The form that we will find for the leading correction to the action in D > 3 will

turn out to be quite similar to this (but without the constraint on the coefficient), and we

will discuss this further below.

We begin in section 2, by describing our general strategy and reviewing the form of

the nonlinear Lorentz transformation and the equations of motion in the static gauge. In

sections 3 and 4, we derive the first allowed corrections to the Nambu-Goto action in 2+ 1

dimensions and higher dimensions, respectively. We conclude in section 5 with a summary

of our results and possible directions for future investigation. Two appendices contain some

technical details.

2 Symmetries and equations of motion

Consider the low-energy effective field theory on a string embedded in D spacetime dimen-

sions. The dynamical fields in the static gauge are the transverse coordinates Xi(σ0, σ1)
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(i = 2, · · · , D − 1). The full Poincaré-invariant field theory that our string is a solution

of has a SO(D − 1, 1) × R
D global symmetry, that is spontaneously broken in the long

string vacuum Xi = 0 to a SO(D − 2) × SO(1, 1) × R
2 subgroup, consisting of rotations

and boosts that do not mix the transverse and longitudinal fields, and translations along

the worldsheet. One might expect that each generator that is not in this subgroup would

correspond to a unique Nambu-Goldstone boson, but in fact the D − 2 Nambu-Goldstone

bosons for the broken translations are enough to realize the full Poincaré group [23]. Since

the effective action is not manifestly invariant under the broken rotations, these symmetries

must be realized nonlinearly on the X fields.

In order to derive the explicit form of this transformation, let us follow [6, 8] and

consider a broken infinitesimal boost δ02 and rotation δ12 in the Xa −X2 plane, which act

on the embedding coordinates before the gauge-fixing as

δ02X
a = ǫX2δa0 , δ02X

i = ǫX0δi2 , (2.1)

δ12X
a = ǫX2δa1 , δ12X

i = −ǫX1δi2 . (2.2)

In both cases, the transformation of Xa implies that the transformed field configuration is

no longer in the static gauge, so we must make a compensating diffeomorphism δa2σ
b =

ǫX2δba on the worldsheet coordinates in order to leave our choice of gauge intact. Defining

δ+2 = (δ02 + δ12)/
√
2, the full transformation of the transverse fields under this specific

transformation is then

δ+2(∂+X
i) = −ǫ∂+(X

2∂+X
i) ,

δ+2(∂−X
i) = ǫ

[

δi2 − ∂−(X
2∂+X

i)
]

, (2.3)

where σ± = (σ0 ± σ1)/
√
2 are light-cone coordinates.

In the following sections, we will find it useful to organize terms in the effective action

by their scaling, which we define as the excess of derivatives over X fields; for example,

(∂2
+X)2(∂−X)4 has scaling two. The utility of this definition is that terms with different

scaling do not mix under (2.3), so that one can individually analyze the part of the action

containing terms with a fixed scaling. In fact, we will see that in some cases the term with

a given scaling that is of lowest order in the derivative expansion determines (using Lorentz

symmetry) all higher order terms with the same scaling.

By requiring the variation of the action under (2.3) to vanish, it was shown in [6] that

the scaling zero action is constrained to take the Nambu-Goto form (1.1) (as previously

proven in [15]). In this work, we will therefore consider deviations from the Nambu-Goto

action of the form S = SNG + δS, where δS has scaling greater than zero. Notice that

δS is small compared to SNG, since we are working in a derivative expansion. Naively, we

should now write down the most general possible δS, and require that (like SNG) δS is also

invariant under the transformation (2.3). However, if we consider the leading correction to

the Nambu-Goto action, we can weaken this requirement in two ways.

First, we will allow variations of δS under (2.3) that are proportional to the Nambu-

Goto equations of motion. Such variations are still generated by currents that are conserved

up to the Nambu-Goto equations of motion, and these are a good approximation to the
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full equations of motion of the theory, so up to leading order in δS this is enough for our

purposes.2

Second, we can ignore terms in δS that are proportional to the equations of motion,

because these can be eliminated via field redefinitions. Note that a field redefinition would

affect the form of the transformation (2.3) to first order in δS, but the only change in δ+2S

will be at O(δS2), since the leading variation δ+2SNG is proportional (like any variation

of the action) to the Nambu-Goto equations of motion. Again, at leading order in δS we

can drop terms proportional to the Nambu-Goto equations of motion rather than the full

equations of motion of our action.3

Let us now derive the form of the Nambu-Goto equations of motion in the static gauge.

To do this, we first return to the Nambu-Goto theory in covariant form (1.1), where the

equations of motion can be written as

∂a
(
√
−hhab∂bX

µ
)

= 0 , (2.4)

where h is the determinant of the induced metric hab ≡ ∂aX
µ∂bXµ, and hab is its inverse.

Going to the static gauge, (2.4) becomes

∂a
(
√
−hhab∂bX

i
)

= 0 , (2.5)

∂a
(
√
−hhab

)

= 0 . (2.6)

One can check that (2.5) implies (2.6); this is required for the consistency of the fixing of

the static gauge, since if the two equations were independent then the system would be

overdetermined. Combining (2.5) and (2.6) gives hab∂a∂bX
i = 0, or explicitly

∂+∂−X
i =

∂2
+X

i(∂−X)2 + ∂2
−X

i(∂+X)2

2(∂+X · ∂−X − 1)
. (2.7)

The dot product here and below means a sum over the transverse index i, for instance

(∂−X)2 ≡ ∂−X
i∂−X

i.

3 2+1 dimensions

The case of a string moving in 2 + 1 dimensions (which is equivalent to a domain wall) is

somewhat simpler than the higher dimensional case, because in this case there is a single

transverse coordinate X. This gives relations between various terms that differ in higher

dimensions. It is straightforward to check that no terms with scaling between one and three

are allowed (all scaling two terms are total derivatives up to the equations of motion), so

the first possible corrections to the Nambu-Goto action in this case arise at scaling four [5].

The leading possible correction to Nambu-Goto in the derivative expansion takes the form

(∂2
+X)2(∂2

−X)2.

2More precisely, this is enough to ensure that the Lorentz charges are still conserved at leading order in

δS, but their algebra could be modified [6].
3From now on, whenever we refer to the equations of motion, we mean the Nambu-Goto equations of

motion.
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Up to integration by parts and up to the equations of motion, the most general SO(1, 1)-

invariant Lagrangian at scaling four that contains 2n X fields takes the form

L4,n =
[

an(∂
3
+X)2(∂+X)n−4(∂−X)n+2 + bn(∂

2
+X)4(∂+X)n−6(∂−X)n+2 + (+ ↔ −)

]

+ cn(∂
2
+X∂2

−X)2(∂+X∂−X)n−2. (3.1)

We assume a worldsheet parity symmetry under σ+ ↔ σ−. Each term in (3.1) is accompa-

nied by negative powers of the tension. If our long string has a typical scale ℓ characterizing

its length, we can rescale the worldsheet and space-time coordinates by this length, and

then the derivative expansion in the worldsheet is an expansion in inverse powers of the

dimensionless parameter Tℓ2. In particular the energy levels of a string of length ℓ have

an expansion of this form.

In order for the Lagrangian to be invariant under δ+2, the quantity
∑

n δ+2L4,n is

required to vanish. After using the equations of motion, a basis for the terms appearing in
∑

n δ+2L4,n that are linearly independent up to integration by parts is given by

(∂3
+X)2, (∂2

+X)4, (∂2
+X)2(∂2

−X)2, (3.2)

times appropriate powers of (∂+X) and (∂−X), and their counterparts with + ↔ −.

Varying (3.1), one finds that only the variation of the an term yields terms involving

(∂3
+X)2, implying that an = 0 for all n. The variation of the remaining terms in (3.1) can be

expanded in terms of (∂2
±X)4 and (∂2

+X)2(∂2
−X)2, giving two relations between bn, bn−1, cn,

and cn−1 for every value of n. This suffices to uniquely determine all coefficients in the

action up to one overall constant. Solving the recursion relation is best done using a trick,

and we leave the details to an appendix.

Up to an overall normalization, the unique solution to the Lorentz-invariance condition

at scaling four may be written in the diffeomorphism-invariant form

δL ∝
√
−hR2 ∝

[

∂2
+X∂2

−X − (∂+∂−X)2
]2

(1− 2∂+X∂−X)7/2
, (3.3)

where R is the scalar curvature constructed from the induced worldsheet metric h. As

expected for a diffeomorphism-invariant term, one can check that (3.3) is invariant under

the nonlinear Lorentz transformation even off-shell (without using the equations of motion).

The reader may be wondering why our analysis did not identify the Euler characteristic
∫

d2σ
√
−hR, which has scaling two, as being invariant under the Lorentz transformation.4

This term is a topological invariant and does not affect the equations of motion, but it

weights amplitudes by a factor related to the genus of the worldsheet, analogously to the

dilaton-curvature coupling in string theory [24]. In our long string expansion we do not

allow any topologically non-trivial worldsheets so this term should be trivial. Indeed, one

finds that
√
−hR is a total derivative as long as its Taylor series in the ∂X’s converges,

which is the case for the long string expansion in the static gauge.

4We thank M. Field for clarifying discussions on this point.
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4 Higher dimensions

In more than three dimensions, there are several X’s, and more general terms, including

terms of scaling two, may also be written [5]. The general SO(D − 2)× SO(1, 1)-invariant

action with n pairs of X fields at scaling two is

L2,n =
[

(∂2
+X · ∂+X)2

(

(∂−X)2
)3La

0,n−5 + (∂2
+X · ∂+X)(∂2

+X · ∂−X)
(

(∂−X)2
)2Lb

0,n−4

+ (∂2
+X)2

(

(∂−X)2
)2Lc

0,n−3 + (∂2
+X · ∂−X)2(∂−X)2Ld

0,n−3 + (+ ↔ −)
]

+ (∂2
+X · ∂+X)(∂2

−X · ∂−X)Le
0,n−2 + (∂2

+X · ∂2
−X)Lf

0,n−1 , (4.1)

where the scaling zero Lagrangian with 2n X fields is defined by

L0,n =
∑

m

an,m
(

(∂+X)2
)m(

(∂−X)2
)m

(∂+X · ∂−X)n−2m. (4.2)

The different superscripts in (4.1) indicate that each L0,n involves different coefficients an,m.

Let us now sketch the method for varying (4.1). After applying δ+2 using (2.3), we

integrate by parts to put every term into the form X2(· · · ). Then, we use the equations

of motion (2.7) to eliminate terms proportional to ∂+∂−X or its derivatives. Some of the

remaining terms are not linearly independent: for example, up to total derivatives, we have

X2(∂3
+X · ∂2

−X) = −X2

{

∂+(∂−X · ∂2
+∂−X) + ∂2

+X · ∂+∂2
−X (4.3)

+
1

2
∂2
+

[

(∂2
+X · ∂−X)(∂−X)2

1− ∂+X · ∂−X

]

+
1

2
∂2
−

[

(∂2
+X · ∂−X)(∂+X)2

1− ∂+X · ∂−X

]}

.

After getting rid of such terms, one must iterate the above procedure in order to find the

full variation. Sparing the reader from the remainder of the details, the solution up to

16-derivative order is unique up to an overall constant, and may be written in the form

δL = 2c4
√
−hR

[

log
(
√
−h

)

− (∂+X)2(∂−X)2

4(1− ∂+X · ∂−X)2
−

5
(

(∂+X)2
)2(

(∂−X)2
)2

32(1− ∂+X · ∂−X)4
(4.4)

−
11
(

(∂+X)2
)3(

(∂−X)2
)3

96(1− ∂+X · ∂−X)6
−

93
(

(∂+X)2
)4(

(∂−X)2
)4

1024(1− ∂+X · ∂−X)8

]

+O
(

(Tℓ2)−10
)

,

where we normalized c4 so that it agrees with the literature [9]. Note that this expression

is a total derivative in three dimensions, which is consistent with the fact that there are

no allowed scaling two terms in D = 3.

We were not able to solve the Lorentz variation requirements explicitly to all orders in

the derivative expansion. If we could write our expression in a diffeomorphism invariant

form, say as some functional of the induced curvature R, then it would be clear how to do

this, but we could not write (4.4) directly in such a form. However, we can express (4.4)

in a more transparent form. To do this, let us define an operator �̃−1 by the relation

1

�̃
f =

1

�
(f + equations of motion) . (4.5)

– 7 –
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That is, to compute �̃
−1f , one adds a function to f that is proportional to the equations

of motion, such that the combination may be written in the form �g for some function g,

and takes �̃−1f = g. For general f this definition is plagued with ambiguities — however,

we show in an appendix that �̃−1R is uniquely defined. The existence of �̃−1R is a more

difficult question; we could not prove this, but it is straightforward to check that it holds

order by order in the derivative expansion. Next, note that, up to the equations of motion,

the worldsheet Laplacian is equal to

� = hab∂a∂b =
1

h

[

(∂+X)2∂2
− + (∂−X)2∂2

+ + 2(1− ∂+X · ∂−X)∂+∂−
]

, (4.6)

where the first equality follows from (2.6). Using this form of the Laplacian, one can then

check that (4.4) can be rewritten as

δL = −2c4
√
−hR

1

�̃
R+O

(

(Tℓ2)−10
)

. (4.7)

Motivated by (4.7), we conjecture that
√
−hR�̃

−1R is invariant under the Lorentz

transformation to all orders in the derivative expansion, and is therefore the only allowed

correction to the Nambu-Goto action at scaling two. The major obstacle to proving this

directly is that we could not systematically compute �̃
−1R. We expect that �̃−1R can be

expressed as an infinite series whose radius of convergence is on the order of Tℓ2, where

the effective field theory breaks down, but we have not yet been able to identify this series.

One may expect that the leading correction to the action would take the form√
−hR�

−1R, as found in the orthogonal gauge in [18]. This term is manifestly Lorentz-

invariant, but it does not seem to be local in the static gauge, in the sense of having a

good derivative expansion. Note that
√
−hR�̃

−1R is not equivalent to
√
−hR�

−1R under

a field redefinition, since �−1 acting on the equations of motion in (4.5) is not proportional

to the equations of motion. However, if we use the same definition (4.5) in the orthogonal

gauge, the two terms would be equivalent there. Perhaps �̃−1 should be thought of as some

regularized form of the inverse Laplacian, but it is not clear what regularization scheme is

being used, since the subtractions �−1(equations of motion) are non-local.

5 Conclusions

We have used a nonlinear realization of Lorentz symmetry to constrain deviations of the

static gauge effective action on a long string from the Nambu-Goto action. Combined with

the known results at scaling zero, our analysis implies that the action must take the form

S =











−T
∫

d2σ
√
−h (1 + aR2 + higher scaling) for D = 3

−T

∫

d2σ
√
−h

(

1 +
2c4
T

R�̃
−1R+ higher scaling

)

for D > 3 ,
(5.1)

where a and c4 are arbitrary constants, and �̃
−1 was defined in (4.5). The consistency of

the second term in D > 3 has not been proven, but we have tested it to high orders in

the derivative expansion. This result confirms that the leading possible corrections in the
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derivative expansion that were discussed in [5, 6, 9] are allowed by Lorentz symmetry, at

least at the classical level.

One of the most interesting open questions is the relation between our results and those

of [18]. Since we cannot write our correction in a manifestly diffeomorphism-invariant

fashion, we cannot directly compare it to other gauges, such as the gauge used in [18].

However, one can check [21] that computations of gauge-invariant quantities like energy

levels using the effective actions we found here agree with the results using the formalism

of [18]. It was claimed in [18] that quantum considerations fix the coefficient of the leading

correction uniquely. In our classical analysis this coefficient c4 is arbitrary, and it would be

interesting to understand if quantum corrections constrain it somehow. These issues will

be discussed further in [6].

There are various possible generalizations of our computations. In this paper we only

discussed closed strings, with no boundary terms. Boundary terms can also be analyzed

using methods similar to those presented here [8], and it would be interesting to explicitly

solve the all-order constraints on the boundary terms for low values of the scaling. Similarly,

one can generalize our considerations to include gauge fields, as they appear in D-brane

actions; the scaling zero action was shown in [16, 17] to agree with the Dirac-Born-Infeld

action, and it would be interesting to analyze the leading correction to this. In our analysis

we assumed worldsheet and space-time parity, and we did not include any terms involving

space-time Levi-Civita tensors in our analysis. It would be interesting to understand if

such terms, suggested for instance in [25], can also arise in the long string effective action.

One may also wonder about the consequences of adding more massless fields to the

worldsheet effective field theory. For example, a confining string in a supersymmetric

gauge theory generically breaks all of the supersymmetries, giving massless Goldstinos on

the worldsheet. The effective action is therefore constrained by nonlinearly realized super-

symmetry, and it is tempting to predict that the resulting constraints would imply that

the first correction to the Ramond-Neveu-Schwarz action is related to the supersymmetric

Liouville theory determinants calculated in [26] (in the same sense that the correction we

found is related to the bosonic Liouville action found by Polyakov).
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A The Lorentz variation in D = 3

Instead of directly extracting the constraints on the D = 3 Lagrangian (3.1) from its

variation, we will add some terms to the action that are proportional to the equations of

motion in order to make the variation of the action simpler. A combination of a term of

the form
[

αn(∂+∂−X)2 + βn∂
2
+X∂2

−X
]

(∂+∂−X)2(∂+X∂−X)n−2 (A.1)

(for arbitrary αn and βn) with the bn and cn terms in (3.1) is proportional to the equations

of motion, so it makes no difference to add it to the action, as long as we shift bn and

cn accordingly (in this appendix we will use the shifted bn and cn everywhere). Setting

an = 0 as found in section 3, the variation of the action (3.1)+(A.1) then becomes (after

integrations by parts)

δ+2L4,n = (A.2)

− ǫ(∂+X)n−2(∂−X)n−3
{[

2(2cn + βn)(∂
2
+X)2∂2

−X∂+∂−X

+2(2αn + βn)∂
2
+X(∂+∂−X)3

]

(∂−X)2

+
[

(2n+3)∂+X∂−X+2−n
][

αn(∂+∂−X)4+βn(∂+∂−X)2∂2
+X∂2

−X+cn(∂
2
+X∂2

−X)2
]}

+ ǫbn
{

(∂2
+X)4(∂+X)n−6(∂−X)n+1

[

n+ 2− (2n+ 7)∂+X∂−X
]

+(∂2
−X)3(∂+X)n+2(∂−X)n−7

[

(n−6)∂2
−X+(1−2n)∂2

−X∂+X∂−X− 8∂+∂−X(∂−X)2
]}

.

If we do not use the equations of motion on (A.2), then the sum
∑

n δ+2L4,n vanishes

if and only if bn = 0 and αn = −βn/2 = cn, and in addition we get a recursion relation for

the cn:

cn =
2n+ 1

n− 2
cn−1 (A.3)

for n ≥ 3. The solution to this recursion relation is

αn = −βn
2

= cn ∝ (2n+ 1)!!

(n− 2)!
(A.4)

for n ≥ 2, which reproduces the Taylor expansion of (3.3), as claimed. In fact, one can

check that (A.4) is the unique solution to the constraints even if we allow (A.2) to be

proportional to the equations of motion.

B Uniqueness of �̃−1
R

In order to show that (4.7) is well-defined, we must check that there is a unique solution

to �g = R+(equations of motion) up to shifts of g by terms proportional to the equations

of motion, as long as g is assumed to have a good expansion in derivatives.

To prove this, first note that once the equations of motion are used, g must be a sum

of terms of the schematic form (∂X)n. Indeed, g has scaling zero, and each X field in

g must be differentiated; if not, then R would necessarily contain terms where X is not

differentiated, which is not the case. The SO(D − 2) × SO(1, 1) symmetry then implies

that g is a sum of terms of the form

gn,m = (∂+X · ∂−X)n
(

(∂+X)2
)m(

(∂−X)2
)m

. (B.1)
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It is then straightforward to check that the functions �gn,m are linearly independent after

use of the equations of motion, so there is enough information in the equation �g =

R+(equations of motion) to uniquely determine the coefficient of each gn,m. This completes

the argument.
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[4] H.B. Meyer, Poincaré invariance in effective string theories, JHEP 05 (2006) 066

[hep-th/0602281] [INSPIRE].

[5] O. Aharony and E. Karzbrun, On the effective action of confining strings,

JHEP 06 (2009) 012 [arXiv:0903.1927] [INSPIRE].

[6] O. Aharony, Z. Komargodski and A. Schwimmer, The effective action on long strings,

talk given at Strings 2009, Rome Italy, June 22–26, 2009,

http://strings2009.roma2.infn.it/talks/Aharony Strings09.ppt, and at the ECT* Workshop

on Confining Flux Tubes and Strings, Trento Italy, July 5–9, 2010,

http://www.ect.it/Meetings/ConfsWksAndCollMeetings/ConfWksDocument/2010/talks/

Workshop 05 07 2010/Aharony.ppt, work in progress.

[7] J.D. Cohn and V. Periwal, Lorentz invariance of effective strings,

Nucl. Phys. B 395 (1993) 119 [hep-th/9205026] [INSPIRE].

[8] O. Aharony and M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065

[arXiv:1008.2636] [INSPIRE].

[9] O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective

string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [INSPIRE].

[10] A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in

D = 2 + 1 SU(N) gauge theories, JHEP 05 (2011) 042 [arXiv:1103.5854] [INSPIRE].

[11] M. Teper, Large-N and confining flux tubes as strings — a view from the lattice, Acta Phys.

Polon. B 40 (2009) 3249 [arXiv:0912.3339] [INSPIRE].

[12] P. Giudice, F. Gliozzi and S. Lottini, The confining string beyond the free-string

approximation in the gauge dual of percolation, JHEP 03 (2009) 104 [arXiv:0901.0748]

[INSPIRE].

[13] M. Caselle and M. Zago, A new approach to the study of effective string corrections in LGTs,

Eur. Phys. J. C 71 (2011) 1658 [arXiv:1012.1254] [INSPIRE].

[14] M. Billó, M. Caselle, V. Verduci and M. Zago, New results on the effective string corrections

to the inter-quark potential, PoS(Lattice 2010)273 [arXiv:1012.3935] [INSPIRE].

[15] S. Jaimungal, G.W. Semenoff and K. Zarembo, Universality in effective strings,

JETP Lett. 69 (1999) 509 [hep-ph/9811238] [INSPIRE].

– 11 –

http://inspirehep.net/search?p=find+J+Sov.Phys.JETP,5,1174
http://dx.doi.org/10.1016/0550-3213(73)90350-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B61,45
http://dx.doi.org/10.1088/1126-6708/2004/07/014
http://arxiv.org/abs/hep-th/0406205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406205
http://dx.doi.org/10.1088/1126-6708/2006/05/066
http://arxiv.org/abs/hep-th/0602281
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602281
http://dx.doi.org/10.1088/1126-6708/2009/06/012
http://arxiv.org/abs/0903.1927
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1927
http://strings2009.roma2.infn.it/talks/Aharony_Strings09.ppt
http://www.ect.it/Meetings/ConfsWksAndCollMeetings/ConfWksDocument/2010/talks/Workshop_05_07_2010/Aharony.ppt
http://www.ect.it/Meetings/ConfsWksAndCollMeetings/ConfWksDocument/2010/talks/Workshop_05_07_2010/Aharony.ppt
http://dx.doi.org/10.1016/0550-3213(93)90210-G
http://arxiv.org/abs/hep-th/9205026
http://inspirehep.net/search?p=find+EPRINT+HEP-TH/9205026
http://dx.doi.org/10.1007/JHEP01(2011)065
http://arxiv.org/abs/1008.2636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2636
http://dx.doi.org/10.1007/JHEP12(2010)058
http://arxiv.org/abs/1008.2648
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2648
http://dx.doi.org/10.1007/JHEP05(2011)042
http://arxiv.org/abs/1103.5854
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5854
http://arxiv.org/abs/0912.3339
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3339
http://dx.doi.org/10.1088/1126-6708/2009/03/104
http://arxiv.org/abs/0901.0748
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0748
http://dx.doi.org/10.1140/epjc/s10052-011-1658-6
http://arxiv.org/abs/1012.1254
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.1254
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Lattice 2010)273
http://arxiv.org/abs/1012.3935
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3935
http://dx.doi.org/10.1134/1.568059
http://arxiv.org/abs/hep-ph/9811238
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9811238


J
H
E
P
0
2
(
2
0
1
2
)
0
0
8

[16] F. Gliozzi, Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in

brane-world scenarios, Phys. Rev. D 84 (2011) 027702 [arXiv:1103.5377] [INSPIRE].

[17] R. Casalbuoni, J. Gomis and K. Kamimura, Space-time transformations of the Born-Infeld

gauge field of a D-brane, Phys. Rev. D 84 (2011) 027901 [arXiv:1104.4916] [INSPIRE].

[18] J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681

[INSPIRE].

[19] J. Polchinski, Strings and QCD?, hep-th/9210045 [INSPIRE].

[20] J.M. Drummond, Universal subleading spectrum of effective string theory, hep-th/0411017

[INSPIRE].

[21] O. Aharony, M. Field, N. Klinghoffer, The effective string spectrum in the orthogonal gauge,

arXiv:1111.5757 [INSPIRE].

[22] A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207

[INSPIRE].

[23] I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s

theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

[24] J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge

University Press, Cambridge U.K. (1998) [INSPIRE].

[25] P.O. Mazur and V.P. Nair, Strings in QCD and θ vacua, Nucl. Phys. B 284 (1987) 146

[INSPIRE].

[26] A.M. Polyakov, Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981) 211

[INSPIRE].

– 12 –

http://dx.doi.org/10.1103/PhysRevD.84.027702
http://arxiv.org/abs/1103.5377
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5377
http://dx.doi.org/10.1103/PhysRevD.84.027901
http://arxiv.org/abs/1104.4916
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4916
http://dx.doi.org/10.1103/PhysRevLett.67.1681
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,67,1681
http://arxiv.org/abs/hep-th/9210045
http://inspirehep.net/search?p=find+EPRINT+hep-th/9210045
http://arxiv.org/abs/hep-th/0411017
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411017
http://arxiv.org/abs/1111.5757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5757
http://dx.doi.org/10.1016/0370-2693(81)90743-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B103,207
http://dx.doi.org/10.1103/PhysRevLett.88.101602
http://arxiv.org/abs/hep-th/0110285
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110285
http://inspirehep.net/search?p=find+IRN+SPIRES-4634799
http://dx.doi.org/10.1016/0550-3213(87)90030-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B284,146
http://dx.doi.org/10.1016/0370-2693(81)90744-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B103,211

	Introduction
	Symmetries and equations of motion
	2+1 dimensions
	Higher dimensions
	Conclusions
	The Lorentz variation in D=3
	Uniqueness of tilde Box**(-1) R

