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ACP(B− → π0K−) −ACP(B̄0 → π+K−) can be explained by a new electroweak penguin

amplitude. Motivated by this result, we analyse the purely isospin-violating decays B̄s →
φρ0 and B̄s → φπ0, which are dominated by electroweak penguins, and show that in

presence of a new electroweak penguin amplitude their branching ratio can be enhanced

by up to an order of magnitude, without violating any constraints from other hadronic

B decays. This makes them very interesting modes for LHCb and future B factories.

We perform both a model-independent analysis and a study within realistic New Physics

models such as a modified-Z0-penguin scenario, a model with an additional Z ′ boson and

the MSSM. In the latter cases the new amplitude can be correlated with other flavour
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constraints on the enhancement of the two Bs decays. In particular we find that, contrary

to claims in the literature, electroweak penguins in the MSSM can reduce the discrepancy

in the B → πK modes only marginally. As byproducts we update the SM predictions

to Br(B̄s → φπ0) = 1.6+1.1
−0.3 · 10−7 and Br(B̄s → φρ0) = 4.4+2.7

−0.7 · 10−7 and perform a
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1 Introduction

At present flavour physics has entered a new exciting era. The new experiment LHCb

and the planned super-B-factories will bring the precision of Standard Model (SM) tests

and the scope of searches for New Physics (NP) to unseen heights. Particularly important

thereby are flavour-changing neutral current (FCNC) decays, which in the SM are highly-

suppressed electroweak loop processes. In this work we present a phenomenological analysis

of two hadronic FCNC decays, namely B̄s → φρ0 and B̄s → φπ0. We argue that within

the next years these decays will become very interesting objects for experimental analyses

of the electroweak penguin sector. Up to now, this sector has been tested in hadronic

decays only in B → πK modes, and the discrepancies found between the SM prediction

and experimental measurements is the main motivation for our work.

The four B → πK decay channels, first observed by the CLEO experiment in the late

1990s [1, 2], have become by now a classic in flavour physics thanks to the precise mea-

surements by BABAR and BELLE. This is also reflected in the large number of theoretical

studies of these decays in the SM and various extensions of it. Charged and neutral B

mesons can decay to a πK final state due to a weak process at the partonic level, b→ sq̄q

with q = u, d. This process is dominated by an FCNC loop governed by the CKM factor

V ∗
tsVtb and receives, in the q = u case, also a small tree-level contribution involving the

smaller CKM factor V ∗
usVub. The B → πK branching fractions are therefore small, of order

O(10−6), and sensitive to new FCNCs arising in extensions of the SM. For this reason they

are, together with the corresponding CP asymmetries, important observables for tests of

the SM flavour structure and for NP searches.

With the data of the B factories having become more and more precise, some dis-

crepancies between B → πK measurements and SM predictions have occurred, provoking

speculations on a “B → πK puzzle”. To date, the measurements of the branching fractions

have fluctuated towards the SM predictions, the latter still suffering from large hadronic

uncertainties, and only the CP asymmetries show an unexpected behavior [3–5] manifesting

itself in the quantity

∆ACP ≡ ACP(B− → π0K−) −ACP(B̄0 → π+K−). (1.1)

For this observable we find in the framework of QCD factorisation (QCDF)

∆ACP
SM
= 1.9+5.8

−4.8 % (1.2)

as the SM prediction, which differs significantly from the experimental value [6]

∆ACP
exp.
= (14.8 ± 2.8),%. (1.3)

Adopting a frequentist approach where we consider a theoretical “error bar” as a range

of values definitely containing the true theory result but without assigning any statistical

meaning to it [7], this amounts to a 2.5σ discrepancy.

A point which has received much attention in the literature (see e.g. [8] and references

therein) is the fact that the formerly observed discrepancies as well as the currently existing
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anomaly in ∆ACP suggest a violation of the strong isospin symmetry beyond the amount

expected in the SM. This has often been interpreted as a hint for enhanced electroweak

penguins (EW penguins) [9–11]. We will give a brief overview and discuss the current

status of this topic in section 2.1. Whether the 2.5σ discrepancy in ∆ACP is a hint for NP

in EW penguins or a non-perturbative hadronic effect or simply a statistical fluctuation

is controversial. The point that we want to make is that, in order to assess this question,

it is highly desirable to obtain further information from other hadronic decays which are

sensitive to EW penguin contributions. For this reason we study the purely isospin-violating

decays B̄s → φρ0 and B̄s → φπ0, which are dominated by EW penguins, extending and

updating our analysis presented in ref. [12]. If NP in this sector exists at a level where it

can explain the ∆ACP puzzle, it could be clearly visible in these purely isospin-violating

decays. The upcoming new generation of flavour experiments will have the opportunity to

detect these modes for the first time and to measure their branching fractions. The aim of

our work is to provide a detailed analysis from the theory side, both in the SM and beyond.

Since the decays B̄s → φρ0 and B̄s → φπ0 are not related to other decay modes via

flavour symmetries, the non-perturbative part of their decay amplitudes has to be deter-

mined from first principles. This can be achieved using the framework of QCDF [13–17].

This method amounts to a calculation of the hadronic matrix elements up to corrections

of order ΛQCD/mB , where ΛQCD ∼ O(200MeV) is a typical non-perturbative energy scale

of strong interactions. We will use this method throughout the paper in all analyses of B

decays to light mesons.

The plan of the paper is as follows: In section 2, we discuss the issue of isospin-

violation in B → πK decays and the phenomenology of B̄s → φρ0 and B̄s → φπ0. As

a byproduct we provide simple formulas which allow for an easy calculation of various

observables concerning these decay modes, taking into account NP effects in EW penguins.

Section 3 contains a detailed quantitative analysis of B̄s → φρ0 and B̄s → φπ0 in different

scenarios of a model-independent parameterisation of NP in EW penguins. This analysis

is performed in light of our present knowledge on EW penguins from other B decays, in

particular B → πK. It is complemented in section 4 with studies of particular extensions

of the SM which feature enhanced EW penguins. We conclude in section 5. We keep the

main body of the paper free of technicalities and refer the reader interested in technical

details to the appendices.

2 Isospin-violation in hadronic B decays

2.1 The B → πK modes

The B → πK decays are dominated by the isospin-conserving QCD penguin amplitude.

Nevertheless, they receive small contributions from the tree and the EW penguin amplitude,

which are isospin-violating. Combining measurements of the four different decay modes

B− → π−K̄0, B− → π0K−, B̄0 → π+K− and B̄0 → π0K̄0, it is possible to construct

observables in which the leading contribution from the QCD penguin drops out, so that

they are sensitive to isospin violation.
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The mesons participating in B → πK decays transform under isospin rotations as

(B̄0,−B−)1/2 , (K̄0,−K−)1/2 , (π+,−π0,−π−)1 . (2.1)

Furthermore we can assign isospin to the operators appearing in the effective Hamiltonian

Heff =
GF√

2

∑

p=u,c

λ(s)
p

(
C1Q

p
1 + C2Q

p
2 +

10∑

i=3

CiQi + C7γQ7γ + C8gQ8g

)
+ h.c., (2.2)

which mediates the B → πK transitions. Here λ
(s)
p = VpbV

∗
ps represents a product of

elements of the quark mixing (CKM) matrix, Qp
1,2 are the so-called current-current oper-

ators, Q3,...,6 are QCD penguin operators, Q7γ and Q8g represent the electromagnetic and

chromomagnetic operators and

Q7 = (s̄αbα)V −A
∑

q
3
2eq(q̄βqβ)V +A, Q8 = (s̄αbβ)V −A

∑
q

3
2eq(q̄βqα)V +A, (2.3)

Q9 = (s̄αbα)V −A
∑

q
3
2eq(q̄βqβ)V −A, Q10 = (s̄αbβ)V −A

∑
q

3
2eq(q̄βqα)V −A, (2.4)

are the EW penguin operators (α, β denote colours). The latter are of great importance

for our work. We define the operators as in [15] so that C1(MW ) = 1 at leading order.

Containing ūu- and d̄d-bilinears, the operators Q1,. . . ,Q10 can be distributed among

Heff = H∆I=1
eff + H∆I=0

eff (2.5)

according to the decomposition 1/2 ⊗ 1/2 = 1 ⊕ 0 [18]. Since the QCD penguin operators

Q3,...,6 involve the isosinglet combination (ūu+d̄d), they contribute solely to H∆I=0
eff whereas

the other operators give contributions to both parts of Heff. The B → πK decays thus

follow the isospin pattern

1/2
∆I=1,0−→ 1 ⊗ 1/2 = 3/2 ⊕ 1/2, (2.6)

implying that all four decay amplitudes can be decomposed into three independent isospin

amplitudes, A∆I=0
1/2 , A∆I=1

1/2 and A∆I=1
3/2 with the lower index denoting the total isospin of

the final state.

One finds that B → πK is dominated by the QCD penguin contribution and thus

|A∆I=0
1/2 | ≫ |A∆I=1

3/2, 1/2|. To a first approximation, all the decay modes can be described

by the amplitude A∆I=0
1/2 only, dictating the relative size of the branching fractions to be

1 : 2 : 1 : 2 (in the same order as in table 1).

The isospin-invariant amplitudes receive contributions from various SM quark dia-

grams. It is only at the level of these diagrams that the pattern of CP violation can be

correctly implemented, i.e. that the amplitudes A∆I=0
1/2 , A∆I=1

3/2, 1/2 can be related to their CP-

conjugated counterparts A∆I=0
1/2 , A∆I=1

3/2, 1/2. This suggests an alternative parameterisation of
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ū

γ, Z

t t ū
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Figure 1. Diagrams representing the topological parameterisation in eq. (2.7) for B− → π0K−.

First line from left to right: QCD penguin (P ), colour-allowed EW penguin (rEW), colour-

suppressed EW penguin (rCEW). Second line from left to right: colour-allowed tree (rT), colour-

suppressed tree (rC), EW penguin annihilation (rAEW).

the amplitudes in terms of the topologies of the underlying quark-level transitions [19, 20]:

A(B− → π−K̄0) ≃ P

(
1 − 1

3
rC
EW +

2

3
rAEW

)
,

√
2A(B− → π0K−) ≃ P

(
1 + rEW +

2

3
rC
EW +

2

3
rAEW − (rT + rC)e−iγ

)
,

A(B̄0 → π+K−) ≃ P

(
1 +

2

3
rC
EW − 1

3
rAEW − rTe

−iγ

)
,

√
2A(B̄0 → π0K̄0) ≃ −P

(
1 − rEW − 1

3
rC
EW − 1

3
rAEW + rCe

−iγ

)
. (2.7)

This topological parameterisation is illustrated by the corresponding Feynman diagrams

for B− → π0K− in figure 1. In eq. (2.7) we have factored out the dominant QCD penguin

amplitude P and neglected penguin amplitudes suppressed by |V ∗
usVub|/|V ∗

csVcb|. The depen-

dence on the weak CKM phase γ has been made explicit, while strong phases are contained

in the ratios ri which fulfill |ri| < 1. These quantities denote corrections from different

types of Feynman diagrams: rT and rC stem from colour-allowed and colour-suppressed

tree diagrams, rEW and rCEW from colour-allowed and colour-suppressed EW penguins,

respectively. Annihilation via QCD penguin diagrams is absorbed into P whereas weak

annihilation via EW penguin diagrams is parameterised by rAEW and colour-suppressed

tree annihilation is neglected. With our QCDF setup explained in appendix A and the

expressions for the ratios given in appendix B we obtain

rT = 0.17+0.07
−0.06 + 0.03+0.03

−0.10 i ,

rC = 0.07+0.04
−0.06 + (−0.01)+0.03

−0.05 i ,

rEW = 0.13+0.05
−0.05 + 0.02+0.02

−0.07 i ,

rCEW = 0.04+0.02
−0.03 + (−0.01)+0.02

−0.03 i ,

rAEW = 0.007+0.002
−0.010 + (−0.004)+0.011

−0.003 i . (2.8)

– 5 –



J
H
E
P
0
2
(
2
0
1
1
)
0
8
0

The result displays the typical features of QCDF predictions, namely small strong phases

and large uncertainties of colour-suppressed topologies. The smallness of the ri reflects the

domination of the isospin-conserving QCD penguin and justifies the expansion of physical

observables in the ri. Among the isospin-violating contributions the colour-allowed tree

gives the largest corrections followed by the EW penguin which dominates over the colour-

suppressed tree. The colour-suppressed EW penguin ratio rCEW and especially the EW

penguin annihilation ratio rAEW are quite small and consequently they have been omitted

in most analyses of B → πK decays. In particular, the possibility of having NP in the

EW penguin annihilation amplitude rAEW has to our knowledge not been considered so far.

However, we want to point out that such an approximation is not valid in the analysis of CP

asymmetries: non-vanishing direct CP asymmetries are caused by the interference of parts

of the decay amplitude with different weak and strong phases. Consequently direct CP

asymmetries in B → πK cannot be generated by the QCD penguin amplitude alone and

are automatically sensitive to subleading contributions, encoded in the imaginary parts of

the ri coefficients. These, in turn, are generated in QCDF either perturbatively at O(αs)

or non-perturbatively at O(ΛQCD/mB). At O(αs) the colour-suppression of rCEW is not

present anymore and the ΛQCD/mB - suppressed rAEW can compete as well. Therefore we

keep rCEW and rAEW in our calculation and we will see in later sections that we can indeed

have a large NP contribution in these amplitudes.

One can easily see from eqs. (2.7), (2.8) that the two amplitudes involved in ∆ACP

differ only by the subdominant contributions rC, rEW and rAEW, all of which are isospin-

violating. Turning to the CP asymmetries, one finds in the SM

ACP(B− → π0K−) ≃ −2 Im (rT + rC) sin γ,

ACP(B̄0 → π+K−) ≃ −2 Im(rT) sin γ, (2.9)

with terms quadratic in the ri being neglected. Thus the only possible explanation for

a large ∆ACP in the SM seems to be a large imaginary part of rC, i.e. a large absolute

value and large strong phase of the colour-suppressed tree amplitude, generated by some

hadronic effects at the low scale ΛQCD which can hardly be calculated perturbatively.

However, QCDF predicts only a small Im(rC), insufficient to explain the data, even when

all the theory uncertainties are included. Therefore one is tempted to conclude that the

discrepancy in ∆ACP is not due to our lack of understanding of strong interactions but

due to isospin-violating NP.

For this reason, ∆ACP has been studied in various NP models in recent publications [5,

36–44]. The main ingredient of these analyses is usually an enhancement of the EW penguin

topologies by effects of virtual heavy particles. Such contributions can be included into the

amplitudes (2.7) by the replacements

rEW → rEW + r̃EWe
−iδ, rCEW → rCEW + r̃CEWe

−iδ , rAEW → rAEW + r̃AEWe
−iδ, (2.10)

where δ is a new weak phase and r̃
(i)
EW are complex numbers including a strong phase. The

– 6 –
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Observable Theory Experiment

Br(B̄0 → π0K̄0) · 106 5.8+5.7
−3.6 9.5+0.5

−0.5

Br(B̄0 → π+K−) · 106 14.0+12.1
−7.8 19.4+0.6

−0.6

Br(B− → π0K−) · 106 9.6+7.3
−4.9 12.9+0.6

−0.6

Br(B− → π−K̄0) · 106 15.7+13.7
−8.9 23.1+1.0

−1.0

RB
c (πK) 1.22+0.17

−0.15 1.12+0.07
−0.07

RB
n (πK) 1.22+0.18

−0.16 1.02+0.06
−0.06

RK
c (πK) 1.27+0.12

−0.11 1.24+0.07
−0.07

RK
n (πK) 1.27+0.13

−0.15 1.13+0.08
−0.07

Rπ
c (πK) 1.04+0.10

−0.08 1.11+0.06
−0.06

Rπ
n(πK) 1.55+0.38

−0.31 1.26+0.09
−0.09

R(πK) 1.02+0.02
−0.02 1.05+0.05

−0.05

ACP(B̄0 → π0K̄0) −0.003+0.057
−0.108 −0.01+0.10

−0.10

ACP(B̄0 → π+K−) −0.047+0.187
−0.047 −0.098+0.012

−0.011

ACP(B− → π0K−) −0.028+0.221
−0.059 0.050+0.025

−0.025

ACP(B− → π−K̄0) 0.003+0.012
−0.003 0.009+0.025

−0.025

∆ACP = ∆A−
CP 0.019+0.058

−0.048 0.148+0.027
−0.028

∆A0
CP 0.006+0.118

−0.057 0.019+0.103
−0.103

SCP(B̄0 → π0K̄0) 0.80+0.06
−0.08 0.57+0.17

−0.17

Table 1. Theoretical vs. experimental results for B̄ → πK̄ decays. The experimental data is taken

from [6]. The original results can be found in [21–35].

CP asymmetries then become

ACP(B− → π0K−) ≃ −2 Im (rT + rC) sin γ + 2 Im

(
r̃EW +

2

3
r̃CEW +

2

3
r̃AEW

)
sin δ,

ACP(B̄0 → π+K−) ≃ −2 Im(rT) sin γ + 2 Im

(
2

3
r̃CEW − 1

3
r̃AEW

)
sin δ, (2.11)

such that

∆ACP ≃ −2 Im (rC) sin γ + 2 Im
(
r̃EW + r̃AEW

)
sin δ (2.12)

can turn out to be much larger than in the SM. The observed discrepancy can be solved

by a r̃EW or a r̃A
EW term comparable in size to the corresponding SM term rEW.

Apart from ∆ACP one can also construct other observables from the B → πK data

which are sensitive to isospin violation, for example certain ratios of branching fractions.

Even though tensions with experimental data in these observables raised the formulation

of a ”B → πK puzzle” in the first place [8, 9, 11, 45–48], in the meantime these quantities

are in reasonable agreement with the SM predictions. However, they serve as important

constraints for NP in EW penguins and we define and discuss them in appendix B. Note in

– 7 –
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particular that the quantity ∆A0
CP defined there, which is the difference of the two remain-

ing CP asymmetries not appearing in ∆ACP, probes the same combination of Im(r̃EW)

and Im(r̃AEW) as ∆ACP. Unfortunately, data on ACP(B− → π−K̄0) and especially on

ACP(B̄0 → π0K̄0) are not good enough yet to gain any information from these observ-

ables. Experimental results and SM predictions for the B → πK observables are given

in table 1.

The main problem which makes it difficult to single out a possible NP contribution

in B → πK decays is evident from (2.7): the colour-allowed EW penguin contributions

and colour-suppressed tree contributions enter the amplitudes in (2.7) exclusively in the

combination

rEW − rC e
−iγ . (2.13)

This implies that colour-allowed EW penguins and colour-suppressed trees are inextricably

linked with each other, reflecting the fact that the topological parameterisation contains

some redundancy. Physical effects found in any experiment cannot unambiguously be at-

tributed to one or the other partner of this topology pair. A new EW penguin contribution

r̃EWe
−iδ can be probed only in one of the four physical combinations

Re(r̃EW) cos δ − Re(rC) cos γ + Re(rEW) ,

Im(r̃EW) sin δ − Im(rC) sin γ ,

Im(r̃EW) cos δ − Im(rC) cos γ + Im(rEW) ,

Re(r̃EW) sin δ − Re(rC) sin γ . (2.14)

Therefore, probing r̃EWe
−iδ is challenged by the large hadronic uncertainties in the QCDF

prediction for rC, which can mimic or hide such a NP signal. One possible way to constrain

rC is the approximate SU(3) flavour symmetry which relates it to a corresponding B → ππ

topology. Using this symmetry it has been found that current data on CP violation in

B̄0 → π0KS is also in disagreement with the SM, independently of ∆ACP , and can be

explained by adding r̃EW to the amplitude [42].

The perspective of our work is the following: In order to find out whether the ∆ACP

discrepancy really is a manifestation of isospin-violating physics beyond the SM, one should

also study other observables on which such a kind of NP could have a large impact and

see whether similar effects appear in measurements of these observables. Our proposal in

this work is to test the hypothesis of isospin-violating NP by looking at processes which

are highly sensitive to it, namely purely isospin-violating Bs decays.

2.2 Purely isospin-violating Bs decays

EW penguin contributions to hadronic B decays are usually overshadowed by the larger

QCD penguins. This problem can be avoided if one succeeds in probing exclusively the

∆I = 1 part of the effective Hamiltonian which is orthogonal to the QCD penguin opera-

tors. To achieve this for B → πK, we had to single out the ∆I = 1 part of the transition

in eq. (2.6) by combining different isospin-related decay modes, for example by considering

the observable ∆ACP. Our proposal now is to consider decays to which QCD penguins do

not contribute at all, i.e. pure ∆I = 1 decays, where no such procedure is needed.

– 8 –
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Figure 2. penguin, tree and annihilation topologies contributing to B̄s → φρ0, φπ0.

There are no two-body decays of the B0 or B± meson with this property. In these

cases the final state would have to be a pure |3/2,±1/2〉 isospin state which cannot be

constructed out of two mesons. The Bs meson, on the other hand, is an isosinglet and it

can decay as

0
∆I=1−→ 0 ⊗ 1 = 1 . (2.15)

The final state must consist of an isospin triplet, i.e. π0 or ρ0, and an isosinglet, i.e. a meson

with the flavour structure ss̄. In order to avoid complications stemming from η − η′-mixing,

we restrict ourselves to the vector-meson φ which is to a good approximation a pure ss̄

state. This leaves us with the two ∆I = 1 channels

B̄s → φρ0 and B̄s → φπ0.

So far only an upper limit Br(B̄s → φρ0) ≤ 6.17·10−4 exists [49] and no detailed theory

analysis of B̄s → φρ0, φπ0 has been published. Only the SM branching fractions and CP

asymmetries have been calculated in general surveys on B decays to light mesons [16, 17].

In addition, B̄s → φπ0 has been suggested as a tool to measure γ via the mixing-induced

CP asymmetry [50]. Since in the era of LHCb and super B-factories these two processes

will become interesting objects for tests of isospin-violation and potential NP we will in

the following study their phenomenology in full detail, in the SM and beyond.

In the SM only three basic topologies are present in these decays, depicted in figure 2:

• EW penguins

• CKM- and colour-suppressed tree diagrams

• Singlet-annihilation diagrams.

Since the flavour-structure of π0 and ρ0 excludes their production via gluon-exchange,

annihilation can only contribute if the φ meson (the flavour singlet) in the final state is

produced from gluons and the second meson comes from weak (as depicted in figure 2)

or electromagnetic interactions. Since the φ is colour-neutral and it is odd under charge-

conjugation, at least three gluons are needed, so that the singlet-annihilation amplitude is

formally of higher-order in αs and does not appear in QCDF at the next-to-leading order

O(α1
s) [16]. However, annihilation topologies in general do not factorise and cannot be

calculated perturbatively, because the exchanged gluons may be soft. This means that we

can, from a theoretical point of view, only rely on the suppression of these contributions

by Λ/mB , where Λ is a non-perturbative scale, and by 1/Nc. This leads to the expectation
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that both the tree and the EW penguin amplitudes can receive corrections of 10% − 20%

from singlet-annihilation. However, we can also argue from a phenomenological point of

view that φ-production from three gluons is suppressed by the OZI rule [51–54] and should

thus be only a small effect, even though this rule is theoretically not well understood. In

short, our reasoning leads us to the conclusion that in order to test NP in B̄s → φρ0, φπ0,

we have to look for new effects which are much larger than this intrinsic uncertainty.

In all our calculations of B̄s → φρ0, φπ0 we use the full QCDF decay amplitudes, see

refs. [16, 17]. However, since these are quite involved, we now quote simple approximative

formulas which can be used as building blocks for an easy calculation of various observables

such as branching fractions, CP asymmetries and polarisation fractions. Neglecting singlet-

annihilation we can parameterise the amplitudes in analogy to eq. (2.7) as

√
2A(B̄s → φM2) = PM2

EW

(
1 − rM2

C e−iγ
)
, (2.16)

with M2 representing a π0, a longitudinal ρ0 or a ρ0 with negative helicity. The posi-

tive helicity amplitude can be neglected in the SM because of its Λ2
QCD/m

2
B – suppression.

We have factored out the EW penguin amplitude PM2
EW anticipating its dominance over

the colour-suppressed tree represented by the tree-to-penguin ratio rM2
C . A new contribu-

tion to the B → πK amplitudes of the form (2.10) would also enter the B̄s → φπ0, φρ0

amplitude (2.16) modifying it as

√
2A(B̄s → φM2) = PM2

EW

(
1 − rM2

C e−iγ + r̃M2
EW e−iδ

)
(2.17)

where r̃M2
EW contains a strong phase and δ is the weak phase introduced in (2.10). If we

assume the new contribution to be of the order of the SM EW penguin, as required by a

solution of the “∆ACP-puzzle”, we have |r̃M2
EW| ∼ O(1) and expect a large enhancement of

the B̄s → φπ0, φρ0 branching fractions, up to an order of magnitude. In order to obtain

the same effect within the SM one would have to assume an even larger enhancement of

the soft non-perturbative physics entering the colour-suppressed tree topology in rM2
C .

Choosing a phase convention such that PM2
EW is real, we find

P π
EW = 6.45+1.87

−0.54 · 10−9, P ρ,0
EW = 9.95+2.83

−0.79 · 10−9, P ρ,−
EW = 4.27+1.34

−0.81 · 10−9, (2.18)

for the isotriplet meson being π0, longitudinal ρ0 and ρ0 with negative helicity, respectively.

We further have

rπ
C = 0.41+0.37

−0.41 − 0.13+0.30
−0.30 i ,

rρ,0
C = 0.39+0.35

−0.39 − 0.13+0.28
−0.29 i ,

rρ,−
C = 0.21+0.49

−0.46 + 0.15+0.45
−0.45 i . (2.19)

Inserting these numbers into eq. (2.16) we obtain a good approximation of the SM am-

plitudes for the B̄s decays. Replacing γ → −γ in eq. (2.16) yields the corresponding

CP-conjugated amplitudes (Bs decays). Subsequently one can use the formulas in ap-

pendix A.4 to convert the amplitudes into physical observables. In section 3.1 we extend

these prescriptions to physics beyond the SM.
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One should keep in mind that the numbers above are calculated using state-of-the-

art values for the non-perturbative input parameters, summarised in appendix A.3. They

are based on lattice QCD, QCD sum rules and experimental data. Since our knowledge

on these parameters is hopefully going to improve in the future it is desirable to have

an additional parameterisation of the decay amplitudes where the non-perturbative input

can be changed. We find the dominant sources of theory uncertainties to be (ordered by

importance)

• the form factors ABs→φ
0 (0) and FBs→φ

± (0),

• the CKM angle γ,

• the non-factorisable spectator-scattering amplitudes, parameterised by the complex

number XH and the first inverse moment λBs of the Bs-meson light-cone distribution

amplitude.

The remaining uncertainties, stemming from decay constants, Gegenbauer moments, quark

masses and CKM parameters, are much less important so we do not need to display them

explicitly. Setting the less important theory parameters to their default values we arrive

at the following approximate expressions for the quantities in eqs. (2.18), (2.19):

P π
EW = 17.0ABs→φ

0 (0) · 10−9, rπ
C = −0.12i − 0.02 +

0.01GeV(1 +XH)

ABs→φ
0 (0)λBs

P ρ,0
EW = 26.2ABs→φ

0 (0) · 10−9, rρ,0
C = −0.13i − 0.02 +

0.01GeV(1 +XH)

ABs→φ
0 (0)λBs

P ρ,−
EW = 6.6FBs→φ

− (0) · 10−9, rρ,−
C = 0.14i − 0.06 − 0.02GeV(1 −XH)

FBs→φ
− (0)λBs

. (2.20)

The tree topologies rM2
C suffer from the large spectator-scattering uncertainties due to a

strong cancellation between the leading order and QCD vertex corrections. Again one can

insert these formulas into eq. (2.16), this time with arbitrary values and uncertainties for the

form factors and spectator-scattering parameters, and use the definitions in appendix A.4

to calculate physical observables. CP conjugation again amounts to replacement γ → −γ.
We conclude this section quoting our QCDF results for the SM values of the B̄s →

φπ0, φρ0 observables. As for the CP-averaged branching fractions we obtain

Br(B̄s → φπ0) = 1.6+1.1
−0.3 · 10−7, Br(B̄s → φρ0) = 4.4+2.7

−0.7 · 10−7. (2.21)

For comparison we also quote the approximate result according to (2.20):

Br(B̄s → φπ0) = 1.6+1.0
−0.3 · 10−7, Br(B̄s → φρ0) = 4.4+2.4

−0.7 · 10−7. (2.22)

The smallness of the SM branching ratios compared to other hadronicB decays is due to the

absence of QCD penguins and non-suppressed tree-level contributions. The measurement

of these branching fractions is thus challenging and has not been achieved yet. However we

will show in later sections that NP in EW penguins has the chance to enhance the BRs by
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up to an order of magnitude, such that this measurement is a very interesting project. We

expect that LHCb will be able to measure Br(B̄s → φρ0) while the B̄s → φπ0 mode is more

suitable for a super B-factory where a full reconstruction can cure the notorious difficulties

with the identification of neutral pions. In case of a strong enhancement B̄s → φρ0 should

also be visible in the Tevatron data [55]. The branching ratio Br(B̄s → φρ0) is dominated

by the longitudinal polarisation state as can be seen in

Br(B̄s → φLρ
0
L) = 3.7+2.5

−0.7 · 10−7 (2.23)

and the longitudinal polarisation fraction

fL = 0.84+0.08
−0.11 . (2.24)

As stated above, one of the main sources of uncertainty in the QCDF predictions is

the form factor ABs→φ
0 . It can in principle be eliminated by considering the ratios

Br(B̄s → φρ0)

Br(B̄s → φπ0)
= 2.83+0.35

−0.23,
Br(B̄s → φLρ

0
L)

Br(B̄s → φπ0)
= 2.38+0.10

−0.08 . (2.25)

NP could still be visible in these ratios because in many scenarios it enters B̄s → φρ0 and

B̄s → φπ0 in different ways. The cancellation of ABs→φ
0 also occurs in the ratios

Br(B̄s → φπ0)

Br(B̄s → φφ)
= 0.007+0.008

−0.004,

Br(B̄s → φρ0)

Br(B̄s → φφ)
= 0.020+0.023

−0.010,
Br(B̄s → φLρ

0
L)

Br(B̄s → φφ)
= 0.017+0.019

−0.009. (2.26)

There however this gain is compensated by additional uncertainties arising from the QCD-

penguin-dominated decay B̄s → φφ. The experimental benefit in these last ratios is that

at LHCb absolute branching ratios cannot be measured because the absolute number of

Bs mesons is unknown. Finally, we find the direct CP asymmetries to be very uncertain:

Adir
CP(B̄s → φρ0) = 0.19+0.53

−0.61, Adir
CP(B̄s → φπ0) = 0.27+0.50

−0.62. (2.27)

Due to the smallness of the branching ratios, these CP asymmetries are also difficult to

access experimentally, therefore we will not consider them any further.

3 Model-independent analysis

In the previous section we proposed to test the hypothesis of NP in the EW penguin sector,

as suggested by the discrepancy in the B → πK observable ∆ACP, by a measurement of

the decays B̄s → φπ0, φρ0. In this section we support our proposal by a quantitative

analysis pursuing the following strategy: We parameterise NP in EW penguins in a model-

independent way by adding corresponding terms to the Wilson coefficients C
(′)
7 , . . . , C

(′)
10 . By

performing a χ2-fit we determine the NP parameters in such a way that they describe well

the B → πK data. In particular they should allow for a solution of the ∆ACP discrepancy.

Further hadronic decays like B → ρK, πK∗, ρK∗ are used to impose additional constraints
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CNP
i (mb)/α CNP ′

i (mb)/α

C7 −0.966 q7 + 0.009 q9 −0.966 q′7 + 0.009 q′9
C8 −0.387 q7 + 0.002 q9 −0.387 q′7 + 0.002 q′9
C9 0.010 q7 − 1.167 q9 0.010 q′7 − 1.167 q′9
C10 −0.001 q7 + 0.268 q9 −0.001 q′7 + 0.268 q′9

Table 2. NLO short-distance coefficients of the EW penguin operators at the scale mb. Modifica-

tions to other short-distance coefficients are negligible.

at the 2σ level. With respect to the resulting fit we study the decays B̄s → φπ0, φρ0

and quantify a potential enhancement of their branching fractions. Note that such an

exhaustive analysis, correlating different hadronic decay modes with sensitivity to isospin

violation, is only possible if hadronic matrix elements are calculated from first principles

like in the framework of QCDF. A method based on flavour symmetries, as it has been

used in most studies of B → πK decays so far, could not achieve this. In particular, the

decays B̄s → φπ0, φρ0, which are our main interest, are not related to any other decay via

SU(3)F so their branching fractions cannot be predicted in this way.

3.1 Modified EW penguin coefficients

In the SM the Wilson coefficients C7, . . . , C10 obey the hierarchy |C9| ≫ |C7| ≫ |C8|, |C10|
at the electroweak scale. This is because C9 receives 1/ sin2 θW -enhanced contributions

from Z-penguin and box diagrams in contrast to C7, while C8,10 are generated for the first

time at two-loop level due to their colour structure. For our model-independent analysis

we consider arbitrary NP contributions to the coefficients C7 and C9 as well as to their

mirror counterparts C ′
7 and C ′

9. Normalizing the new coefficients to the SM value CLO
9

defined in eq. (A.2) in the appendix, we have

C
(′)NP
7,9 (MW ) = CLO

9 (MW ) q
(′)
7,9, q

(′)
7,9 = |q(′)7,9|eiφ

(′)
7,9 , (3.1)

where φ
(′)
7,9 are new weak phases. The coefficient CLO

9 contains the parts of CSM
9 enhanced by

m2
t /M

2
W and 1/ sin2 θW , as explained in appendix A.1. There we also describe the scheme

which we use for the renormalisation-group evolution. Applying it to the NP coefficients

leads to the low-scale values displayed in table 2. They can be compared to the dominant

SM coefficient CSM
9 (mb)/α = −1.203.

In our analysis we will study several different scenarios. First, we consider the cases

where only one of the coefficients q7, q9, q
′
7, q

′
9 is different from zero. This means we

assume the dominance of an individual NP operator as it has also been done for example

in ref. [41]. Second, we consider the possibilities of having q7 = q9, q
′
7 = q′9, q7 = q′9 and

q′7 = q9. Finally, we study parity-symmetric new contributions corresponding to the three

cases q7 = q′7, q9 = q′9 and q7 = q′7 = q9 = q′9. Each of these scenarios can be described by

means of two real parameters, the absolute value |q| and phase φ of the NP contribution

under consideration. This reduced number of free parameters allows us to perform a fit

to B → πK data and to draw meaningful conclusions on the B̄s → φπ0, φρ0 decays. The

study of this large set of well-motivated simplified scenarios is assumed to represent all

relevant features of the general framework with unrelated q7, q9, q
′
7, q

′
9.
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Our main motivation for adding NP to the coefficients C
(′)
7 , C

(′)
9 was the claim that the

∆ACP discrepancy can be solved in this way, namely by generating the terms r̃EW, r̃CEW,

r̃AEW introduced in eq. (2.10). Introducing individual terms for each of the four relevant

Wilson coefficients, we obtain

∑

i=7,9,7′,9′

r̃EW, i e
−iδi = (q7 − q′7)

[
(−0.12)+0.04

−0.05 + (−0.02)+0.07
−0.02 i

]
+

(q9 − q′9)
[
0.12+0.05

−0.04 + 0.02+0.02
−0.07 i

]
,

∑

i=7,9,7′,9′

r̃CEW, i e
−iδi = (q7 − q′7)

[
0.10+0.03

−0.02 + 0.01+0.01
−0.06 i

]
+

(q9 − q′9)
[
0.04+0.02

−0.03 + (−0.005)+0.016
−0.026 i

]
,

∑

i=7,9,7′,9′

r̃AEW, i e
−iδi = (q7 − q′7)

[
0.03+0.04

−0.07 + (−0.06)+0.12
−0.01 i

]
+

(q9 − q′9)
[
0.007+0.003

−0.010 + (−0.006)+0.012
−0.003 i

]
. (3.2)

Let us briefly discuss the main characteristics of these coefficients:

• First of all, note that parity-symmetric models obviously do not contribute to B →
πK at all. This general feature of B decays into two pseudoscalar mesons (PP

decays) follows from eq. (A.6). Therefore such a scenario cannot solve the ∆ACP

discrepancy.

• The contributions r̃EW, 7(′) and r̃EW, 9(′) tend to cancel each other. Hence in the

scenarios with q7 = q9 and q′7 = q′9 only a negligible new colour-allowed EW penguin

contribution is generated.

• Whereas Re(r̃C
EW, 9(′)) features the typical colour-suppression with respect to

Re(r̃EW, 9(′)), this pattern is not obeyed by the q
(′)
7 terms. This is due to a conspir-

ative interplay of the large mixing of C
(′)
7 into C

(′)
8 (compare table 2), constructive

interference of the new C
(′)
7 and C

(′)
8 contributions in the QCDF coefficient a

(′)
8 and a

chiral enhancement factor rπ,K
χ ≈ 1.5 multiplying a

(′)
8 in eq. (A.4) for the topological

amplitude. None of these three effects is present in the q
(′)
9 case.

• The annihilation coefficient r̃A
EW, 7(′) develops a large imaginary part. In scenarios

with non-vanishing q
(′)
7 this term gives the dominant contribution to ∆ACP.

From eq. (2.12) we see that the ∆ACP discrepancy can be solved either through r̃EW or

through r̃AEW. Except for the parity-symmetric models, all the scenarios mentioned above

can achieve such a solution. In figure 3 this is illustrated for the cases with a single q7 or

q9 and for the q7 = q9 scenario. Graphs for the respective mirror scenarios are obtained by

a 180◦ rotation. The yellow region contains those points of the (Re(qi), Im(qi)) - plane for

which the theory error band overlaps with the experimental 1σ region, whereas the blue

region represents those points for which also the experimental central value lies within the
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Figure 3. NP contribution needed to solve the ∆ACP discrepancy in the three scenarios (from left

to right) with single q7, single q9 and equal q7 = q9 contribution. Yellow region: Theory error band

and experimental 1 σ region overlap. Blue region: Theory error band and experimental central

value overlap. Red circle: Minimal magnitude of the NP contribution needed to reduce the ∆ACP

discrepancy below the 1 σ level.

theory error interval. The red circle illustrates the minimal |q| - value needed to reduce the

∆ACP tension below the 1σ level. For the three scenarios in figure 3 we read off |q7| & 0.3,

|q9| & 0.8 and |q7| = |q9| & 0.4. The fact that in the q7 = q9 case only a small NP

contribution is needed, in spite of the absence of r̃EW, demonstrates the importance of the

annihilation term r̃AEW. Finally, we like to stress that the solution of the ∆ACP discrepancy

via a minimal |q| - value requires the adjustment of the phase φ to a certain value. Realistic

scenarios avoiding such a fine-tuning have larger |q| - values, typically |q| ∼ 1.

Our main goal is to study the impact of such a NP scenario on the decays B̄s →
φπ0, φρ0. The NP contributions to C

(′)
7 , . . . , C

(′)
10 generate the r̃M2

EW - terms introduced in

eq. (2.17). Introducing again individual terms for contributions from the various Wilson

coefficients, they read for the four different amplitudes
∑

i=7,9,7′,9′

r̃π
EW, i e

−iδi = −0.9
(
q7 + q′7 − q9 − q′9

)
,

∑

i=7,9,7′,9′

r̃ρ,0
EW, i e

−iδi = 0.9
(
q7 − q′7 + q9 − q′9

)
,

∑

i=7,9,7′,9′

r̃ρ,−
EW, i e

−iδi = −0.6 (q7 + q9) ,

∑

i=7,9,7′,9′

r̃ρ,+
EW, i e

−iδi = 0.6
(
q′7 + q′9

)
× P ρ,−

EW/P
ρ,+
EW , (3.3)

where we have neglected q7,9-contributions to r̃ρ,+
EW and q′7,9-contributions to r̃ρ,−

EW according

to their Λ2
QCD/m

2
B suppression. The SM EW penguin amplitude P ρ,+

EW drops out of the

total expression (2.17) of the amplitude, P ρ,−
EW is given in eq. (2.18). The parameters

r̃M2
EW develop only very small strong phases and uncertainties not indicated in (3.3). This

is because they are ratios of equal topologies such that uncertainties and strong phases

approximately cancel.

We have stated the expressions in eq. (3.3) for two reasons: Firstly we want to show

the main consequences of non-vanishing q
(′)
7,9 for the B̄s → φπ0, φρ0 decays. We see that for
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|qi| = O(1) indeed new contributions with the magnitude of the leading SM EW penguin

are generated. While parity-symmetric NP was invisible in B → πK, it could be detected

in B̄s → φπ0 and in principle also in B̄s → φρ0 due to the different interference patterns

of r̃ρ,−
EW and r̃ρ,+

EW with the corresponding SM contributions. Furthermore, left- and right-

handed NP could be distinguished by a polarisation measurement of B̄s → φρ0. This

general feature of decays to vector-vector final states has been pointed out by Kagan [56].

Note that the question of left- vs. right-handed NP cannot be answered from B → πK alone

since, as we have seen, the two scenarios differ only by a rotation in the NP parameter space.

The second benefit of eq. (3.3) is that it allows for a simple calculation of B̄s → φπ, φρ

observables to a very good accuracy. In this way it permits a study of these decays without

the extensive implementation of QCDF. One simply evaluates the amplitude eq. (2.17)

inserting eqs. (2.18), (2.19) - or alternatively eq. (2.20) - and the NP part from eq. (3.3).

The CP-conjugated amplitude is obtained by flipping the sign of γ and replacing the qi
by their complex conjugates. Subsequently one can use the formulas in appendix A.4 to

calculate observables.

3.2 Fit to B → πK data and constraints from other decays

The four B → πK channels are the most precisely measured hadronic b → s decays.

For this reason, we use experimental information from these channels as input for our

quantitative NP analysis by performing a fit of q
(′)
7 and q

(′)
9 to B → πK data. This fit

will be an indication for values of the q
(′)
i that are realistic to expect and consequently will

enable us to find an expected size of enhancement of the branching ratios of B̄s → φρ0

and B̄s → φπ0. In the treatment of theoretical and experimental uncertainties in the fit

we follow the Rfit scheme [7]. More details on this issue are given in appendix C.

Since B → πK decays are greatly dominated by QCD penguins and since they suffer

from large theoretical uncertainties, it is obvious that NP effects residing in EW penguins

are difficult to find in branching ratios and direct CP asymmetries. It is more useful to

consider instead particular combinations of these basic observables which highlight the

isospin-violating contributions and can be predicted with a better precision. For example,

it is difficult to see a need for isospin-violating NP by looking at the two CP asymmetries

entering in ∆ACP (see table 1) since both of them have more than 100% theoretical un-

certainty, reflecting the difficulty of predicting strong phases in QCDF. In the difference

∆ACP, the theory uncertainties cancel to a large extent such that the discrepancy with

experimental data becomes clearer. Moreover, in realistic models a new contribution in the

EW penguin sector usually comes in combination with NP of comparable size in the QCD

penguins since the new contribution in general matches onto a linear combination of the

QCD and EW penguin operators. By considering mainly isospin-violating observables, one

reduces the sensitivity to additional effects from new contributions to C3, . . . , C6 which we

did not include in our parameterisation (3.1).

For our B → πK fit, we use suitable ratios of branching fractions and differences of CP

asymmetries as well as the mixing-induced CP asymmetry in B̄0 → π0K̄0 as input. The

definitions of these quantities are summarised in appendix B. Many of these quantities

have also been considered in the past in the context of flavour symmetry analyses of B →
πK decays. A summary of theoretical predictions vs. experimental results for all these
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observables as well as for the B → πK branching fractions and CP asymmetries is provided

in table 1. At present none of these quantities deviates from the SM prediction by more

than 1σ apart from ∆ACP. We thus expect ∆ACP (and to a lower degree also SCP) to

pull the fit towards non-zero values of the q
(′)
i whereas the other observables will favour

values close to the origin of the complex plane.

In addition to the fit we consider constraints on the NP parameters arising from a

large number of hadronic B decays. To this end we compare the theoretical prediction of

an observable as a function of the q
(′)
i to its measured value and extract a 2σ-constraint as

follows:

Point[q
(′)
7,9 space] =





allowed if

{
(xtheo + σtheo, sup) > (xexp − 2σexp, inf)

and (xtheo − σtheo, inf) < (xexp + 2σexp, sup),

excluded otherwise.

(3.4)

Here (xtheo)
+σtheo, sup

−σtheo, inf
represents the theoretical prediction for the respective physical ob-

servable. The uncertainty does not imply a particular probability distribution but the true

value is supposed to lie within the error interval. For the experimental value xexp ± σexp a

Gaussian error is assumed.

This procedure is applied to data from B → πK as well as to data from the B → ρK,

B → πK∗ and B → ρK(∗) decay channels, which are simply the pseudoscalar-vector (PV )

and vector-vector (V V ) modes corresponding to B → πK. The PV and V V modes turn

out to be more sensitive to isospin-violating flavour topologies than their PP counterparts

because the leading QCD penguin amplitude is smaller. Experimental information on these

decays, however, is not (yet) as precise as the available data for the πK modes. Therefore

we do not include the PV , V V modes into the fit but prefer to consider them as constraints

at the 2σ level only. Nonetheless, the constraints from B → ρK and B → πK⋆ give some

information complementary to the one from B → πK because they test different chirality

structures than B → πK and are therefore sensitive to other linear combinations of the

q
(′)
7,9. Moreover, we apply eq. (3.4) also to data from B → K(∗)φ, B̄s → φφ and B̄s → K̄K

decays even if they only carry a small sensitivity to EW penguins.

3.3 Results of the model-independent analysis

We now discuss the results of the analysis outlined in the previous section. The aim is to

make predictions for the Bs decays in combination with the regions of the q
(′)
7,9 parameter

space which are preferred, or not yet excluded, by experimental data from B → πK and

related decays.

In figures 4 and 5 we present graphs showing the enhancement BrSM+NP/BrSM of the

B̄s → φρ0, φπ0 branching ratios as a function of the parameters q
(′)
i in some represen-

tative scenarios. The displayed numbers are obtained with our default hadronic input.

In order to be distinguishable from the SM, a particular scenario must at least provide a

value for BrSM+NP/BrSM which exceeds a potential enhancement factor faked by hadronic

uncertainties in the SM prediction. Parameter points for which the enhancement factor

lies within the theory error band of the SM prediction are represented by the red-striped

ring. The SM itself corresponds, of course, to the origin of the plots and is highlighted by

a black dot.
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Figure 4. Enhancement factors of the B̄s → φρ0, φπ0 branching ratios with respect to their

SM values. The black dot represents the SM result while the red striped region shows the the-

oretical uncertainty in the SM. The dark green area is the region allowed by the 2 σ constraints

from B̄ → πK(∗), ρK(∗), φK(∗) and B̄s → φφ, K̄K decays; for comparison, the light green area

represents the area allowed by constraints from isospin-sensitive observables only, considering

only B̄ → πK, πK(∗), ρK decays. The solid black line represents the 1σ CL of the fit with

SCP (B̄0 → πK̄0), while the solid grey line represents the 1σ CL of the fit without it. Here

the scenarios q7 6= 0 (upper row) and q9 6= 0 (lower row) are displayed. For the q7-scenario the 1σ

region of the fit is the region to the left of the black (grey) curve.
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Figure 5. Enhancement factors of the B̄s → φρ0, φπ0 branching ratios with respect to their SM

values. The meaning of the contours and regions is the same as in figure 4. Here the scenarios q′7 6= 0

(upper row) and q′9 6= 0 (center row) and q7 = q9 6= 0 and q′7 = q′9 6= 0 (lower row) are displayed.

For the q′7-scenario the 1σ region of the fit is the region to the right of the black (grey) curve.
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In our sample models we introduced NP exclusively in the EW penguin operators. In

realistic models, however, a new contribution in the EW penguin sector usually comes in

combination with NP of comparable size in the QCD penguins since the new contribution

in general matches onto a linear combination of the QCD and EW penguin operators. In

order to account for this fact, we use the experimental data in two different ways:

a) We present a fit using isospin-sensitive quantities in the B → πK decays, such

as ratios of branching fractions and the differences of CP asymmetries as dis-

cussed in appendix B and C, plus the time dependent CP asymmetry SCP (B̄0 →
πK̄0). In figures 4, 5 we individuate the 1σ region by a solid black line. At

the same time we consider the constraints one obtains from all non-leptonic B →
πK, ρK, πK∗, ρK∗, φK, φK∗ and B̄s → φφ, K̄K decays at the 2σ - level and mark the

allowed region by a (dark-)green area.

b) We exclude the time dependent CP asymmetry SCP (B̄0 → πK̄0) from the fit and we

restrict the constraints to the subset of observables which are particularly sensitive

to isospin violation, see appendix B. This procedure enlarges the 1σ confidence-level

of the B → πK fit (indicated by the grey line) as well as the region of 2σ-allowed

parameter points by the areas depicted by lighter colours in the figures.

Whereas the results from a) are valid only if NP is strictly limited to the electroweak

penguin operators, the results from b) are expected to remain approximately valid also in

presence of NP in QCD penguins, since such a kind of NP has only a minor impact on the

quantities considered in b).

We find that the B → πK and related decays set quite strong constraints on the

parameter space, especially in scenarios where q9 6= 0 or q′9 6= 0. This basically rules out

the possibility of having |qi| & 5, i.e. NP corrections cannot be much larger than the EW

penguins of the SM. The fact that the SM point is always excluded at the 2σ level is

a direct consequence of the ∆ACP data. According to the sign pattern in eq. (3.2), the

B → πK fits of the primed and unprimed scenarios in figures 4, 5 are related to each other

through rotation by 180◦. The fit works best in the q
(′)
9 scenario where (using method a))

the best fit point is given by

|q̂(′)9 | = 1.9 ϕ̂
(′)
9 = −100◦ (+180◦). (3.5)

This parameter point yields a full agreement of all the B → πK observables with the

experimental mean values (for SCP the nearly exact value SCP = 0.55 is obtained). In the

q
(′)
7 = q

(′)
9 case a plateau of χ2 = 0 points arises due to the large theoretical errors. It turns

out that the B → πK observables are not very sensitive to the q
(′)
7 -only scenarios and so

the fit does not work well here. Hence within the q
(′)
7 -only setting one can mainly rely on

the 2σ constraints. The total sets of constraints of the primed and unprimed scenarios are

not anymore related to each other in a simple way since they involve PP decays subject to

a 180◦ rotation together with PV decays which are unaffected by a q7,9 ↔ q′7,9 exchange. It

turns out that the constraints are stronger in the q′9-only and in the q′7 = q′9 scenarios than

in their unprimed counterparts and that the best fit regions are cut away in these cases.
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Scenario Br(B̄s→φπ0)

BrSM(B̄s→φπ0)

Br(B̄s→φLρ0
L
)

BrSM(B̄s→φLρ0
L
)

Br(B̄s→φρ0)

BrSM(B̄s→φρ0)

q7 6= 0 11.0 (18.7) 6.0 (9.9) 5.3 (8.4)

q9 6= 0 8.8 (16.4) 9.3 (17.0) 8.7 (15.1)

q7 = q9 6= 0 1.0 (1.7) 11.5 (21.1) 10.8 (18.7)

q′7 6= 0 8.3 (15.6) 8.8 (16.4) 8.4 (14.7)

q′9 6= 0 6.2 (9.8) 2.8 (5.6) 2.7 (5.0)

q′7 = q′9 6= 0 1.0 (1.7) 5.7 (8.9) 5.2 (7.9)

q7 = q′9 6= 0 1.0 (1.7) 1.0 (1.7) 1.6 (2.3)

q′7 = q9 6= 0 1.0 (1.7) 1.0 (1.7) 1.1 (1.8)

q7 = q′7 6= 0 29.5 (48.1) 1.0 (1.7) 2.1 (3.0)

q9 = q′9 6= 0 11.1 (20.5) 1.0 (1.7) 1.5 (2.2)

q7 = q′7 = q9 = q′9 6= 0 1.0 (1.8) 1.0 (1.7) 2.3 (3.4)

Table 3. Maximal possible enhancement of branching ratios compatible with the constraints from

B → πK, ρK, πK∗, ρK∗, φK, φK∗ and B̄s → φφ, K̄K decays at the 2σ - level as well as the 1σ

confidence level from B → πK decays (method a)). We use the default SM value and the default

(the maximal theoretical) total value of each branching ratio for an optimally chosen qi value.

Numbers in the second part of the table are obtained ignoring ∆ACP.

From figures 4, 5 the enhancement BrSM+NP/BrSM of the Bs branching fractions can

be read off with respect to the different constraint- and fit-regions. A large enhancement

of the B̄s → φρ0, φπ0 branching ratio can be expected in many scenarios, especially in

those involving q
(′)
7 6= 0. The fact that large parts of the allowed regions do not overlap

with the SM uncertainty regions is encouraging. It means that, if such NP is realised in

nature, it could be possible to probe it easily. In tables 3 and 4 we quote the maximal

enhancement factors that can be obtained considering all points in parameter space which

lie within the 1σ region of the B → πK fit and fulfill the additional 2σ constraints. The

numbers in table 3 refer to input a) while the numbers in table 4 refer to input b). The first

number in each cell represents BrSM+NP
med /BrSM

med while the number in brackets represents

BrSM+NP
max /BrSM

med, both evaluated for the qi value which gives the largest enhancement. Here

“max” and “med” refer to the upper limit of the theoretical uncertainty range and to our

default value, respectively, according to our input given in appendix A.3. Exploiting the

theory error in favour of an enhancement, the number in brackets gives the absolutely

maximal enhancement possible for each scenario whereas the first number gives a typical

enhancement factor, but still for the most enhancing parameter point. Concerning the

parity-symmetric scenarios one should have in mind that like the SM they violate ∆ACP

at the > 2σ level since they have no impact on B → πK decays. The corresponding

enhancement factors shown in tables 3 and 4 are obtained ignoring ∆ACP but taking into

account all other constraints.
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Scenario Br(B̄s→φπ0)

BrSM(B̄s→φπ0)

Br(B̄s→φLρ0
L
)

BrSM(B̄s→φLρ0
L
)

Br(B̄s→φρ0)

BrSM(B̄s→φρ0)

q7 6= 0 77.4 (134.1) 72.5 (117.6) 66.9 (104.7)

q9 6= 0 12.0 (21.9) 12.6 (22.8) 11.8 (20.3)

q7 = q9 6= 0 1.0 (1.7) 52.9 (90.9) 49.4 (81.0)

q′7 6= 0 56.6 (99.2) 59.5 (103.2) 54.0 (90.5)

q′9 6= 0 13.0 (20.6) 13.0 (20.5) 11.7 (18.1)

q′7 = q′9 6= 0 1.0 (1.8) 36.3 (58.2) 32.8 (51.2)

q7 = q′9 6= 0 1.0 (1.7) 1.0 (1.7) 2.5 (3.8)

q′7 = q9 6= 0 1.0 (0.0) 1.1 (1.8) 2.5 (3.8)

q7 = q′7 6= 0 76.0 (131.9) 1.0 (1.7) 3.8 (5.5)

q9 = q′9 6= 0 13.0 (20.6) 1.0 (1.7) 1.5 (2.2)

q7 = q′7 = q9 = q′9 6= 0 1.0 (1.8) 1.0 (1.7) 4.0 (5.9)

Table 4. Maximal possible enhancement of branching ratios compatible with the constraints

from isospin sensitive observables in B → πK, ρK, πK∗ decays at the 2σ - level as well as the

1-σ confidence level from B → πK decays, without including SCP (B̄0 → πK̄0) (method b)). We

use the default SM value and the default (the maximal theoretical) total value of each branching

ratio for an optimally chosen qi value. Numbers in the second part of the table are obtained

ignoring ∆ACP.

In most scenarios an enhancement of more than an order of magnitude is possible.

Exceptions are B̄s → φπ for q
(′)
7 = q

(′)
9 and B̄s → φLρL for parity-symmetric models and

have their origin in the pattern of eq. (3.3). Furthermore, effects in the q′9 and the q′7 = q′9
scenarios are limited by the small allowed region resulting from the B → πK fit. Largest

effects occur as expected in the scenarios which are least constrained by B → πK, i.e.

the single q
(′)
7 and the parity-symmetric models. Especially in these cases a B̄s → φπ

measurement would complement B → πK data and, while the parity-symmetric models

lack the motivation via the ∆ACP discrepancy, the q′7 setting resolves it with ease (see

figure 3). Moreover, we like to stress that B → πK data alone cannot distinguish among

opposite-parity scenarios because such scenarios generate equal results for the B → πK

observables (for 180◦-rotated parameter points). Therefore an analysis of B → πK should

for example be supported by the analysis of a PV decay, suggesting B̄s → φπ0 as an

ideal candidate.

We have seen that NP in the EW penguin coefficients allows for an enhancement of

Br(B̄s → φπ, φρ) of more than an order of magnitude. According to the simple topological

structure of these decays, the observation of such an effect would be a clear and unam-

biguous signal for such a scenario. It is interesting to raise also the reversed question, i.e.

whether the absence of such an effect would rule out a NP solution of the ∆ACP discrep-

ancy, at least for a specific scenario. This is, however, not compulsory. In nearly all the

considered settings there are points within the 1σ region of the B → πK fit which do
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Observable |q9| = 1.9,

φ9 = −100◦,

Br(B̄s → φπ0) · 106 0.35+0.41
−0.19

BrL(B̄s → φρ0) · 106 0.90+0.98
−0.46

Br(B̄s → φρ0) · 106 1.13+0.95
−0.38

Table 5. Values of various observables at our best fit point in the scenario q9 6= 0.

not generate an enhancement of Br(B̄s → φπ, φρ). The only exception is the q′9-only case:

Here an enhancement factor of at least 2.1 would occur in B̄s → φπ. This time we have

exploited the theoretical error in disfavour of an enhancement (for the default value the

factor is 2.7). Finally we provide in table 5 the B̄s → φπ, φρ branching ratios for the best

fit point in the q9-only scenario.

4 Analysis of viable New-Physics models

In view of the results in section 3, the question arises which concrete models for NP can

provide a large new EW penguin amplitude without being excluded by present data. In

this section we consider a number of well-motivated NP models. The main difference with

respect to the model-independent analysis is the possibility of adding constraints from other

flavour processes beyond the hadronic B modes, e.g. the semileptonic decay B̄ → Xse
+e−,

the radiative decay B̄ → Xsγ and Bs-B̄s mixing. These processes usually yield tight

constraints on new flavour structures and it has to be investigated if the effects in B → πK

and B̄s → φρ0, φπ0 survive these constraints.

4.1 Constraints from semileptonic decays and Bs − B̄s mixing

Before turning to the models we summarise here how we implement constraints from

semileptonic B decays and Bs-B̄s mixing. The inclusive semileptonic decay B̄ → Xse
+e−

is generated by electroweak interactions and therefore correlated to the hadronic EW pen-

guins in many models. We describe it by the effective Hamiltonian (2.2), adding the

operators

Q9V = (s̄αbα)V −A (l̄l)V and Q10A = (s̄αbα)V −A (l̄l)A (4.1)

and the corresponding mirror copies Q′
9V , Q′

10A. The SM expressions for the Wilson coeffi-

cients can be found e.g. in refs. [57, 58]. Following [57] and extending the formulae therein

to include effects of the mirror operators, we use the effective Hamiltonian to calculate the

ratio

Re+e−(q2) ≡
d

dq2 Γ(b→ s e+e−)

Γ(b→ c eν̄)
, (4.2)

where q2 = (pe+ + pe−)2 is the squared invariant mass of the lepton pair. This ratio has

the advantage that its theoretical uncertainty is considerably reduced with respect to the
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simple branching fraction. We integrate over a continuum region below the ψ resonances

to find the integrated ratio

Re+e− |[1,6] ≡
∫ 6GeV2

1GeV2

Re+e−(q2)dq2, (4.3)

which we can finally compare to the experimental result [59–62]

Bre+e− |[1,6] = (1.60 ± 0.51) · 10−6, (4.4)

also normalized to the semileptonic decay. We require Re+e− |[1,6] to be compatible with

experimental data according to (3.4).

Besides the inclusive B̄ → Xse
+e−, also the exclusive mode B̄ → K∗l+l− has been

found to be a useful constraint for NP [63–65]. Here we focus only on the forward-backward

asymmetry AFB of this process [63], which gives a constraint complementary to that of

Re+e− |[1,6]. In the light of present experimental data we require the sign of AFB(q2) inte-

grated over q2 > 14 GeV2 to be negative.

For completeness we note that we use a renormalisation-group evolution analogous to

the one of the EW penguin operators, treating the parts of C9V and C10A enhanced by

xtW = m2
t/M

2
W and/or 1/ sin2 θW as leading order. This results in the following SM initial

conditions at the scale µ ∼ O(MW ):

C
(0)
9V =

α

2π

(
Y0(xtW )

sin2 θW
− xtW

2

)
,

C
(1)
9V =

α

2π

(
−4Z0(xtW ) +

xtW

2
+

4

9

)
+

α

2π

αs

4π

(
Y1(xtW )

sin2 θW
− 4xtW

(
4

3
− π2

6

))
,

C
(0)
10A = − α

2π

Y0(xtW )

sin2 θW
, C

(1)
10A = − α

2π

αs

4π

Y1(xtW )

sin2 θW
. (4.5)

The functions Y0,1 and Z0 can be found e.g. in [66].

Finally, we consider constraints coming from Bs-B̄s mixing, which is described by the

effective weak Hamiltonian

H(2)
eff =

G2
FM

2
W

4π2
(λ

(s)
t )2

∑

i

CiQi , (4.6)

with the operators [67]

QVLL = (s̄αγ
µPLbα) (s̄βγµPLbβ),

QSLL
1 = (s̄αPLbα) (s̄βPLbβ), QSLL

2 = (s̄ασ
µνPLbα) (s̄βσµνPLbβ),

QLR
1 = (s̄αγ

µPLbα) (s̄βγµPRbβ), QLR
2 = (s̄αPLbα) (s̄βPRbβ) (4.7)

and the mirror copiesQVRR, QSRR
1 andQSRR

2 . In the SM only CVLL 6= 0, while in extensions

of the SM all operators can receive contributions. The matrix element relevant for Bs-B̄s

mixing,

MBs
12 =

1

2mBs

〈B0
s |H

(2)
eff |B̄0

s 〉, (4.8)
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is evaluated using lattice results from ref. [68]. Besides the Bs-B̄s mass difference

∆Ms = 2|MBs

12 | exp.
= (17.77 ± 0.12) ps−1 , (4.9)

[69], we use the quantity [70]

∆s ≡
MBs

12

MBs,SM
12

= |∆s|eiφs , (4.10)

as additional constraint. This observable has been analysed in ref. [71] in different generic

NP scenarios and evidence for a NP contribution with a large new weak phase has been

found. A fit of ∆s and the analogous quantity ∆d to data shows a 3.6σ discrepancy for the

SM value ∆s = 1. In our study of the Z ′ models we take those points of the NP parameter

space as excluded which give a ∆s outside the 2σ region drawn in figure 9 of ref. [71].

4.2 The modified-Z0-penguin scenario

The simplest class of models with large new contributions to EW penguins comprises

models with a modified Zs̄b coupling. Such a FCNC coupling can either be generated by

integrating out new heavy particles, e.g. in supersymmetric models or fourth-generation

models, or it can exist at tree-level in more exotic scenarios like models with non-sequential

quarks, see e.g. ref. [72]. Consequences for hadronic B decays have been considered for

example in [73], more detailed analyses of the motivation and the effects in flavour physics

have been performed in [45, 74].

4.2.1 Effective theory

Our parameterisation of the Zs̄b coupling follows ref. [73]. At the electroweak scale we

have an effective theory with the Lagrangian

Leff
Z = − g

4 cos θW

∑

I 6=J

d̄I

[
κIJ

L γµ(1 − γ5) + κIJ
R γµ(1 + γ5)

]
dJZµ, (4.11)

where I, J are generation indices. Since the flavour-violating couplings are expected to be

small, the flavour-diagonal couplings of the Z bosons are to a first approximation the same

as in the SM. Matching tree-level diagrams with Z exchange onto the ∆B = ∆S = 1 effec-

tive Hamiltonian adds new contributions δCi to the SM Wilson coefficients Ci and generates

coefficients C ′
i of the mirror operators. The resulting contributions at the electroweak scale

read

δC3 =
1

6

κsb
L

λ
(s)
t

, C ′
5 =

1

6

κsb
R

λ
(s)
t

,

δC7 =
2

3

κsb
L

λ
(s)
t

sin2 θW , C ′
7 = − 2

3

κsb
R

λ
(s)
t

cos2 θW ,

δC9 = − 2

3

κsb
L

λ
(s)
t

cos2 θW , C ′
9 =

2

3

κsb
R

λ
(s)
t

sin2 θW . (4.12)
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They reach the size of the dominant SM Wilson coefficient C9(µW ) if

|κsb
L,R| ∼ |κSM| ≡ α

π sin2 θW
λ

(s)
t C0(xtW ) ∼ 0.00035 , (4.13)

where C0(x) is a loop function, see e.g. ref. [66]. Such a scenario corresponds to qi ∼ O(1)

in our model-independent analysis, thus we expect significant effects in hadronic B decays

for such values of κsb
L,R.

From the Lagrangian (4.11) and the SM coupling of the Z to leptons we also obtain

corrections to the short-distance coefficients of the semileptonic operators (4.1), namely

δC9V = − κsb
L

λ
(s)
t

(
2 sin2 θW − 1

2

)
, C ′

9V = − κsb
R

λ
(s)
t

(
2 sin2 θW − 1

2

)
,

δC10A = − κsb
L

λ
(s)
t

(
1

2

)
, C ′

10A = − κsb
R

λ
(s)
t

(
1

2

)
. (4.14)

This enables us to study constraints on κsb
L,R from semileptonic B decays as indicated in

the previous section.

Diagrams with Z-exchange contribute also to Bs-B̄s mixing via the Wilson coefficients

δCVLL
1 =

4π2

√
2GFM2

W

(
κsb

L

λ
(s)
t

)2

, CVRR
1 =

4π2

√
2GFM2

W

(
κsb

R

λ
(s)
t

)2

,

CLR
1 =

8π2

√
2GFM2

W

κsb
L

λ
(s)
t

κsb
R

λ
(s)
t

. (4.15)

Explaining the discrepancy in ∆s defined in eq. (4.10) with the help of these new contribu-

tions would push the couplings κsb
L,R to large values. Note, however, that in most realistic

cases the couplings κsb
L,R are loop-induced with the consequence of eq. (4.15) actually rep-

resenting two-loop effects. Usually such scenarios provide also one-loop contributions from

box diagrams which then are more likely to account for the ∆s discrepancy. Therefore we

prefer not to include ∆s as a constraint into our analysis and regard a potential relaxation

of the ∆s discrepancy only as a bonus feature.

4.2.2 Results

In our study of the modified Z coupling we consider the three special cases of non-vanishing

κsb
L only, κsb

R only and κsb
L = κsb

R , similarly to the model-independent analysis. Since

cos2 θW ≫ sin2 θW , the κsb
L scenario shares its most important features with the q9 setup

of the model-independent study and the same holds for κsb
R and q′7. This expectation is

confirmed by the graphs in figure 6, we only note that we get a 180◦ rotation due to

the signs of δC9 and C ′
7. We have again marked the 1σ - region of the B → πK fit by

a black line (as well as the additional 3σ - black dotted line) and the region allowed by

the 2σ constraints from all hadronic decay observables by a green area. The displayed

regions refer to input a), as defined in section 3.3, while we have refrained from showing

the corresponding regions for input b).
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Figure 6. Enhancement factor for the B̄s → φρ0, φπ0 branching ratios with respect to their SM

values in the modified-Z0-penguin scenario. The green area represents the region allowed by the

2σ constraints from all the considered hadronic decays, while the area inside the dashed blue line

represents the region allowed by the 2σ constraint from semi-leptonic decays. The areas inside the

dashed orange line represent the parameter values for which the modified-Z0-penguin would solve

∆s. See the text for further explanations.

The main difference to the more general model-independent approach is that we now

face additional constraints from semileptonic decays and Bs-B̄s mixing. The allowed region

for the former is given by the interior of the blue dashed curve, the allowed region for the

latter by the orange areas outside the zone preferred by the B → πK fit. We see that the

∆s anomaly of Bs-B̄s mixing cannot be resolved in a modified Z scenario when fulfilling
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Scenario Br(B̄s→φπ0)

BrSM(B̄s→φπ0)

BrL(B̄s→φρ0)

BrSM
L (B̄s→φρ0)

Br(B̄s→φρ0)

BrSM(B̄s→φρ0)

κsb
L 6= 0 10.3 (19.0) 3.6 (7.0) 3.4 (6.3)

κsb
R 6= 0 48.3 (84.6) 15.5 (28.2) 14.2 (24.8)

κsb
L = κsb

R 1.0 (1.7) 1.0 (1.7) 1.2 (1.8)

With additional semileptonic B decay constraints

κsb
L 6= 0 1.6 (3.0) 1.1 (2.2) 1.1 (2.0)

κsb
R 6= 0 4.0 (6.5) 2.4 (3.9) 2.2 (3.5)

κsb
L = κsb

R 1.0 (1.7) 1.0 (1.7) 1.1 (1.7)

Table 6. Maximal possible enhancement of the Bs branching ratios in the modified-Z0-penguin

model. The upper part has been calculated with the method a) of the model-independent analysis,

the lower part includes the 2σ constraints from semileptonic decays.

at the same time the semileptonic constraints. This has already been noted in ref. [75].

Here we recognise that also B → πK, ρK, πK∗ data are not compatible with a solution

of ∆s in this way. In the previous section we remarked that it is plausible to assign the

explanation of ∆s to other effects not directly related to the modified Z coupling. Pursuing

this strategy, we are left with the semileptonic decays which are compatible with the 1σ

region of the B → πK fit for all three cases but constrain the FCNC couplings κsb
L,R to

very small values as can be seen from figure 6 where the coupling κsb
L,R is normalised to

|κSM| in eq. (4.13).

As a consequence we expect no significant effects in B̄s → φπ0, φρ0. This expectation is

confirmed by figure 6 and by the maximum enhancement factors given in table 6, which are

determined in analogy to the ones in table 3. In the κsb
L = κsb

R case no enhancement occurs

at all because of the pattern in eq. (3.3): Equal contributions to C7 and C ′
9 and to C9 and

C ′
7 cancel pairwise. The largest effect which one could gain in the other scenarios is a factor

of ∼ 4 in the case where only κsb
R 6= 0. Therefore an enhancement of B̄s → φπ0, φρ0 due

to a new modified Z contribution in practice becomes indistinguishable from the potential

enhancement caused by a large non-factorisable SM effect. In figure 6 this is reflected by

the fact that the red-striped ring representing parameter points which reproduce the SM

result for the Bs decays nearly fills the whole allowed region of the parameter space.

Our results can be summarised as follows: The constraints from semileptonic decays

still allow for a solution of ∆ACP via a modified Z coupling. This possibility would be

excluded if an enhancement of B̄s → φπ0 or B̄s → φρ0 by an order of magnitude was found.

4.3 Models with an additional U(1)′ gauge symmetry

The presence of a heavy Z ′ boson associated with an additional U(1)′ gauge symmetry is

a well-motivated extension of the SM. This additional symmetry has not been invented to

solve a particular problem of the SM, but rather occurs as a byproduct in many models

like e.g. Grand Unified Theories, various models of dynamical symmetry breaking and
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Little-Higgs models. In many scenarios the Z ′ boson is expected to have a mass at the

TeV scale. It also appears in the form of a Kaluza-Klein excitation of the SM Z0 boson in

theories with extra dimensions. An extensive review about the physics of Z ′ gauge-bosons

can be found in [76]. Here we are interested in implications for flavour physics as discussed

in [73, 77–79].

4.3.1 Effective theory

We consider a model with an additional Z ′ gauge-boson, neglecting Z-Z ′ mixing and as-

suming the absence of exotic fermions which could mix with the SM fermions through

non-universal Z ′ couplings. We write the general quark-antiquark-Z ′ coupling as [73, 79]

Leff
Z′ = −

gU(1)′

2
√

2

∑

IJ

d̄I

[
ζIJ
L γµ(1 − γ5) + ζIJ

R γµ(1 + γ5)
]
dJZ

′
µ. (4.16)

and similarly for the up-type quarks. The couplings of interest are the flavour-changing

ζsb
L,R as well as the flavour-conserving charges ζu

L,R ≡ ζuu
L,R and ζd

L,R ≡ ζdd
L,R. Note that

SU(2)L invariance implies ζu
L = ζd

L ≡ ζq
L whereas no restrictions hold in case of ζu

R, ζd
R.

Following ref. [73] we introduce the parameter

ξ ≡
g2
U(1)′

g2

M2
W

M2
Z′

(4.17)

with gU(1)′ denoting the gauge coupling of the additional U(1)′ gauge group and MZ′ being

the mass of the Z ′-boson. We then find the following additional contributions to the

short-distance coefficients at the electroweak scale:

δC3 = − ζsb
L

λ
(s)
t

ζq
L ξ , C ′

3 = − 1

3

ζsb
R

λ
(s)
t

(
ζu
R + 2ζd

R

)
ξ ,

δC5 = − 1

3

ζsb
L

λ
(s)
t

(
ζu
R + 2ζd

L

)
ξ , C ′

5 = − ζsb
R

λ
(s)
t

ζq
L ξ ,

δC7 = − 2

3

ζsb
L

λ
(s)
t

(
ζu
R − ζd

R

)
ξ , C ′

7 = 0 ,

δC9 = 0 , C ′
9 = − 2

3

ζsb
R

λ
(s)
t

(
ζu
R − ζd

R

)
ξ . (4.18)

Apart from ξ, FCNC transitions are controlled by the free parameters ζIJ
L,R. Depending

on them, the flavour-changing transitions contribute in general to both QCD and EW

penguin operators, as well as to their mirror copies. Here we follow the approach of

refs. [45, 77–79] in which the main contribution is supposed to reside in the EW penguins,

i.e. |δC3,5(µW )| ≪ |δC7(µW )|, |C ′
3,5(µW )| ≪ |C ′

7(µW )|. We implement this assumption by

setting ζu
R + 2ζd

R = ζq
L = 0. The constant ζu

R − ζd
R can then be absorbed into a redefinition

of gU(1)′ . After these simplifications we are left with only two non-zero coefficients

δC7 = − 2

3

ζ̃sb
L

λ
(s)
t

, C ′
9 = − 2

3

ζ̃sb
R

λ
(s)
t

, (4.19)

where we have defined ζ̃sb
L,R ≡ ξζsb

L,R.
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The coupling of the Z ′ boson to quarks is not related to its coupling to leptons.

Therefore tight constraints from semileptonic decays, as we encountered in the case of

a modified Z coupling, can be avoided here by simply switching off the Z ′ coupling to

leptons. Such “leptophobic” Z ′ bosons can for example appear in models with an E6 gauge

symmetry (see e.g. ref. [80]). Since leptophobic Z ′ bosons avoid detection via traditional

Drell-Yan processes, their mass is much less constrained allowing for larger values of the

parameter ξ.

Besides constraints from hadronic B decays we have to face constraints from Bs-B̄s

mixing to which tree-level Z ′ exchange contributes. We find for the ∆B = 2-Hamiltonian:

δCVLL
1 =

4π2
√

2

GFM2
W

(
ζ̃sb
L

λ
(s)
t

)2
1

ξ
, CVRR

1 =
4π2

√
2

GFM2
W

(
ζ̃sb
R

λ
(s)
t

)2
1

ξ
,

CLR
1 =

8π2
√

2

GFM2
W

(
ζ̃sb
L

λ
(s)
t

) (
ζ̃sb
R

λ
(s)
t

)
1

ξ
. (4.20)

In contrast to constraints from hadronic B decays, the Bs-B̄s mixing constraint in the

(Re(ζ̃sb
I ), Im(ζ̃sb

I )) - plane depends on the parameter ξ determined by the coupling constant

gU(1)′ and the Z ′ mass MZ′ . It gets stronger for smaller ξ, i.e. for smaller gU(1)′ and larger

Z ′ mass MZ′ . This behaviour, which might seem counter-intuitive at first sight, has its

origin in the dependence of the hadronic decays on the parameter combinations ζ̃sb
I = ξ ζsb

I .

If one chooses smaller ξ values, one needs larger values of the FCNC couplings ζsb
I in order

to obtain the same effects in the hadronic decays. Since the Bs-B̄s mixing coefficients

in (4.20) depend quadratically on the ζsb
I , this procedure sharpens their constraints.

4.3.2 Results

Considering eq. (4.19), one easily sees that the three scenarios ζ̃sb
L 6= 0, ζ̃sb

R 6= 0 and

ζ̃sb
L = ζ̃sb

R 6= 0 exactly correspond to the scenarios q7 6= 0, q′9 6= 0 and q7 = q′9 6= 0 in our

model-independent analysis, except for a normalisation factor. In this way the exclusion

regions from the 2σ constraints and the confidence levels from the fit can be immediately

read off from figures 4 and 5, provided one rescales the axes by an appropriate normalisation

factor and rotates the pictures by 180◦ to take into account the minus signs in eq. (4.18).

In figures 7 and 8 we present our results for the ζsb
L and the ζsb

R scenarios with the

meanings of the green region and the red-hatched ring being the same as in the preceeding

sections. In addition the 2σ region for ∆s is shown for different values of ξ. We recognise

that there is very little overlap of the region allowed by hadronic constraints with the region

preferred by ∆s in the ζsb
R case. The same holds for the ζsb

L = ζsb
R scenario not shown. This

behaviour is easily understood: The observables ∆ACP and ∆s both call for NP with a

large imaginary part. The branching ratios of hadronic B decays depend linearly on the

real part of ζsb
L,R at leading order, thus they pull the ζsb

L,R values towards the imaginary

axis. The observable ∆s, on the other hand, depends quadratically on ζsb
L,R and favours

values on the diagonal Re(ζ̃sb
L,R) = −Im(ζ̃sb

L,R). For the ζsb
L setting this situation is relaxed

due to the weak constraints from B → πK such that one can solve the two experimental

discrepancies in ∆ACP and in ∆s at the same time.
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Figure 7. Enhancement factors of Br(B̄s → φπ0) and Br(B̄s → φρ0) for ζ̃sb
L 6= 0. The red-hatched

ring corresponds to the SM uncertainty. The green area is allowed by the 2σ constraints from all

hadronic B decays while the regions inside the blue lines are compatible with the constraint from

Bs-B̄s mixing. From the biggest to the smallest region they stand for the cases ξ = 1/10, ξ = 1/25

and ξ = 1/100, respectively.

Figure 8. Enhancement factors of Br(B̄s → φπ0) and Br(B̄s → φρ0) for ζ̃sb
R 6= 0. The meaning of

the coloured regions is the same as in figure 7.
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Scenario Br(B̄s→φπ0)

BrSM(B̄s→φπ0)

BrL(B̄s→φρ0)

BrSM
L (B̄s→φρ0)

Br(B̄s→φρ0)

BrSM(B̄s→φρ0)

ζ̃sb
L 6= 0 2.5 (4.9) 3.6 (5.6) 3.3 (4.9)

ξ = 1
25 ζ̃sb

R 6= 0 3.6 (5.7) 3.7 (5.7) 3.4 (5.1)

ζ̃sb
L = ζ̃sb

R 1.0 (1.7) 1.0 (1.7 ) 1.1 (1.8)

ζ̃sb
L 6= 0 1.9 (3.7) 2.6 (4.0) 2.4 (3.6)

ξ = 1
50 ζ̃sb

R 6= 0 2.6 (4.1) 2.6 (4.1) 2.4 (3.7)

ζ̃sb
L = ζ̃sb

R 1.0 (1.7) 1.0 (1.7) 1.1 (1.8)

Table 7. Maximal possible enhancement of the Bs branching ratios compatible with the constraints

from all other hadronic decays and Bs-B̄s mixing for the Z ′ model.

From the diagrams we see further that the Bs-B̄s mixing constraint is very tight. It

prohibits large effects in B̄s → φπ0, φρ0 for realistic values of the parameter ξ . 1/25. For

ξ = 1/25, which would correspond for example to gU(1)′ ∼ g and MZ′ ∼ 400GeV, and

for ξ = 1/50 we present the maximum enhancement factors in table 7. These numbers

are obtained abandoning the 1σ region of the B → πK fit and requiring only agreement

with the 2σ constraints. We find that enhancement of a factor ∼ 5 is possible in the ζsb
L

and ζsb
R scenarios whereas no effect can occur in the ζsb

L = ζsb
R case because of eq. (3.3).

For ξ = 1/100 the constraints from Bs-B̄s mixing become so strong that no effect in

B̄s → φπ0, φρ0 would be detectable. A measurement of a significant enhancement would

therefore set a lower limit on ξ, equivalent to an upper limit on the Z ′ mass.

4.4 MSSM

Supersymmetric effects in B decays have been studied in an enormous number of publica-

tions but most often hadronic decays have not been considered in such studies because of

their large theoretical uncertainties. In the MSSM with conserved R-parity, all new flavour-

changing interactions can be related to the squark mass matrices and enter all kinds of B

decays via loops with virtual squarks and gauginos/higgsinos. Therefore one can expect

supersymmetric contributions to be of roughly the same size in hadronic modes as they are

in leptonic, semileptonic or radiative modes, so their effects will be most easily found where

the uncertainties are smallest. However, once hints for supersymmetry are found in clean

decay channels, one will also look for confirmations of these observations in other modes.

Therefore we find it interesting to study the possible size of isospin-violation in the MSSM

and whether large effects in the rare decays B̄s → φρ0 and B̄s → φπ0 can be expected

or not, taking into account present experimental constraints on supersymmetric flavour-

violation. Besides, we investigate whether the deviation of the ∆ACP measurement from

the SM prediction can be explained in the MSSM, as it has been claimed recently [81, 82].

Throughout this section, we use the MSSM conventions of the SUSY Les Houches

Accords (SLHA) [83, 84] and diagonalise the sparticle mass matrices exactly. We do not

make use of the mass-insertion approximation (MIA), which means that we are not limited

to the case where off-diagonal elements in the mass matrices are small with respect to the

diagonal elements.
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4.4.1 Flavour-violation in the down-squark sector

First we consider the scenario where flavour-violation arises in the down-squark sector, i.e.

where the 6× 6 down-squark mass matrix contains flavour-violating elements. In this case

we expect the largest SUSY effects in b→ s transitions to stem from gluino-(down-)squark

loops since these loops come with the strong gauge coupling αs. Neutralino-squark loops

arise from exactly the same off-diagonal elements but are suppressed by weak couplings,

so they can be neglected to a first approximation.

The authors of ref. [73] have analysed such a scenario and have found that a significant

amount of isospin-violation can only occur via b → sq̄q box diagrams with virtual gluinos

and down squarks (q = u, d) and not from photon- or Z-penguin diagrams. A necessary

condition therein is that the SUSY-breaking masses of the right-handed first-generation

squarks, m2
ũ and m2

d̃
, are very different from each other. Recently, this idea has been seized

in ref. [85] and studied in the light of new data, especially measurements of CP asymmetries

in B → πK decays and of Bs-B̄s oscillations. It was found that the B → πK data can

only be reproduced in a tiny region of the parameter space of the model.

In contrast to these findings the authors of ref. [81] have found a large impact of the

gluino-mediated photon penguin in a mass-insertion calculation and state that sufficient

isospin-violation is generated to explain the ∆ACP data. However, we find that this results

from a missing factor −α/6π in eq. (41) of ref. [81]. We have performed a scan over the

MSSM parameter space without using the mass-insertion approximation. Our full results

for the ∆B = 1 Wilson coefficients are written down in appendix D. We find the gluino-

mediated photon penguin to yield corrections below the 3% level to the SM coefficients of

the EW penguin operators for all the points which allow for a diagonalisation of the squark

mass-matrices with eigenvalues greater than (100GeV)2 and satisfy the experimental con-

straints from b→ sγ. Such corrections are negligible for the prediction of ∆ACP.

We conclude that we find no sizeable enhancement of EW penguins in the MSSM with

flavour-violation in the down-sector. Neither can we explain the ∆ACP discrepancy in this

scenario nor can we expect large NP effects in the decays B̄s → φπ0 and B̄s → φρ0.

4.4.2 Flavour-violation in the up-squark sector

Supersymmetric flavour-violation can also arise in the up-sector via off-diagonal elements

in the hermitian 6× 6 up-squark mass matrix. In this scenario, penguin and box diagrams

with virtual charginos and up-type squarks can provide sizeable contributions to B decays.

We have calculated all of these diagrams, the results are given in appendix D.

The small Yukawa couplings occuring in the quark-squark-chargino couplings and in

the squark mass matrix strongly suppress the effect of certain off-diagonal elements of this

matrix. The only relevant flavour-violating entries for b→ s transitions are therefore those

corresponding to c̃L − t̃L and c̃L − t̃R mixing. We define them via

m̂2
Q̃
≡ m2

q̃




1 0 0

0 1 δuLL∗
32

0 δuLL
32 1


 (4.21)
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Figure 9. Left: (Right:) Z-penguin contribution to |q7| (|q9|) over the full |q7| (|q9|) for 30000

points in the MSSM parameter space. Blue: points excluded by the bound on |C7γ |. Red: points

excluded by Br(B̄ → Xsγ). Orange: points passing all constraints. Not displayed: points excluded

by lower bounds on squark and chargino masses.

and

(M2
ũ)62 =

vu√
2
(T̂U )32 ≡ δuRL

32 m2
q̃. (4.22)

with a generic squark mass mq̃. The remaining flavour-conserving elements are specified

by m̂2
ũ = Diag(m2

q̃ ,m
2
q̃ ,m

2
t̃R

), (T̂U )ii = (T̂U )33δi3 and tan β = 10.

We have performed a scan over the free parameters in the value ranges defined in

the table in figure 10 to identify possible sources of large isospin-violation. In figure 9 we

plot the Z-penguin contribution to |q7| and |q9| (qi is defined in eq. (3.1)) over the sum

of all contributions to |q7| and |q9| for 30000 random points. We see that considering the

Z-penguin only is a very good approximation for all points yielding large isospin-violation.

In this way our scenario is essentially equivalent to the one with a left-handed flavour-

changing Z coupling κsb
L discussed in section 4.2 and we will stay in this approximation in

the following. Since a non-vanishing κsb
L breaks electroweak symmetry [74] it must involve

the vacuum expectation values vu,d. Therefore it is almost exclusively sensitive to δuRL
32

and not to δuLL
32 and we will neglect the latter in the following.

Having calculated the MSSM mass spectrum for a given parameter point we apply the

following constraints:

• physical squark and chargino masses ≥ 100 GeV ,

• Br(B̄ → Xsγ) compatible with data at the 2σ level,

• chargino contribution |Cχ
7γ | ≤ |CSM

7γ | ≈ 0.22.

The last constraint ensures that fine-tuned points passing the Br(B̄ → Xsγ) constraint are

not considered.

It has been suggested [82] that a non-vanishing δuRL
32 can generate isospin-violating

effects large enough to explain the ∆ACP discrepancy within the QCDF framework. This
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1.0

Re(κsb
L )/|κSM|

Im
(κ

sb L
)/
|κ

S
M
|

mq̃, mt̃R
, (T̂U )33 200 GeV 1000 GeV

M2, µ 100 GeV 1000 GeV

|δuLL
32 |, |δuRL

32 | 0 1

arg(δuLL
32 ), arg(δuRL

32 ) 0 2π

Figure 10. Discrepancy between ∆ACP in theory and experiment as a function of κsb
L /|κSM|

as defined in section 4.2. From light to dark the coloured regions denote 2.2σ, 2σ and 1σ. On

top we add the κsb
L /|κSM| values resulting from chargino-induced flavour-violating Z couplings in

a parameter scan as defined in the table. Blue (orange): Points (not) excluded by the bound on

|C7γ |. Not displayed: Points excluded by the lower bounds on SUSY masses.

would clearly be an interesting perspective for supersymmetric effects in purely isospin-

violating decays. However, we cannot confirm this statement in our framework. In figure 9

we find that C9 can be enhanced by about 25% and C7 by about 8% with respect to the SM

in the presence of a non-vanishing δuRL
32 .1 In section 3 we have seen that a 25% effect in C9

or an 8% effect in C7 are not enough to generate a large ∆ACP and are also not sufficient

to enhance the branching fractions of B̄s → φπ0 and B̄s → φρ0 sizeably. A NP effect of

this size would be hidden in the theoretical uncertainty and thus be unobservable. These

findings are illustrated in figures 10 and 11, where we display on the one hand a figure

similar to figure 3 in the complex κsb
L plane and on the other hand a zoomed version of

the upper plots in figure 6. To both figures we add the κsb
L values resulting from chargino-

induced flavour-violating Z couplings in a scan over 30000 points in the MSSM parameter

space as defined in the table in figure 10 to illustrate the statements of the last paragraph.

We note that there is an important difference between our calculation and the one

of [82], namely the treatment of strong phases. We obtain all of these phases directly from

QCDF, where they are suppressed by either αs(mb) or ΛQCD/mB . Thus we typically find

small strong phases even though their prediction comes with a large uncertainty. In the

framework of ref. [82] only absolute values of penguin-to-tree ratios are predicted from

QCDF whereas the corresponding strong phases can assume arbitrary values between 0

and π [87]. In this way, large CP asymmetries can be generated even without a large

NP contribution and also the fact that ACP(B− → π0K−) and ACP(B̄0 → π+K−) have

opposite sign is no longer puzzling because the phases of the various tree and penguin

topologies are uncorrelated. In contrast, our calculation reduces the 2.5σ SM discrepancy

in ∆ACP only marginally. From figure 10 we can read off that the vast majority of the

allowed points are outside the 2.2σ region. Only a few rather fine-tuned points are between

2.2σ and 2σ.
1Including the naturalness constraint |δuRL

32 | < 0.59 [86] the effects become even smaller.
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Figure 11. Zoom of the upper plots in figure 6. On top we add the κsb
L /|κSM| values resulting

from chargino-induced flavour-violating Z couplings in a parameter scan as defined in the table in

figure 10 with the same colour coding as in figure 10

5 Conclusion

In this article we have studied the possibility of probing isospin-violating NP in hadronic B

decays. We have proposed to test the EW penguin sector of the effective weak Hamiltonian

via the decays B̄s → φπ0 and B̄s → φρ0 and provided a detailed phenomenological analysis

of these two modes in correlation to other hadronic B decays.

Our analysis is motivated by discrepancies found in B → πK decays, which are to

date the best-measured hadronic b→ s decays. In particular, the 2.5σ discrepancy found

in the observable ∆ACP can be interpreted as a sign of NP in the EW penguin sector of

the theory. We have demonstrated in a model-independent analysis that this discrepancy

can easily be resolved by an additional NP contribution to the EW penguin operators

Q
(′)
7 , . . . , Q

(′)
10 if it is of the same order of magnitude as the leading SM coefficient CSM

9 .

An exception are parity-symmetric scenarios where the contributions to PP decays cancel.

Whereas the solution in the case of NP in C
(′)
9 is, as expected, due to a new contribution to

the colour-allowed EW penguin amplitude, we have pointed out that, in the case of NP in

C
(′)
7 , the solution mainly comes about via a weak annihilation contribution in the QCDF

framework which has a surprisingly large imaginary part. In particular we have found for

the case of equal new contributions to C7 and C9 that, even though these contributions

tend to cancel in the EW penguin amplitude, the ∆ACP discrepancy can still be solved

via the EW penguin annihilation amplitude, a fact that had not been noticed before. For

various scenarios we have performed frequentist fits to B → πK data. We have found the

fit to work well for NP in C
(′)
9 while NP in C

(′)
7 is only poorly constrained from B → πK

alone. Especially in this case, the PV counterparts B → ρK and B → πK∗, which carry

a different interplay of chiralities, give valuable additional information. We have seen that

present experimental data already set strong constraints: a new EW penguin amplitude

can be at most ∼ 5 times larger than the SM one; on the other hand a new amplitude of

about the same size as the SM one is required to solve the ∆ACP discrepancy.
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Whether the discrepancy in ∆ACP really is a manifestation of NP, however, is not

clear because the experimental data are still not conclusive due to the large uncertainties

in the theory prediction and the still somewhat low statistics of the measurements. The

long-standing problem of large theoretical hadronic uncertainties in hadronic decays can,

however, be partially addressed exploiting the large variety of hadronic decay channels. In

the case at hand, the best test is provided by the B̄s → φπ0 and B̄s → φρ0 modes, which

are purely isospin-violating decays and are dominated by the EW penguin amplitude. Since

these decays are not related to other hadronic B decays via flavour symmetries, their anal-

ysis requires a determination of the hadronic matrix elements from first principles and we

used the QCDF approach to this end. From the full QCDF results we have derived simple

approximate expressions (eqs. (2.18)–(2.20), (3.3)) which reproduce the B̄s → φπ0, φρ0 am-

plitudes with high accuracy for arbitrary scenarios with NP in C
(′)
7 , . . . , C

(′)
10 . By quoting

these formulae we facilitate the study of these decays without an extensive implementation

of the QCDF framework.

In this work we have performed the first analysis of the impact of NP in EW penguins

on B̄s → φπ0, φρ0. A new EW penguin amplitude of the same size as the SM one can

easily enhance the B̄s → φπ0 and B̄s → φρ0 branching ratios by an order of magnitude.

We have performed a quantitative analysis parameterising NP in EW penguins in a model-

independent way, at the level of Wilson coefficients, and studied the maximum enhancement

of the B̄s → φπ0, φρ0 branching ratios for various scenarios, with respect to the result of

our B → Kπ fits and with respect to constraints from other hadronic B decays. The results

displayed in table 3 show that in many cases a large enhancement is possible. Particular

exceptions are parity-symmetric models which have no impact on the V V decay B̄s → φρ0

and scenarios with (approximately) equal contributions to C
(′)
7 and C

(′)
9 which cancel in

B̄s → φπ0.

A survey of concrete NP models has been performed in section 4, where we have

considered a modified Z0 penguin, a model with an additional U(1)′ gauge symmetry

and the MSSM. In such models additional constraints arise from the semileptonic decays

B̄ → Xse
+e− and B̄ → K∗l+l− and fromBs-B̄s mixing. In case of the modified-Z0-penguin

scenario we have found that the semileptonic constraints still allow for NP to an extent

which is sufficient to resolve the ∆ACP discrepancy. On the other hand, they prevent

the B̄s → φπ0, φρ0 decays from developing an enhancement which beats the hadronic

uncertainties of the SM prediction. Therefore, a large effect measured in these decays

would rule out the modified Z coupling. The semileptonic constraints can for example

be avoided in a model with an additional Z ′ boson whose couplings to leptons can be

switched off. Our analysis has shown that in this scenario constraints from hadronic B

decays and Bs-B̄s mixing can be fulfilled simultaneously only at the 2σ level. The tight

constraints from Bs-B̄s mixing limit a potential enhancement of B̄s → φπ0, φρ0 to a factor

∼ 5. Furthermore the occurrence of such a measurable enhancement requires a large

gU(1)′ coupling and/or a light Z ′ boson. Finally our conclusion for the MSSM is that it is

impossible to obtain a new contribution larger than about 25% in C9 and about 8% in C7,

which is clearly not enough to generate a large ∆ACP or a significant enhancement of the

Bs decays. The ∆ACP discrepancy can be reduced only marginally in this way. Only a

few rather fine-tuned parameter points reduce it from 2.5σ to 2σ.
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We stress again that the decays B̄s → φπ0, φρ0 are highly sensitive to isospin-violating

NP. Their measurement would complement the analysis of B → Kπ decays and could shed

light on the “∆ACP puzzle”. For this reason we strongly encourage experimental efforts to

measure these decays at LHCb and at future Super-B factories.
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A General framework for the calculation of hadronic B decays

Throughout this work, we study hadronic B decays into two light mesons using the frame-

work of QCD factorisation [13–17]. This framework is based on the well-known effective

weak Hamiltonian for ∆B = 1 transitions given in (2.2) and described in section A.1.

Matrix elements of this Hamiltonian are calculated in an expansion in ΛQCD/mB . We

give a few details concerning the generalisation of QCDF to a Hamiltonian containing

operators with flipped chiralities in section A.2 and specify our input parameters in sec-

tion A.3. In section A.4 we collect expressions for obtaining various observables from the

QCDF-calculated amplitudes.

A.1 The effective weak Hamiltonian

The starting point for the analysis of hadronic B decays is the parameterisation of high-

energy transitions in terms of effective four-quark operators multiplied by short-distance

coefficients. In the SM, this leads to the effective weak Hamiltonian in eq. (2.2). The

short-distance coefficients Ci are calculated in the MS renormalisation scheme at the scale

µEW ∼MW . Their low-scale values at µEW ∼ mb are obtained from renormalisation-group

equations (RGE). In the SM, only C1 is O(1), while C2 and the QCD penguin coefficients

C3,...,6 arise at order O(αs) and the electroweak penguin coefficients arise at order O(α),

albeit partly enhanced by factors of xtW = m2
t/M

2
W and/or 1/ sin2 θW . The complete

analytical expressions for these coefficients are written down e.g. in [66].

Besides the SM operators, we also consider the possibility that New Physics gives rise

to the so-called “mirror” penguin operators Q′
i, obtained from Qi by a global exchange of
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left- and right-handed chiralities of the quark fields, (V −A) ↔ (V +A). We thus replace

in eq. (2.2)

CiQi −→ CiQi + C ′
iQ

′
i. (A.1)

Given the enhancement of C7(µEW) and C9(µEW) by xtW and/or 1/ sin2 θW , we fol-

low the modified RGE scheme presented in [15] for the SM coefficients and consider the

enhanced terms as leading-order coefficients, i.e.

CLO
7 (mW ) =

α

4π

xtW

3
, CLO

9 (mW ) =
α

4π

[
xtW

3
+

2

3 sin2 θW
(10B0(xtW ) − 4C0(xtW ))

]

(A.2)

with the loop functions B0(x) and C0(x) from [66]. To be consistent we neglect at the

same time electromagnetic corrections to the QCD penguin coefficients as well as any

mixing of C7, . . . , C10 into C1, . . . , C6. Since this treatment improves the RGE evolution

for C7, . . . , C10 and since it is exactly these coefficients we are interested in, it is well suited

for our analysis. By contrast, for the NP contributions we use the standard treatment for

the leading-order RGE.

A.2 Operator matrix elements in QCDF

From the effective Hamiltonian (2.2) the decay amplitude for the process B̄ →M1M2 can

be calculated as

A(h)

B̄→M1M2
= 〈M (h)

1 M
(h)
2 |Heff |B̄〉, (A.3)

where h refers to a helicity amplitude in case of a decay into two vector mesons, B̄ → V h
1 V

h
2

with h = 0,+,−.

In QCDF the matrix elements of the effective Hamiltonian are organised in terms of

flavour amplitudes αi which are directly related to the topologies of the underlying weak

transition, for example colour-allowed EW penguin, colour-suppressed tree etc. Analogous

amplitudes βi represent the corresponding weak annihilation transitions. The topological

amplitudes αi in turn can be decomposed into coefficients ai which are in direct corre-

spondence to the operators Qi in the effective Hamiltonian. At NLO these coefficients ai

contain the perturbative non-factorisable vertex-, penguin- and spectator-scattering cor-

rections governed by the factorisation formula. For a complete description we refer to [16].

The expressions given there can easily be generalised to account for the mirror operators

by adding a topological amplitude α′
i to each of the αi [88]. A similar generalisation applies

to the annihilation amplitudes βi. Here we only need to add the expressions for α′
3EW,4EW,

– 39 –



J
H
E
P
0
2
(
2
0
1
1
)
0
8
0

which read

α′ p
3EW(M1M2) =





−a′ p9 (M1M2) + a′ p7 (M1M2), if M1M2 = PP,

a′ p9 (M1M2) + a′ p7 (M1M2), if M1M2 = PV,

a′ p9 (M1M2) − a′ p7 (M1M2), if M1M2 = V P,

−a′ p9 (M1M2) − a′ p7 (M1M2), if M1M2 = V 0V 0,

−fM1
±

(
a′ p9 (M1M2) + a′ p7 (M1M2)

)
, if M1M2 = V ±V ±,

α′ p
4EW(M1M2) =





−a′ p10(M1M2) − rM2
χ a′ p8 (M1M2), if M1M2 = PP,

a′ p10(M1M2) + rM2
χ a′ p8 (M1M2), if M1M2 = PV,

a′ p10(M1M2) − rM2
χ a′ p8 (M1M2), if M1M2 = V P,

−a′ p10(M1M2) + rM2
χ a′ p8 (M1M2), if M1M2 = V 0V 0,

fM1
±

(
−a′ p10(M1M2) + rM2

χ a′ p8 (M1M2)
)
, if M1M2 = V ±V ±

(A.4)

with fM1
± = FB→M1

∓ (0)/FB→M1
± (0) being a ratio of form factors, such that fM1

+ ∼ mB/ΛQCD

and fM1
− ∼ ΛQCD/mB in the heavy-quark limit [17]. The NLO expressions for the coeffi-

cients a′i are equivalent to the ones for the coefficients ai from [16] up to the replacement

Ci → C ′
i. Additionally in the transverse amplitudes of B → V V decays one has to flip the

helicities, i.e. the expressions for a+
i are needed for a′i

− and vice versa.

The pattern of signs appearing in eq. (A.4) is a consequence of the fact that matrix

elements of the mirror operators are related to the SM ones by parity

〈M1M2|Qi|B̄〉 = −ηM1M2 〈M1M2|Q′
i|B̄〉, (A.5)

which implies that the amplitudes involve the coefficients a
(′)
i only in the combinations [56]

ap
i (M1,M2) − ηM1M2 a

′ p
i (M1,M2). (A.6)

Here ηM1M2 = ±1 is the parity of the final state. For PP and longitudinal V V final states,

we have ηM1M2 = 1 whereas for PV final states ηM1M2 = −1. In this manner left-handed

and right-handed NP give rise to different signatures and correlations among PP , PV or

V V decays. Exploiting this feature can be very important in order to probe the chirality

structure of a potential NP model.

A.3 Input parameters and tree to penguin ratios in B → πK, B → ππ

In the framework of QCDF the decay amplitudes depend on quite a few input parameters

such as form factors, Gegenbauer moments of light-cone distribution amplitudes, etc. In

table 8 we provide a list of up-to-date values. We use the updated value of Λ
(5)

MS
as obtained

in [94]; as of λB = λBs we assume the lower value 200 MeV as suggested by exclusive

hadronic decays, see [17, 90, 92, 95]. Particular attention deserves the choice of XH,A, i.e.

the numbers which parameterise our ignorance of non-perturbative physics occurring in

spectator scattering and weak annihilation due to the exchange of soft gluons. For XH we

use the definition of [16],

XH = (1 + ρHe
iφH ) ln

mB

Λh
, (A.7)

with a non-perturbative scale Λh = 500 MeV. The default value is ρH = 0 and we estimate

the uncertainty setting ρH = 1 and freely varying φH between 0 and 2π. In the light of

experimental data, XA requires more attention. The reasoning goes as follows.
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QCD scale and running quark masses [GeV]

Λ
(5)

MS
mb(mb) mc(mb) ms mq/ms

0.231 4.2 1.3±0.2 0.090± 0.020 0.0413

CKM parameters

λ |Vcb| |Vub/Vcb| γ sin(2β)

0.225 0.0415 ± 0.0010 0.085+0.025
−0.015 (70 ± 10)◦ 0.673 ± 0.23

B meson parameters

B− B̄0 B̄0
s

Lifetime τ [ps] 1.638 1.525 1.472

Decay constant fB[MeV] 210 ± 20 240 ± 20

λB[MeV] 200+250
−0 200+250

−0

Pseudoscalar-meson decay constants and Gegenbauer moments

π K

f [MeV] 131 160

α1, α1,⊥ 0 0.06 ± 0.06

α2, α2,⊥ 0.20 ± 0.15 0.20 ± 0.15

Vector-meson decay constants and Gegenbauer moments

ρ K∗ φ

f [MeV] 209 ± 1 218 ± 4 221 ± 3

f⊥[MeV] 165 ± 9 185 ± 10 186 ± 9

α1, α1,⊥ 0 0.06 ± 0.06 0

α2, α2,⊥ 0.1 ± 0.2 0.1 ± 0.2 0 ± 0.3

Pseudoscalar-meson form factor at q2 = 0

B → π B → K Bs → K̄

F0 0.25 ± 0.05 0.34 ± 0.05 0.31 ± 0.05

Vector-meson form factor at q2 = 0

B → ρ B → K∗ Bs → φ

A0 0.30+0.07
−0.03 0.39 ± 0.06 0.38+0.10

−0.02

F+ 0.00 ± 0.06 0.00 ± 0.06 0.00 ± 0.06

F− 0.55 ± 0.06 0.68 ± 0.07 0.65+0.14
−0.00

Table 8. Summary of the theoretical input parameters for hadronic B decays into two light mesons.

All scale-dependent quantities refer to µ = 2 GeV unless otherwise stated. The values represent the

most up-to-date values taken from [16, 17, 89–93].

A good test of the QCDF hypothesis is to look at the πK-penguin to ππ-tree ratio [16],

which can be directly related to experimental observables:

∣∣∣∣
α̂c

4(πK̄)

α1(ππ) + α2(ππ)

∣∣∣∣ ≃
∣∣∣∣
Vub

Vcb

∣∣∣∣
fπ

fK

[
Γ(B− → π−K̄0)

Γ(B− → π−π0)

]1/2
exp.
= 0.100+0.030

−0.018. (A.8)

To a good approximation this ratio relates a pure QCD-penguin decay to a pure tree decay
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and allows to eliminate the uncertainty from the heavy-to-light form factor. Since the tree

decay B− → π−π0 suffers from small uncertainties in QCDF and is expected to receive

negligible contributions from NP, eq. (A.8) probes the accuracy of the QCDF prediction for

the penguin amplitude α̂c
4(πK̄). In absence of sizeable NP contributions to QCD penguins

it constrains the uncalculable weak-annihilation contribution βc
3, which is responsible for

the lion’s share of the theoretical uncertainty in the penguin amplitude. Though subleading

in ΛQCD/mB, βc
3 is known to be numerically enhanced.

Using the parameters in table 8 and expressing βc
3 via the complex O(1) parameter

XA as in ref. [16] with

XA = (1 + ρAe
iφA) ln

mB

Λh
(A.9)

with the default value ρA = 0, we find

∣∣∣∣
α̂c

4(πK̄)

α1(ππ) + α2(ππ)

∣∣∣∣
SM
= 0.078+0.025

−0.015, (A.10)

which is slightly smaller than older results. Repeating the analysis of [16] for the PV

and V V modes we obtain figure 12. The plots show the experimental central values and

uncertainties of the ratio in eq. (A.8) (circles around the origin) for B → πK and three

related decays. They are combined with “limaçon” curves representing the corresponding

theory predictions where the phase φA is freely varied between 0 and 2π while we set ρA = 1

(1.5, 2) for PP and PV modes and ρA = 0.6 (1.0, 1.5) for V V modes to obtain the blue

(purple, yellow) curves. The red dots correspond to ρA = 0, 1, 1.5 (ρA = 0, 0.6, 1.0 for V V

modes) with φA fixed as in the scenario “S4” in [16] for PP and PV modes and φA = −40◦

for V V .

These results lead us to the conclusion that, in the light of present data, we prefer to

change the widely used treatment with ρA = 0 as default and ρA = 1 (ρA = 0.6 for V V )

for the variation of φA in order to have a more conservative estimate of the theoretical

uncertainty. Nevertheless we confirm that ρA ≤ 2 is a reasonable upper bound for weak-

annihilation contributions in QCDF. We adopt ρA = 1.5 (ρA = 1.0 for V V modes) as our

default value, keeping the default for φA as above, and estimate the uncertainty with ρA

unchanged and φA ∈ [0, 2π).

A.4 Calculating observables in hadronic B decays

Starting from a decay amplitude A(B̄ → M1M2) the corresponding decay rate can be

calculated as

Γ(B̄ →M1M2) =
S

16πmB
|A(B̄ →M1M2)|2, (A.11)

with a symmetry factor S. We have S = 1/2 if M1 and M2 are identical and S = 1

otherwise. For decays into two vector mesons, where three different helicity amplitudes

exist, one replaces |A(B̄ → M1M2)|2 by a sum over the three possible helicities of the

final state,
∑

h=0,−,+ |Ah(B̄ → V1V2)|2. The branching ratios are easily calculated from

Br(B̄ → M1M2) = Γ(B̄ → M1M2)/Γtot with Γtot being the total decay width of the B̄
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Figure 12. Experimental and theoretical values of the penguin-to-tree ratio defined in eq. (A.8).

For explanations see text.

meson. Our theoretical predictions always refer to CP-averaged branching ratios defined

as

Br(B̄ → f̄) =
1

2

(
Br(B̄ → f̄) + Br(B → f)

)
, (A.12)

where f̄ , f stand for the final state M1M2 and its CP-conjugated state. The CP-conjugated

decay rate is calculated by replacing A in eq. (A.11) by the corresponding CP-conjugated

amplitude. This amounts to a change of sign for all the weak phases while strong phases

are unchanged.

The direct CP asymmetries read

ACP =
Br(B̄ → f̄) − Br(B → f)

Br(B̄ → f̄) + Br(B → f)
(A.13)
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and the longitudinal polarisation fraction fL(B̄ →M1M2) is defined as

fL(B̄ →M1M2) =
|A0(B̄ → V1V2)|2∑

h=0,−,+ |Ah(B̄ → V1V2)|2
. (A.14)

B Isospin-violating observables in B → πK

In this appendix we present the observables which are sensitive to isopin violation in the

B → πK decay modes and which we use to calculate our 2σ constraints.

First, one has ratios of any two different decay rates. Using the parameterisation (2.7)

and neglecting terms which are quadratic in the ri as well as the annihilation contribution

rAEW which has only a small real part, one has 6 different ratios which read [10, 11]

RB
c ≡ 2

Br(B− → π0K−)

Br(B− → π−K̄0)
≃ 1 + 2Re(rEW + rCEW) − 2Re(rT + rC) cos γ ,

RB
n ≡ 1

2

Br(B̄0 → π+K−)

Br(B̄0 → π0K̄0)
≃ 1 + 2Re(rEW + rCEW) − 2Re(rT + rC) cos γ ,

RK
c ≡ 2

τ0
τ−

Br(B− → π0K−)

Br(B̄0 → π+K−)
≃ 1 + 2Re(rEW) − 2Re(rC) cos γ ,

RK
n ≡ 1

2

τ0
τ−

Br(B− → π−K̄0)

Br(B̄0 → π0K̄0)
≃ 1 + 2Re(rEW) − 2Re(rC) cos γ ,

Rπ
c ≡ τ0

τ−

Br(B− → π−K̄0)

Br(B̄0 → π+K−)
≃ 1 + 2Re(rT) cos γ − 2Re(rCEW),

Rπ
n ≡ τ0

τ−

Br(B− → π0K−)

Br(B̄0 → π0K̄0)
≃ 1 − 2Re(rT + 2rC) cos γ + 2Re(2rEW + rCEW) , (B.1)

where τ0 and τ− are the lifetimes of the neutral and charged B mesons, respectively. NP

in EW penguins as in (2.10) enters the ratios RB,K,π
c,n through

Re(rEW) → Re(rEW) + Re(r̃EW) cos δ,

Re(rCEW) → Re(rCEW) + Re(r̃CEW) cos δ. (B.2)

Experimental data on the RB,K,π
c,n can be used to constrain the NP contributions r̃EW

and r̃CEW. Note that the RB,K,π
c,n involve different combinations of r̃EW and r̃CEW and thus

they are sensitive to different linear combinations of the electroweak penguin coefficients

C
(′)
7 , . . . , C

(′)
10 . Therefore, it depends on the specific NP scenario in consideration which of

the RB,K,π
c,n give the best constraints.

Beyond being responsible for the universal QCD penguin contribution, isospin relations

account for the approximate equation

Γ(B− → π−K̄0) − 2Γ(B− → π0K−) ≈ 2Γ(B̄0 → π0K̄0) − Γ(B̄0 → π+K−) (B.3)

known as Lipkin sum rule [96]. In the strict isospin limit both sides of this equation vanish

identically. This is reflected in the fact that RB
c,n in (B.1) are both equal to one, apart from

isospin-violating terms of order O(ri). These linear terms are generated by the interference
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of the isospin-violating parts of the amplitude with the QCD penguin part. The special

property of (B.3) is now that these interference terms on the left- and righthand side of the

approximate equation cancel each other. For this reason (B.3) can be used to construct a

purely isospin-violating observable, namely

R ≡ 2
τ− Br(B̄0 → π0K̄0) + τ0 Br(B− → π0K−)

τ− Br(B̄0 → π+K−) + τ0 Γ(B− → π−K̄0)
= 1 + O(r2i ) . (B.4)

In a similar way it is possible to construct observables with a high sensitivity to isospin

violation out of the direct CP asymmetries. To this end we consider the two differences

∆A−
CP ≡ ACP(B− → π0K−) − ACP(B̄ → π+K−) = ∆ACP

∆A0
CP ≡ ACP(B− → π−K̄0) − ACP(B̄ → π0K̄0). (B.5)

In the parameterisation (2.7) and in the presence of NP in electroweak penguins (2.10)

one finds ∆A0
CP = ∆A−

CP up to terms quadratic in the ri. The observable ∆A−
CP is given

in (2.12) and represents the famous ∆ACP showing a 2.5σ discrepancy with current data.

A precise measurement of ∆A0
CP could therfore shed light on the ∆ACP discrepancy.

Since π0Ks is a CP-eigenstate into which both the B0 and the B̄0 meson can decay,

we have mixing-induced CP violation in this decay channel. The corresponding observable

SCP is defined via the time-dependent CP asymmetry as

Br(B̄0(t) → f) − Br(B0(t) → f)

Br(B̄0(t) → f) + Br(B0(t) → f)
≡ SCP sin(∆mBt) − CCP cos(∆mBt), (B.6)

where CCP = −ACP is the direct CP asymmetry, up to a sign. Although SπK is not

sensitive to isospin-violation in particular, it will be affected by a solution of the “∆ACP-

puzzle” via a NP contribution r̃EW. The reason is that r̃EW has to come with a large new

weak phase δ in order to have substantial impact on ∆ACP. Including the new electroweak

contributions and neglecting Re(rAEW) we find

SCP(B̄0 → π0K̄0) ≃ sin 2β + 2Re (rC) cos 2β sin γ − 2Re(r̃EW + r̃C
EW) cos 2β sin δ. (B.7)

We collect the theoretical and experimental results for the observables defined here, as well

as the CP-averaged branching ratios and direct CP asymmetries in table 1.

Finally we give the QCDF expressions of the ratios ri used above:

rT = −
∣∣∣∣∣
λ

(s)
u

λ
(s)
c

∣∣∣∣∣
α1(πK)

α̂c
4(πK)

, rC = −
∣∣∣∣∣
λ

(s)
u

λ
(s)
c

∣∣∣∣∣
AKπ

AπK

α2(Kπ)

α̂c
4(πK)

,

rEW =
3

2

AKπ

AπK

αc
3,EW(Kπ)

α̂c
4(πK)

, rC
EW =

3

2

αc
4,EW(πK)

α̂c
4(πK)

, rA
EW =

3

2

βc
3,EW(πK)

α̂c
4(πK)

. (B.8)

C The fit

The basic idea of our fit is quite simple: we calculate within a NP scenario the expected

values for a set of observables as a function of NP parameters qi. We then compare these
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values at each point of a grid in the {qi} parameter space to experimental data. The points

for which the experimental and the theoretical results are closest are most likely to be

realised, i.e. they represent the qi-values for which the theoretical prediction describes best

the experimental measurements. Technically, this comparison is performed by evaluating

at each grid point the χ2 function

χ2({qi}) =
∑

j

(xj theo({qi}) − xj exp)2

σ2
j exp

, (C.1)

where the sum runs over different observables xj. In this notation xj theo represents the

theoretical prediction of the observable and xj exp is the corresponding experimental mean

value. σj exp stands for the 1σ experimental uncertainty (symmetric around the mean).

The non-trivial part of the analysis is the implementation of the theoretical error. Here

we follow the Rfit scheme [7]. Our basic assumption is that experimental data approxi-

matively yield a Gaussian distribution of an observable but a theoretical calculation does

not. The latter depends on a set of input parameters like form factors, decay constants

etc. for which no probability distribution is known. The Rfit scheme corresponds to a

frequentist approach and it assumes no particular distribution for the theory parameters,

only that they are constrained to certain allowed ranges. The theoretical and experimental

uncertainties are then combined in the following χ2 function:

χ2 =
∑

j

{
(|xj exp−xj theo|−σj theo)

2

σ2
j exp

if |xj exp − xj theo| > σj theo,

0 otherwise.
(C.2)

Here we suppress the dependence on the parameters {qi}. Since we often encounter asym-

metric theory intervals, notated as (xi theo)
+σi theo, sup

−σi theo, inf
, we generalise eq. (C.2) to

χ2 =
∑

j





(xj theo−σj theo, inf−xj exp)2

σ2
j exp

if xj exp < (xj theo − σj theo, inf),

(xj exp−(xj theo+σj theo, sup))2

σ2
j exp

if xj exp > (xj theo + σj theo, sup),

0 otherwise.

(C.3)

We calculate σj theo, sup and σj theo, inf using the theory input given in table 8 and ap-

pendix A.3, adding the resulting uncertainties in quadrature.

Using the χ2 function in eq. (C.3) it is possible to define confidence levels (CLs) by

means of the function

CL({qi}) =
1√

2Ndof Γ(Ndof/2)

∫ ∞

∆χ2({qi})
e−t/2tNdof/2−1dt, (C.4)

where ∆χ2 is the χ2 function after subtraction of its minimum: ∆χ2 = χ2−min(χ2). Ndof

is the number of degrees of freedom of free model parameters. Setting CL = 1−68.27/100,

CL = 1− 95.45/100, CL = 1− 99.73/100 and CL = 1− 99.99/100 we find the 1σ, 2σ, 3σ

and 5σ confidence levels respectively.

In our fits we only include quantities which are derived from independently measured

observables, i.e. ∆A0
CP, ∆A−

CP, SCP(B̄0 → π0K̄0) and one out of the three categories of
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ratios RB,K,π (see appendix B). Thereby we select the category which is most sensitive

to the NP scenario under consideration. In this way we can on the one hand avoid to

overweight a particular observable in the fit and on the other hand avoid that the fit is

pulled to large qi-values by discrepancies of quantities carrying only a small sensitivity on

NP. We note here that, since the RB,K,π
c,n are ratios of branching fractions, which we assume

to be Gaussian in experiment, their probability distributions derived from experimental

data are not exact Gaussians as required by eqs. (C.2)–(C.4). Comparing fits to ratios of

branching fractions to fits to the differences of the corresponding branching ratios (which

follow a Gaussian distribution), we have checked that the qualitative outcome of the fits in

terms of preferred regions in the complex qi-planes is not tarnished but that the contour

lines are sharpened due to the reduction of theoretical uncertainties in the ratios.

D SUSY contributions to penguin coefficients

In this section we quote our results for the initial conditions of the Wilson coefficients

C3,...,10, C7γ and C8g and of their mirror counterparts at the SUSY mass scale. We decom-

pose the Wilson coefficients C3,...,10 into contributions Cg from gluon penguins, Cγ from

photon penguins and CLL1
Bq

, CLL2
Bq

, CLR1
Bq

, CLR1
Bq

(q = u, d) from box diagrams:

C3 = −1

3
Cg +

1

2
CLL1

Bu
+CLL1

Bd
, C4 = Cg +

1

2
CLL2

Bu
+ CLL2

Bd
,

C5 = −1

3
Cg +

1

2
CLR1

Bu
+ CLR1

Bd
, C6 = Cg +

1

2
CLR2

Bu
+CLR2

Bd
,

C7 = Cγ + CLR1
Bu

− CLR1
Bd

, C8 = CLR2
Bu

− CLR2
Bd

,

C9 = Cγ + CLL1
Bu

− CLL1
Bd

, C10 = CLL2
Bu

− CLL2
Bd

, (D.1)

The coefficients C ′
i are obtained from these expressions by the replacements L ↔ R and

Cg,γ → C ′
g,γ . In addition Z-penguins contribute to C

(′)
i according to eq. (4.12). The in-

dividual contributions are obtained by calculating chargino-(up-)squark loops and gluino-

(down-)squark loops. We do not consider neutralino-(down-)squark exchange since it is

suppressed with respect to the gluino contributions involving the strong coupling. Our

results are in agreement with similar calculations in the context of semileptonic B de-

cays [97–99] and with the gluino boxes in ref. [85].

We neglect additional operators arising from b → sb̄b transitions because they con-

tribute to B decays only in higher orders. Moreover we neglect box diagrams with more

than one flavour-violating squark line. As for the squarks of the first two generations

we assume approximate degeneracy of the corresponding elements of m̂2
Q̃
, likewise for m̂2

ũ

and m̂2
d̃
. Yukawa couplings of the first two generations are set to zero. In this way the

box diagrams depend on common masses mũL
= md̃L

(mũR
and md̃R

) for the left-handed

(right-handed) squarks of the first and second generation.

We use the conventions of the SUSY Les Houches Accords [83, 84] with only one

exception: The CKM matrix is denoted as V whereas the chargino mixing matrices are

named U and V instead of U and V .
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D.1 Chargino contributions

We use the loop functions written down in [98, 99] and the mass ratio

xurcm =

(
mũr

mχ̃+
m

)2

. (D.2)

Generation indices i, j = 1, 2, 3, squark indices r, s = 1, . . . , 6 and chargino indices m,n =

1, 2 are always summed over in the following. We abbreviate the chargino-quark-squark

couplings by

ΓL
rim = (gRu∗

rkVm1 −Ru∗
r,k+3Vm2Yuk

) (δkj + ∆Uu∗
L,kj)V

∗
ji,

ΓR
rim = U∗

m2 Ru∗
ra (δak + ∆Uu∗

L,ak)V
∗
kl (δlj − ∆Ud∗

L,lj)Y
(0)
dj

(δji + ∆Ud∗
R,ji) . (D.3)

The matrices ∆Ud
L, ∆Ud

R and ∆Uu
L account for chirally enhanced corrections to the tree-

level quark-squark-chargino coupling. Explicit expressions for these matrices are given in

ref. [86]. The quantity Y
(0)
dj

represents the modified Yukawa coupling incorporating tan β-

enhanced corrections (resummed to all orders in perturbation theory). An explicit formula

for Y
(0)
dj

permitting complex SUSY mass parameters can be found in ref. [100].

Neglecting Yukawa couplings of the first two generations we find that C ′
3,...,10 = 0. The

coefficients C3,...,10 are constructed from

Cγ =
α

24
√

2GFπV33V ∗
32(mχ̃+

m
)2

ΓL
r2mΓL∗

r3mh
(0)
3 (xurcm), (D.4)

Cg =
αs

32
√

2GFπV33V
∗
32(mχ̃+

m
)2

ΓL
r2mΓL∗

r3mh
(0)
4 (xurcm), (D.5)

CLL1
Bu

=
α

24s2W
√

2GFπV33V ∗
32

mχ̃+
m
mχ̃+

n
Un1U∗

m1Γ
L
r2nΓL∗

r3mD0(m
2
d̃L
,m2

ũr
,m2

χ̃+
m
,m2

χ̃+
n
), (D.6)

CLL1
Bd

=
α

48s2W
√

2GFπV33V ∗
32

Vm1V∗
n1Γ

L
r2nΓL∗

r3mD2(m
2
ũL
,m2

ũr
,m2

χ̃+
m
,m2

χ̃+
n
), (D.7)

κsb
L =

1

32π2
ΓL

r2nΓL∗
s3m

(
δmnC2(m

2
χ̃+

m
,m2

ũs
,m2

ũr
)

3∑

k=1

Ru
rkRu∗

sk +

δsr

{
2C0(m

2
ũs
,m2

χ̃+
m
,m2

χ̃+
n
)mχ̃+

m
mχ̃+

n
Un1U∗

m1 − C2(m
2
ũs
,m2

χ̃+
m
,m2

χ̃+
n
)Vm1V∗

n1

})
.

(D.8)

The remaining box coefficients vanish. The magnetic and chromo-magnetic coefficients

are given by

C7γ =
1

8
√

2GFV33V ∗
32(mχ̃+

m
)2

ΓL
r2m

(
mχ̃+

m

mb
ΓR∗

r3mh
(0)
2 (xurcm) − ΓL∗

r3mh
(0)
1 (xurcm)

)
, (D.9)

C8g =
1

8
√

2GFV33V ∗
32(mχ̃+

m
)2

ΓL
r2m

(
mχ̃+

m

mb
ΓR∗

r3mh
(0)
6 (xurcm) − ΓL∗

r3mh
(0)
5 (xurcm)

)
. (D.10)
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D.2 Gluino contributions

Here we use the loop functions written down in [97, 98] and

F10(x) =
3 − 3x+ (2 + x) log(x)

12(x − 1)2
. (D.11)

These functions depend on the mass ratio

xgds
=

(
mg̃

md̃s

)2

. (D.12)

Writing

GL
si = Rd

sj

(
δji + ∆Ud

L,ji

)
, GR

si = Rd
s,j+3

(
δji + ∆Ud

R,ji

)
(D.13)

we split the 6× 6 down-squark mixing matrix R into a lefthanded and a righthanded 6× 3

block GL and GR. The matrices ∆Ud
L and ∆Ud

R account for chirally enhanced corrections to

the tree-level quark-squark-gluino coupling [101]. With a sum over all indices understood,

we find (q = u, d)2

Cγ = − 4
√

2ααs

27GFV33V ∗
32m

2
d̃s

GL∗
s2G

L
s3 F6(xgds

), (D.14)

Cg =
α2

s

2
√

2GFV33V
∗
32m

2
d̃s

GL∗
s2G

L
s3 (CFF6(xgds

) − CAF10(xgds
)) , (D.15)

CLL1
Bq

=
α2

s G
L
r3G

L∗
r2

108
√

2GFV33V
∗
32

(
20m2

g̃D0(m
2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃L
) +D2(m

2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃L
)
)
, (D.16)

CLL2
Bq

= − α2
s G

L
r3G

L∗
r2

36
√

2GFV33V ∗
32

(
4m2

g̃D0(m
2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃L
) − 7D2(m

2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃L
)
)
,

(D.17)

CLR1
Bq

= − α2
s G

L
r3G

L∗
r2

54
√

2GFV33V ∗
32

(
m2

g̃D0(m
2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃R
) + 5D2(m

2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃R
)
)
, (D.18)

CLR2
Bq

= − α2
s G

L
r3G

L∗
r2

18
√

2GFV33V ∗
32

(
7m2

g̃D0(m
2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃R
) −D2(m

2
g̃,m

2
g̃,m

2
d̃r
,m2

q̃R
)
)
, (D.19)

κsb
L =

αs

3π

3∑

i=1

GL
r3G

R
siG

R∗
ri G

L∗
s2 C2(m

2
g̃,m

2
d̃r
,m2

d̃s
). (D.20)

The magnetic and chromo-magnetic coefficients are

C7γ =
4
√

2αsπ

9GFV33V ∗
32m

2
d̃s

(
mg̃

mb
GL∗

s2G
R
s3F4(xgds

) −GL∗
s2G

L
s3F2(xgds

)

)
, (D.21)

C8g =

√
2αsπ

2GFV33V ∗
32m

2
d̃s

(
mg̃

mb
GL∗

s2G
R
s3(CAF3(xgds

) − (2CF − CA)F4(xgds
))

−GL∗
s2G

L
s3(CAF1(xgds

) − (2CF − CA)F2(xgds
))

)
,

(D.22)

with the group factors CF = 4
3 and CA = 3.

2The sign of D2 in CLL2
Bq

differs from ref. [73].
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The corresponding expressions entering the Wilson coefficients C ′
i are obtained from

eqs. (D.14)–(D.22) by the simple replacement L↔ R with the exception of the Z-penguin

which reads

κsb
R = −αs

3π

3∑

i=1

GR
r3G

L
siG

L∗
ri G

R∗
s2 C2(m

2
g̃,m

2
d̃r
,m2

d̃s
). (D.23)
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