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Universidad CEU Cardenal Herrera,

c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València, Spain
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1 Introduction

Effective field theories (EFT) are nowadays the standard tool to investigate the low-energy

dynamics of Quantum Chromodynamics (QCD). In particular, the chiral symmetry is a

crucial ingredient for the understanding of the light quark interactions. The dynamics of

the pseudo-Goldstone bosons from the spontaneous symmetry breaking is provided by the

corresponding EFT, Chiral Perturbation Theory (χPT), with a perturbative expansion

in powers of light quark masses and external momenta [1–4]. This allows a systematic

description of the long-distance regime of QCD, at energies below the lightest resonance

mass. The precision required in present phenomenological applications makes necessary to

include corrections of O(p6). While many two-loop χPT calculations have been already

carried out [5, 6], the large number of unknown low-energy constants (LECs) appearing

at this order puts a clear limit to the achievable accuracy. The determination of these

χPT couplings is compulsory to achieve further progress in our understanding of strong

interactions at low energies.

In the resonance region, E ∼ MR, the chiral counting breaks down and the new

heavier degrees of freedom — the resonances — have to be explicitly incorporated into
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the theory. A suitable alternative is then provided by the 1/NC expansion in the limit of

a large number of colours, NC → ∞ [7–13]. Assuming confinement, the strong dynamics

is given at large NC by tree-level diagrams with an infinite number of possible hadronic

exchanges. This corresponds to the tree approximation of some local Lagrangian, being

meson loops suppressed by higher powers of 1/NC [7–9]. Resonance Chiral Theory (RχT)

provides an appropriate framework to incorporate these massive mesonic states within a

chiral invariant phenomenological Lagrangian [14–16]. The operators of the RχT action

are constructed such that they remain unchanged under flavour transformations U(3)L ⊗
U(3)R. After integrating out the heavy fields, the χPT Lagrangian is recovered at low

energies with explicit values of the chiral LECs in terms of resonance parameters. The

short-distance properties of QCD impose stringent constraints on the RχT couplings and

provide important information for the extraction of the low-energy χPT parameters. The

amplitudes are thus enforced to follow the known high-energy QCD behaviour, introducing

in the long-distance description important information from the underlying theory [10–13].

Clearly, we cannot determine at present the infinite number of meson couplings which

characterize the large-NC Lagrangian. However, one can perform useful approximations

in terms of a finite number of meson fields. Truncating the infinite tower of mesons to

the lowest resonances with 0−+, 0++, 1−− and 1++ quantum numbers, one gets a very

successful prediction for the O(p4) χPT couplings at large NC [13]. Already at this level

the comparison with experimental determinations of the O(p4) chiral couplings shows a

remarkable agreement. Some O(p6) LECs have been also estimated in this way, by studying

appropriate sets of Green functions (see ref. [16] and references therein). All the required

terms in the RχT Lagrangian that may contribute to the O(p6) LECs at LO in 1/NC were

classified in ref. [16].

Since chiral loop corrections are of next-to-leading order (NLO) in the 1/NC expansion,

the large-NC determination of the LECs is unable to control their renormalization-scale

dependence. First analyses of resonance loop contributions to the running of L10(µ) and

L9(µ) were attempted in refs. [17] and [18], respectively. In spite of all the complexity

associated with the still not so well understood renormalization of RχT [18–25], these

pioneering calculations showed the potential predictability at the NLO in 1/NC .

Using dispersion relations we can avoid the technicalities associated with the renor-

malization procedure [24, 26, 27]. This allows one to understand the underlying physics in

a much more transparent way. Still, a fully equivalent diagrammatic calculation is possi-

ble, although the derivation and presentation is slightly more cumbersome [17, 18, 28]. In

particular, the subtle cancellations among many unknown renormalized couplings found in

ref. [18] and the relative simplicity of the final result can be better understood in terms

of the imposed short-distance constraints within the dispersive approach. Following these

ideas we determined, up to NLO in 1/NC , the couplings L8(µ) and C38(µ) in ref. [26] and

L10(µ) and C87(µ) in ref. [27]. In this article we present the study of the vector form factor

(VFF) of the pion, which allows us to estimate the χPT coupling L9(µ) and the O(p6)

combination C88(µ) − C90(µ) up to NLO in 1/NC .

In order to establish the notation, the RχT Lagrangian is introduced in the next

section. The analysis of the VFF in the resonance region is performed in section 3, while

– 2 –



J
H
E
P
0
2
(
2
0
1
1
)
1
0
9

section 4 contains the determination of L9(µ) and C88(µ) − C90(µ). A summary of our

results is finally given in section 5. In order to ease the reading of the text, we have shifted

the technical details on the calculation of the spectral function, the full VFF and the chiral

coupling expressions to the appendices.

2 The Lagrangian

We will adopt the Single Resonance Approximation (SRA), where just the lightest reso-

nances with non-exotic quantum numbers are considered.1 On account of the large-NC

limit, the mesons are put together into U(3) multiplets. Hence, our degrees of freedom are

the pseudo-Goldstone bosons (the lightest pseudoscalar mesons) along with massive multi-

plets of the type V (1−−), A(1++), S(0++) and P (0−+). With them, we construct the most

general action that preserves chiral symmetry. Since we are interested in determining the

χPT low-energy constants and the study of the short-distance behaviour, the chiral limit

will be taken all along the paper. No information is lost as the chiral LECs are independent

of the light quark masses.

Resonance Chiral Theory must satisfy the high-energy behaviour dictated by QCD.

To comply with this requirement we will only consider operators constructed with chiral

tensors of O(p2); interactions with higher-order chiral tensors tend to violate the asymptotic

short-distance behaviour prescribed by QCD [13, 22, 23]. Likewise, it has been shown in

some cases that resonance operators with higher number of derivatives can be simplified

into terms with less derivatives, terms without resonances and operators that contribute

to other hadronic amplitudes, by means of the equations of motion and convenient meson

field redefinitions [14, 16, 18–21, 28].

The different terms in the Lagrangian can be classified by their number of resonance

fields:

LRχT = LG +
∑

R1

LR1
+

∑

R1,R2

LR1R2
+ . . . , (2.1)

where the dots denote operators with three or more resonance fields, and the indices Ri

run over all different resonance multiplets, V , A, S and P . The term with only pseudo-

Goldstone bosons is given by [2–4]

LG =
F 2

4
〈uµuµ + χ+ 〉 . (2.2)

1In ref. [29–31], it has been argued that large discrepancies may occur between the values of the masses

and couplings of the full large-NC theory and those from descriptions with a finite number of resonances.

Even in this case, it is found that one can obtain safe determinations of the LECs as far as one is able

to construct a good interpolator that reproduces the right asymptotic behaviour at low and high energies.

Further issues related to the truncation of the spectrum to a finite number of resonances are discussed in

ref. [32–34].
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The second term in eq. (2.1) corresponds to the operators with one massive resonance [14],

LV =
FV

2
√

2
〈Vµνfµν

+ 〉 +
iGV

2
√

2
〈Vµν [uµ, uν ] 〉 ,

LA =
FA

2
√

2
〈Aµνfµν

− 〉 ,

LS = cd〈Suµuµ 〉 + cm〈Sχ+ 〉 ,

LP = i dm〈Pχ− 〉 . (2.3)

The Lagrangian LR1R2
contains the kinetic resonance terms and the remaining operators

with two resonance fields [14, 16, 18]. We show only the terms that contribute to the vector

form factor of the pion, taking into account that here we just consider the lowest-mass two-

particle absorptive channels, with two pseudo-Goldstone bosons or one pseudo-Goldstone

and one resonance. In the energy range we are interested in, exchanges of two heavy

resonances are kinematically suppressed. Hence, the relevant operators are

∆LSA = λSA
1 〈 {∇µS,Aµν}uν 〉 ,

∆LSP = λSP
1 〈uα{∇αS,P} 〉 ,

∆LPV = iλPV
1 〈 [∇µP, Vµν ]uν 〉 ,

∆LV A = iλV A
2 〈 [V µν , Aνα]hα

µ 〉 + iλV A
3 〈 [∇µVµν , Aνα]uα 〉

+iλV A
4 〈 [∇αVµν , Aαν ]uµ 〉 + iλV A

5 〈 [∇αVµν , A
µν ]uα 〉 . (2.4)

All coupling constants are real, the brackets 〈. . .〉 denote a trace of the corresponding

flavour matrices, and the standard definitions for the uµ, χ±, fµν
± and hµν chiral tensors of

pseudo-Goldstones are provided in refs. [14, 16].

Our Lagrangian LRχT satisfies the NC counting rules for a theory with U(3) multiplets.

Therefore, only operators that have one trace in the flavour space are considered. Note that

local terms with two traces in flavour space, which are of NLO in 1/NC , cannot contribute

at tree-level to the VFF because the final two-pion state has isospin I = 1. The different

fields, masses and momenta are of O(N0
C) in the 1/NC expansion. Taking into account

the interaction terms, one can check that F, FV , GV , FA, cd, cm and dm are O(
√

NC) and

the λR1R2

i are O(N0
C) . The mass dimension of these parameters is [F ] = [FV ] = [GV ] =

[FA] = [cd] = [cm] = [dm] = E and [λR1R2

i ] = E0.

Note that the U(3) equations of motion have been used in order to reduce the number

of operators. For instance, terms like 〈P ∇µuµ〉 are not present in eq. (2.3), since they

can be transformed into operators that, either have been already considered, or contain a

higher number of mesons by means of the equations of motion and convenient meson field

redefinitions [14].

The RχT Lagrangian (2.1) contains a large number of unknown coupling constants.

However, as we will see in the next section, the short-distance QCD constraints allow us

to determine many of them. In the observable at hand and with our assumptions, we

initially have ten couplings or combinations of them (F , FV , GV , FA, cd, λSA
1 , λSP

1 , λPV
1 ,

−2λVA
2 + λVA

3 and 2λVA
2 − 2λVA

3 + λVA
4 + 2λVA

5 ) and four resonance masses (MV , MA, MS
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and MP ). As we will see in section 3, after imposing a good short-distance behaviour of

this observable, the number of parameters reduces to three couplings (F , GV and FA) and

three masses (MV , MA and MS). The Weinberg sum-rules associated with the left-right

correlator [35, 36] allow us to further reduce the number of inputs; the amplitude is finally

determined in terms of just F and the three masses MV , MA and MS . The role of the

information coming from the underlying theory is thus fundamental.

3 The vector form factor of the pion

Our observable is defined through the two pseudo-Goldstone matrix element of the vector

current:

〈π+(p1)π−(p2) |
1

2

(
ūγµu − d̄γµd

)
|0 〉 = F(s) (p1 − p2)

µ, (3.1)

where s ≡ (p1 + p2)
2. At very low energies, F(s) has been studied within the χPT

framework up to O(p6) [2–4, 37, 38]. RχT and the 1/NC expansion have also been used

to determine F(s) at the ρ meson peak, including appropriate resummations of subleading

logarithms from two pseudo-Goldstone channels [39–45]. A first systematic study of the

VFF at NLO in 1/NC was performed in ref. [18]. Although the general structure was well

established there, the present article answers and solves three important questions raised

in that previous paper:

• In ref. [18] only operators with at most one resonance field were included (except

for the kinetic resonance terms) [14]. However, as suggested in the appendix C of

that article, this assumption is not really justified and leads to problems with the

asymptotic short distance behaviour. In the present paper, we have considered all the

operators needed to describe the absorptive cuts with two chiral pseudo-Goldstones

and those with one pseudo-Goldstone and one resonance, being higher thresholds

with two resonances highly suppressed in the energy region that we consider [27].

• Due to this first issue, in ref. [18] the logarithmic part of F(s) was badly behaved

at high energies. It was not possible to enforce a vanishing form factor at s → ∞
without the inclusion of new hadronic operators in the leading Lagrangian. The

inclusion of those terms in the present article will allow us to recover the expected

high-energy dependence for the VFF in QCD [46, 47].

• The final result of ref. [18] contained the unknown RχT couplings L̃9 and C̃88 − C̃90,

which are the analogous ones to the χPT LECs L9 and C88−C90. In the present work,

they are fully determined by means of the high-energy matching with QCD [22, 23].

Within Resonance Chiral Theory the diagrams contributing to the VFF at leading

order in 1/NC are shown in figure 1. They generate the result

FRχT (s) = 1 +
FV GV

F 2

s

M2
V − s

. (3.2)

– 5 –
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Figure 1. Tree-level contributions to the vector form factor of the pion. A single line stands for a

pseudo-Goldstone boson while a double line indicates a resonance.

Considering that the form factor is constrained to be zero at infinite momentum transfer [46,

47], the vector couplings should satisfy

FV GV = F 2 , (3.3)

which implies

FRχT (s) =
M2

V

M2
V − s

. (3.4)

The subleading corrections can be calculated by means of dispersive relations. Once the

one-loop absorptive parts of FRχT (s) are known, one can reconstruct the full form factor

up to appropriate subtraction terms. We can separate then the leading and subleading

parts of the amplitude in the form

FRχT (s) =
M2

V

M2
V − s

+ F(s)
NLO

, (3.5)

with F(s)
NLO

containing the one-loop contribution (figure 2) and the subleading part δ
NLO

of the resonance coupling combination FV GV /F 2 = 1 + δ
NLO

(for details see appendix E):

F(s)
NLO

= δ
NLO

s

M2
V − s

+ F1ℓ(s) . (3.6)

The explicit form for the subtracted one-loop amplitude F1ℓ(s) can be found in appen-

dices A and C, being fully determined by the spectral function ImF(s) through a once-

subtracted dispersion relation. It vanishes at s = 0 and has no contribution to the real

part of the pole at s = M2
V . The subleading correction to the couplings, δ

NLO
, is fixed by

means of the high-energy matching after demanding that it cancels the bad behaviour of

F1ℓ(s) = δ
NLO

+O(s−1) when s → ∞. Furthermore, the NLO term F(s)
NLO

can be neatly

separated into its different contributions from the various two-meson absorptive channels

F(s)
NLO

|m1,m2
, given by the corresponding F1ℓ(s)|m1,m2

and the consequent δ
NLO

|m1,m2
.

These details are relegated to appendices B and C.

Although in this article we follow the procedure of refs. [26, 27], our results can be

also derived in an utterly equivalent way through a Feynman diagram computation and

the standard renormalization procedure. This derivation is slightly more complex and its

detailed explaination is relegated to appendix E.
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Figure 2. One-loop contributions to the vector form factor of the pion with absorptive cut. A

single line stands for a pseudo-Goldstone boson while a double line indicates a resonance.

We will consider only the effects of absorptive loops with two pseudo-Goldstones (ππ)

or with one pseudo-Goldstone and a resonance (Rπ). Two-resonance channels RR′ have

their thresholds at (MR + M ′
R)2 >

∼ 2 GeV2 and their impact on the LEC determination is

expected to be negligible [27]. Taking this into account, we extract our RχT form factor

through the following short-distance matching procedure:

1. Determine the spectral function of the considered absorptive cuts (ππ and Rπ). The

full expressions are shown in eqs. (B.1), (B.2) and (B.3) of appendix B.

2. We demand ImF(s) to be well-behaved at high energies, i.e., it must vanish when s →
∞. In the present work, we will actually impose this constraint channel by channel,

i.e., we will demand that each separate two-meson cut ImF(s)|m1,m2
vanishes at

s → ∞. For spin-0 mesons this must be so as its one-loop contribution to the spectral

function is essentially its VFF at LO (which vanishes at infinite momentum) times the

partial-wave scattering amplitude at LO (which is upper bounded). For higher spin

resonances the derivation is more cumbersome as the Lorentz structure allows for the

proliferation of form factors and the unitarity relations are not that simple. Still, in

many situations it has been already found that amplitudes with massive spin-1 mesons

as final states must go to zero at high energies even faster, due to the presence of extra

powers of momenta in the unitarity relations coming from intermediate longitudinal

polarizations [27]. In summary, we will assume ImF(s)|m1,m2
→ 0 when s → ∞

for every absorptive two-meson cut under consideration, regardless of the spin of the

intermediate mesons.

In the case of the ππ cut we have found two constraints, which are consistent with

the literature,

FV GV = F 2 , 3G2
V + 2 c2

d = F 2 , (3.7)
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where the first one coincides with eq. (3.3), that is, with the constraint obtained with

the vector form factor at leading-order [15]. The second one was derived in ref. [48]

from the LO ππ scattering amplitude. It is interesting to remark that the cd = 0

limit of this second relation, GV = F/
√

3, has been obtained recently from a study

of τ− → P− γ ντ decays (P = π,K) [49]. We have used these constraints to fix FV

and c2
d.

For the Pπ cut, the only possible solution is to kill the whole contribution by means of

λPV
1 = 0 , (3.8)

which is consistent with the large-NC constraint from the vector form factor into Pπ,

studied in ref. [27].

The analysis of the Aπ cut leads to more than one real solution. We have chosen

the solutions consistent with previous works [24, 27], where the NLO contributions

in 1/NC to the ΠV V (s) correlator coming from tree-level form factors to resonance

fields were studied:

− 2λVA
2 + λVA

3 = 0 , −λVA
3 + λVA

4 + 2λVA
5 =

FA

FV
,

λSA
1 = −FA GV

(
M2

A − 4M2
V

)

3
√

2M2
Acd FV

. (3.9)

The first two constraints, in the first line, come from the analysis of the Aπ vector

form-factor. The last relation with λSA
1 is then needed to make ImF(s)|Aπ → 0 for

s → ∞.

After imposing the relations (3.7), (3.8) and (3.9) the spectral functions can be ex-

pressed in terms of GV , FA, F and masses, as shown in eqs. (B.6), (B.7) and (B.8).

3. The spectral function is now ready for the once-subtracted dispersion relation pro-

vided in the appendix A in eq. (A.4), which allows to reconstruct the full form factor

up to the pole position at s = M2
V and the real part of its residue.

4. Finally, we impose that the whole FRχT (s) vanishes at short distances — not only

its imaginary part —. This fixes the real part of the residue at s = M2
V and, con-

sequently, the NLO correction δNLO in eq. (3.6). In order to ease the reading of the

manuscript, the complicated expressions for the well-behaved contributions to the

different channels are provided in appendix C, in eqs. (C.1), (C.2) and (C.3).

4 The chiral couplings L9(µ) and C88(µ) − C90(µ)

The low-momentum expansion of F(s) is determined by χPT [2–4, 37, 38]. The corre-

sponding expression in the chiral limit reads

FχPT (s) = 1 +
2 s

F 2

{
L9(µ) +

Γ9

32π2

(
5

3
− log

−s

µ2

)}

−4 s2

F 4

{
C88(µ)−C90(µ)−Γ

(L)
88 −Γ

(L)
90

32π2

(
5

3
−log

−s

µ2

)
+O

(
N0

C

)}
+O

(
s3

)
, (4.1)

– 8 –
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with [2–6]

Γ9 =
1

4
, Γ

(L)
88 − Γ

(L)
90 = −2L1

3
+

L2

3
− L3

2
+

L9

4
. (4.2)

The couplings F 2, L9, C88/F
2 and C90/F

2 are of O(NC), while Γ9, Γ
(L)
88 /F 2 and Γ

(L)
90 /F 2

are of O(N0
C) and represent a NLO effect.

The low-energy expansion of eqs. (3.4) and (3.5), obtained, respectively, within Reso-

nance Chiral Theory at leading-order and at next-to-leading order in the 1/NC expansion,

allows to determine the chiral couplings L9 and C88 − C90 at LO and at NLO.

4.1 The large-NC limit

At leading-order in 1/NC , eq. (4.1) becomes

FχPT (s) = 1 +
2 s

F 2

{
L9 + O

(
N0

C

)}
− 4 s2

F 4
{C88 − C90 + O(NC)} + O

(
s3

)
. (4.3)

Within RχT in the large-NC limit, eq. (3.4) can be now expanded at low energies:

FRχT (s) =
M2

V

M2
V − s

= 1 +
s

M2
V

+
s2

M4
V

+ O
(
s3

)
. (4.4)

The matching between (4.3) and (4.4) fixes L9 and C88 − C90 at LO [15, 16],

L9 =
F 2

2M2
V

, C88 − C90 = − F 4

4M4
V

. (4.5)

4.2 L9(µ) and C88(µ) − C90(µ) at NLO

Following the same steps as before, let us determine the related O(p4) and O(p6) low-energy

constants by matching eq. (4.1) and the low-energy expansion of eq. (3.5),

FRχT (s) = 1 +
2s

F 2

{
F 2

2M2
V

+ ξ̄(2) +
Γ9

32π2

(
5

3
− log

−s

M2
V

)}
(4.6)

−4 s2

F 4

{
− F 4

4M4
V

+ ξ̄(4) − Γ
(L)
88 − Γ

(L)
90

32π2

(
5

3
− log

−s

M2
V

)}
+ O

(
s3

)
,

where the ξ̄(2n) are the relevant O(sn) coefficients of the low-energy expansion of F
NLO

(s),

once the structure coming from the χPT one-loop diagram has been subtracted from

the ππ channel. The separated contributions ξ̄
(2n)
m1,m2

from each absorptive two-meson

cut F
NLO

(s)|m1,m2
are provided in appendix D, being each of them independent of the

renormalization scale µ.

By comparing the χPT expression (4.1) to the RχT low-energy expansion (4.6), it is

straightforward to estimate the chiral LECs L9(µ) and C88(µ)−C90(µ) up to NLO in 1/NC :

L9(µ) =
F 2

2M2
V

+ ξ̄(2) +
Γ9

32π2
ln

M2
V

µ2
,

C88(µ) − C90(µ) = − F 4

4M2
V

+ ξ̄(4) − Γ
(L)
88 − Γ

(L)
90

32π2
ln

M2
V

µ2 ,

(4.7)

– 9 –



J
H
E
P
0
2
(
2
0
1
1
)
1
0
9

where

Γ
(L)
88 − Γ

(L)
90 =

3G2
V

8M2
V

− c2
d

4M2
S

+
FV GV

8M2
V

=
F 2 − 3G2

V

8M2
S

− F 2 + 3G2
V

8M2
V

(4.8)

matches the corresponding O(p6) running at NLO in 1/NC . Note that the large-NC re-

lations L2 = 2L1 =
G2

V

4M2
V

, L3 = − 3G2
V

4M2
V

+
c2
d

2M2
S

and L9 = FV GV

2M2
V

[14] have been used in

eq. (4.2). The high-energy constraints FV GV = F 2 and 2c2
d = F 2 − 3G2

V of eq. (3.7) have

been employed to obtain the result on the r.h.s. of eq. (4.8).

4.3 Phenomenology

Using MV ≃ 0.77 GeV and F ≃ 89 MeV, one gets the large-NC estimates from eq. (4.5):

L9 ≃ 6.7·10−3 and C88−C90 ≃ −4.5·10−5 . At µ0 = 770 MeV, the phenomenological deter-

minations L9(µ0) = (6.9 ± 0.7) ·10−3 [2–4, 13] and L9(µ0) = (5.93 ± 0.43) ·10−3, C88(µ0)−
C90(µ0) = (−5.5 ± 0.5) · 10−5 [37, 38], obtained respectively from an O(p4) and an O(p6)

ChPT fit, agree approximately with the LO estimates.

Large-NC estimates are naively expected to approximate well the couplings at scales

of the order of the relevant dynamics involved (µ ∼ MR). However, they always carry

an implicit error because of the uncertainty on µ. This theoretical uncertainty is rather

important in couplings generated through scalar meson exchange, such as L8(µ). In the

present case, it also has a moderate importance. The size of the NLO corrections in 1/NC

to L9(µ) and C88(µ)−C90(µ) can be estimated by regarding their variations with µ. These

are respectively given by

∂ L9(µ)

∂ log µ2
= − Γ9

32π2
= −0.8 ·10−3,

∂
(
C88(µ)−C90(µ)

)

∂ log µ2
=

Γ
(L)
88 −Γ

(L)
90

32π2
≃ 0.9 ·10−5. (4.9)

So far, we have been working within a U(3)L ⊗ U(3)R framework, but we are actually

interested on the couplings of the standard SU(3)L⊗SU(3)R chiral theory. Thus, a matching

between the two versions of χPT must be performed. Nonetheless, on the contrary to

what happens with other matrix elements (e.g. the S − P correlator [26]), the spin-1 two-

point functions do not gain contributions from the U(3)-singlet chiral pseudo-Goldstone;

the η1 does neither enter at tree-level nor in the one-loop correlators. Therefore, the

corresponding LECs are identical in both theories at leading and next-to-leading order in

1/NC : L9(µ)U(3) = L9(µ)SU(3), (C88(µ) − C90(µ))U(3) = (C88(µ) − C90(µ))SU(3).

The needed input parameters are defined in the chiral limit. We take the ranges [2–

4, 50] MV = (770 ± 5) MeV, MS = (1090 ± 110) MeV and F = (89 ± 2) MeV. The res-

onance couplings GV and FA can be fixed in terms of F and masses if one considers

the short-distance conditions obeyed by the left-right correlator [13]. The constraint of

eq. (3.3), coming from the vector form factor of the pion, and those from the first and

second Weinberg sum rules [35, 36] determine the vector and axial-vector couplings at LO

in 1/NC [24, 27],

F 2
V = F 2 M2

A

M2
A − M2

V

, G2
V = F 2 M2

A − M2
V

M2
A

, F 2
A = F 2 M2

V

M2
A − M2

V

, (4.10)
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1st Approach 2nd Approach

103 · L9 at LO 6.68 6.68

103 · ξ̄(2)
ππ 0.11 −0.04

103 · ξ̄(2)
Pπ 0.00 0.00

103 · ξ̄(2)
Aπ 1.12 1.00

105 · (C88 − C90) at LO −4.46 −4.46

105 · ξ̄(4)
ππ 0.76 0.71

105 · ξ̄(4)
Pπ 0.00 0.00

105 · ξ̄(4)
Aπ −0.88 −0.73

Table 1. Different contributions to the chiral couplings within the two numerical approaches

explained in the text.

with MA > MV . Due to the large width of the a1(1260) meson, the determination of the

Lagrangian parameter MA is far from trivial. From the observed rates Γ(ρ0 → e+e−) =

(7.02 ± 0.13) keV [50] and Γ (a1 → πγ) = (650 ± 250) keV [50], and considering (4.10), one

finds MA = (938 ± 13) MeV and MA = (960 ± 80) MeV. Another large-NC determination

of MA was obtained in ref. [51] from the study of the π → eνeγ decay, which yields

MA = (998± 49) MeV. We cannot use the information coming from Γ(ρ → 2π) = (149.4±
1.0) MeV [50] in order to determine MA, since GV is constrained by eq. (3.7) to be smaller

than F/
√

3, which results in MA < 940 MeV. In spite of the dispersion of values for MA,

one gets a consistent description in the range MA = (920± 20) MeV, which we will take as

our input. The resulting numerical predictions for the LECs are

L9(µ0) = (7.9 ± 0.4) · 10−3,

C88(µ0) − C90(µ0) = (−4.6 ± 0.4) · 10−5, (4.11)

being µ0 the usual renormalization scale, µ0 = 770 MeV.

Alternatively, one could also use the phenomenological values for GV , FA and the

axial-vector mass, instead of fixing them through the Weinberg sum-rules. Thus, one may

employ MA = (1200 ± 200) MeV [50], and FA = (120 ± 20) MeV, from the observed rate

Γ (a1 → πγ) = (650 ± 250) keV [50]. The constraint of eq. (3.7) implies that GV < F/
√

3,

so that we take the range GV ∈ [40, 50] MeV. For the remaining inputs MV , MS and F ,

we consider the same values used before, yielding the predictions

L9(µ0) = (7.6 ± 0.6) · 10−3,

C88(µ0) − C90(µ0) = (−4.5 ± 0.5) · 10−5. (4.12)

As it can be observed, the influence of using the first or the second approach is not

crucial at the present level of accuracy. We take the values in (4.11), which include more

theoretical constraints, as our final next-to-leading-order estimates for the LECs.

In table 1 we present the different contributions to the LECs within the first and second

approaches. A graphical comparison of the NLO predictions and the large-NC estimates

has been made in figure 3 for different values of the renormalization scale µ.
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105 HC88-C90L
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Figure 3. The RχT predictions (solid gray band) for the χPT O(p4) low-energy constant L9(µ)

(a) and the O(p6) combination C88(µ)−C90(µ) (b) are compared to their large-NC estimates (red

dashed) for different values of the renormalization scale µ. The error of the large-NC estimate is

given by the naive saturation scale uncertainty from eq. (4.9).

It is appropriate to note the appreciable increase of L9(µ0) from the large-NC pre-

diction, for µ0 = 770 MeV. In fact, the correction δNLO in eq. (3.6) gets a contribution

from the Aπ channel which is still comparable to that from the ππ one. This subleading

contribution to FV GV , fixed through short-distance matching, increases the value of L9 by

1 · 10−3, a quite sizeable shift. For details see appendix E and ref. [52].

5 Conclusions

In this article we have completed the analysis of the VFF at NLO in 1/NC , initiated

in ref. [18], where the general framework was established. We have considered operators

with more than one resonance and have studied contributions from intermediate channels

with resonances. We get a well-behaved VFF at high-energies, which goes to zero for

q2 → ∞ [46, 47].

Imposing that each individual absorptive cut vanishes at short distances, one gets

stringent constraints on the structure of the VFF, which led to a prediction of the relevant

O(p4) and O(p6) χPT couplings up to NLO in 1/NC . The required inputs are the resonance

masses MV , MA and MS , and the pion decay constant F . As expected for such a well-

known observable, the large-NC prediction provides already an excellent estimate and the

subleading corrections are relatively small. At the reference scale µ0 = 770 MeV, we obtain

L9(µ0) = (7.9 ± 0.4) · 10−3,

C88(µ0) − C90(µ0) = (−4.6 ± 0.4) · 10−5. (5.1)

As the matching of RχT with χPT is complete up to NLO in 1/NC , we fully control the

running of the LECs up to that order and, e.g., we are able to predict L9(µ) for any desired

value of µ.

This result is in reasonable agreement with previous calculations [2–4, 37, 38, 45, 53,

54], see table 2, and shows once more the efficacy of RχT to describe low-energy QCD

matrix elements, specially if they are dominated by resonances. It is important to remark
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103 · L9(µ0) 105 · (C88(µ0) − C90(µ0))

This work 1st 7.9 ± 0.4 −4.6 ± 0.4

This work 2nd 7.6 ± 0.6 −4.5 ± 0.5

Ref. [2–4] 6.9 ± 0.7

Ref. [37, 38] 5.93 ± 0.43 −5.5 ± 0.5

Ref. [45] 7.04 ± 0.23

Ref. [53] at O(p4) 6.54 ± 0.15

Ref. [53] at O(p6) 5.50 ± 0.40

Ref. [54] 6.3 ± 0.4

Table 2. Comparison of our result with other determinations, being µ0 = 770MeV.

not only that the amplitude is dominated by tree-level exchanges but also the fact that the

one-loop corrections are not large.

Our determination of L9(µ0) has a larger central value than the result obtained from

an O(p6) chiral fit to the VFF [37, 38] at low energies, and it is closer to the chiral fit

determination at O(p4) [2–4]. On the other hand, the ALEPH τ -data analysis performed

in [45], which is also of O(p6) but takes higher-energy data into account, yields a value of

the order of 7 · 10−3, much closer to our estimate.

In future works, we plan to study the pion scalar form-factor and the LECs L4(µ) and

L5(µ), where the situation is much less clear since, in that case, one has contributions from

broad resonance states like the f0(600).
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A Dispersion relations and loop contribution

One may use a once-subtracted dispersion relation, derived from the identity

F(s)

s
=

1

2πi

∮
dt

F(t)

t (t − s)
, (A.1)

where the integration is performed in the usual complex circuit [27]. The form-factor in

the integrand can be written as

F(t)

t
=

D(t)

(M2
V − t)2

, (A.2)
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where D(t) is an analytical function except for the unitarity logarithmic branch cut and

the single pole of F(t)
t

at t = 0. One gets then

1

s
F(s) =

1

s
+

1

s
F1ℓ(s) − ReD′(M2

V )

M2
V − s

+
ReD(M2

V )

(M2
V − s)2

, (A.3)

where the 1
s

term on the r.h.s. is given by the integration 1
2πi

∫ θ=0+

θ=2π−

dt
t

F(t)
(t−s) , with t = ǫ eiθ,

around t = 0 of the function F(t)
t

≈ 1
t

+ O(t0), and the different contributions of each

two-meson absorptive cut are given by the dispersive integral,

F1ℓ(s)|m1,m2
= lim

ǫ→0

[
s

π

∫ M2
V
−ǫ

0
dt

ImF(t)|m1,m2

t (t − s)
+

s

π

∫ ∞

M2
V

+ǫ

dt
ImF(t)|m1,m2

t (t − s)

− 2s

πǫ
lim

t→M2
V

{
(M2

V − t)2
ImF(t)|m1,m2

t (t − s)

}]
. (A.4)

Notice that if the threshold of the channel is above the resonance mass MV , then this

expression gets simplified into the form

F1ℓ(s)|m1,m2
= lim

ǫ→0

s

π

∫ ∞

(M1+M2)2
dt

ImF(t)|m1,m2

t (t − s)
, (A.5)

with M1 (M2) the mass of the m1 (m2) meson.

If we choose the on-shell mass scheme, without double poles in the perturbative ex-

pansion, we have then

F(t) = 1 +
∑

m1,m2

F1ℓ(t)|m1,m2
− s ReD′(M2

V )

M2
V − t

, (A.6)

where ReD′(M2
V ) can be identified with −F r

V
Gr

V

F 2 for a convenient renormalization scheme

of this combination of vector couplings [26–28] (see appendix E for further details).

B The spectral functions Im F(s)|m1,m2

In this appendix we show the explicit form of the the spectral functions of the different two-

particle absorptive cuts. First we present the functions obtained directly from the Feynman

diagrams before imposing any short-distance constraint, i.e., they are badly behaved at high

energies.

ImF(s)|ππ =
F 2(M2

V − s) + sFV GV

64πF 6s2(s − M2
V )

{
2c2

d

(
M4

S log

(
1 +

s

M2
S

)(
−12M2

S − 6s
)

+ s3

+12sM4
S

)
+ G2

V

(
s3− 6M2

V

(
M2

V +2s
)(

log

(
1+

s

M2
V

)(
2M2

V +s
)
−2s

))}

+
s2GV

(
F 2(FV + 2GV )(M2

V − s) + 2sFV G2
V

)

64πF 6(s − M2
V )2

+
s

64πF 2
, (B.1)
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ImF(s)|Pπ =

√
2cdFV λSP

1 λPV
1

32πF 4s(s − M2
V )

{
3M4

P (4M2
S + s) − 3M2

P (2M2
S + s)2 − M6

P

−6M2
S(M2

S − M2
P )(−M2

P + 2M2
S + s) log

(
1+

s − M2
P

M2
S

)
+ 12sM4

S + s3

}

− FV GV λPV
1

2

32πF 4s(s − M2
V )

{
3M2

P

(
12sM2

V +4M4
V +s2

)
+ 6M2

V

(
− 3M2

P (M2
V +s)

+M4
P + 5sM2

V + 2M4
V + 2s2

)
log

(
1+

s − M2
P

M2
V

)
− 3M4

P (4M2
V + s)

+M6
P − s(24sM2

V + 12M4
V + s2) − 2s(s − M2

P )3

s − M2
V

}
, (B.2)

ImF(s)|Aπ =
−GV (s−M2

A)2

32F 4πM2
As(s−M2

V )2

{
FA

(
(2κ+σ)M4

A + 4s(κ+σ)M2
A + s2σ

)(
s−M2

V

)

−FV

(
s − M2

A

)(
(2κ+σ)2M4

A + 2s(κ2+4σκ+2σ2)M2
A + s2σ2

)}

− GV

32F 4πM2
As(s − M2

V )

{
6 log

(
1 +

s − M2
A

M2
V

)(
FA(s − M2

V )(M2
A − M2

V )

(
κM2

A+σ(M2
V +s)

)
+FV

(
(M2

A−s)(M2
A−M2

V )(M2
V +s)σ2+2κM2

A

(M2
A−s)(M2

A−M2
V )σ+κ2M2

A

(
3M4

A−5(M2
V +s)M2

A+(M2
V +2s)(2M2

V +s)
)))

M2
V +(M2

A−s)
(
FA(s−M2

V )
(
(3κ+σ)M4

A+
(
(3σ− 6κ)M2

V +s(3κ+4σ)
)
M2

A

+σ(s2−6M4
V −3sM2

V )
)
+FV

(
(M2

A−s)
(
M4

A+4sM2
A−6M4

V +s2

+3(M2
A − s)M2

V

)
σ2 + 6κM2

A(M2
A − s)(M2

A − 2M2
V + s)σ

+κ2M2
A

(
7M4

A − 8(3M2
V + s)M2

A + 12M4
V + s2 + 24sM2

V

)))}

+

√
2cdλ

SA
1

32F 4πs(s − M2
V )

{
6 log

(
1 +

s − M2
A

M2
S

)(
FV

(
2κM4

S + (κ − σ)M2
S

(s − M2
A) + (κ + σ)M2

A(s − M2
A)

)
+ FA(M2

A − M2
S)(M2

V − s)
)
M2

S

+(M2
A − s)

(
FV

(
3σ(s − M2

A)(M2
A − 2M2

S + s)

+κ(4sM2
A−5M4

A+12M4
S +s2)

)
+3FA(M2

A−2M2
S+s)(M2

V −s)
)}

, (B.3)

where we have used the combination of couplings κ and σ,

κ = −2λVA
2 + λVA

3 , σ = 2λVA
2 − 2λVA

3 + λVA
4 + 2λVA

5 . (B.4)

After considering the constraints explained in section 3,

FV GV = F 2, 3G2
V + 2 c2

d = F 2,

λPV
1 = 0 , κ = 0 , (B.5)

κ + σ =
FA

FV
, λSA

1 = −FA GV (M2
A − 4M2

V )

3
√

2M2
Acd FV

,
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the imaginary part of each absorptive cut vanishes at short-distances and the following

expressions are found,

ImF(s)|ππ =
M2

V

32πF 4s2(s−M2
V )2

{
3M4

S(F 2−3G2
V )(M2

V −s) log

(
1+

s

M2
S

)
(2M2

S + s)

+G2
V M2

V

(
log

(
1 +

s

M2
V

)
(−6s3 − 9s2M2

V + 6M6
V + 9sM4

V ) + 13s3

−6s2M2
V − 6sM4

V

)
+ 6sM4

S(F 2 − 3G2
V )(s − M2

V )

}
, (B.6)

ImF(s)|Pπ = 0 , (B.7)

ImF(s)|Aπ =
F 2

AG2
V (M2

V −M2
A)

32πF 6sM2
A(s−M2

V )2

{
M4

A

(
2M2

S(M2
V − s)

(
log

(
1+

s − M2
A

M2
S

)
−1

)

+4sM2
V − 7M4

V − 3s2

)
+ 2M2

A

(
s2M2

V

(
3 log

(
1 +

s − M2
A

M2
V

)
− 2

)

+M4
S(s − M2

V ) log

(
1 +

s − M2
A

M2
S

)
− M2

S(s − M2
V )

(
s−4M2

V

(
log

(
1+

s−M2
A

M2
S

)
−1

))
−3M6

V

(
log

(
1+

s−M2
A

M2
V

)
− 1

))

+M2
V

(
s2M2

V

(
7−6 log

(
1+

s−M2
A

M2
V

))
+8M4

S(M2
V −s) log

(
1+

s−M2
A

M2
S

)

+6M6
V log

(
1+

s−M2
A

M2
V

)
+8sM2

S(s−M2
V )−6sM4

V

)
+2sM6

A+M8
A

}
. (B.8)

C Next-to-leading-order corrections F
NLO

(s)|m1,m2

In this appendix we show the explicit form of the NLO corrections generated by the consid-

ered two-particle absorptive cuts, eqs. (B.6), (B.7) and (B.8), which have been calculated by

using the dispersive method discussed in appendix A. Below, we have summed up the δ
NLO

contribution to F1ℓ(s), as seen in eq. (3.6), being the different F
NLO

(s)|m1m2
well-behaved

at high energies:

F
NLO

(s)|ππ =
M2

V

64π2F 4s(s − M2
V )2

{
− 12M6

S(F 2 − 3G2
V )(s − M2

V )f(s,M2
S)

−6M4
S(F 2 − 3G2

V )(s − M2
V )

(
sf(s,M2

S) + 2 log

( −s

M2
S

)
− 2

)

+G2
V M2

V

(
− 6(3s2M2

V − 3sM4
V − 2M6

V + 2s3)f(s,M2
V )

+s2

(
− 26 log

( −s

M2
V

)
+ 27

)
+ 12M4

V

(
log

( −s

M2
V

)
− 1

)

+3sM2
V

(
4 log

( −s

M2
V

)
− 5

))
+ 3sM2

S(F 2 − 3G2
V )(s − M2

V )

}
, (C.1)
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F
NLO

(s)|Pπ = 0 , (C.2)

F
NLO

(s)|Aπ = − F 2
AG2

V (M2
A − M2

V )

32π2F 6sM2
AM4

V (s − M2
V )2

{
M4

AM4
V

(
2sM2

S(M2
V − s)g(s,M2

A,M2
S)

−6s2 log

(
1−M2

V

M2
A

)
+ log

(
1− s

M2
A

)(
3s2+2M2

S(M2
V − s)+7M4

V −4sM2
V

))

+sM6
V

(
M2

V

(
− 6(s2 − M4

V )g(s,M2
A,M2

V ) + 6M2
V

(
log

(
1 − s

M2
A

)
− 1

+ log

(
M2

A

M2
V

))
+ s

(
− 7 log

(
1− s

M2
A

)
− 6 log

(
M2

A

M2
V

)
+ log

(
1−M2

V

M2
A

)
+ 6

))

+8M4
S(M2

V − s)g(s,M2
A,M2

S)−8M2
S(s − M2

V )

(
log

(
1− s

M2
A

)
+ log

(
M2

A

M2
S

)

−1

))
+ M2

AM4
V

(
M2

V

(
6(s3 − sM4

V )g(s,M2
A,M2

V ) + s2

(
4 log

(
1 − s

M2
A

)

+2 log

(
1 − M2

V

M2
A

)
− 7

)
− 6M4

V log

(
1 − s

M2
A

)
+ 7sM2

V

)

+2sM4
S(s − M2

V )g(s,M2
A,M2

S)

+2M2
S(s − M2

V )

(
4sM2

V g(s,M2
A,M2

S)+ s

(
log

(
1 − s

M2
A

)
+ log

(
M2

A

M2
S

)
− 1

)

+4M2
V log

(
1 − s

M2
A

)))
+ M8

A

(
s2 log

(
1 − M2

V

M2
A

)
− M4

V log

(
1 − s

M2
A

))

+sM6
AM2

V

(
M2

V

(
− 2 log

(
1 − s

M2
A

)
−1

)
+ 2s log

(
1 − M2

V

M2
A

)
+ s

)}
, (C.3)

where the functions f(s,M2) and g(s,M2
1 ,M2

2 ) have been introduced for simplicity,

f
(
s,M2

)
=

1

s

(
Li2

(
1 +

s

M2

)
− π2

6

)
,

g
(
s,M2

1 ,M2
2

)
=

1

s

(
Li2

(
1 +

s

M2
2

− M2
1

M2
2

)
− Li2

(
1 − M2

1

M2
2

))
. (C.4)

D NLO contributions to L9(µ) and C88(µ) − C90(µ)

In this appendix we give the full expressions of the NLO contributions to L9(µ) and C88(µ)−
C90(µ), following the notation of eqs. (4.6) and (4.7), i.e., ξ̄

(2)
m1,m2

and ξ̄
(4)
m1,m2

:

ξ̄(2)
ππ =

1

768π2F 2

{
F 2

(
6 log

(
M2

S

M2
V

)
− 11

)
+ G2

V

(
38 − 18 log

(
M2

S

M2
V

))}
, (D.1)

ξ̄
(2)
Pπ = 0 , (D.2)
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ξ̄
(2)
Aπ =

F 2
AG2

V

128π2F 4M2
AM8

V (M2
A − M2

S)

{
2M10

A (M2
S − M2

A) log

(
1 − M2

V

M2
A

)

−2M8
AM2

V (M2
A − M2

S)

(
log

(
1 − M2

V

M2
A

)
+ 1

)
+ M6

AM4
V (M2

A − M2
S)

(
16 log

(
1−M2

V

M2
A

)
−3

)
+M4

AM6
V

(
M2

S

(
− 2 log

(
M2

A

M2
S

)
+16 log

(
1−M2

V

M2
A

)
− 11

)

+M2
A

(
11−16 log

(
1−M2

V

M2
A

)))
+M2

AM8
V

(
M2

S

(
10 log

(
M2

A

M2
S

)
−12 log

(
M2

A

M2
V

)

−2 log

(
1 − M2

V

M2
A

)
+ 11

)
+ M2

A

(
12 log

(
M2

A

M2
V

)
+ 2 log

(
1 − M2

V

M2
A

)
− 11

))

+M10
V

(
M2

A

(
− 6 log

(
M2

A

M2
V

)
+ 2 log

(
1 − M2

V

M2
A

)
+ 5

)

−M2
S

(
8 log

(
M2

A

M2
S

)
− 6 log

(
M2

A

M2
V

)
+ 2 log

(
1 − M2

V

M2
A

)
+ 5

))}
, (D.3)

ξ̄(4)
ππ =

1

3072π2M2
V

{
2F 2

(
11 − 6 log

(
M2

S

M2
V

))
+ G2

V

(
36 log

(
M2

S

M2
V

)
− 11

)}

+
(F 2 − 3G2

V )

3072π2M2
S

{
12 log

(
M2

S

M2
V

)
− 19

}
, (D.4)

ξ̄
(4)
Pπ = 0 , (D.5)

ξ̄
(4)
Aπ =

−F 2
AG2

V

384π2F 2M2
AM10

V (M2
A − M2

S)2(M2
A − M2

V )

{
− 6M10

A M2
V (M2

A − M2
S)2

+8M14
V

(
M2

S

(
log

(
M2

A

M2
S

)
+1

)
−M2

A

)
−M12

V

(
2M2

AM2
S

(
3 log

(
M2

A

M2
S

)
+6 log

(
M2

A

M2
V

)

−6 log

(
1−M2

V

M2
A

)
+4

)
+M4

S

(
12 log

(
M2

A

M2
S

)
−6 log

(
M2

A

M2
V

)
+6 log

(
1−M2

V

M2
A

)
+5

)

+M4
A

(
− 6 log

(
M2

A

M2
V

)
+ 6 log

(
1 − M2

V

M2
A

)
− 13

))
− 3M2

AM10
V

(
M2

AM2
S

(
5 log

(
M2

A

M2
S

)
−12 log

(
M2

A

M2
V

)
+22

)
+M4

S

(
− 9 log

(
M2

A

M2
S

)
+6 log

(
M2

A

M2
V

)
−13

)

+M4
A

(
6 log

(
M2

A

M2
V

)
− 9

))
+ 2M4

AM8
V

(
M2

AM2
S

(
8 log

(
M2

A

M2
S

)
− 18 log

(
M2

A

M2
V

)

−54 log

(
1−M2

V

M2
A

)
+71

)
+9M4

S

(
log

(
M2

A

M2
V

)
− log

(
M2

A

M2
S

)
+3 log

(
1−M2

V

M2
A

)
−4

)

+M4
A

(
9 log

(
M2

A

M2
V

)
+ 27 log

(
1 − M2

V

M2
A

)
− 35

))
− M6

AM6
V (M2

A − M2
S)

(
M2

S

(
3 log

(
M2

A

M2
S

)
−96 log

(
1−M2

V

M2
A

)
+47

)
+M2

A

(
96 log

(
1−M2

V

M2
A

)
−47

))

+3M8
AM4

V (M2
A−M2

S)2
(

18 log

(
1−M2

V

M2
A

)
−1

)
−6M12

A (M2
A−M2

S)2 log

(
1−M2

V

M2
A

)}
.

(D.6)
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E Description in terms of Feynman diagrams

The subleading corrections can be calculated by means of dispersive relations. Once the

NLO absorptive parts of FRχT (s) are known, one can reconstruct the full form factor up to

appropriate subtraction terms. Alternatively, we can compute and separate the tree-level

and one-loop amplitudes in the form

FRχT (s) = 1 +
FV GV

F 2

s

M2
V − s

+
2L̃9

F 2
s +

∑

m1,m2

F(s)|m1,m2
, (E.1)

where the one-loop diagrams F(s)|m1,m2
can be rewritten by means of a once-subtracted

dispersion relation in the form

∑

m1,m2

F(s)|m1,m2
=

∑

m1,m2

F1ℓ(s)|m1,m2
+

2δ̂2

F 2
s + δ̂0

s

M2
V − s

+ δ̂−2
s

(M2
V − s)2

. (E.2)

The finite part of the loops is contained in the once-subtracted dispersive functions

F1ℓ(s)|m1,m2
, fully determined by the imaginary part of ImF(s)|m1,m2

through eq. (A.4).

The real parameters δ̂−2,0,2 contain the ultraviolet divergences of the loops, being δ̂0 and

δ̂−2 the real part of the pole residues. The local RχT coupling L̃9 renormalizes δ̂2, the

combination FV GV cancels the divergences in δ̂0 and a convenient shift of the mass,

M
(B) 2
V = M2

V + δM2
V removes the divergent part of δ̂−2. Indeed, we will work in the

on-shell scheme and the counterterm δM2
V will be chosen to completely kill δ̂−2.

In order to finish the short-distance matching we just need to take into account that

the once-subtracted loop contribution behaves at short distances like

∑

m1,m2

F1ℓ(s)|m1,m2

s→∞−→ δ0 + O(s−1) , (E.3)

with δ0 a constant number (denoted before in the text as δ
NLO

). This leads to the VFF

high-energy constraints

FV GV

F 2
+ δ̂0 = 1 + δ0 ,

L̃9 + δ̂2 = 0 . (E.4)

Hence, the VFF finally takes the well-behaved structure (3.5) employed in the article,

F(s) = 1 +
(
1 + δ0

) s

M2
V − s

+
∑

m1,m2

F1ℓ(s)|m1,m2

=
M2

V

M2
V − s

+ F
NLO

(s) . (E.5)

Notice that no real double pole term δ̂−2 remains in our perturbative NLO expression as

we have chosen the on-shell mass scheme.
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