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1 Introduction

Since the work of Belavin, Polyakov and Zamolodchikov [1], the conformal bootstrap

method has been an effective tool for studying two-dimensional conformal field theories.

That method relies on a systematic exploitation of the symmetries of the theory. These

symmetries determine functions called conformal blocks. The simplest conformal blocks

are the characters of the representations of the symmetry algebra, which may be called

zero-point blocks on the torus. The correlation functions of the theory are then combi-

nations of the conformal blocks. For example, the partition function on the torus is a

combination of characters.

Combinatorial expansions for the conformal blocks of the Virasoro algebra have re-

cently been found [2], inspired by the conjecture of Alday, Gaiotto and Tachikawa on the re-

lation between two-dimensional CFTs and four-dimensional gauge theories [3]. Until then,

– 1 –



J
H
E
P
0
2
(
2
0
1
2
)
0
0
1

no explicit formulas for four-point blocks on the sphere were known. It would be very inter-

esting to generalize such combinatorial expansions to conformal blocks of other algebras, in

particular the WN algebras [4–6] which are natural generalizations of the Virasoro algebra.

This is however a challenging problem, in particular because the fusion products of

WN≥3 representations in general exhibit infinite fusion multiplicites. (See for instance sec-

tion 2.3 of [7].) This feature is at the origin of difficulties in computing the three-point corre-

lation functions in conformal Toda theories. These CFTs have WN symmetry algebras, and

their three-point correlation functions are only known in special cases [8, 9]. Here we will

show how to take infinite fusion multiplicities into account and how to compute conformal

blocks in the limit where the central charge c of the WN algebra is large. (The conformal

dimensions of the fields are meanwhile kept fixed; this is sometimes called the light asymp-

totic limit.) It is this limit which was used by Al. Zamolodchikov as the starting point of the

characterization of Virasoro (N = 2) conformal blocks by recurrence [10]. In this limit, sℓN
conformal Toda theory reduces to the quantum mechanics of a point particle on SLN (C),

theWN algebra reduces to sℓN , and theWN conformal blocks reduce to special cases of sℓN -

invariant functions. We will study such functions in detail in the cases N = 2 and N = 3.

This will enable us to test a proposal for the combinatorial expansion of a class of

WN conformal blocks [11]. The proposed expansion, which we will summarize, is given

for all values of c, assuming that all involved fields except two of them are almost fully

degenerate. This assumption eliminates the problem of the infinite fusion multiplicities.

We will compare our results for large c conformal blocks of that class, with the large c

limit of the combinatorial expansion. The two expansions agree up to the order z5, which

supports the validity of the proposed combinatorial expansion.

Plan of the article. In section 2, after a reminder on the large c limit of Virasoro

conformal blocks, we study sℓ3-invariant functions and their relations with the large c

limit of W3 conformal blocks. Section 3 is devoted to the study of detailed properties of

certain conformal blocks: the differential equation they obey, and their critical exponents.

Then, in the concluding section 4, we comment on some aspects of the results, and compare

them with the combinatorial expansion. Appendix A is devoted to the study of a quantum

particle on SLN (C) (with N = 2, 3), which is at the basis of the computation of the large c

limit of correlation functions of sℓN conformal Toda theory, and provides some justification

for a number of the equations of section 2. Appendix B is devoted to deriving the series

expansion (2.66) of certain conformal blocks.
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2 W3 conformal blocks and sℓ3-invariant functions

2.1 Virasoro conformal blocks and sℓ2-invariant functions

We first review the case of Virasoro conformal blocks, before moving to the technically

more complicated case of W3 conformal blocks. Basic information on Virasoro conformal

blocks can be found in [12]. A four-point s-channel Virasoro conformal block on the sphere

G∆s
(c|∆i|zi) is a function of the positions (z1, z2, z3, z4) ∈ C

4 of four primary fields, which

are characterized by their conformal dimensions (∆1,∆2,∆3,∆4). Such a conformal block

also depends on an s-channel conformal dimension ∆s, and on the central charge c of the

Virasoro algebra, which is defined by generators Ln∈Z and relations

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n− 1)(n+ 1)δm+n,0 . (2.1)

The conformal block is defined as a sum over the states of a highest-weight representation

of the Virasoro algebra. The relevant representation is built from a highest-weight state

|∆s〉 by applying the creation modes Ln<0. If we assume L†
n = L−n and 〈∆s|∆s〉 = 1, then

we can compute the square norm ||L−n|∆s〉||
2 = 2n∆s +

c
12n(n− 1)(n+1). If |n| ≥ 2, this

goes to infinity as c → ∞, and L−n descendents do not contribute to the ”large c block”

F∆s
(∆i|zi) = lim

c→∞
G∆s

(c|∆i|zi) . (2.2)

Therefore, only the generators (L−1, L0, L1) of the sℓ2 subalgebra of global conformal

transformations survive in the large c limit. Nonetheless, some properties of the blocks

are not affected by taking this limit: First, the existence of an analytic expansion in the

neighbourhood of z1 = z2,

F∆s
(∆i|zi) = z∆s−∆1−∆2

12 (1 +O(z12)) , (2.3)

where we use the notation z12 = z1 − z2. Second, the behaviour under global conformal

transformations, which we now review.

The sℓ2 subalgebra of global conformal transformations has the generators

(L−1, L0, L1) and commutation relations

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0 . (2.4)

A representation of the Virasoro algebra with conformal dimension ∆ corresponds to an

sℓ2 representation of spin −∆. Notice that two Virasoro representations whose dimensions

are related by the reflection

∆∗ = 1−∆ , (2.5)

correspond to two isomorphic sℓ2 representations. A primary field with position z and

conformal dimension ∆ behaves as a vector in an sℓ2 representation of spin −∆ and isospin

variable z. The action of the sℓ2 subalgebra on the primary field is given by the differential

operators

D(∆,z)(L−1) = −
∂

∂z
, D(∆,z)(L0) = −z

∂

∂z
−∆ , D(∆,z)(L1) = −z2

∂

∂z
− 2∆z , (2.6)
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which are such that D(∆,z) preserves the commutation relations (2.4). The blocks

G∆s
(c|∆i|zi), and therefore their large c limits F∆s

(∆i|zi), are sℓ2-invariant four-points

functions. What we call an sℓ2-invariant n-points function is a function E(∆i|zi) of

(∆1,∆2, · · ·∆n) and (z1, z2, · · · zn) such that

∀ ta ∈ {L−1, L0, L1},

(

n
∑

i=1

D(∆i,zi)(t
a)

)

E(∆i|zi) = 0 . (2.7)

The invariant two- and three-points functions are well-known to be

E(∆1,∆2|z1, z2) = z−2∆1

12 , (assuming ∆1 = ∆2) , (2.8)

E(∆1,∆2,∆3|z1, z2, z3) = z∆3−∆1−∆2

12 z∆1−∆2−∆3

23 z∆2−∆3−∆1

31 . (2.9)

Any invariant four-points function E(∆i|zi) can be written in terms of its values when three

of the zis are fixed, for example (z1, z3, z4) = (0, 1,∞),

E(∆i|zi) = P (∆i|zi)z
∆1+∆2E(∆i|0, z, 1,∞) , (2.10)

where we define the cross-ratio z and prefactor P (∆i|zi) as

P (∆i|zi) = z−∆1−∆2

12 z−∆3+∆4

13 z−∆3−∆4

43 z∆1−∆2

42 z−∆1+∆2+∆3−∆4

14 , z =
z12z34

z13z24
. (2.11)

(Notice that we have P (∆i|zi) = E(∆1,∆2, 0|z1, z2, z4)E(0,∆3,∆4|z1, z3, z4).) For brevity

we will sometimes use the notation E(z) = E(∆i|0, z, 1,∞).

After these reminders on the global conformal symmetry, we are ready to write an

explicit integral formula for the large c four-point conformal block,

F∆s
(∆i|zi) = N

∫

C

dzs E(∆1,∆2,∆s|z1, z2, zs)E(∆
∗
s,∆3,∆4|zs, z3, z4) , (2.12)

where the normalization factor N (a function of ∆i,∆s) and integration contour C are

determined by the condition (2.3). This expression is justified in appendix A.1. With a

general integration contour, the integral in eq. (2.12) would yield a linear combination of

the two ”reflected” blocks F∆s
and F∆∗

s
. Explicitly, we find

F∆s
(∆i|0, z, 1,∞) = z−∆s

12

∞
∑

n=0

(∆s −∆1 +∆2)n(∆s −∆4 +∆3)n
(2∆s)n

zn , (2.13)

= z−∆s
12F (∆s −∆1 +∆2,∆s −∆4 +∆3, 2∆s, z) , (2.14)

where F is the hypergeometric function, and we use the notations

(t)n =
n−1
∏

i=0

(t+ i) =
Γ(t+ i)

Γ(t)
, (2.15)

and

∆s
12 = ∆1 +∆2 −∆s . (2.16)
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The simplification of the conformal blocks in the large c limit can be interpreted as

coming from the elimination of local conformal symmetry, and the survival of only the

global symmetry with its finite-dimensional sℓ2 algebra. This explains why the large c

blocks (2.14) coincide with the conformal partial waves which were computed by Ferrara,

Gatto and Grillo [13]. Such conformal partial waves are associated to the global conformal

symmetry, and can therefore be generalised to higher dimensions [14].1 We will be inter-

ested in another type of generalisation: staying in two dimensions, we will consider larger

symmetry algebras.

2.2 sℓ3-invariant functions

In preparation for writing the large c conformal blocks of the W3 algebra, we need to

study sℓ3-invariant functions. This is because the W3 algebra reduces to sℓ3 in the large c

limit [15],2 in the same way as the Virasoro algebra reduces to sℓ2. (The eight generators

L0, L±1,W0,W±1,W±2 of the W3 algebra which survive in the large c limit can be identified

with linear combinations of the generators hi, ei, f i of sℓ3 which we are about to introduce.)

The algebra sℓ3 is generated by two Cartan elements (h1, h2), three generators

(f1, f2, f3) which are eigenvectors of the adjoint actions of h1 and h2 for the respective

eigenvalues (−2, 1,−1) and (1,−2,−1), and three generators (e1, e2, e3) which are also

eigenvectors but with opposite eigenvalues. The remaining nonzero commutators are

[f1, f2] = −f3 , [e1, e2] = e3 , (2.17)

[e1, f1] = h1 , [e2, f2] = h2 , [e3, f3] = h1 + h2 , (2.18)

[e1, f3] = −f2 , [e2, f3] = f1 , [e3, f1] = −e2 , [e3, f2] = e1 . (2.19)

In order to parametrize the representations of sℓ3, let us introduce its simple roots (e1, e2)

and the weights of the fundamental representation (h1, h2, h3) (not to be confused with the

sℓ3 generators ei, hj). The roots are supposed to be two independent vectors, with a scalar

product given by the Cartan matrix, (ei, ej) = Kij with K =
(

2 −1
−1 2

)

. The weights of the

fundamental representation are

h1 =
2
3e1 +

1
3e2 , h2 = −1

3e1 +
1
3e2 , h3 = −1

3e1 −
2
3e2 . (2.20)

A representation is parametrized by a spin vector j in root space, whose coordinates we

denote as

r = −(e1, j) , s = −(e2, j) . (2.21)

Two representations are isomorphic when they are related by one of the six Weyl transfor-

mations

(r, s) →

{

(r, s), (3− r − s, r), (s, 3− r − s),

(2− r,−1 + r + s), (−1 + r + s, 2− s), (2− s, 2− r),
(2.22)

1We are grateful to Slava Rychkov for pointing out the articles [13] and [14] to us.
2According to [15] (pages 7-8), W3 reduces to sℓ3 by a two-step process of truncating to the vacuum-

preserving algebra and taking the large c limit. However, for our purpose of computing large c conformal

blocks, the large c limit does perform the truncation, as we explained in the case of the Virasoro algebra.
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among which we single out the maximal Weyl reflection j → j∗ where

j = (r, s) ⇒ j∗ = (2− s, 2− r) . (2.23)

There is another useful reflection of the root space called the Dynkin diagram automorphism

j → jω where

j = (r, s) ⇒ jω = (s, r) . (2.24)

In the previous subsection, we represented sℓ2 transformations in terms of differential

operators (2.6), whose isospin variable z could be interpreted as the position of a CFT

field on the complex plane. In order to faithfully represent sℓ3 transformations, we need a

triple of variables Z = (w, x, y). (The number of needed variables is the number of creation

operators ei; in the case of sℓN this would be N(N−1)
2 .) The sℓ3 generators (hi, ei, f i) are

represented as [12] (section 15.7.4)

D(j,Z)(h
1) = 2x∂x + r − y∂y + w∂w , (2.25)

D(j,Z)(h
2) = 2y∂y + s− x∂x + w∂w , (2.26)

D(j,Z)(e
1) = x2∂x + rx+ (w − xy)∂y + xw∂w , (2.27)

D(j,Z)(e
2) = y2∂y + sy − w∂x , (2.28)

D(j,Z)(e
3) = w2∂w + s(w − xy) + rw + xw∂x + y(w − xy)∂y , (2.29)

D(j,Z)(f
1) = −∂x , (2.30)

D(j,Z)(f
2) = −∂y − x∂w , (2.31)

D(j,Z)(f
3) = −∂w . (2.32)

An sℓ3-invariant n-point function associated to n spins j1, j2, · · · jn is a function E(ji|Zi)

such that

∀ ta ∈ {hi, ei, f i},

(

n
∑

i=1

D(ji,Zi)(t
a)

)

E(ji|Zi) = 0 . (2.33)

Such an invariant will obey additional equations if some representations are degenerate.

We will call the representation of spin j1 semi-degenerate of the first (k = 1) or second

(k = 2) kind if

(ek, j1) = 0 and d
(k)
Z1

E(ji|Zi) = 0 , (2.34)

where the differential operators d
(k)
Z are defined as

d
(1)
Z = ∂x + y∂w , d

(2)
Z = ∂y . (2.35)

These formulas for d
(1)
Z and d

(2)
Z will be justified in appendix A.2.

Let us write the solutions of the sℓ3 invariance equation (2.33) in the cases of two- and

three-point invariants. We will write the solutions of these equations in terms of convenient
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combinations of isospin variables Zi = (wi, xi, yi),

ρij = yi(xi − xj)− (wi − wj) , (2.36)

σijk = xiwj − xjwi + xjwk − xkwj + xkwi − xiwk , (2.37)

χijk = yiwj − yjwi + yjwk − ykwj + ykwi − yiwk

+yiyj(xi − xj) + yjyk(xj − xk) + ykyi(xk − xi) . (2.38)

We also introduce the three-point invariant

θijk =
ρijρjkρki

ρjiρkjρik
⇒

(

D(0,Zi)(t
a) +D(0,Zj)(t

a) +D(0,Zk)(t
a)
)

θijk = 0 . (2.39)

Our combinations are related by identities of the type

σ123χ123 = ρ21ρ32ρ13 (θ123 + 1) , (2.40)

χ123ρ41 + χ134ρ21 + χ142ρ31 = 0 . (2.41)

We then find that a nonzero two-point invariant can exist only provided j1 = jω2 (up to

Weyl reflections), and the invariant is then

E(j1, j2|Z1, Z2) = ρ−r1
21 ρ−s1

12 , (assuming j1 = jω2 ) . (2.42)

Consider now three-point invariants. The function E(j1, j2, j3|Z1, Z2, Z3) depends on

nine variables which are the components of Z1, Z2, Z3, and is subject to the eight equa-

tions (2.33). Therefore, there exists an infinite-dimensional space of solutions. This corre-

sponds to the existence of a nontrivial invariant θ123 (2.39). In the special case when one of

the three representations is semi-degenerate, we have an extra equation of the type (2.34),

and the space of solutions is one-dimensional. Let us start with the case when the first

representation is semi-degenerate of the first kind. The three-point invariant should be

built from combinations of isospin variables which are killed by the differential operator

d
(1)
Z1

(2.35), for instance

d
(1)
Z1

ρ12 = 0 , d
(1)
Z1

χ123 = 0 . (2.43)

We then find the three-point invariant

E(j1, j2, j3|Z1, Z2, Z3) = χ−J
123ρ

−J−r2+s3
12 ρ−J−r3+s2

13 ρJ−s2
23 ρJ−s3

32 , (r1 = 0) , (2.44)

where we introduced the combination of spins

J = (h2, j1 + j2 + j3) =
1
3(s1 + s2 + s3 − r1 − r2 − r3) . (2.45)

Similarly, if the first representation is semi-degenerate of the second kind, we can use

combinations which are killed by d
(2)
Z1

, in particular

d
(2)
Z1

ρ21 = 0 , d
(2)
Z1

σ123 = 0 , (2.46)
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and we find the three-point invariant

E(j1, j2, j3|Z1, Z2, Z3) = σJ
123ρ

J+r3−s2
21 ρJ+r2−s3

31 ρ−J−r3
23 ρ−J−r2

32 , (s1 = 0) . (2.47)

In general, when no representation is semi-degenerate, the most general three-point invari-

ant is

Eg1(ji|Zi) = χ−J
123ρ

−J−r1−r2+s3
12 ρ−J−r3+s2

13 ρJ−s2
23 ρJ+r1−s3

32 ρ−r1
31 g1(θ123) , (2.48)

= σJ
123ρ

J+r3−s1−s2
21 ρJ+r2−s3

31 ρ−J−r3+s1
23 ρ−J−r2

32 ρ−s1
13 g2(θ123) . (2.49)

This depends on an arbitrary “multiplicity function” g1(θ), or on the equivalent function

g2(θ) = θ−J−r1−r2+s3(θ + 1)−Jg1(θ). This function encodes the infinite multiplicity of say

the third representation in the tensor product of the first two representations. The same

feature manifests itself in the fusion products of W3 representations, we have called this

the problem of the infinite fusion multiplicities in the Introduction.

Bases of n-point invariants can be built from three-point invariants. For instance,

s-channel four-point invariants can be built as

Eg,g′|js(ji|Zi) = N

∫

C

dZs Eg(j1, j2, js|Z1, Z2, Zs)Eg′(j
∗ω
s , j3, j4|Zs, Z3, Z4) , (2.50)

where js is the s-channel spin, g, g′ are two multiplicity functions, N is a normalization

factor which may depend on js, ji, g, g
′, and C is an integration domain for Zs ∈ C

3. The

integration measure is the sℓ3-invariant measure dZ = dwdxdy.

2.3 W3 conformal blocks in the large c limit

A four-point s-channel W3 conformal block on the sphere Gg,g′|αs
(c|αi|zi) is a function

of the positions (z1, z2, z3, z4) of four primary fields characterized by their momenta

(α1, α2, α3, α4), and of the central charge c of the W3 algebra. The block also depends

on an s-channel momentum αs, and on two multiplicity functions g, g′. The presence of

such multiplicity functions is in general necessary due to the presence of infinite fusion

multiplicities, and we have given a precise definition of such multiplicity functions in the

case of sℓ3-invariant functions in the previous subsection. We will however not try to define

such functions in the case of W3 conformal blocks, except in the large c limit.

Let us introduce standard notations on W3 representations. Let b and q = b+ b−1 be

such that the central charge is c = 2 + 24q2. A highest-weight representation of the W3

algebra is parametrized by its momentum α, a two-dimensional vector which belongs to the

root space of sℓ3. Such a representation can alternatively be parametrized by its conformal

dimension ∆α and a charge q
(3)
α which is (up to a normalization factor) the eigenvalue of

the spin 3 current, such that

∆α =
1

2
(α, 2Q− α) , q(3)α = −3b

3
∏

i=1

(hi, α−Q) , (2.51)

where we defined Q = qρ, which involves the Weyl vector ρ = e1 + e2.
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The large c limit is defined as c → ∞ with ∆, q(3) fixed, or alternatively

b → 0 , α = −bj , j fixed . (2.52)

This is sometimes called the light asymptotic limit. In the large c limit, the W3 algebra

reduces to sℓ3, and the vector j is the spin of an sℓ3 representation. This spin is related

to the limits ∆ = lim
b→0

∆−bj and q(3) = lim
b→0

q
(3)
−bj by

∆ = r + s , q(3) = r − s , (2.53)

where r and s are the components of the spin j, see eq. (2.21). Let us define the large c

four-point conformal blocks,

Fg,g′|js(ji|zi) = lim
b→0

Gg,g′|−bjs(c| − bji|zi) . (2.54)

In analogy with the case of Virasoro conformal blocks, the large c conformal blocks of the

W3 algebra can be computed as special cases of sℓ3-invariant functions. We claim that an

isospin variable Z = (w, x, y) of an sℓ3-invariant function must then be of the type Z = ~z

where we define

~z = (12z
2, z, z) . (2.55)

This relation between the isospin Z and the worldsheet position z comes from the following

identities, which hold for any function E(Z):

D(j,Z)(h
1 + h2)E(Z)

∣

∣

Z=~z
= −D(∆,z)(L0)E(~z) , (2.56)

D(j,Z)(e
1 + e2)E(Z)

∣

∣

Z=~z
= −1

2D(∆,z)(L1)E(~z) , (2.57)

D(j,Z)(f
1 + f2)E(Z)

∣

∣

Z=~z
= D(∆,z)(L−1)E(~z) , (2.58)

where the sℓ2 differential operators D(∆,z)(t
a) were defined in eq. (2.6), and the sℓ3 oper-

ators D(j,Z)(t
a) in eq. (2.25)–(2.32). These identities show that the principally embedded

sℓ2 subalgebra of sℓ3 with generators (h1+h2, e1+e2, f1+f2) can be identified with the sℓ2
algebra of global conformal transformations. (See also [15].) Therefore, a large c four-point

block is a special case of a four-point sℓ3-invariant function (2.50),

Fg,g′|js(ji|zi) = N

∫

C

dZs Eg(j1, j2, js|~z1, ~z2, Zs)Eg′(j
∗ω
s , j3, j4|Zs, ~z3, ~z4) , (2.59)

where the maximal Weyl reflection j → j∗ and the Dynkin diagram automorphism j →

jω were defined in eqs. (2.23) and (2.24), and the three-point invariant Eg was given in

eq. (2.48). The normalization factor N and the integration domain C for Zs ∈ C
3 are

determined by the condition (2.3). Other choices of integration domains in eq. (2.59)

would lead to linear combinations of six conformal blocks whose spins js are related by Weyl

transformations (2.22). Notice that the condition (2.3) of analyticity and normalization of

conformal blocks also constrains the multiplicity functions g, g′. Applying that condition

to a three-point invariant function Eg(j1, j2, js|~z1, ~z2, Zs) leads to the conditions

g(1) = 2
1

3
(r+2s−2r1−s1−2r2−s2) , g(θ) is analytic near θ = 1 . (2.60)
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We will now focus on a large c four-point block Fjs(ji|zi) such that the fields with

numbers 2, 3 are semi-degenerate of the first kind, so that the multiplicity functions g, g′

disappear and the components r2, r3 of the spins j2, j3 vanish. The assumptions Z1 = ~z1

and Z2 = ~z2 lead to simplifications in the combinations ρ12 (2.36) and χ123 (2.38),

ρ12(~z1, ~z2) = 1
2z

2
12 , (2.61)

χ123(~z1, ~z2, Z3) = 1
2z12 (z1z2 − y3z1 − y3z2 + 2x3y3 − 2w3) , (2.62)

so that the relevant three-point invariants eq. (2.44) become

E(j1, j2, j3|~z1, ~z2, Z3) = 2−J−r3+s1+s2z∆3−∆1−∆2

12 (z1z2 − y3z1 − y3z2 + 2x3y3 − 2w3)
−J

×
(

y3x3 − y3z1 − w3 +
1
2z

2
1

)J−s3 (
w3 − x3z2 +

1
2z

2
2

)−J−r3+s1

×
(

w3 − x3z1 +
1
2z

2
1

)J−s1
, (r2 = 0) . (2.63)

where the conformal dimensions ∆i are associated to the spins ji as in eq. (2.53). Then the

formula (2.59) implies that z∆1+∆2Fjs(ji|0, z, 1,∞) depends on only four combinations of

the six nonvanishing components of the spins j1, j2, j3, j4, namely

r1 − s2 , s1 , r4 − s3 , s4 . (2.64)

It is actually convenient to use the following four combinations, where we call (r, s) the

components of js,

α = 1
3(s3 + s4 + s− r4 − r) , β = 1

3(s1 + s2 − s− r1 + r) ,

γ = α− s4 + r , δ = β − s1 + s .
(2.65)

The integral in eq. (2.59) can be expanded near z1 = z2, see appendix B. This leads to the

expansion of the large c four-point block Fjs(z) = Fjs(ji|0, z, 1,∞) near z = 0,

Fjs(z) = z−∆s
12

∞
∑

n,i,j=0

z2n+i+j

n!i!j!(r + s− 1)n

(β)i(−β + r)n(γ)n+i

(r)n+i

(α)j(−α+ s)n(δ)n+j

(s)n+j
, (2.66)

= z−∆s
12

∞
∑

n=0

z2n

n!

(r − β)n(γ)n(s− α)n(δ)n
(r)n(s)n(r + s− 1)n

×F (β, γ + n, r + n, z)F (α, δ + n, s+ n, z) , (2.67)

where the notation (t)n was defined in eq. (2.15). The second form of this expression

is obtained by performing the sums over i and j, and can be helpful in numerical

computations. A similar expression can be obtained if the fields with numbers 2, 3 are

semi-degenerate of the second kind (instead of the first kind), by exchanging the two

components r and s of each spin.

There are five special cases where the block Fjs(z) (2.66) reduces to a hypergeometric

function:

1. Case α = β = 0: In this case (β)i = δi0 and (α)j = δj0, so that

Fjs(z) = z−∆s
12F (γ, δ, r + s− 1, z2) . (2.68)
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This shows that blocks can have a singularity at z = −1, in addition to the phys-

ical singularities at z = 0, 1,∞ which appear when two of the fields at z1, z2, z3, z4

come together.

2. Case γ = 0: In this case (γ)n+i = δn+i,0 and we have

Fjs(z) = z−∆s
12F (α, δ, s, z) . (2.69)

3. Case δ = 0: In this case (δ)n+j = δn+j,0 and we have

Fjs(z) = z−∆s
12F (β, γ, r, z) . (2.70)

4. Case α = s: In this case (s− α)n = δn,0 and we have

Fjs(z) = z−∆s
12(1− z)−δF (β, γ, r, z) . (2.71)

5. Case β = r: In this case (r − β)n = δn,0 and we have

Fjs(z) = z−∆s
12(1− z)−γF (α, δ, s, z) . (2.72)

3 Differential equation and critical exponents for large c conformal

blocks

3.1 Case of Virasoro conformal blocks

The large c limit F∆s
(∆i|zi) of a Virasoro four-point block obeys a second-order hyper-

geometric differential equation, and we now explain how to deduce this equation from

the integral expression (2.12) for F∆s
(∆i|zi). The large c block is indeed a function of

four variables zi, which obeys the three equations (2.7) of global conformal invariance. In

addition, the three-point invariant E(∆1,∆2,∆s|z1, z2, zs) which appears in the integral

expression (2.12) also obeys these equations, and together with the relation (A.5) for the

quadratic Casimir C2(∆) this implies

gab(D(∆1,z1)+D(∆2,z2))(t
a)(D(∆1,z1)+D(∆2,z2))(t

b)F∆s
(∆i|zi) = C2(∆s)F∆s

(∆i|zi) , (3.1)

where the differential operators D(∆,z)(t
a) are defined in eq. (2.6). Thus F∆s

(∆i|zi) obeys

four differential equations, and F∆s
(∆i|0, z, 1,∞) obeys one differential equation, which

turns out to be the hypergeometric equation, whose solution (subject to the condition (2.3))

we wrote in eq. (2.14).

The critical exponents of the hypergeometric equation are known, and we deduce the

critical exponents λi of z
∆1+∆2F∆s

(∆i|0, z, 1,∞) at the three singularities z = 0, 1,∞:

exponent 0 1 ∞

λ1 ∆s 0 ∆1 −∆2

λ2 ∆∗
s ∆1 +∆4 −∆2 −∆3 ∆4 −∆3

(3.2)
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The number λ
(0)
2 = ∆∗

s = 1−∆s is not really a critical exponent of the block itself, rather

it corresponds to another block with another s-channel dimension ∆∗
s. Notice that the

exponents at 1 and ∞ are ∆s-independent; conformal blocks can be expected to behave

so simply at these singularities only in the large c limit. The transformations of the

hypergeometric functions can be used to rewrite F∆s
(∆i|0, z, 1,∞) as a combination of

two functions with simple monodromy at say z = 1, but these two functions are not

themselves conformal blocks in another channel.

3.2 Differential equation for large c W3 conformal blocks

That our large c four-point conformal block Fjs(ji|zi) (2.66) with two semi-degenerate

fields obeys a differential equation follows from a simple counting of variables and equa-

tions. We consider first the corresponding sℓ3 four-point invariant function Ejs(ji|Zi), which

depends on 12 isospin variables, namely the components of Z1, Z2, Z3, Z4, and is such that

Fjs(ji|zi) = Ejs(ji|~zi) where ~z is defined in eq. (2.55). There are three types of equations

for Ejs(ji|Zi):

1. The sℓ3 symmetry condition (2.33) yields 8 equations.

2. As two fields are semi-degenerate, we have two equations d
(1)
Z2

Ejs(ji|Zi) =

d
(1)
Z3

Ejs(ji|Zi) = 0, where d
(1)
Z was defined in eq. (2.35).

3. The sℓ3 symmetry condition for the three-point invariant Eg(j1, j2, js|Z1, Z2, Zs)

which appears in the integral formula (2.50) will yield two more equations. The

sℓ3 symmetry condition (2.33) applied to Eg(j1, j2, js|Z1, Z2, Zs) indeed implies

gab(D(j1,Z1)+D(j2,Z2))(t
a)(D(j1,Z1)+D(j2,Z2))(t

b)Ejs(ji|Zi)=C2(js)Ejs(ji|Zi) , (3.3)

dabc(D(j1,Z1) +D(j2,Z2))(t
a)(D(j1,Z1)+D(j2,Z2))(t

b)(D(j1,Z1) +D(j2,Z2))(t
c)Ejs(ji|Zi)

= −C3(js)Ejs(ji|Zi) , (3.4)

using the equations (A.23) and (A.24) which involve the the Casimir numbers C2(js)

and C3(js).

The function Ejs(ji|Zi) of 12 variables therefore obeys 12 partial differential equations.

Now the function Fjs(ji|zi) can be written in terms of a function of just one variable (the

cross-ratio of z1, z2, z3, z4), and this function obeys one differential equation. The order of

the differential equation can be guessed to be six, the order of the Weyl group of sℓ3. This

is because our differential equations (3.3) and (3.4) depend on the spin js through the Weyl

invariants C2(js) and C3(js). Given a solution, Weyl reflections of js therefore provide five

other solutions.

Let us explain how the differential equation for Fjs(ji|zi) can be derived in principle.

We will not perform the derivation to the end, as the resulting equation would be too

complicated to be useful. We will stop at the partial differential equations for Ejs(ji|Zi),

which imply the equation for Fjs(ji|zi) and are much simpler. It is from these partial

differential equations that we will derive interesting information like the critical exponents
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of Fjs(ji|zi). To begin with, the first ten equations allow us to rewrite Ejs(ji|Zi) in terms

of a function of two variables Êjs(ji|U, V ),

Ejs(ji|Zi) = Q(ji|Zi)Êjs(ji|U, V ) , (3.5)

where the cross-ratios U, V are solutions of our ten equations when all spins are taken to

zero,

U =
ρ34

ρ24

χ412

χ431
, V =

ρ21

ρ31

χ341

χ421
, (3.6)

and the prefactor Q(ji|Zi) is the product of two three-point invariants of the type (2.44)

with one spin set to zero in each invariant (thereby imitating the prefactor P (∆i|zi) (2.11)

of sℓ2-invariant functions),

Q(ji|Zi) = E(j1, j2, 0|Z1, Z2, Z4)E(0, j3, j4|Z1, Z3, Z4) , (3.7)

= χ
−j12
124 χ

−j34
134 ρ

j12+j34−s4
41 ρ

j12+j34−s1
14 ρ

−j12−r1
21 ρ

−j34+s4
31 ρ

−j34−r4
34 ρ

−j12+s1
24 , (3.8)

where we defined

j12 = (h2, j1 + j2) =
1
3(s1 + s2 − r1) , j34 = (h2, j3 + j4) =

1
3(s3 + s4 − r4) . (3.9)

We have Q(ji|~zi) = P (∆i|zi) where P (∆i|zi) was defined in eq. (2.11) and ∆i in eq. (2.53),

and together with the expression (2.10) for Fjs(ji|zi) in terms of Fjs(z) = Fjs(ji|0, z, 1,∞)

this implies

z∆1+∆2Fjs(z) = Êjs(ji|z, z) . (3.10)

The two equations (3.3) and (3.4) amount to two partial differential equations for

Êjs(ji|U, V ), which we computed with the help of the free mathematical software Sage.

The equations are of the type E2Êjs(ji|U, V ) = E3Êjs(ji|U, V ) = 0, where the differential

operators E2 and E3 are

E2 =D2
U +D2

V −DUDV −DU −DV − 1
2C2(js)

+ U(DU + j12 − s1)(DV −DU − j34) + V (DV + j34 − s4)(DU −DV − j12)

− UV (DU + j12 − s1)(DV + j34 − s4) , (3.11)

E3 =(DV −DU )(DV − 1)(DU − 1)− 1
6C3(js)

− U(DU + j12 − s1)(DV −DU − j34)(DV − 1)

+ V (DV + j34 − s4)(DU −DV − j12)(DU − 1)

+ UV (DU + j12 − s1)(DV + j34 − s4)(DV −DU + j12 − j34) , (3.12)

where we definedDU = U ∂
∂U

andDV = V ∂
∂V

. (The combinations j12, j34 of the components

ri, si of the spins ji were defined in eq. (3.9).) The differential operators E2 and E3

commute, as guaranteed by their origin in the sℓ3-invariant differential operators which

appear in eqs. (3.3) and (3.4).
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Let us sketch how a sixth-order differential equation for Êjs(ji|z, z) is obtained from the

two partial differential equations E2 and E3 for Êjs(ji|U, V ). We cannot directly set U = V

in E2 and E3, because these differential operators do not keep the line {U = V } invariant.

To cure this problem, we take linear combinations of E2 and E3 with differential operators

as coefficients, so as to eliminate DU − DV while keeping the derivative DU + DV along

{U = V }. This yields a differential operator of the type E6 =
∑6

i=0 ci(U, V )(DU + DV )
i

such that E6Êjs(ji|U, V ) = 0, and we thus have
[

∑6
i=0 ci(z, z)(2z

∂
∂z
)i
]

z∆1+∆2Fjs(z) = 0.

The resulting differential equation is however too complicated to be useful. We were

able to compute it explicitly (with the help of a computer) only in special cases when

some parameters ji, js vanish. Even so, the equation is rather complicated, and we do

not display it. We will however discuss its singularities and the corresponding critical

exponents. Knowing the critical exponents at a given singularity is equivalent to knowing

the leading term of the differential equation E6 near that singularity. To derive this, the

algorithm for obtaining the differential equation E6 from E2 and E3 can be applied to the

first few leading terms of E2, E3 near the singularity. (Keeping one term of each equation

is in general not enough, except at the singularity z = 0 as we shall see.)

3.3 Singularities and critical exponents of large c W3 conformal blocks

A four-point correlation function
〈

∏4
i=1 Vαi

(zi)
〉

in sℓ3 conformal Toda theory (or actually

in any conformal field theory) is expected to have singularities at zi = zj , which in terms of

the cross-ratio amounts to z = 0, 1,∞. A conformal block like Gg,g′|αs
(c|αi|zi), and its large

c limit Fg,g′|js(ji|zi), is therefore also expected to be singular at these points. However,

nothing in principle excludes the existence of extra singularities in conformal blocks, and

in the case when two fields are semi-degenerate, we will indeed find that Fjs(ji|zi) has an

unexpected singularity at z = −1, as we already noticed in a special case (2.68).

While it is not clear to us why this singularity appears, we can at least explain why

the point z = −1 is special. The set {0, 1,∞} of the physical singularities is invariant

under a set of six PSL2(Z) transformations z → (z, 1 − z, 1
z
, 1
1−z

, z
z−1 , 1 − 1

z
). But in

our correlation functions the fields 2 and 3 are semi-degenerate, and the only nontrivial

transformation which does not mix them with the other fields is z → 1
z
. The point z = −1 is

characterized as the nontrivial fixed point of that transformation. Notice that this argument

is specific neither to s-channel conformal blocks (as opposed to blocks in other channels or

to correlation functions), nor to the large c limit (as opposed to generic values of c).

But let us first comment on the singularity at z = 0. In the limit U, V → 0, the

partial differential equations E2 (3.11) and E3 (3.12) for Êjs(ji|U, V ) are reduced to their

respective first lines. Let look for solutions of the type

Êjs(ji|U, V ) = UµV ν
∞
∑

m,n=0

cm,nU
nV m , (assuming c0,0 = 1) , (3.13)

for some exponents (µ, ν). Using the expressions (A.20) and (A.21) for C2(js) and C3(js)

respectively, we find six solutions which correspond to the pairs (µ, ν) such that js =

−νe1−µe2 up to Weyl reflections. We adopt the solution (µ, ν) = (2s+r
3 , 2r+s

3 ) where (r, s)
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are the components of js. The equation E2Êjs(ji|U, V ) = 0 leads to a recursion relation for

the coefficients cm,n,

(m2+n2 −mn−m− n+ sn+ rm)cm,n + (m− 1 + γ)(n−m+ 1− β)cm−1,n

+(n−1 + δ)(m− n+1−α)cm,n−1−(n− 1 + δ)(m− 1+γ)cm−1,n−1 = 0 , (3.14)

where the combinations α, β, γ, δ of spin components were defined in eq. (2.65). This

relation has a unique solution such that c0,0 = 1 (assuming cm,n = 0 unless m,n ≥ 0),

which is

cm,n =
(γ)m(δ)n
(r)m(s)n

min(m,n)
∑

h=0

(β)m−h(r − β)h(α)n−h(s− α)h
h!(m− h)!(n− h)!(r + s− 1)h

. (3.15)

So, once the critical exponents (µ, ν) are deduced from E2 and E3, the equation E2 is

enough to determine the solution uniquely. The equation E3Êjs(ji|U, V ) = 0 leads to

another recursion relation, which however has the same solution. Setting U = V = z in

Êjs(ji|U, V ) as in eq. (3.10), we recover the expression (2.66) for Fjs(z).

It is less straightforward to compute the critical exponents of z∆1+∆2Fjs(z) at z =

1,∞,−1 than at z = 0, and we present only the results. The function z∆1+∆2Fjs(z) obeys

a differential equation of order six, and therefore has six exponents at each singularity,

which we number arbitrarily:3

exponent 0 ∞ 1 −1

λ1 r + s r + s− γ − δ − 1 r + s− γ − δ − 1 λ

λ2 1 + r r + s− γ − δ r + s− γ − δ 0

λ3 1 + s r + s− α− 2γ 0 1

λ4 3− r r + s− δ − 2β r + s− α− β − γ − δ 2

λ5 3− s r + α− β − δ s− α− δ 3

λ6 4− r − s s+ β − α− γ r − β − γ 4

(3.16)

where the nontrivial critical exponent at z = −1 is

λ = s1 + s4 − 1 = r + s+ α+ β − γ − δ − 1 . (3.17)

These critical exponents of z∆1+∆2Fjs(z) can be compared with those of conformal blocks

of the Virasoro algebra (3.2). Notice that the critical exponents at a regular point are

(0, 1, 2, 3, 4, 5), so the point −1 is almost regular in that only one exponent is not an integer.

The sum of all exponents (with a minus sign for the exponents at ∞) is
∑6

i=1(λ
(0)
i −λ

(∞)
i +

λ
(1)
i + λ

(−1)
i ) = 21.

In the five special cases at the end of subsection 2.3, the blocks reduce to hypergeo-

metric functions, and at each singularity we recover two exponents out of six. Most of the

3The exponents which we write are valid when the values of the spins are generic. In the special cases

when two of the exponents at a given singularity coincide, complications can occur, including the appearance

of logarithmic terms in the expansion of Fjs(z).
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critical exponents (3.16) predicted by the differential equation can thus be confirmed in

these special cases.

Finally, the existence of the surprising singularity at z = −1, and the value of the crit-

ical exponent λ, can be confirmed using the integral representation (B.1) of the conformal

block. After some manipulations which are rather straightforward, we indeed find that the

block has the asymptotic behaviour (if λ < 0)

Fjs(z) ∼
z→−1

Γ(r)Γ(s)Γ(r + s− 1)Γ(−λ)

Γ(γ)Γ(δ)Γ(s− α)Γ(r − β)
2λ(z + 1)λ , (3.18)

As expected, the coefficient of (z+1)λ vanishes in the four special cases where the singularity

at z = −1 disappears, see eq. (2.69)–(2.72).

4 Conclusion

4.1 Comparison with the combinatorial expansion

A combinatorial expansion is proposed in [11] for four-point conformal blocks of the W3

algebras, such that two fields are semi-degenerate and therefore no infinite fusion multi-

plicities are present. If the fields with numbers 2, 3 have momenta along the weight h1,

that is

{

α2 = r2h1

α3 = r3h1
, then the four-point block Gαs(c|αi|0, z, 1,∞) reads

Gαs(c|αi|0, z, 1,∞) = (1− z)r3(
1

3
r2−q)z−∆s

12

∑

~λ

z|
~λ|
F~0,~λ

(αω
4 , αs, r3)F~λ,~0

(αs, α1, r2)

F~λ,~λ
(αs, αs, 0)

. (4.1)

where the function F~λ,~λ′
(α, α′, r) is defined as

F~λ,~λ′
(α, α′, r) =

3
∏

i,j=1





∏

s∈λ′

i

[

(hj , α−Q)− (hi, α
′ −Q)− 1

3r − blλj
(s) + b−1(aλ′

i
(s) + 1)

]

×
∏

s∈λj

[

(hj , α−Q)− (hi, α
′ −Q)− 1

3r + b(lλ′

i
(s) + 1)− b−1aλj

(s)
]



. (4.2)

Besides the ”W3 notations” ∆, α,Q, q, b introduced in subsection 2.3 and the defini-

tion (2.24) of the Dynkin diagram automorphism j → jω, these formulas use notations

for Young diagrams which we now review. (See [2] for more details.) The sum in eq. (4.1)

is over triples ~λ = (λ1, λ2, λ3) of Young diagrams. Each diagram is a collection of boxes,

and each box s has an arm length aλ(s) and leg length lλ(s) relative to a diagram λ, which

are positive if s ∈ λ. The triple ~0 = (0, 0, 0) is the set of three empty diagrams.

We have checked that the large c limit (2.52) of the block (4.1) agrees with the in-

dependently derived prediction eq. (2.66) up to the order z5, modulo the exchange of the

components r and s of the spins due to the use of different kinds of semi-degenerate fields.

The agreement is rather non-trivial, because individual terms of the sum over Young dia-

grams can have spurious poles (as functions of the components of αs), and these spurious

poles cancel when the sum is performed.
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4.2 Concluding remarks

In this article, we have given an integral formula (2.59) for the large c limits of arbitrary W3

conformal blocks on the sphere. This formula is a special case of an sℓ3-invariant function,

where the isospin variables take special values determined by the positions of the fields.

This result implies that the large c conformal block depends nontrivially on only eight

combinations of the ten components of the spins (js, j1, j2, j3, j4), in the same way as the

large c Virasoro conformal block (2.14) depends nontrivially on only three combinations of

the five conformal dimensions.

We have thus shown how to take infinite fusion multiplicities into account in this

limit. This might be helpful for solving the problem of the infinite fusion multiplicities

in general, and allow us to deal with arbitary conformal blocks in conformal field theories

with WN symmetries. So far, we know combinatorial expansions only for blocks with no

fusion multiplicities. For fusion multiplicities to be absent, it is necessary to restrict the

momenta of the fields, such that they are all almost fully degenerate except two of them.

(See also [11].) While we can deal with large c blocks in general, imposing such restrictions

brings important simplifications. Thus we studied the detailed properties a certain class of

W3 large c four-point conformal blocks with two semi-degenerate fields, and in particular we

derived their series expansion (2.66). We found that, for generic values of the parameters,

such blocks have a singularity at z = −1, in addition to the expected singularities at

z = 0, 1,∞. We believe that the singularity at z = −1 is absent for non-infinite values of

the central charge c. It would be interesting to confirm this expectation, and to understand

how the singularity disappears for finite values of c.

We expect that our results can be generalized to sℓN -invariant functions and WN

conformal blocks in the large c limit. In particular, we expect the large c limit of a WN

four-point conformal block with two almost fully degenerate fields to obey a differential

equation of order N !, as we observed in the cases N = 2 and N = 3 in section 3.

A Quantum mechanics of a point particle on SLN(C)

For any integer N ≥ 2, the algebra WN is the symmetry algebra of a CFT called sℓN

conformal Toda theory. In the case N = 2 for example, the Virasoro (W2) algebra is

the symmetry algebra of Liouville (sℓ2 conformal Toda) theory. The functional integral

representation of the correlation functions of sℓN conformal Toda theory can be used for

studying their large c limits, which turn out to be correlation functions of the quantum

mechanics of a point particle on SLN (C). (See for instance [8].) This will provide some jus-

tification for our identification of large c conformal blocks with sℓN -invariant functions. We

will start with the case of the point particle on SL2(C), before dealing with the technically

more complicated case of SL3(C).

A.1 Point particle on SL2(C)

Let us call V∆(z, z̄) a primary vertex operator of Liouville theory. This depends on the

complex coordinates (z, z̄) of a point on the complex plane, and on the conformal dimension
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∆ of the corresponding Virasoro representation. The functional integral representation of

a correlation function 〈
∏n

i=1 V∆i
(zi, z̄i)〉 of n such vertex operators leads to the large c limit

lim
c→∞

〈

n
∏

i=1

V∆i
(zi, z̄i)

〉

=

∫

SL2(C)
dg

n
∏

i=1

Φ∆i
zi,z̄i

(g) , (A.1)

where Φ∆
z,z̄(g) is the classical limit of the field V∆(z, z̄), evaluated on a solution of the

Liouville equation labelled by g ∈ SL2(C),

Φ∆
z,z̄(g) =

[

vzgv
T
z̄

]−2∆
, vz = (1, z) . (A.2)

(Real solutions of the Liouville equation actually correspond to Hermitian matrices g. We

will neglect this subtlety.) The functions Φ∆
z,z̄(g) and vz have a simple behaviour under sℓ2

tranformations of the matrix g:

vzt
a = D(− 1

2
,z)(t

a)vz , Φ∆
z,z̄((1 + ǫta)g) = (1 + ǫD(∆,z)(t

a))Φ∆
z,z̄(g) +O(ǫ2) , (A.3)

where the differential operators D(∆,z)(t
a) were introduced in eq. (2.6), and the generators

(ta) = (L1, L0, L−1) of sℓ2 are realized as the matrices

L−1 =
(

0 −1
0 0

)

, L0 =
1
2

(

1 0
0 −1

)

, L1 = ( 0 0
1 0 ) . (A.4)

Now the differential operators D(∆,z)(t
a) obey the relation

gabD(∆,z)(t
a)D(∆,z)(t

b) = C2(∆) , (A.5)

where we defined

gab = 2Tr tatb , C2(∆) = ∆(∆− 1) . (A.6)

Together with eq. (A.3), this implies that Φ∆
z,z̄(g) is an eigenvector of the sℓ2-invariant

Laplacian on SL2(C). Actually, the functions Φ∆
z,z̄(g) provide a basis of functions of

SL2(C), whose completeness can be expressed as the decomposition of the Dirac delta

function δ(g, g′),

δ(g, g′) =

∫

1

2
+iR

d∆

∫

C

d(2)z Φ∆
z,z̄(g)Φ

∆∗

z,z̄ (g
′) , (A.7)

where the reflected dimension ∆∗ = 1−∆ was defined in eq. (2.5). The equivalence between

representations with labels ∆ and ∆∗ manifests itself in the relation C2(∆
∗) = C2(∆), and

in the reflection relation

Φ∆
z,z̄(g) = R(∆)

∫

C

d(2)z′
∣

∣E(∆,∆|z, z′)
∣

∣

2
Φ∆∗

z′,z̄′(g) , (A.8)

where R(∆) is a reflection coefficient, and the two-point invariant E(∆,∆|z, z′) was given

in eq. (2.8).
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Let us go back to Liouville theory, of which SL2(C) quantum mechanics is the large c

limit. An important axiom of conformal field theory is the assumption that a four-point

function can be decomposed into four-point conformal blocks,
〈

4
∏

i=1

V∆i
(zi, z̄i)

〉

=

∫

d∆s C(c|∆1,∆2,∆s)C(c|∆s,∆3,∆4) |G∆s
(c|∆i|zi)|

2 , (A.9)

where the structure constant C(c|∆1,∆2,∆3) depends on the central charge c and on the

conformal dimensions ∆i, but not on the field positions zi. (We will not study how the c-

dependent contour of integration must be manipulated in the large c limit.) We now check

that our formula (2.12) for the large c four-point block F∆s
(∆i|zi) is compatible with the

large c limit of this axiom. To do this, we insert the identity 1 =
∫

SL2(C)
dg′ δ(g, g′) together

with the formula (A.7) for δ(g, g′) in the large c limit (A.1) of the four-point function,

lim
c→∞

〈

4
∏

i=1

V∆i
(zi, z̄i)

〉

=

∫

1

2
+iR

d∆s

∫

C

d(2)zs

×

∫

SL2(C)
dg
(

Φ∆1

z1,z̄1Φ
∆2

z2,z̄2Φ
∆s
zs,z̄s

)

(g)

∫

SL2(C)
dg′

(

Φ
∆∗

s
zs,z̄sΦ

∆3

z3,z̄3Φ
∆4

z4,z̄4

)

(g′) . (A.10)

The integrals over g and g′ produce z-dependent factors proportional to the three-

point invariant E(∆1,∆2,∆3|z1, z2, z3) (2.9), and z-independent factors which we call

B(∆1,∆2,∆3),

lim
c→∞

〈

4
∏

i=1

V∆i
(zi, z̄i)

〉

=

∫

1

2
+iR

d∆s B(∆1,∆2,∆s)B(∆∗
s,∆3,∆4) (A.11)

×

∫

C

d(2)zs |E(∆1,∆2,∆s|z1, z2, zs)E(∆
∗
s,∆3,∆4|zs, z3, z4)|

2 .

Decomposing the integral
∫

C
d(2)zs into a combination of contour integrals over zs and

z̄s yields a linear combination of the two terms |F∆s
(∆i|zi)|

2 and
∣

∣F∆∗

s
(∆i|zi)

∣

∣

2
where

F∆s
(∆i|zi) is given by eq. (2.12). But these two terms give the same contribution to

lim
c→∞

〈

∏4
i=1 V∆i

(zi, z̄i)
〉

, because the integration contour in
∫

1

2
+iR

d∆s is invariant under

the reflection ∆s → ∆∗
s. Absorbing any remaining prefactors into the B-factors, we obtain

lim
c→∞

〈

4
∏

i=1

V∆i
(zi, z̄i)

〉

=

∫

1

2
+iR

d∆s B(∆1,∆2,∆s)B(∆∗
s,∆3,∆4) |F∆s

(∆i|zi)|
2 . (A.12)

This formula can be interpreted as the large c limit of the decomposition (A.9) of a

four-point function into four-point conformal blocks, provided we have B(∆1,∆2,∆3) =

lim
c→∞

C(c|∆1,∆2,∆3). This provide a justification for the formula (2.12) for F∆s
(∆i|zi).

A.2 Point particle on SL3(C)

A basis of functions on SL3(C) can be defined as

Φj

Z,Z̄
(g)=

[

uZPg−1TPuT
Z̄

]−r [
vZgv

T
Z̄

]−s
,

{

uZ=(w,−x, 1)

vZ=(xy − w,−y, 1)
, P =

(

0 0 1
0 −1 0
1 0 0

)

, (A.13)
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where we recall that Z = (w, x, y) is a three-component isospin vector, and that the

components (r, s) of the spin j are defined in eq. (2.21). The vectors uZ and vZ are such

that

uZω(t
a) = D(−h1,Z)(t

a)uZ , vZt
a = D(h3,Z)(t

a)vZ , (A.14)

where the differential operators D(j,Z)(t
a) are defined in eqs. (2.25)–(2.32) and the weights

hi in eq. (2.20), the sℓ3 generators ta are represented as the matrices

h1 =
(

1 0 0
0 −1 0
0 0 0

)

, h2 =
(

0 0 0
0 1 0
0 0 −1

)

, (A.15)

e1 =
(

0 1 0
0 0 0
0 0 0

)

, e2 =
(

0 0 0
0 0 1
0 0 0

)

, e3 =
(

0 0 1
0 0 0
0 0 0

)

, (A.16)

f1 =
(

0 0 0
1 0 0
0 0 0

)

, f2 =
(

0 0 0
0 0 0
0 1 0

)

, f3 =
(

0 0 0
0 0 0
1 0 0

)

, (A.17)

and the action of the Dynkin diagram automorphism ω on such matrices is

ω(ta) = −P (ta)TP . (A.18)

It follows that the function Φj

Z,Z̄
(g) behaves under sℓ3 tranformation as

Φj

Z,Z̄
((1 + ǫta)g) = (1 + ǫD(j,Z)(t

a))Φj

Z,Z̄
(g) +O(ǫ2) . (A.19)

As a result, Φj

Z,Z̄
(g) is an eigenvector of the quadratic (Laplacian) and cubic invariant

differential operators on SL3(C), with the respective eigenvalues

C2(j) = (j, j + 2e1 + 2e2) =
2
3(r

2 + s2 + rs)− 2r − 2s , (A.20)

C3(j) = −6
3
∏

i=1

(hi, j + e1 + e2) =
2
9(r − s)(2r + s− 3)(2s+ r − 3) . (A.21)

These Casimir numbers can be derived by computing sℓ3-invariant combinations of the

differential operators D(j,Z)(t
a), using the covariant tensors

gab = Tr tatb , dabc = Tr (tatbtc + tatctb) . (A.22)

Then we have the identities

gabD(j,Z)(t
a)D(j,Z)(t

b) = C2(j) , (A.23)

dabcD(j,Z)(t
a)D(j,Z)(t

b)D(j,Z)(t
c) = C3(j) . (A.24)

The Casimir numbers C2(j) and C3(j) are invariant under the six Weyl reflections (2.22),

which is a manifestation of the equivalence of two representations whenever their spins are

related by a reflection. At the level of the function Φj

Z,Z̄
(g), this equivalence manifests

itself as a relation which we now write in the case of the maximal reflection j → j∗,

Φj

Z,Z̄
(g) = R(j)

∫

dZ ′dZ̄ ′
∣

∣E(j, jω|Z,Z ′)
∣

∣

2
Φj∗

Z′,Z̄′
(g) , (A.25)
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where R(j) is a reflection coefficient, and the two-point invariant E(j, jω|Z,Z ′) was given

in eq. (2.42). This generalizes the SL2(C) reflection relation eq. (A.8).

Now, the function Φj

Z,Z̄
(g) simplifies if either r = 0 or s = 0, and then it obeys the

differential equations,

d
(1)
Z Φ

(0,s)

Z,Z̄
(g) = d

(1)

Z̄
Φ
(0,s)

Z,Z̄
(g) = 0 , d

(2)
Z Φ

(r,0)

Z,Z̄
(g) = d

(2)

Z̄
Φ
(r,0)

Z,Z̄
(g) = 0 , (A.26)

where the operators d
(1)
Z and d

(2)
Z were defined in eq. (2.35). This is a consequence of the

vectors uZ and vZ obeying d
(2)
Z uZ = d

(1)
Z vZ = 0, and this justifies our definitions of d

(1)
Z

and d
(2)
Z . Notice that these operators obey the remarkable property

d
(k)
Z D(0,Z)(t

a) = D(−ek,Z)(t
a)d

(k)
Z , (k = 1, 2) . (A.27)

(We recall that ek are the simple roots of sℓ3; for instance the coordinates of the spin

j = −e1 are (r, s) = (2,−1).)

Finally, we can write the analog in sℓ3 conformal Toda theory of the expression (A.1)

for large c Liouville theory correlation functions, by using the functions Φj

Z,Z̄
(g) on SL3(C).

The isospin variable Z must be specialized as Z = z̄ = (12z
2, z, z) (as in eq. (2.55)), and we

must remember the relation (2.52) betweenW3 momenta α and sℓ3 spins j. Calling Vα(z, z̄)

the vertex operator of sℓ3 conformal Toda theory with the momentum α, we have [8]

lim
c→∞

〈

n
∏

i=1

Vαi
(zi, z̄i)

〉

=

∫

SL3(C)
dg

n
∏

i=1

Φji
~zi,~̄zi

(g) . (A.28)

B Derivation of the expansion of a four-point block

Here we derive the expansion eq. (2.66) of the large c four-point block Fjs(z) =

Fjs(ji|0, z, 1,∞), starting from the integral formula eq. (2.59). We propose two possi-

ble ways to perform the calculation. The first way is more straightforward, but it leads to

a formula (B.4) which is less symmetric than eq. (2.66) and has spurious poles. The second

way is less straightforward as it starts with a six-dimensional (instead of three-dimensional)

integral, but the symmetry (α, δ, s) ↔ (β, γ, r) of eq. (2.66) is manifest throughout the cal-

culation. (We recall that r and s are the components of js, and that the combinations of

spin components α, β, γ, δ are defined in eq. (2.65).)

B.1 First way

After performing a few change of variables, the integral formula (2.59) (together with

eq. (2.63)) leads to

Fjs(z) = z−∆s
12eiπ(β−δ+s) Γ(r)Γ(s)Γ(r + s− 1)

Γ(β + s− 1)Γ(δ)Γ(−δ + r + s− 1)Γ(r − β)

∫

C0

dwdxdy (B.1)

wδ−s(xy−w)β+s−2(y+w−xy)−β(w−x+1)−δ+r+s−2(1−yz)−α(1−xz+wz2)−γ ,
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where the condition (2.3) has been used for determining the prefactor and the integration

contour

C0 y ∈
(

w
x
, w
x−1

)

then w ∈ (x− 1, 0) then x ∈ (0, 1) . (B.2)

Let us denote the integral (B.1) as Fjs(z) =
〈

(1− yz)−α(1− xz + wz2)−γ
〉

, and expand

the integrand in powers of z. This reduces the problem to computing expectation values

of monomials wnxkym, and we find

〈

wnxkym
〉

= z−∆s
12(−1)n

(δ)m+n(r − β)n
(r + s− 1)m+n

m
∑

ℓ=0

Cℓ
m

(β − ℓ)k
(s)ℓ(r)k+n−ℓ

, (B.3)

where the notation (t)n was introduced in eq. (2.15), and we write Cℓ
m = m!

ℓ!(m−ℓ)! . This

leads to

Fjs(z) = z−∆s
12

∞
∑

q,m=0

(γ)q(α)m
q!m!

q
∑

i=0

m
∑

ℓ=0

zq+m+iCi
qC

ℓ
m

(r − β)i(β − ℓ)q−i(δ)m+i

(s)ℓ(r)q−ℓ(r + s− 1)m+i
. (B.4)

This can be seen to agree with eq. (2.66) by an automatic calculation of the first few orders

in z. This agreement is non-trivial, as it involves the cancellation of the spurious poles

which are present in eq. (B.4).

B.2 Second way

We start again with eq. (2.59). We fist want to make this formula more symmetric, at the

expense of replacing the three-dimensional integral over Zs with a six-dimensional integral.

This is done by using a reflection relation for conformal blocks, which is the holomorphic

half of the reflection relation eq. (A.25) for functions on SL3(C). This leads to

Fjs(ji|zi) =N1

∫

C1

dZsdZ
′
s E(j1, j2, js|~z1, ~z2, Zs)E(j

∗ω
s , j∗s |Zs, Z

′
s)E(j

ω
s , j3, j4|Z

′
s, ~z3, ~z4) , (B.5)

=N1ρ
s−α−r4
34 ρ

r−β−r1
12

∫

C1

dZsdZ
′
s χ

−α
34sρ

α−s
s4 ρ

γ−r
4s ρ

−γ
3s ρs−2

ss′ ρ
r−2
s′s χ

−β
12s′ρ

β−r
s′1 ρδ−s

1s′ ρ
−δ
2s′ .(B.6)

The notations come from subsection 2.2, except the definitions of ~z (2.55) and of

α, β, γ, δ (2.65). The contour C1 and normalization factor N1 are supposed to be de-

termined by the condition (2.3). We will not keep track of contours and normalizations

explicitly; instead we will call Ci and Ni the various contours and normalizations which

appear in the calculation.

Out of the six integrals
∫

dZsdZ
′
s in eq. (B.6), the two integrals over ys and y′s can

be performed immediately using the formula
∫

C
dy

∏3
i=1(aiy − bi)

αi = N
∏

i<j(aibj −

ajbi)
αi+αj+1 (assuming

∑3
i=1 αi = −2), where the choice of the integration contour C only

affects the normalization factor N and is therefore not important for us. Then, we replace

the four remaining variables (ws, xs, w
′
s, x

′
s) with four new variables (w, x,w′, x′), using the
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change of variables

xs =
z4z12
z24

x+ z1z34
z31

− 1
2(z1 + z4)z(w + x+ 1)

z12
z42

x+ z34
z31

− z(w + x+ 1)
, (B.7)

ws =
1

2

z2
4
z12

z42
x+

z2
1
z34

z31
− z1z4z(w + x+ 1)

z12
z42

x+ z34
z31

− z(w + x+ 1)
, (B.8)

and similarly for x′s and z′s, with the exchanges of indices ( 1↔4
2↔3 ). We can then check

global conformal invariance, and restrict our attention to Fjs(z) = Fjs(ji|0, z, 1,∞) as in

eq. (2.10),

Fjs(z) = z−∆s
12N2

∫

C2

dxdwdx′dw′ (w′ − wx′ + 1− xx′)α−1(w − w′x+ 1− xx′)β−1

× (w′ − wx′)−α+s−1(w − w′x)−β+r−1(1− z(w + 1))−γ(1− z(w′ + 1))−δ . (B.9)

We now perform another change of integration variables, introducing new variables σ, τ

which this time mix the unprimed (x,w) and primed (x′, w′) variables:

σ = w′ − wx′ , τ = w − w′x . (B.10)

We also introduce the notation ω = 1− xx′ for convenience, and we obtain

Fjs(z) = z−∆s
12N3

∫

C3

dxdx′dσdτ ω−1(σ + ω)α−1(τ + ω)β−1σ−α+s−1τ−β+r−1

×
(

1− z
ω
(xσ + (τ + ω))

)−γ (
1− z

ω
(x′τ + (σ + ω))

)−δ
. (B.11)

We expand the last two factors, for instance

(

1− z
ω
(xσ + (τ + ω))

)−γ
=

∞
∑

n,i=0

(γ)n+i

n!i!

(

z
ω

)n+i
(xσ)n(τ + ω)i , (B.12)

where the notation (t)n was introduced in eq. (2.15). Then we integrate over σ, τ ∈ (0,∞),

and then over x, x′ ∈ C such that x̄′ = −x using
∫

x̄′=−x
dxdx′ (1 − xx′)t−2xnx′n

′

=

N δn,n′
n!
(t)n

, where N is an n-independent normalization factor. This directly leads

to eq. (2.66).
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