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Abstract: We calculate the energy spectrum of a confining flux tube that is closed around

a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories

in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum.

We are able to present usefully accurate results for about 20 of the lightest such states,

for a range of l that begins close to the (finite volume) deconfining phase transition at

l
√
σ ∼ 1.6, and extends up to l

√
σ ∼ 6 (where σ is the string tension). We find that

most of these low-lying states are well described by the spectrum of the Nambu-Goto free

string theory in flat space-time. Remarkably, this is so not only at the larger values of

l, where the gap between the ground state energy and the low-lying excitations becomes

small compared to the mass gap, but also down to much shorter lengths where these

excitation energies become large compared to
√
σ, the flux-tube no longer ‘looks’ anything

like a thin string, and an expansion of the effective string action in powers of 1/l no longer

converges. All this is for flux in the fundamental representation. We also calculate the

k = 2 (anti)symmetric ground states and these show larger corrections at small l. So far

all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast

to the situation inD = 2+1, we also find that there are some states, with JP = 0− quantum

numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the

possibility that (some of) these states may encode the massive modes associated with the

internal structure of the flux tube, and we discuss how the precocious free string behaviour

of most states constrains the effective string action, on which much interesting theoretical

progress has recently been made.
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1 Introduction

The idea that the strong interactions may be described by a string theory is even older

than Quantum Chromodynamics, e.g. [1, 2], and the idea that gauge theories (at least

in the planar limit) may have such a description is only a little younger [3]. The more

recent and radical version of this idea is gauge-string duality [4, 5]. To learn something

about this string theory it is natural to start by focusing upon any degrees of freedom
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that are manifestly string-like and, in linearly confining theories such as SU(N) gauge

theories in D = 2 + 1 and D = 3 + 1, these are long confining flux tubes. One can ask

what effective string theory describes their dynamics. Recently there has been substantial

analytic progress towards answering this (old) question which, roughly speaking, tells us

that the dynamics governing very long flux tubes is, to a certain approximation in powers

of 1/l, that of a Nambu-Goto free bosonic string theory [6–15]. (We shall review this

in more detail below.) At the same time our numerical calculations of the the low-lying

excitations of closed flux tubes in D = 2 + 1 [16, 17] have shown that all the calculated

energies are remarkably close to those of the free bosonic string theory even when the

flux tube length l is not much greater than its width so that an expansion in powers of

1/σl2 (where σ is the string tension) no longer converges. Moreover the fact that we have

not observed additional massive string modes associated with the non-trivial structure of

the flux-tube, suggests that these interact very weakly with the usual massless stringy

modes. These complementary numerical and analytic results strongly suggest that the

effective string action in D = 2 + 1 SU(N) gauge theories is some small perturbation

about the Nambu-Goto action (in flat space-time), so that the latter, rather than the

traditional classical string configuration, should be the appropriate starting point for any

analytic investigation.

In this paper we extend our calculations to 3 + 1 dimensions. As in 2 + 1 dimensions,

we close our flux tubes around a spatial torus of length l so as to stabilise them at a chosen

length. Such flux tubes have non-trivial rotational properties in 3 spatial dimensions and

hence a richer spectrum than in 2 spatial dimensions. Thus, despite the fact that our

calculations turn out to be less accurate than in D = 2 + 1, we are able to obtain usefully

accurate results on a substantial number of low-lying eigenstates. What we shall show is

that most of these states are well-described by the Nambu-Goto model down to very short

flux tube lengths, just as in D = 2 + 1. However we shall also find that a few states, with

specific quantum numbers, are very far from the Nambu-Goto prediction, leaving it unclear

whether they approach the free bosonic string value as l increases or not. We discuss in

some detail the possibility that this is a signal of the massive modes that had eluded us in

our earlier D = 2 + 1 calculations.

We shall begin, in section 2, by summarising the theoretical background and briefly

describing where the analytic calculations of effective string theories now stand. In section 3

we turn to the technicalities of our numerical calculation. We describe the lattice Monte

Carlo set-up, how to calculate the eigenspectrum of closed flux tubes, the specific lattice

operators that we use, and the quantum numbers of the states. We finish section 3 with

some brief remarks designed to place our calculations in the context of earlier lattice work.

We then turn to our results in section 4. We begin, in section 4.1, with an analysis of how

the (absolute) ground state energy of such a closed flux tube varies with its length l. We

compare our values of the energy to the free string prediction and fit the observed (small)

deviation to some theoretically motivated correction terms. In section 4.2 we consider

non-zero momentum along the flux tube and calculate the energies of the lightest states in

each such sector. In section 4.3 we calculate a number of excited state energies. It is here

that we shall identify and discuss a number of states with energies very far from the free
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string prediction. In section 4.4 we briefly deviate from the main theme of this paper and

consider the properties of the k = 2 (anti)symmetric ground states. Finally, we discuss the

implication of these results in section 4.5. Section 5 contains our conclusions.

An important aim of our work is to provide ‘data’ that can be used to inform theoretical

analyses of the effective string action. While we do attempt to provide comparisons with

those analyses available to us at the time of writing, this is an area where there is rapid

current progress, and other comparisons may soon be of interest [18]. So to maximise the

usefulness of our work, we have deliberatively provided in an appendix a comprehensive

tabulation of our numerically determined eigenenergies, in a form that is intended to be

readily usable.

We remark that a brief summary of some of this work has appeared previously in [19].

2 Effective string theory

We are in the confining phase of an SU(N) gauge theory on a 4-torus, with partition

function Z. We label the coordinates by (x,y,z,t). Since space-time is Euclidean we may

in fact choose any co-ordinate as ‘time’ and write Z as a sum over eigenstates of the

Hamiltonian defined on the orthogonal 3-dimensional ‘space’. The same is true for partition

functions including sources, which we define below, and the resulting ‘dual’ descriptions

play an important role both in constraining the effective string theory and in the set-up of

our numerical calculations.

2.1 General considerations

Consider a static fundamental source at ~x = (0, y, z), with a conjugate source at ~x =

(r, y, z). Let τ be the the Euclidean time extent of our 4-torus (with all other tori large).

The partition function for the system with these two sources is

Zss̄(r, τ) =

∫

dA l†(x = r, y, z)l(x = 0, y, z) exp{−S[A]} (2.1)

where l(~x) is a Polyakov loop. (The traced path-ordered exponential of the gauge potential

along a path that encircles the t-torus at ~x = (x, y, z), which is the phase factor arising

from the minimal coupling, jµAµ = j0A0, of our static source.)

If r ≫ 1/
√
σ there will be a flux tube between the sources which, as it evolves in time,

sweeps out a sheet bounded by the periodic sources. This sheet clearly has the topology

of a cylinder. The partition function can be written as a sum over energy eigenstates

1

Z
Zss̄(r, τ) =

∑

n

e−En(r)τ (2.2)

where En(r) is an energy of two sources separated by r. The states are (excited) flux tubes

that begin and end on a source and which evolves around the t-torus.

There is another way to interpret Zss̄(r, τ). Take x to label the ‘time’, so l is now a

Wilson line that winds around what is now a spatial torus of length τ . What Zss̄(r, τ)

represents, in this point of view, is a correlation function whose intermediate states consist
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of flux tubes that wind around this same ‘spatial’ torus of length τ and propagate the

distance r between the two Wilson lines. This partition function can therefore be written

as a sum over these energy eigenstates

1

Z
Zss̄(r, τ) =

∑

n,p

cn(p, τ)e−Ẽn(p,τ)r (2.3)

where Ẽn is an energy of an (excited) flux tube that winds around a spatial torus of

length τ . Ẽn and En are different functions because the flux tubes have different boundary

conditions (although later on we shall use En for both). Since the operators l are localised

at y, z, the winding flux tubes are delocalised in transverse momentum, and we have made

explicit in eq. (2.3) the sum over that momentum. The cn are the wave-function factors for

the overlap of a state |n, p〉 on the state obtained by applying the operator l to the vacuum

state |vac〉: cn = |〈vac|l†|n, p〉|2.
Suppose that we have an effective string theory, governed by an effective action Seff ,

which reproduces the long distance physics of flux tubes. Then the string partition function,

taken over the r×τ cylinder considered above, should reproduce the flux tube contribution

to the field-theoretic partition function in eqn( 2.1):

Zcyl(r, τ) =

∫

cyl=r×τ
dSe−Seff [S] =

1

Z
Zss̄(r, τ) (2.4)

where we integrate over all surfaces S spanning the cylinder. From eq. (2.4) we see that

Zcyl(r, τ) can be written as a sum over open flux tube states as in eq. (2.2). This is nothing

but a Laplace transform in τ of Zcyl(r, τ). So if we have a candidate string action, Seff [S],

we can perform this Laplace transform and extract a prediction for the the open flux tube

energies En(r). We can also express Zcyl(r, τ) as a sum over closed flux tube states using

eq. (2.3). This is a Laplace transform in r of Zcyl(r, τ), and so a candidate Seff [S] will

imply a prediction for the the closed flux tube energies, Ẽn(p, τ). However in this case the

energies are not all independent: the relationship between energy eigenstates that differ

only by their transverse momentum p is determined by Lorentz invariance. (In fact one can

show that doing the integral over p turns eq. (2.3) into a sum over Bessel functions [6, 20].)

There is no reason that, for some arbitrary choice of Seff [S], the Laplace transform of

Zcyl(r, τ) in r should reproduce an energy spectrum that satisfies this relationship. As first

realised in [6], this provides a powerful constraint on the permitted form of the effective

string action.

It was then observed in [12] that the constraints arising from the above open-closed

duality associated with a cylinder can be extended to other geometries that are less obvious

from a field-theoretic perspective. In particular one can extend the analysis to an r × τ

torus [12]. A world sheet spanning such a torus corresponds to a closed flux tube of length

r propagating over a time τ or one of length τ propagating over a time r. Thus we have a

closed-closed string duality:

Ztorus(r, τ) =

∫

T 2=r×τ
dSe−Seff [S] =

∑

n,p

e−Ẽn(p,τ)r =
∑

n,p

e−Ẽn(p,r)τ (2.5)
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which turns out to provide useful new constraint on Seff [S] [12]. It may perhaps be that

we have not exhausted all the possibilities and that other boundary conditions and set-ups

may provide further useful constraints.

This general discussion needs some qualifications. Our effective string theory is in 2+1

or 3 + 1 dimensions and far from the critical dimension where we can consistently define a

string theory. However the resulting anomalies, which show up in different ways depending

on how one ‘gauge-fixes’ the diffeomorphism invariance in one’s calculation, typically die off

at long distances [21] (although the implications of this are not unambiguous), and when

one considers smooth fluctuations around a long string [22]. Thus it can make sense, at

least technically, to consider a string path integral over single large surfaces, in an effective

string theory approach outside the critical dimension [22]. Since this represents the world

sheet swept out by a single long fluctuating string, this means that an effective string

theory is limited to describing the dynamics of a single long fluctuating flux tube. This

is clearly an important physical limitation. In reality, a sufficiently excited flux tube can

decay into a flux tube of lower energy and a glueball, and such states inevitably appear in

the field-theoretic sum over states in eq. (2.2) and eq. (2.3). In the string picture a glueball

is a contractible closed loop of string whose length is O(1/
√
σ) (for light glueballs). There

is no guarantee that an effective string theory can consistently describe such extra small

surfaces. One can partially circumvent this by only considering low-lying string states

which are too light to decay:

En(r) −E0(r) ≪ mG (2.6)

where mG is the energy of the lightest glueball. (Or of the lightest state composed of a

flux loop and its conjugate, if that is lighter.) However even such states will be affected by

mixing through virtual glueball emission, which corresponds to small handles on our large

surface — again something that would be problematic for the string theory.

There is of course a limit in which mixings and decays do vanish, and that is the

N → ∞ limit. In the SU(∞) theory one can consistently discuss a partition function over

states containing a single flux-tube, as in eqs. (2.2), (2.3), and ask if it is given by an

integration over single surfaces with some effective string action. It is then also plausible

that as we move continuously away from that limit, to finite N , the corrections will be

small, so that it makes sense to analyse all SU(N) gauge theories within such an effective

string framework [12]. The fact that there is very little dependence on N in the low-lying

flux tube spectrum, both in D = 2 + 1 [16, 17] and in D = 3 + 1 (this paper), lends

credibility to this assumption.

Consider a flux tube that winds around a spatial torus of length l. The excited states

of this flux tube are obtained from the ground state, E0(l), by exciting some of the modes

living on the flux tube. If the excited mode is massive we expect the energy to be

E(l) = E0(l) +O(
√
σ). (2.7)

If the excited mode is massless, we would expect the extra energy to equal the (longitudinal)

momentum which, for bosons, is quantised to be p = 2πk/l; k = ±1, . . . by periodicity. So
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we then expect

E(l) = E0(l) +O
(π

l

)

. (2.8)

So once our flux tube is long enough, with π/l ≪ √
σ, its lightest excitations are given

solely by the excitations of the massless modes. One should therefore be able to construct

an effective string theory solely out of its massless modes if what we want is a description

of the low-lying spectrum of long flux tubes.

In general we expect modes to be massless for symmetry reasons. In the case of a flux

tube there are D − 2 obvious massless modes. These are the Goldstone modes that arise

from the fact that once we have specified the location of our flux tube, we have broken

spontaneously the translation invariance in the D−2 directions transverse to the flux tube.

So one usually starts with an effective bosonic string theory involving just these Goldstone

fields. By comparing with the numerical spectrum at large-l one can see if the presence of

other, less obvious, massless modes is indicated.

In practice most numerical work has involved the ground state energy, E0(l). The

massless modes, when quantised, contribute O(1/l) zero-point energies to E0(l). Summing

over frequencies, gives the ‘universal Lüscher correction’ [23, 24]

E0(l) = σl − c

l
, c =

π(D − 2)

6
: bosonic (2.9)

where c is proportional to the central charge of the string theory and will differ from

the bosonic value shown if other massless modes are present. For example, one expects

it to be zero in the case of N = 1 SUSY.1 (While this is for closed flux tubes, there is

a similar expression for open flux tubes.) There have been increasingly accurate lattice

determinations of c over the last 25 years that leave little doubt that in pure gauge theories

the only massless modes on the flux tube are indeed the transverse Goldstone modes.

To proceed with explicit computations, one needs to fix convenient coordinates to

describe the surface in the path integral. This ‘gauge-fixing’ of the fundamental diffeomor-

phism invariance typically makes the constraints that follow from this string symmetry less

obvious. Here we follow the ‘static gauge’ approach of [6, 12, 23, 24] and do not discuss

the general effective string approach of [22], which has been used in [7–11, 13–15] to obtain

comparable results (in ‘conformal gauge’).

Suppose we are integrating over the surfaces of the cylinder discussed above. There is

a minimal surface which can be parameterised by x ∈ [0, r] and t ∈ [0, τ ]. Other surfaces

are specified by a transverse displacement vector h(x, t) that has two components in the

(y, z) directions (but only one in D = 2+1). This way of parameterising a surface is called

‘static gauge’. We can now write the effective string action in terms of this field h and the

integral over surfaces becomes an integral over h(x, t) at each value of (x, t) ∈ [0, r]× [0, τ ].

Since the field h is an integration variable in (0,∞), we can take it to be dimensionless.

Moreover, since the action cannot depend on the position of the flux tube (translation

invariance), it cannot depend on 〈h〉 but can only depend on ∂αh where α = x, t. That is

to say, schematically,

Seff [S] −→ Seff [h] −→ Seff [∂h] (2.10)

1We thank Ofer Aharony for this observation.
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and we can perform a derivative expansion of Seff in powers of derivatives of h: (very)

schematically

Seff = σrτ +

∫ τ

0
dt

∫ r

0
dx

1

2
∂h∂h +

∑

n=2

cn

∫ τ

0
dt

∫ r

0
dx(∂h)2n (2.11)

where the derivatives are with respect to x and t and indices are appropriately contracted.

The coefficients cn have dimensions [length](2n−2) to keep the terms dimensionless. So we

can expect that for the long wavelength fluctuations of a long string, such a higher order

term will make a contribution to the energy that is down by O(1/(σl2)n) compared to

the leading linear piece and so the importance of these terms is naturally ordered by the

number of derivatives. All this is entirely analogous to the familiar way chiral Lagrangians

depend on their Goldstone fields. And just as the applicability of chiral Lagrangians is

typically bounded by the energy scale of the lowest resonance, this derivative expansion

is designed to capture the physics on energy scales smaller than the O(
√
σ) dynamical

mass scale.

For a surface with a boundary, like a cylinder, there can also be operators localised

on the boundary, which contribute odd powers of 1/r, and these we have ignored. Since

we are interested in the spectrum of winding strings, that can be obtained from the torus

geometry which has no boundaries, it is safe for us to do so.

Note that our chosen ‘static-gauge’ parameterisation does not work for general surfaces.

To describe a string with an ‘overhang’ or any kind of ‘back-tracking’, the field h(x, t) would

have to multivalued, which is something the standard treatments do not allow. That is to

say, we arbitrarily exclude such rough surfaces from the path integral. For a flux tube, its

finite width provides a physical lower distance cutoff on such fluctuations: any overhang

that is within a distance . 1/
√
σ will in effect be a fluctuation in the intrinsic width of

the flux tube i.e. a massive mode excitation. Any backtracking/overhang that is larger

will increase the length by ∆l > 1/
√
σ and hence the energy by ∆E ∼ σ∆l >

√
σ. In

both cases the associated excitation energies will be much greater than the O(1/l) gap

to the stringy modes, once l is large enough. Thus this should not be a significant issue

for the long wavelength massless oscillations we have discussed above. But it needs to be

addressed in any analytic treatment that aims to be more ambitious than that.

2.2 Gaussian action

The first non-trivial term in our effective string action in eq. (2.11) is the Gaussian piece:

Sgauss
eff = σrτ +

∫ τ

0
dt

∫ r

0
dx

1

2

∑

α=x,t

∂αh∂αh (2.12)

It has the fewest derivatives and so will provide the leading large l correction to the linear

piece of the string energy. Since the action is Gaussian one can evaluate Zcyl exactly, giving

Zcyl(r, τ) = e−σrτ |η(q)|−(D−2) : q = e−πτ/r (2.13)

in terms of the Dedekind eta function

η(q) = q
1

24

∞
∏

n=1

(1 − qn). (2.14)
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(See e.g. [6] whose notation we borrow.) If we expand the product in eq. (2.14) we have a

sum of powers of q, which, using q = e−πτ/r, becomes a sum of exponentials in τ . This is

precisely of the form given in eq. (2.2). If we match this sum to eq. (2.2), we obtain the

prediction

En(r) = σr +
π

r

{

n− 1

24
(D − 2)

}

: Gaussian (2.15)

for the energy levels (as well as a prediction for their degeneracies). This is the exact result

for the energy levels of a string with ends fixed to static sources, a distance r apart, for

the case of a Gaussian Seff . We note that the excitation energies display an O(1/r) gap as

expected from eq. (2.8).

To obtain a corresponding prediction for closed strings, we use the Dedekind eta func-

tion’s modular invariance under q = exp{−πτ/r} → q̃ = exp{−4πr/τ}. This allows us to

rewrite the expression for Zcyl in eq. (2.13) as a sum of exponentials in r rather than in τ .

However this sum turns out not to be precisely of the form shown in eq. (2.3), where the

eigenstates fall into subsets that are related by Lorentz invariance (so that, for example,

their energies satisfy the usual energy-momentum dispersion relation). Thus a Gaussian

Seff does not encode the open-closed string duality exactly and cannot be considered as a

candidate for an exact description of strings on a cylinder. However if, instead, we view the

Gaussian Seff as an approximation for long closed strings, we can expand the momentum

dependence in eq. (2.3) in powers of p/στ , and then match to this approximate form. We

thus obtain a prediction for the closed string energy levels,

Ẽn(τ) = στ +
4π

τ

{

n− 1

24
(D − 2)

}

+O

(

1

τ2

)

: Gaussian (2.16)

and also for the overlaps cn [6].

The O(1/r) correction to the leading linear term in E0(r) in eq. (2.15) is the famous

Lüscher correction [23, 24] for a flux tube with ends fixed on static sources. Physically it

arises from the regularised sum of the zero-point energies of all the quantised oscillators

on the string. It depends only on the long wavelength massless modes and so is universal:

any bosonic string theory in which the only massless modes are the transverse oscillations

will have precisely this leading correction. The same applies to the O(1/τ) correction to

the leading linear term in Ẽ0(τ) in eq. (2.16).

Although the above results for En(r) are obtained in the Gaussian approximation to

Seff [h], this approximation becomes exact as r → ∞, and these predictions for the leading

O(1/r) correction are exact and universal. And similarly for Ẽn(τ) as τ → ∞.

2.3 Nambu-Goto action

A string theory that is simple enough to have a calculable energy spectrum [25] is the

free-string Nambu-Goto model in flat space time:

Z =

∫

dSe−κA[S] (2.17)

where we integrate over all surfaces, with the action proportional to the invariant area. A

free string theory is not necessarily unrealistic as an effective string theory: after all, we
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recall that at N = ∞ confining flux tubes do not interact. Moreover we have found that the

flux tube spectrum in D = 2+1 is remarkably close to the Nambu-Goto spectrum [16, 17].

For these reasons we shall use this model as our main point of comparison.

Consider a string winding once around the x-torus. Working in static gauge, perform

a Fourier decomposition of h(x, t). Upon quantisation the coefficients become creation

operators for massless ‘phonons’ on the string with momenta ±2πk/l along the string

and energy 2πk/l. (The k = 0 mode is not included since it corresponds to a shift to a

different transverse position of the whole string i.e. to another vacuum of the spontaneously

broken symmetry.) There are 2 transverse directions, so h is a 2-component vector and

the phonons carry angular momentum of ±1. We call positive momenta left-moving (L)

and the negative ones right-moving (R). Let n±L(R)(k) be the number of left(right) moving

phonons of momentum 2πk/l and angular momentum ±1. Define the total energy and

momentum of the left(right) moving phonons as 2πNL(R)/l, then:

NL =
∑

k

∑

nL(k)

k(n+
L (k) + n−L(k)), NR =

∑

k

∑

nR(k)

k(n+
R(k) + n−R(k)), (2.18)

If p = 2πq/l is the total longitudinal momentum of the string then, since the phonons

provide that momentum, we must have

NL −NR = q. (2.19)

The angular momentum around the string is

J =
∑

k,nL(k),nR(k)

n+
L(k) + n+

R(k) − n−L (k) − n−R(k) (2.20)

One can now write down the expression for the energy levels of the Nambu-Goto string:

E2
NL,NR

(q, l) = (σl)2 + 8πσ

(

NL +NR

2
− D − 2

24

)

+

(

2πq

l

)2

(2.21)

where the degeneracies corresponding to particular values of NL and NR will depend on the

number of different states that can be formed from combinations of values of n±L and n±R
that give the same values of NL +NR and q in eq. (2.18). In discussing the states, we shall

often refer to the left and right moving phonon creation operators of (absolute) momentum

2πk/l and angular momentum ±1 as a±k and a±−k respectively, and the unexcited string

ground state as |0〉.
Let us specialise, for simplicity, to q = 0, i.e. NL = NR = n, and make some general

comments.

• The energy En(l) can be expanded for large l in inverse powers of 1/σl2:

En(l) = σl

(

1 +
8π

σl2

(

n− D − 2

24

))
1

2

= σl +
4π

l

(

n− D − 2

24

)

+O

(

1

σl3

)

(2.22)

We note that the first correction to the linear piece is exactly as in eq. (2.16) — as

it should be if it is ‘universal’.
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• The ground state energy becomes tachyonic at small l:

E2
0(l) = (σl)2 − πσ(D − 2)

3
< 0 : σl2 <

π(D − 2)

3
. (2.23)

One can regard this as the Hagedorn/deconfining transition in the Nambu-Goto

model. We note that the length at which this transition occurs, lH
√
σ =

√

2π/3 ≃
1.45, is not accessible in pure gauge theories at large N , because of a first-order

‘deconfining’ transition that occurs at lc
√
σ =

√
σ/Tc ≃ 1.65 [26–28].

• The expansion of the square root expression for the energy En in eq. (2.22) only

converges for σl2 > 8πn (ignoring the negligible D − 2 term). So the more excited

is the state, the larger is the value of l to which we must go to be able to use such

an expansion. The derivative expansion of the action is not uniform in frequency:

it is formal.

• One can show (see appendix C of [6]) that the Nambu-Goto model satisfies open-

closed duality exactly. This is in contrast to the Gaussian string action. We assume

(although we have been unable to locate the proof in the literature) that it also

satisfies the closed-closed duality associated with a world sheet on a 2-torus. Thus, if

these dualities are our only constraints, the Nambu-Goto model is a viable candidate

for providing a consistent effective string action. An important consequence of this

is that where imposing these constraints allows us to completely fix the expansion

coefficients of En(l) up to some order in 1/l, these coefficients will have to be precisely

the same as those obtained by expanding the Nambu-Goto expression in eq. (2.22)

to that order. (Or the corresponding expression for strings with fixed ends.)

Finally we note that a comparison between our lattice results for closed flux-tubes and

the Nambu-Goto spectrum of eq. (2.21) can be seen as analogous to comparing glueball

spectra to Regge trajectories [29, 30]. Specifically, if we focus on excited states for which the

second term in eq. (2.21) is dominant, and if for simplicity we take q = 0, or NR = NL ≡ N ,

then we can write

E2 ≃ 8πσN. (2.24)

This linear relation between the energy squared and the quantum number of the state is

very reminiscent of the M2 ∼ J + n Regge relation that one might expect for glueballs

(the ‘Pomeron’ trajectory) and indeed one immediately sees from eqs. (2.18)–(2.20) that

the maximum value of J increases linearly with the value of N .

2.4 Recent theoretical progress

The seminal work in analysing flux tubes in a string description in static gauge [23, 24] (re-

viewed above) and the later more general Polchinski-Strominger approach using conformal

gauge [22] (not reviewed here) led to an understanding of the universality of the leading

O(1/l) Lüscher correction to the linear growth of the flux tube energy. Until recently there

was, however, very little further analytic progress along these lines.

The situation changed in 2004 when major progress took place within both approaches.
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1. In [6] it was shown that the open-closed duality (discussed above) could be used to

provide useful constraints on the higher order terms in the expansion of the effective

string action. In particular it was shown that in D = 2 + 1 the next, O(1/l3), term

is also universal and that the coefficient is precisely what you get by expanding the

Nambu-Goto square-root expression to that order (as must be the case). In D = 3+1

the coefficient is not fixed but there is a relationship predicted between the coefficients

of the two terms in the effective action that contribute at that order.

2. Simultaneously, the nextO(1/l3) term was calculated within the Polchinski-Strominger

framework in [7, 8] (and also, later, in [9–11]). The same conclusion was reached as

in [6] for D = 2 + 1, but a stronger conclusion was obtained in D = 3 + 1, where the

O(1/l3) term in the action was shown to be universal (and equal to the value in the

Nambu-Goto expansion).

In 2009 further substantial progress was achieved [12] using the static gauge approach

and including the new constraints that arise from the less obvious closed-closed (torus)

duality. In D = 2 + 1 the terms up to and including O(1/l5) have been shown to be

universal (and equal to the Nambu-Goto values) [12]. In D = 3+1 the O(1/l3) contribution

has been shown to be universal [12], in agreement with [7, 8], and the O(1/l5) contribution

to the string ground state (and partition function) has also been shown to be universal.

Moreover, during the writing of this paper, some papers have appeared [13–15] extending

the Drummond-Polchinski-Strominger approach [7, 8, 22] and claiming that the terms up

to O(1/l5) are universal in all the eigenstates.

It is now clear that the effective string theory of long flux tubes is that of the Nambu-

Goto free string theory to quite high order in the derivative expansion.

3 Lattice methodology

In section 3.1 we outline the lattice framework of our calculations. In section 3.2 we

discuss in some detail how we extract the energies of (excited) flux tubes. For the reader

who wishes to skip this sub-section, the important message for interpreting our subsequent

results is that the larger the energy of the flux tube, whether because it is longer or because

it is more highly excited, the larger are the errors. (Particularly the systematic errors

that can be hard to estimate.) In section 3.3 we describe our labelling of the quantum

numbers of the flux tubes and tabulate the corresponding Nambu-Goto description — all

of which is important for understanding our later results. We present the details of our

lattice operators in section 3.4, which the general reader may again wish to omit. Finally

in section 3.5 we provide a very brief and incomplete sketch of relevant earlier work, to

provide some context for our calculations.

3.1 Setup

Our numerical calculations are entirely conventional. In order to remove the troublesome

phase factor in the Minkowski path integral, we perform our calculations in the Euclidean
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theory, and to make the problem finite we work on a hypercubic lattice on a finite hyper-

torus. Schematically,

∫

∏

x∈M4

dφ(x)eiS[φ] →
∫

∏

x∈R4

dφ(x)e−SE [φ] →
∫

∏

n∈T 4

dφL(n)e−SL[φL] (3.1)

where we express the discrete space-time points as x = na or xµ = nµa, where {nµ} is a

D-tuple of integers, a is the lattice spacing, and φL is a dimensionless lattice field variable,

with action SL, chosen so that

φL(x)
a→0−→ a−dim(φ)φ(x)

SL
a→0−→ SE (3.2)

where dim(φ) is the length dimension of the field φ. Because the theory has a finite

mass gap, the leading finite size corrections are exponentially small, and because it is

asymptotically free one can show that the leading finite lattice spacing corrections for the

action we shall use are O(a2).

The gauge degrees of freedom are SU(N) group elements, Ul, that are assigned to

the forward going links, l, of the lattice. (With U †
l for backward-going links.) For a

link that joins the site x to the site x + aµ̂, the link matrix Uµ(x) will transform as

Uµ(x) −→ V (x)Uµ(x)V †(x + aµ̂) under a gauge transformation V (x). To construct a

gauge-invariant action we note that the trace of the product of link-matrices around any

closed path c, Tr
∏

l∈c Ul, is gauge invariant. So the simplest choice for the lattice gauge

action is to use the path that is an elementary square on the lattice, called a plaquette:

S =
∑

p

{

1 − 1

N
ReTrUp

}

(3.3)

where Up is the path-ordered product of link matrices around the plaquette p. The
∑

p

ensures that the action is translation and rotation invariant. Taking the real part of the

trace ensures that it has C = P = +. So our lattice path integral is

Z =

∫

∏

l

dUle
−βS (3.4)

where β is a constant whose value will determine the lattice spacing a. Since

∫

∏

l

dUle
−βS a→0∝

∫

∏

x,µ

dAµ(x)e
− 4

g2

R

d4xTrFµνFµν (3.5)

we see that β = 2N/g2 a→0−→ ∞. In D = 2 + 1 where g2 has dimensions of mass, the

dimensionless bare lattice coupling is ag2 and β = 2N/ag2. Since a smooth large N limit

requires keeping g2N fixed, this means that we must vary β ∝ N2 in order to keep a

approximately fixed as we vary N .

To calculate the expectation value of some functional Φ[U ] of the gauge fields, we

generate a set of ng gauge fields {U I}; I = 1, . . . , ng distributed with the Boltzmann-like
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action factor included in the probability measure, i.e. dP ∝ ∏

l dUl exp{−βS[U ]}. We use

a Cabbibo-Marinari algorithm applied to the N(N − 1)/2 SU(2) subgroups of the SU(N)

matrix, with a mix of standard heat-bath and over-relaxation steps. We can now calculate

the expectation value of some functional Φ[U ] of the gauge fields as follows:

〈Φ〉 =
1

Z

∫

∏

l

dUlΦ[U ]e−βS =
1

ng

ng
∑

I=1

Φ[U I ] +O

(

1√
ng

)

(3.6)

where the last term is the statistical error.

3.2 Calculating energies of closed flux tubes

We begin by recalling the standard decomposition of a Euclidean correlator of some oper-

ator φ(t) in terms of the energy eigenstates of the Hamiltonian H:

〈φ†(t = ant)φ(0)〉 = 〈φ†e−Hantφ〉 =
∑

i

|ci|2e−aEint

t→∞
= |c0|2e−aE0nt (3.7)

where the energies are ordered, Ei+1 ≥ Ei, with E0 that of the ground state. The only

states that contribute are those that have overlaps cj = 〈vac|φ†|j〉 6= 0, so we need to

match the quantum numbers of the operator φ to those of the state we are interested in,

which here is a flux tube winding around the x-torus, of length l = lx = La.

The simplest such operator is the elementary Polyakov loop:

lp(nt) =
∑

ny ,nz

Tr

{

L
∏

nx=1

Ux(nx, ny, nz, nt)

}

(3.8)

where we take a product of the link matrices in the x-direction once around the x-torus, and

the sum over translations projects onto zero transverse momentum (py, pz) = (0, 0). The

operator is invariant under translations in x and therefore has zero longitudinal momentum

px = 0. It is invariant under rotations about its axis and so has J = 0. It is clearly invariant

under parity (accompanied where necessary by charge conjugation C to reverse the flux).

Clearly we will need to use deformed versions of the Polyakov loop to access non-trivial

quantum numbers for the flux tube (as discussed in detail later on).

An operator like the Polyakov loop which winds once around a torus has zero overlap

onto states such as glueballs that are localised and which are described by operators con-

structed around closed loops that can be continuously contracted to a point. This orthogo-

nality is enforced by a center symmetry that corresponds to SU(N) gauge transformations

that are periodic — on the torus — up to an element z ∈ ZN . These leave any contractible

loop, lc, invariant but not ones with unit winding, lp → zlp. Thus 〈l†clp〉 = z〈l†clp〉 = 0 but

only as long as this center symmetry is not spontaneously broken. As we decrease l there

is a critical length lc = 1/Tc, where Tc is the usual deconfining temperature, below which

this center symmetry is spontaneously broken and we are in a ‘deconfining’ phase in which

we no longer have confining flux tubes around the x-torus. (Although large Wilson loops
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orthogonal to x continue to display a confining area law.) In this paper we always restrict

l to be > lc.

So, having chosen a suitable operator φ, we calculate its correlator using eq. (3.6)

with Φ = φ†(t)φ(0). This will produce an estimate of 〈φ†(t)φ(0)〉 with a finite statistical

error. To extract a value of aE0 using eq. (3.7), we need to have significant evidence for

the exponential behaviour ∝ e−aE0nt, over some range of t = ant and this range needs

to begin at small enough nt that the decreasing exponential is still clearly visible above

the statistical errors. (In a pure gauge theory one can show that the error tends to a

non-zero value at large t, so that the error/signal ratio increases exponentially with t.)

This is obviously harder to achieve for larger E0, so the corresponding systematic error will

be larger for heavier states. However, even for the lightest state we need the normalised

overlap to be close to unity, |c0|2 ≃ 1, to obtain an accurate energy estimate: our operator

needs to be a good wavefunctional for the state whose energy we are interested in, so that

its correlator is dominated by this state even at small nt. For the ground state of the

flux tube this can be achieved by using the Polyakov loop operators in eq. (3.8), but with

‘smeared’ [31, 32] and ‘blocked’ [33, 34] link matrices replacing the elementary ones. These

produce winding operators that are smooth on various transverse size scales including ones

that are comparable to that of the physical flux tube, and, not surprisingly, this works well

for the ground state which presumably has a smooth wavefunctional. Starting with this

basis of operators, {φi; i = 1, . . . , n}, we consider the vector space Vφ generated by them,

calculating all the correlation functions 〈φ†i (t)φj(0)〉, and determine the linear combination

that is the ‘best’ operator ψ0 by a variational criterion

〈ψ0
†(t0)ψ0(0)〉 = max

φ∈Vφ

〈φ†(t0)φ(0)〉 = max
φ∈Vφ

〈φ†e−Ht0φ〉 (3.9)

where t0 is some convenient value of t. Then ψ0 is our best variational estimate for the true

eigenfunctional of the ground state. We now use the correlator 〈ψ0
†(t)ψ0(0)〉 in eq. (3.7)

to obtain our best estimate of the ground state energy. This generalises in an obvious way

to calculating excited state energies. One constructs from Vφ the vector space orthogonal

to ψ0, repeats the above within this reduced vector space, and obtains ψ1 which is our best

variational estimate for the true eigenfunctional of the first excited state. And so on.

For the ground state the main systematic error is to overestimate aE0 by extracting

it at a value of t where there is still a significant contribution from excited states. This

becomes an increasing problem as we increase l and hence aE0(l), and so decrease the range

of t where the statistical errors are small compared to the ‘signal’. At the same time the gap

to the excited states decreases ∝ 1/l, increasing their relative contribution to the correlator.

This is the main obstacle to accurate calculations of flux tube energies for very large l and

can obviously undermine an attempt to calculate corrections to the large-l behaviour of

E0(l). We therefore restrict our calculations of the ground state energy to values of l where

we estimate this systematic error to be smaller than our quoted statistical errors.

For excited states this systematic error is less easily avoided because aEi(l) is often

quite large for all values of l. One therefore needs to be aware of this in any comparison

between our results and the predictions of an effective string model in this paper. In
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addition there is now an additional error that arises from the fact that our best variational

wavefunctional, ψi, may contain some admixture of lighter eigenstates. At sufficiently large

t these will dominate and give an energy that is lower than Ei. Note, however, that if the

state is the lightest one for some given quantum numbers, then this will not occur and we

will often refer to these states as ‘ground states’, at least when there is no risk of confusion

with the absolute ground state. Such ground states will be of particular interest to us

because their calculation is typically much more reliable.

Both the systematic errors described above can be controlled if ψi is a very good wave-

functional for the corresponding excited state. In that case there will be a useful range

t ∈ [t1, t2] where the desired state dominates because the small admixture of higher excited

states has died away by a small value of t1 and any small admixture of lower states only

becomes significant beyond t2. That we are able to obtain usefully large overlaps onto quite

a large number of states with different quantum numbers, is the main technical feature of

the present work. It requires the construction of a large basis of winding operators, a

strategy that proved successful in our earlier calculations of the closed flux tube spectrum

inD = 2+1 [16, 17] and which we describe in detail in section 3.4. The detailed construction

is partly motivated by the range of quantum numbers we wish to encode, and so we turn

to this now.

3.3 Quantum numbers

Consider a confining flux tube, with the flux in the fundamental representation and let it

wind around the x-torus. Its quantum numbers can be chosen as follows.

• The length l = aL of the x-torus around which the flux tube winds.

• The number w of times (modulo N) that the flux tube winds around this torus. In

this paper we shall only consider w = 1, except for the discussion of k-strings in

section 4.4.

• The momentum along the flux tube which is quantised by periodicity to be p = 2πq/l

where q is an integer. Since the string ground state is (presumably) invariant under

longitudinal translations, p 6= 0 will require some non-trivial excitation along the

string with an additional excitation energy. By contrast, transverse momentum p⊥
should simply lead to the usual dispersion relation and so is uninteresting to us, and

we only consider p⊥ = 0. Thus p will always refer to the longitudinal momentum

although we shall sometimes label it by pq, where this increases clarity. Since the

energy does not depend on the sign of q, we will restrict ourselves to q ≥ 0.

• The flux tube can rotate about its symmetry axis and can have a corresponding

angular momentum of J = 0,±1, . . . along that axis.

• There is a ‘transverse parity’, Pt, in the plane that is transverse to the symmetry

axis and which is just like parity in D = 2 + 1: Pt : (y, z) → (y,−z). It is plausible

that the absolute ground state, with energy E0(l), is invariant under reflections, and

so will have Pt = +. Thus the lightest Pt = − state requires a non-trivial excitation

– 15 –



J
H
E
P
0
2
(
2
0
1
1
)
0
3
0

of the flux tube and the difference between the Pt = ± ground state energies will

measure the energy of that excitation. This parity does not commute with the angular

momentum projection since under Pt : J → −J . So when we choose to use this parity

to label our states, we have to use |J | rather than J as the spin label (although we

shall continue to refer to it as J where there is no ambiguity). States with |J | 6= 0

come in degenerate Pt = ± pairs.

• There is also a reflection symmetry across the string midpoint, which defines a cor-

responding ‘longitudinal parity’ that we call Pl; it reverses the momenta of the in-

dividual phonons. (The reversal of the direction of flux is compensated for by the

simultaneous application of charge conjugation, C, which is to be understood from

now on.) Since Pl reverses the momentum it is only a useful quantum number if

p = 0. So when p 6= 0 we label states by Pt, |J | and |p|.

• Under charge conjugation, C, the direction of the flux is reversed. Thus a flux

tube has zero overlap onto its charge-conjugated homologue (the center symmetry

argument again) and so linear combinations of definite C are trivially degenerate.

(Except for SU(2), where C is trivial, and for k-strings when k = N/2.) Thus C is,

by itself, not interesting in general.

Our comparison to the effective string theory will be in static gauge (as described

earlier) and so it is useful to discuss these symmetries and quantum numbers in terms of the

transverse deformation of the string, ~h(x), and the associated phonon creation operators,

a±k , that arise from quantising the coefficients in the Fourier decomposition of ~h(x), and

which carry momentum 2πk/l and spin (around the flux-tube axis) of ±1. The longitudinal

and angular momenta of the flux tube are simply the sum of all the phonon momenta and

spins. Under Pt we have a+
k → a−k ,2 while under Pl we have a±k → a±−k. For later reference

we give in table 1 the explicit phonon content of the lowest-lying states in the free string

Nambu-Goto model.

The above discussion has been for a flux tube in continuous space. The cubic lattice

has implications for angular momentum and the two-dimensional parity, Pt. The relevant

irreducible representations are those of the two-dimensional lattice cubic symmetry [35]

which we denote by C4. It is a subgroup of O(2) that corresponds to rotations by integer

multiples of π/2 around the tube axis. This makes values of angular momenta that differ by

an integer multiple of four indistinguishable on the lattice, and factorizes the Hilbert space

into four sectors: Jmod 4 = 0, Jmod 4 = ±1, Jmod 4 = 2. In the continuum states of nonzero

J are Pt parity degenerate, but on the lattice this is true only for the odd J sector. In

the even J 6= 0 sector the Pt = ± partners will in general experience O(a2) splittings. All

this means we can denote our states by the 5 irreducible representations A1,2, E,B1,2 of C4

whose J and Pt assignments are: {A1 : |Jmod4| = 0, Pt = +} , {A2 : |Jmod4| = 0, Pt = −},
{E : |Jmod4| = 1, Pt = ±} , {B1 : |Jmod4| = 2, Pt = +}, and {B2 : |Jmod4| = 2, Pt = −}. All

the representations of C4 are one-dimensional except for E which is two-dimensional.

2In contrast to D = 2 + 1 where the Pt parity transforms the single ak operator as ak → −ak.
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NL, NR |J | Pt Pl String State

NL = 0,

NR = 0
0 + + |0〉

NL = 1,

NR = 0
1 ±

(

a+
1 ± a−1

)

|0〉

NL = 1,

NR = 1

0 + +
(

a+
1 a

−

−1 + a−1 a
+
−1

)

|0〉
0 − −

(

a+

1 a
−

−1 − a−1 a
+

−1

)

|0〉
2 + +

(

a+

1 a
+

−1 + a−1 a
−

−1

)

|0〉
2 − +

(

a+
1 a

+
−1 − a−1 a

−

−1

)

|0〉

NL = 2,

NR = 0

0 + a+
1 a

−

1 |0〉
1 ±

(

a+

2 ± a−2
)

|0〉
2 +

(

a+

1 a
+

1 + a−1 a
−

1

)

|0〉
2 −

(

a+
1 a

+
1 − a−1 a

−

1

)

|0〉

NL = 2,

NR = 1

0 +
(

a+
2 a

−

−1 + a−2 a
+
−1

)

|0〉
0 −

(

a+

2 a
−

−1 − a−2 a
+

−1

)

|0〉
1 ±

(

a+

1 a
+

1 a
−

−1 ± a−1 a
−

1 a
+

−1

)

|0〉
1 ±

(

a+
1 a

−

1 a
−

−1 ± a−1 a
+
1 a

+
−1

)

|0〉
2 +

(

a+

2 a
+

−1 + a−2 a
−

−1

)

|0〉
2 −

(

a+
2 a

+
−1 − a−2 a

−

−1

)

|0〉
3 ±

(

a+

1 a
+

1 a
+

−1 ± a−1 a
−

1 a
−

−1

)

|0〉

NL = 2,

NR = 2

0 + +
(

a+
2 a

−

−2 + a−2 a
+
−2

)

|0〉
0 − −

(

a+

2 a
−

−2 − a−2 a
+

−2

)

|0〉
0 + +

(

a+
1 a

+
1 a

−

−1a
−

−1 + a−1 a
−

1 a
+
−1a

+
−1

)

|0〉
0 − −

(

a+

1 a
+

1 a
−

−1a
−

−1 − a−1 a
−

1 a
+

−1a
+

−1

)

|0〉
0 + + a+

1 a
−

1 a
+

−1a
−

−1|0〉
1 ± +

[

(a+
1 a

+
1 a

−

−2 + a−2 a
+
−1a

+
−1) ± (a−1 a

−

1 a
+
−2 + a−2 a

+
−1a

+
−1)

]

|0〉
1 ± −

[

(a+

1 a
+

1 a
−

−2 − a−2 a
+

−1a
+

−1) ± (a−1 a
−

1 a
+

−2 − a−2 a
+

−1a
+

−1)
]

|0〉
1 ± +

[

(a+
1 a

−

1 a
+
−2 + a+

2 a
−

−1a
+
−1) ± (a−1 a

+
1 a

−

−2 + a−2 a
+
−1a

−

−1)
]

|0〉
1 ± −

[

(a+

1 a
−

1 a
+

−2 − a+

2 a
−

−1a
+

−1) ± (a−1 a
+

1 a
−

−2 − a−2 a
+

−1a
−

−1)
]

|0〉
2 + +

(

a+

2 a
+

−2 + a−2 a
−

−2

)

|0〉
2 − +

(

a+

2 a
+

−2 − a−2 a
−

−2

)

|0〉
2 + +

[(

a+

1 a
+

1 a
+

−1a
−

−1 + a−1 a
−

1 a
−

−1a
+

−1

)

+
(

a+

1 a
−

1 a
−

−1a
−

−1 + a−1 a
+

1 a
+

−1a
+

−1

)]

|0〉
2 + −

[(

a+
1 a

+
1 a

+
−1a

−

−1 + a−1 a
−

1 a
−

−1a
+
−1

)

−
(

a+
1 a

−

1 a
−

−1a
−

−1 + a−1 a
+
1 a

+
−1a

+
−1

)]

|0〉
2 − +

[(

a+

1 a
+

1 a
+

−1a
−

−1 − a−1 a
−

1 a
−

−1a
+

−1

)

+
(

a+

1 a
−

1 a
−

−1a
−

−1 − a−1 a
+

1 a
+

−1a
+

−1

)]

|0〉
2 − −

[(

a+
1 a

+
1 a

+
−1a

−

−1 − a−1 a
−

1 a
−

−1a
+
−1

)

−
(

a+
1 a

−

1 a
−

−1a
−

−1 − a−1 a
+
1 a

+
−1a

+
−1

)]

|0〉
3 ± +

[

(a+

1 a
+

1 a
+

−2 + a+

2 a
+

−1a
+

−1) ± (a−1 a
−

1 a
−

−2 + a−2 a
−

−1a
−

−1)
]

|0〉
3 ± −

[

(a+

1 a
+

1 a
+

−2 − a+

2 a
+

−1a
+

−1) ± (a−1 a
−

1 a
−

−2 − a−2 a
−

−1a
−

−1)
]

|0〉
4 + +

(

a+
1 a

+
1 a

+
−1a

+
−1 + a−1 a

−

1 a
−

−1a
−

−1

)

|0〉
4 − −

(

a+

1 a
+

1 a
+

−1a
+

−1 − a−1 a
−

1 a
−

−1a
−

−1

)

|0〉

Table 1. Table of the states of the lowest six Nambu-Goto energy levels. These have (rescaled)

momenta q = 0, 1, 2 where q = NR −NL.
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3.4 Operators

To calculate excited states efficiently we need a large basis of operators that explicitly

includes ones that are less symmetric than the simple Polyakov loops. In our D = 2 + 1

calculations [16, 17] we contructed a basis of ∼ 200 operators which provided us with good

overlaps onto the ∼ 10 flux tube states that were light enough to be accessible within

our statistics. In D = 3 + 1 we have two rather than one transverse direction so, very

naively, the corresponding number of operators would be ∼ 2002 = 40000. This is much

too large. Instead we limit ourselves to ∼ 1000 operators which are partly chosen by looking

at which operators turned out to be most important in the D = 2 + 1 calculations. By

projecting these operators to the different quantum numbers of interest, we have matrices

of correlation functions that are no larger than O(100), which is manageable.

The operators we construct have shapes that lead to certain values of J, Pt, Pl, and p.

This is achieved by choosing a linear combination of generalised Polyakov loops whose paths

consist of various transverse deformations of simple Polyakov loops, at various smearing

and blocking levels. All the paths used for the construction of the operators are presented

in table 2 and all together they lead to a basis of around 700 operators. (The blocking

levels for different parts of such an operator need not be the same.) To construct, for

example, an operator with a certain value of the spin J we proceed as follows. Begin with

the operator φα(nµ) that has a deformation that we label as being at an angle α in the

plane transverse to x (assuming the flux tube winds around the x-torus) and that we label

as being located at the site xµ = anµ. We can construct an operator φJ(nµ) that belongs

to a specific representation of C4 by using the formula:

φJ(nµ) =

4
∑

n=1

eiJn π
2 φα=n π

2
(nµ). (3.10)

This construction assumes that we are in the rest frame or in a frame where the momentum

and spin are aligned. In our case, where the spin is aligned along the flux tube, this

means fixing the transverse momentum to zero, which we can achieve by summing over

all transverse spatial translations: φJ(nt, pq, ~p⊥ = 0) ≡ ∑

ny,nz
φJ (nt, nx, ny, nz). It is

straight-forward to show that φJ=0 belongs to either A1 or A2 (depending on its value of

Pt), that φJ=±1 belongs to E, and that φJ=±2 belongs to B1 or B2. The projection onto

certain values of Pt and Pl is demonstrated pictorially in eqs. (3.11), (3.12), (3.13) for an

operator of J = 0, 2, 1 respectively.

φA = Tr

[

j

i

k

]

(3.11)

If i = j = k = +1 then the operator φA projects onto {A1, Pl = +}, if i = +1, j = k = −1

then it projects onto {A2, Pl = +}, if i = −1, j = +1, k = −1 it projects onto {A1, Pl = −}
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Table 2. All the transverse deformations used for the construction of the operators.

and finally, if i = j = −1, k = +1, it projects onto {A2, Pl = −}.

φB = Tr

[

j

i

k

]

(3.12)

If i = j = k = +1 then the operator φB projects onto {B1, Pl = +}, if i = +1, j = k = −1

then it projects onto {B2, Pl = +}, if i = −1, j = +1, k = −1 it projects onto {B1, Pl = −}
and finally, if i = j = −1, k = +1, it projects onto {B2, Pl = −}.

φE = Tr
[

i k iii
]

(3.13)

If k = +1 then the operator φE projects onto {E,Pl = +} and if k = −1 it projects onto

{E,Pl = −}. It is important to note that the above construction does not distinguish

between J and J+4n where n is an integer. Thus when we label a state as J = 0, what we

mean is J = 0,±4,±8, . . ., and similarly for our J = ±1,±2 labels. Usually one can safely

assume that the lightest state will have the lowest value of J , but excited states may well

have higher spins. From now on we shall use the simple J = 0,±1, 2 label, but the reader

should always be aware for what this is a shorthand.

So if we wish to project onto a flux tube that not only has spin J but in addition has

non-zero momentum pq = 2πq/l along its axis, while still having zero transverse momentum

p⊥ = 0, we can perform the sum

φJ(nt, pq, p⊥ = 0) =
∑

~n⊥

eipqnqφJ(nt, nq, ~n⊥). (3.14)

Since the spin component along the axis of a boost is invariant under boosts, such an

operator produces states of the desired spin even though it has not been defined in the rest

frame. Note that since the longitudinal parity flips pq → −pq, it is not a useful quantum

number when pq 6= 0, and in that case we set i = k = 0 in sums like those in eq. (3.11) and

we simply label our states by J or by |J |, Pt.
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Since J = 2 and J = −2 differ by ∆J = 4, the operators for them are identical.

However we can construct lattice operators that have transverse parity Pt = ± as described

above. Hence for even J we shall choose to label the states by |J | and Pt. For odd J , on

the other hand, ∆J 6= 4n and we can use eq. (3.10) to construct orthogonal ±|J | operators.

Since these must be degenerate, we choose to calculate only one of these two states; but

it should be understood that every such odd-J state is automatically accompanied by a

degenerate −J state that we have chosen not to show explicitly.

In terms of our choice of operators, the present work should be regarded as exploratory.

Not surprisingly we will find that the overlaps are not as good as in our earlier D = 2 + 1

study. However for a number of states we do have overlaps |c|2 ≥ 0.9, at which point we

can regard the difficult-to-estimate systematic errors as being under control. Of course,

for heavier states our identification of an ‘asymptotic’ exponential behaviour becomes less

reliable, and therefore so does our estimate of the overlap. On the other hand, in D = 3+1

one has more channels with different quantum numbers than in D = 2 + 1, and each of

these channels has its own ground state(s) which corresponds to some excitation of the

absolute ground state. Since these ground states are afflicted by fewer systematic errors,

this allows us to obtain relatively reliable results for a number of string excitations even

with our poorer overlaps.

3.5 Earlier lattice calculations in D = 3 + 1

Numerical exploration of the stringy nature of open and closed flux tubes, at the level of

testing the Lüscher correction to the ground states, dates back to the mid-1980’s. However

the pioneering calculations for excited string states date to the early-90’s, e.g. [36, 37]. The

interest here was both theoretical and phenomenological: the excited string energy can be

used as a potential in a Schrödinger equation to get predictions for the masses of hybrid

mesons where some of the quantum numbers are carried by excited glue. More or less

simultaneously, there were calculations of Wilson loop expectation values investigating the

match between string theory predictions and what one obtains in various gauge and spin

models by, in particular, the Torino group, e.g. [38, 39]. Expectations of Wilson loops are

transforms of eigenspectra — although care has to be taken with the self-energies associated

with the boundaries — and provide an alternative way to test string models. Indeed it

is in this body of work that one first sees a prolonged and serious focus on matching the

Nambu-Goto model to numerical results.

Much of the work on flux tubes has focused on open flux tubes i.e. the static potential

and its excitations. In this case there is a smooth transition between short-distance pertur-

bative physics (the Coulomb potential) and the long-distance confining physics (the flux

tube). While this transition is potentially of great interest (especially at N → ∞) it can

introduce extra ambiguities in the extraction of the flux tube spectrum. The spectrum of

closed flux tubes, stabilised by closing them around a spatial torus, is a particularly clean

way to investigate the properties of flux tubes, and that is why we have focused on that

approach in both our D = 2 + 1 [16, 17] and D = 3 + 1 calculations.

As far as the eigenspectrum of closed flux tubes inD = 3+1 gauge theories is concerned,

the most ambitious calculation we are aware of is the one in [40] which was part of a larger
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calculation largely focused on the spectrum of open flux tubes [41–43]. This calculation

was in SU(3) and was performed at one value of the lattice spacing and for three values

of the flux tube length, l. The timelike and spacelike lattice spacings were chosen to be

different, with the former quite small, while the spatial lattice spacing was chosen quite

large, a
√
σ ∼ 0.5. The energies of 12 excited states, of various quantum numbers (some

being ground states within their channels) were calculated. The three flux tube lengths

chosen were all quite long, l
√
σ ∈ [4, 8], the intention being to compare with the leading

O(1/l) correction to the linear piece, σl, at large l. The results show an initial tendency to

approach the theoretical Nambu-Goto expectation but then, typically, to overshoot at the

largest value of l. (See figure 2 of [40].) At the larger two values of l a rough agreement is

observed with the theoretically expected level ordering and degeneracies, although there is

an additional fine structure that is still prominent even at the largest value of l. Shortly

after this work a calculation for SU(4) and SU(6) appeared, [44], that focused on the ground

state of the closed flux tube, but also pointed to the qualitative agreement between the first

excited state and the full prediction of the Nambu-Goto model, even at modest values of l.

Our calculations attempt to improve upon these earlier calculations in several ways.

First, our point of view is that the simplest picture should emerge at N = ∞ and we

therefore perform calculations not only for SU(3), but also for SU(5) and SU(6). We find

that the 1/N2 corrections are negligible for N ≥ 3, at our level of statistical accuracy,

which means we can treat our extensive SU(3) calculations as being valid for larger N .

Secondly, what we are interested in is continuum rather than lattice physics. Indeed, the

(spatial) lattice spacing used in [40] was large, and so carried the risk of significant finite-a

corrections. To control these in our calculations we mainly work at a much smaller value

of a, and then explicitly check for O(a2) corrections by performing a calculation at an

even smaller value of a. We find that any dependence on a is negligible and so we can

treat our results as being for the continuum limit. Thirdly, motivated by our D = 2 + 1

calculations [16, 17], which show that the approximate agreement with the Nambu-Goto

spectrum begins at remarkably small values of l, we focus within our calculations mainly on

small to medium values of l, i.e. l
√
σ ∈ [1.8, 4.8], where we can be reasonably confident that

we have the systematic errors under control. As we remarked in section 3.2, as one makes

l larger, the energies of interest become larger, and one runs a rapidly increasing risk of a

systematic error that typically leads to an overestimate of the energy. It appears plausible

to us that this is the source of the large-l overshoot observed in [40]. Since we find that we

can obtain interesting results on the spectrum without venturing to such large l, we choose

not to do so in this study, except for one calculation at l
√
σ ∼ 6.3 which we use both to

check the qualitative behaviour of some states and to ensure that we have some appreciable

overlap with the range of l where analytic expansions in 1/l should be applicable (for the

lightest excited states). In addition, and perhaps most importantly from the technical point

of view, we incorporate a a very large basis of operators in our calculations. Although

the benefits are not as striking as in our earlier D = 2 + 1 calculations, it is primarily

this technical improvement that allows us to maintain usefully good overlaps onto a large

number of excited states at the small lattice spacings where we can confirm that we are

close to the continuum limit.
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N β l/a ∈ a
√
σ lc/a amG

3 6.338 [16,24] 0.12878(69) 11.99(9) 0.448(11)

3 6.0625 [9,20] 0.19485(17) 8.00(2) 0.648(11)

[10,32] 0.19526(38)

5 17.63 [10,16] 0.19664(81) 8.32(5) 0.630(22)

6 25.55 [10,18] 0.20187(27) 8.30(4) 0.588(13)

Table 3. Parameters of our calculations with some corresponding properties of the gauge theories:

the string tension, σ, the deconfining length, lc, and the mass gap, mG.

4 Results

Our calculations of the spectrum of closed flux tubes that wind around a spatial torus of

length l have been performed for the SU(N) groups and inverse bare couplings, β = 2N/g2,

listed in table 3. For orientation we also list some basic physical properties of the lattice

gauge theories at those values of β. First there is the string tension a2σ which we extract

from our calculation of the ground state string energy E0(l). (We fit E0(l) to the Nambu-

Goto expression plus a O(1/l7) correction. The value of a2σ extracted is not sensitive to

any reasonable changes to the fitting function.) This tells us what a is in physical units. To

express a in more intuitive ‘fermi’ units one can set σ to its real world value,
√
σ ∼ 440MeV,

although in all our field theories such units are, of course, fictitious. In these units we see

that most of our calculations are for a ∼ 0.09fm while the SU(3) calculation at β = 6.338

corresponds to a ∼ 0.06fm. These values of a are small enough that the lattice corrections

are, in general, small. We also show the critical value of the flux tube length, l = lc,

below which the flux tube no longer exists because we are in a finite volume (anisotropic)

deconfined phase that is a precise analogue of the finite temperature deconfined phase.

(These values have been obtained by extrapolating/interpolating in β, and for SU(5) in N ,

the values in [26–28].) Our calculations will go down to values of l that are very close to

lc. Here the flux tube should be about as wide as it is long and, naively, no longer looks

anything like a thin string. Finally we list the value of the mass gap amG, which here is

the mass of the lightest scalar glueball. (These values are obtained from the values in [47]

and, for N = 5, in [48].)

We have performed high statistics calculations with a small number of operators in

SU(6) at β = 25.55 and in SU(3) at β = 6.0625. This allows us to obtain very accurate

values for the ground state energy, E0(l), and to analyse its l-dependence in some detail.

However to calculate the energies of excited flux tubes we need much better overlaps on

the excited states than these calculations provide, and this we attempt to achieve with our

much larger basis of operators, as discussed above, and with correspondingly lower statistics

(because of the expense of such calculations). We perform the latter calculations in SU(3)

at both values of β, so as to allow an explicit control of lattice spacing corrections. These

corrections turn out to be small, so we only need to perform a similar SU(5) calculation,

which allows us to control finite-N corrections, at the coarser value of a, as listed in
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table 3. We shall see that the finite-N corrections are also small. This means we can focus

our calculations of the energy spectrum on one N and on one lattice spacing, i.e. SU(3) at

β = 6.0625, without loss of generality. Here we cover a much larger range of l and have

much higher statistics, leading to a more reliable extraction of flux tube energies. We list

separately the value of a
√
σ extracted from this large operator calculation in table 3, since

this is what we shall use in our later analysis of the excited states. We see that this value is

considerably more accurate than the other calculations with a large number of operators.

We begin with a detailed analysis of our high statistics calculations of the ground

state energy, E0(l). We then move on to the lightest states with different non-zero values

of longitudinal momentum, pq = 2πq/l, for q = 1, 2. These, as we have seen, must possess

non-trivial excitations, and we compare the excitation energy to the predictions of the free-

string Nambu-Goto model. Next we consider those states which correspond to the first,

and sometimes second, excited energy levels of the pq = 0 and pq = 2π/l sectors, and whose

energies we are able to calculate with some reliability. In one particular case we also look

at excited states in the pq = 4π/l sector. We follow this with a brief aside on the ground

state of the k = 2 flux tube in SU(6). Finally we compare our results to the theoretical

predictions described in section 2.

4.1 Ground state

In this section we analyse the l-dependence of the ground state energy, E0(l), of a flux

tube that winds once around a spatial torus. Our aim is to see what we can say about the

universal corrections to the leading linear piece, σl. Previous lattice calculations, both for

open and for closed flux tubes, e.g. [41–43, 45, 46], have provided good evidence that the

coefficient of the O(1/l) Lüscher correction has the value appropriate to a simple bosonic

string theory where the only massless modes are those of the transverse fluctuations, and,

moreover, that this continues to be the case for larger N [44]. Motivated by the recent

theoretical developments summarised above [6–8, 12], we shall see if we can obtain any

information on the coefficients of the higher order terms that we now believe to be universal.

In addition, motivated by what we have observed in D = 2 + 1 [16, 17], we shall test how

well the Nambu-Goto free string theory describes the ground state energy.

The calculations in this subsection differ from our main calculations in that we use

a small basis of operators which we know, from previous experience, will provide a very

good overlap onto the ground state. Such calculations are much faster and this enables

us to achieve a greater statistical accuracy for E0(l). We will present two calculations,

one in SU(3) and one in SU(6). The SU(3) calculation is at β = 6.0625. Here one finds

a
√
σ ≃ 0.2, which translates to a ≃ 0.09fm if one wants to use such semi-fictitious units.

Thus this is a small value of a, where one expects lattice spacing corrections to be small.

We perform calculations for l/a ∈ [9, 20]. The smallest length is only just above the first-

order finite-volume deconfining transition which, at β = 6.0625, occurs at lc/a ≃ 8 [26–28].

The SU(6) calculation is at β = 25.55 which, as we see in table 3, corresponds to roughly

the same value of a in units of
√
σ. The value of lc is slightly larger than in SU(3), and the

range of flux tube lengths studied is l/a ∈ [10, 18].
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We shall begin by using the SU(3) calculations to quantify some of the systematic

errors, so as to ensure that they are small in our later calculations of the flux tube spectrum.

The first part of this section is devoted to this issue, which can be skipped by the reader

who is primarily interested in our results.

4.1.1 Systematic errors

The systematic errors we focus upon are those associated with finite volume effects and

with the extraction of an energy from a given correlation function.

The finite volume corrections are of two kinds: those that arise from the finite spatial

extent and those that arise from the finite temporal extent. An example of the former

is the emission by a flux loop of a virtual glueball that propagates around one of the

orthogonal spatial tori, of length ls, before being reabsorbed. This will alter the flux tube

energy by ∆E ∝ g̃2e−mGls where mG is the mass of the glueball. If ls is small enough then

the lightest state will be a combination of a flux loop and a conjugate loop and in that

case the leading large-ls contribution will come from its propagation around an orthogonal

torus, giving ∆E ∼ g̃2e−2E0(l)ls . So we expect that as we reduce l we will have to have a

larger spatial volume to minimise these corrections. Since we expect that g̃2 ∝ 1/N2 all

these finite volume corrections should disappear as N → ∞ (as long as the volume is large

enough that we remain in the usual confining phase) but will be present at finite N .

The finite temporal extent lt means that the partition function Z in the denominator of

eq. (3.6) receives contributions not just from the vacuum but from other states propagating

around the time torus. (It is a ‘finite temperature’ partition function.) These same states

will contribute to the path integral that appears in the numerator of eq. (3.6). At N = ∞
colour singlet states do not interact, and so this extra contribution will simply cancel

between numerator and denominator. (In this sense there is no T dependence at N = ∞
in the confining phase.) However at finite N a state propagating around the time torus

will interact with the flux tube that propagates between the Wilson line operators in the

numerator and this will imply an incomplete cancellation and a shift in the flux tube energy.

Typically such corrections will be ∆E ∼ O(e−mlt) where m is the lightest state. For small

l the lightest state is the winding flux tube, so that m = E0(l), and we must make lt larger

as l decreases, so as to maintain E0(l)lt ≫ 1.

To monitor these finite volume corrections one can perform calculations for various

transverse and temporal tori at each l. Such a detailed study can be found for SU(6)

in [44]. Since it is not too expensive to make just one lattice torus very large, we choose to

do so for the temporal torus and then we vary the spatial tori to monitor the corresponding

finite spatial volume corrections. The values of l and lattice sizes of our SU(3) calculation

are listed in table 4. We calculate the ground and first excited state energies as described

in section 3.2. We show the ranges of t = nta which we fit with the single exponential in

order to obtain an energy. For the ground state we typically have a normalised overlap

|c20| ∼ 0.98 − 0.99 allowing an accurate and reliable extraction of its energy. For the first

excited state we have a much worse overlap, |c21| ∼ 0.8, and so we have to fit at larger t and

the statistical error is about ten times larger. Higher excited states are even worse: this is

why we need to use a much larger basis of operators, as we shall do in later sections.
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SU(3); β = 6.0625

l/a Ly × Lz × Lt sweeps×106 nt ∈ aE0(l) nt ∈ aE1(l)

9 32 × 32 × 48 0.6 [2,7] 0.1747(21) [3,8] 0.980(34)

24 × 24 × 48 0.5 [2,7] 0.1712(25) [3,8] 0.959(37)

10 20 × 20 × 36 2.0 [2,7] 0.2425(16) [3,8] 0.967(18)

16 × 16 × 36 1.0 [2,8] 0.2391(26) [3,8] 0.952(26)

10 × 16 × 36 0.5 [2,8] 0.2307(26) [3,8] 0.970(27)

10 × 10 × 36 1.0 [2,7] 0.2346(13) [3,7] 0.967(18)

12 16 × 16 × 24 5.0 [2,7] 0.3510(14) [3,8] 1.027(18)

12 × 12 × 24 0.8 [2,7] 0.3429(24) [3,7] 0.983(24)

16 16 × 16 × 16 7.5 [2,7] 0.5361(14) [3,8] 1.074(9)

12 × 16 × 24 5.0 [2,7] 0.5335(15) [3,8] 1.039(13)

10 × 10 × 36 0.5 [2,7] 0.5183(51) [3,8] 1.031(51)

20 20 × 20 × 16 6.0 [2,7] 0.7096(20) [3,7] 1.174(21)

Table 4. Energies of the ground and first excited states of a closed flux tube of length l, on various

spatial volumes, with statistics and fitting ranges indicated. For SU(3) at β = 6.0625.

In table 4 we can see that the finite volume corrections on E0(l) are not large: no more

than ∼ 3−4% even for the smallest volume. However since we are interested in identifying

leading and subleading corrections to the linear dependence of E0(l), these are important.

Since the leading large volume correction decreases exponentially with the spatial size, we

can assume that the corrections to our largest lattices are much smaller than any variation

we observe between our second largest and largest spatial volumes. We therefore use the

values of E0(l) calculated on the largest volumes listed in table 4, in the expectation that

any finite volume effects are smaller than the quoted statistical errors. We also see from

table 4 that the finite volume corrections to the energy of the first excited state, E1(l),

are at most comparable to the statistical errors. We therefore assume that even with our

later more accurate calculations, we are safe in using the largest, or even second largest,

volumes in table 4 for our eigenspectrum calculations.

We now consider two of the main systematic errors in extracting a ground state energy

from a correlation function C(t).

1. We typically perform the fit using a single exponential to a range t ∈ [t1, t2] as

described in section 3.2. However this cannot be entirely correct: the fact that there

is a visible contribution from excited states for t < t1 means that it also exists for

t ≥ t1, even if small. This is an error which leads to our estimates of E0(l) being too

high, albeit by an amount which hopefully is no greater than the statistical error.

However since this error is systematic, its contribution after a combined analysis of

several calculations, may well be significantly larger than the final statistical error.

2. Secondly, when performing the exponential fit we typically treat the errors on C(t)

at different values of t as being independent, which is also incorrect. The calculations
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at different values of t are based on the same lattice field configurations and so may

be quite highly correlated (particularly if the energy in lattice units is small). The

value of χ2 calculated with independent errors will be smaller than the true χ2 and

we thus run the danger of extracting E0(l) from a range [t1, t2] where the fit appears

acceptable but is in reality poor. (The error estimates on E0(l) are obtained by a

jack-knife method and should be less affected.) To account for this, our heuristic

procedure is typically to accept a fit only if the χ2 per degree of freedom is ≪ 1. In

practice we check that the χ2 is not significantly decreased if we translate our fitting

interval to larger t.

We will now explicitly estimate the effect of both the above errors on the SU(3) ground

state calculations carried out on the largest spatial volumes listed in table 4.

In the first column of table 5 we display the ground state energies that we obtain with

our default method, which uses a single exponential fit to the correlator of the best (vari-

ational) operator, and which assumes uncorrelated errors (‘nocortt’), with a heuristically

reduced estimate of what constitutes an acceptable χ2. We also show the range in t used

for each fit.

In the second column of table 5 we show the result of incorporating the error corre-

lations in the statistical analysis (‘cortt’). This is done in a standard way: one calculates

the correlation beween the fluctuations of the correlator at t and the fluctuations at t′ for

all t, t′ that are of interest. This gives a correlation matrix whose inverse then appears in

the definition of χ2. What one is effectively doing is determining the linear combinations
∑

t ctφ
†(t)φ(0) whose fluctuations are independent, and then using these to determine the

χ2. In practice this procedure can produce anomalies if all the elements of the correlation

matrix, whose inverse we take, are not determined very accurately. This is one reason

we do not apply it systematically to our later calculations but rather test what difference

it makes in this high statistics calculation. Since this is the correct definition of χ2, the

criterion for an acceptable fit is now simply the normal one: unity per degree of freedom.

Comparing the values of E0(l) in the first and second columns of table 5, we observe that

for larger values of l the results are, within statistical errors, the same. It is only for the

smallest l that there is any sign of what might be a small difference.

We now try to estimate the maximum possible effect of an excited state contribution,

by assuming that it is the first excited state that is providing this. (Since it is plausible

that in choosing the lightest excited state we maximise the shift in E0.) We take the energy

of the excited state, E1, from table 4. We then perform a 2-exponential fit, with E0 and

the two overlaps, |c20| and |c21|, as free parameters. There is a partially subjective choice to

make about the start of the fitting range t ∈ [t1, t2]. (The value of t2 is usually chosen for

convenience and plays a minor role.) In practice we use the lowest value of t1 for which

we can get an acceptable fit for some values of the parameters, to determine the possible

range of these parameters. We show the results of this in the third and fourth columns

of table 5, using uncorrelated and correlated errors respectively. Comparing these to the

values in the first two columns we see that the shift in E0 is only noticeable at the largest

values of l. And, as we remarked, this estimate is intended to provide something like an
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aE0(l): SU(3) at β = 6.0625

l/a nt ∈ nocortt nt ∈ cortt nt ∈ nocortt + ex nt ∈ cortt + ex

9 [2,8] 0.1747(21) [1,7] 0.1777(16) [0,9] 0.1734(20) [0,9] 0.1747(25)

10 [2,8] 0.2424(15) [4,7] 0.2446(17) [0,9] 0.2402(14) [1,7] 0.2440(23)

12 [2,7] 0.3510(14) [3,8] 0.3516(11) [1,9] 0.3488(17) [1,9] 0.3475(15)

16 [2,7] 0.5361(14) [3,8] 0.5365(11) [1,8] 0.5333(16) [1,8] 0.5322(21)

20 [2,7] 0.7096(20) [3,8] 0.7071(23) [1,5] 0.7060(24) [1,8] 0.7032(31)

Table 5. Ground state energies extracted in different ways, from the fitting ranges shown, as

described in the text.

SU(6); β = 25.55

l/a Ly × Lz × Lt sweeps×106 nt ∈ aEk=1
0 (l)

10 16 × 16 × 36 1.5 [2,5] 0.2721(13)

12 16 × 16 × 36 1.6 [2,5] 0.3858(23)

16 16 × 16 × 16 2.0 [2,5] 0.5863(26)

18 18 × 18 × 18 2.0 [2,5] 0.6719(25)

Table 6. Energy of the ground state of a closed flux tube of length l, , with statistics and fitting

ranges indicated. For SU(6) at β = 25.55.

upper bound on the effect of excited state contributions.

The results in table 5 are reassuring. We will assume that in our excited state calcula-

tions, which are less accurate and where it would be difficult to perform explicit checks of

this kind, the above systematic errors are small compared to the statistical errors. This is

most plausible for those ‘excited’ states that are ground states in channels with non-trivial

quantum numbers. For other excitations, where secondary exponential may have a lower

energy, this must be only an assumption.

4.1.2 Ground state analysis

In tables 5 and 6 we present our high statistics results for the ground state energy in SU(3)

and SU(6) respectively.

What do these results for E0(l) tell us about the coefficient of the universal 1/l cor-

rection? In particular, do we find evidence for

E0(l)
l→∞
= σl − π

3l
, (4.1)

which would correspond to the simplest bosonic string universality class where the only

massless modes on the flux tube are the transverse oscillations? There are many ways to

address this question, and we proceed as follows. We have calculated E0(l) for the lengths

l = l1, l2, . . . where li+1 ≥ li. We define effective Lüscher coefficients and string tensions by

E0(l) = σeff l − ceff
π(D − 2)

6l
(4.2)
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Figure 1. Effective central charge in SU(3): from Lüscher (•) and Nambu-Goto (◦) using

eqs. (4.2), (4.3).

and determine the parameters ceff and σeff for each pair of values E0(li) and E0(li+1). We

expect that at small l the value of ceff may be very different from its large-l limit, because

of additional corrections that are higher powers in 1/l. So the relevant question is whether

ceff → 1 as l → ∞. Motivated by what we have observed in D = 2 + 1 [16, 17] we perform

a similar exercise for the Nambu-Goto expression, writing

E0(l) = σeff l

(

1 − ceff
π(D − 2)

3σeff l2

)
1

2

. (4.3)

We first consider SU(3). We take the values of E0(l) from the second column of table 5.

(The other sets of values give very similar results.) We obtain the values of ceff(li, li+1)

shown in figure 1. Note that while the vertical bar on each point indicates the statistical

error, the horizontal bar indicates the range, li
√
σ to li+1

√
σ, from which the value of ceff

has been extracted. Given that additional massless modes typically contribute a multiple

of ±0.5 to the Lüscher term in eq. (4.2), what we see in figure 1 provides quite convincing

evidence for the validity of eq. (4.1). Equally interesting is the fact that when we use

eq. (4.3) we obtain ceff close to unity for all values of l. Thus any corrections to the

Nambu-Goto expression for E0(l) must be small, even at our smallest values of l where

the flux ‘tube’ is presumably a fat blob, not much longer than it is wide. This recalls the

situation in D = 2 + 1, with the difference that here the deviations from ceff = 1, although

small, are large enough to be visible.

The corresponding results for SU(6) are shown in figure 2. This is very similar to what

we have just seen in figure 1, so we may assume that for all N ≥ 3 the central charge

corresponds to a bosonic string theory where the only massless modes on the flux tube are

the transverse oscillations. All this corroborates the claims from earlier calculations that
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Figure 2. Effective central charge in SU(6): from Lüscher (•) and Nambu-Goto (◦) using

eqs. (4.2), (4.3).

the effective string theory of confining fux tubes in D = 3 + 1 SU(N) gauge theories is in

the universality class of the simple bosonic string theory.

The theoretical analysis of [12] goes much further than this and tells us that when

we expand the ground state energy E0(l) in powers of 1/l not only is the O(1/l) Lüscher

correction universal, but so also are the O(1/l3) and O(1/l5) terms, and that their coeffi-

cients are precisely what one gets by expanding the Nambu-Goto free string expression in

eq. (2.21) to that order. To test this prediction we fit

E0(l) = σl −
n=2
∑

n=0

cNG
n

σnl2n+1
+
c̃

lγ
(4.4)

to our results for E0, where the cNG
n are the appropriate Nambu-Goto coefficients, and on

theoretical grounds we expect γ ≥ 7. For a fixed γ the fitted parameters are σ and the

coefficient c̃ of the leading unknown correction. Beginning with SU(3) we take (as above)

the values of E0(l) listed in the second column of table 5. We fit these values with eq. (4.4)

for various powers of γ and show in figure 3 the χ2 per degree of freedom of the best fit

as a function of γ. We repeat the exercise for SU(6) using the values in table 6. We see

that the SU(3) calculation favours a value γ < 7. In fact the acceptable values are γ = 5

and 3. Since our two lowest values of l are very close to lc (see table 3) and since the

SU(3) transition at l = lc is weakly first order, it might be that these fits are influenced by

this transition. In that case one would expect a more reliable result for SU(6) where the

transition is robustly first order. As we see in figure 3 a fit to our SU(6) values with an

O(1/l7) correction is indeed acceptable, but it is clear that more accuracy is needed for a

useful analysis.
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Figure 3. χ2 per degree of freedom for the best fit to E0(l) using eq. (4.4), for both SU(3), ◦, and

SU(6), •.

4.2 Ground states with pq 6= 0

We now consider the lightest states with non-zero momentum along the flux tube axis,

pq = 2πq/l 6= 0. To have pq 6= 0 a flux tube cannot be invariant under longitudinal

translations: it must have transverse deformations, corresponding to the excitation of some

modes along the tube, and it is the energies of these that interest us here. So to project

onto these we need to use our extended basis of operators. Of course, the energy not only

increases from the inclusion of this excitation energy but also from the p2
q

term. So to

avoid the systematic errors associated with large energies, we only present results for the

lightest energy levels with q = 1 and, with caveats, for those with q = 2. Of course we also

simultaneously calculate the q = 0 ground state energy, in the same basis of operators, to

obtain a value for the string tension a2σ, as described above. This value is then inserted

into eqs. (2.19), (2.20), (2.21) to provide parameter free predictions for the energies of

states with q 6= 0 in the Nambu-Goto model. The parameters of our calculations are listed

in table 7 with some of the physical properties listed in table 3.

When presenting our results showing how the flux tube energies En vary with the flux

tube length l, it is clearly preferable to do so using physical units rather than the lattice

units, (aEn and l/a) in which these quantities are actually calculated. We choose to use

the calculated value of a
√
σ as our unit and typically plot En/

√
σ versus l

√
σ. Since, for

this purpose, any variation of the extracted value of a
√
σ with the choice of how one fits

the q = 0 ground state is completely negligible, the reader should not be concerned that

there might be some hidden circularity in our plots. Using physical units makes it easier

to assess the significance of the plots, and since we find that the O(a2) lattice spacing

corrections to our energies are not visible, there is nothing misleading about this use of

physical units.
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N β Lx = l/a Ly × Lz × Lt sweeps×106 num ops

3 6.0625 10 20 × 20 × 36 1.5 580

12 16 × 16 × 24 1.5 580

16 16 × 16 × 16 1.5 725

20 20 × 20 × 16 1.4 725

24 24 × 24 × 24 4.0 725

32 20 × 20 × 16 4.5 725

3 6.3380 16 30 × 30 × 54 0.5 725

18 24 × 24 × 36 0.48 725

24 24 × 24 × 24 0.5 725

5 17.630 10 20 × 20 × 36 0.4 580

12 16 × 16 × 24 0.5 580

16 16 × 16 × 16 0.5 725

Table 7. Parameters of our SU(3) and SU(5) calculations: lattice sizes, statistics, and number of

operators.

Before continuing, a technical caveat. Our q = 2 energies are amongst the largest of

any energies calculated in this paper. So the corresponding correlation functions decrease

rapidly and it is frequently the case that one ‘identifies’ an effective energy plateau starting

at some t = t0 where the error to signal ratio for t > t0 is too large to be useful. This

means that the plateau identification is of low significance and the possibility of the energy

being a significant overestimate is serious. In this case it makes sense to be guided, in

identifying the energy plateaux, by those calculations that have the greatest statistical

accuracy. As we see from table 7, that is the SU(3) calculation at β = 6.0625. So in our

SU(5) calculation, which is at roughly the same value of a
√
σ, we use the same t-ranges as

in these SU(3) fits in order to extract the heavy q = 2 energies.

For orientation we begin by recalling the spectrum in the Nambu-Goto model. For

q = 1 the lightest state has one phonon with minimal non-zero momentum: p = 2πk/l

with k = 1. In the continuum limit this will produce two degenerate states, with J = ±1,

or alternatively two |J | = 1 states with Pt = ±. The lightest q = 2 states can either be

formed from a single phonon with k = 2 or from two phonons, each with k = 1. The former

gives two states with |J | = 1 and Pt = ±, while the latter gives states with J = 0 and

J = ±2 (the latter we organise into states with |J | = 2 and Pt = ±). There is only one

J = 0 state with Pt = +, because the phonon operators commute so that a+
1 a

−
1 |0 > and

a−1 a
+
1 |0 > are identical states. On a cubic lattice the two |J | = 1 states belong to a two-

dimensional representation and are exactly degenerate even at finite a. So in this section

we choose to show the energy of only one of these states (whether for q = 1 or for q = 2).

With this convention, we expect to find one J = 1 state occupying the lowest energy level

of the q = 1 sector, and four states (J = 0, Pt = +; |J | = 2, Pt = +; |J | = 2, Pt = −; J = 1)

in the lowest energy level of the q = 2 sector. These low-lying states of the Nambu-Goto

model are displayed in table 1.
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Figure 4. Lightest flux tube energies for longitudinal momenta q = 0, •, q = 1, •, and q = 2 in

SU(3) at β = 6.0625. The four q = 2 states are JPt = 0+(⋆), 1±(◦), 2+(�), 2−(•). Lines are

Nambu-Goto predictions.

We begin with our high statistics calculation of the lightest q = 1 and q = 2 energy

levels, in SU(3) at β = 6.0625. In figure 4 we plot the energies against the flux tube length,

all in units of σ, and we also include the q = 0 ground state energies from which we extract

the value of a2σ. We observe that the q = 1 ground state energy agrees extremely well

with the parameter-free Nambu-Goto prediction, as do the nearly degenerate q = 2 states,

albeit within significantly larger statistical errors. The number and quantum numbers of

these q = 2 states are also exactly as predicted by Nambu-Goto. It is striking that the

quantitative agreement persists down to the shortest flux tubes where l
√
σ ∼ 2 and where

the flux tube width, presumably ∼ 1/
√
σ, is comparable to its length.

In figure 5 we display the analogous results for SU(5). Again the q = 1 ground state

energy agrees very well with the Nambu-Goto prediction. However for the q = 2 states the

errors are now visibly larger, and while it is clear that they are roughly consistent with

Nambu-Goto, it is hard to make a stronger statement than that.

As we remarked above, a substantial part of the extra energy of the q 6= 0 states

may arise from their non-zero momentum, i.e. from the (2πq/l)2 term in E2, and we are

not interested in that. Rather we want to isolate the flux tube excitation energy and see

how that compares with, for example, the Nambu-Goto model prediction. To do so we

follow [49] and define

∆E2(q, l) = E2(q; l) − E2
0(l) −

(

2πq

l

)2
NG
= 4πσ(NL +NR) (4.5)

where the Nambu-Goto value follows from eq. (2.21), E(q; l) is our result for the ground

state energy with momentum pq = 2πq/l, and E0(l) is the energy of the (absolute) ground

state with pq = 0. We choose to subtract the calculated value of E0(l) rather than the
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Figure 5. As in figure 4 but for SU(5) at β = 17.63.

Nambu-Goto prediction for it, since the former already has some small corrections which we

would regard as belonging to the Casimir energy rather than to the excitation energy that

we are trying to isolate here. Note also that we assume any lattice corrections to the con-

tinuum energy-momentum dispersion relation to be negligible at this β: an uncontroversial

assumption, but one which it would be useful to check explicitly.

In figure 6 we plot some of the q = 1 and q = 2 excitation energies, obtained after

processing the energies plotted in figure 4 and figure 5 through eq. (4.5). We omit the SU(5)

q = 2 values, because the errors are too large for them to add much here. By removing

the momentum contribution, which will presumably arise in any string model, this analysis

gives us a more precise appreciation of the significance of the apparent agreement in figures 4

and 5 between our results and the predictions of the free string Nambu-Goto model. For

q = 1 the errors remain small and the agreement down to the smallest values of l
√
σ is as

striking as before. For our lightest, nearly-degenerate, q = 2 states, which we find to have

precisely the quantum numbers predicted by the Nambu-Goto model, the relative errors

are now larger. Nonetheless, while one clearly sees significant deviations from the free

string prediction at the smaller values of l, one also clearly sees that these states converge

rapidly to the Nambu-Goto value as l increases, and are in agreement with it within errors

for l
√
σ ∼ 4. So, just as in D = 2 + 1 [16, 17], the level of agreement with the free string

model, for these modest flux tube lengths, is surprising.

It is clear from figure 6 that the lightest q = 1 excitation energy shows no dependence

on N within the small statistical errors. What can we say about the q = 2 excitation

energies? Since in this case the statistical errors are too large for a direct comparison to

be informative, what we can do instead is to compare the effective energies extracted from

t = a to t = 2a, where our statistical errors are small enough for a significant comparison.

Of course these energy estimates will contain a significant admixture of higher excited
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Figure 6. Excitation energies, as defined in eq. (4.5), of the lightest q = 1 states in SU(3) at

β = 6.0625, •, and in SU(5), ◦, and also of the lightest q = 2 states in SU(3). The four q = 2 states

have quantum numbers JPt = 0+ (⋆), 1± (◦), J = 2+ (�), J = 2− (•). Lines are Nambu-Goto

predictions.

states, since our SU(3) effective energy plateaux typically set in for t ≥ 2a, so we are

not looking for agreement with the Nambu-Goto prediction. Rather we simply want to

compare the SU(3) and SU(5) values as a measure of the N -dependence of the q = 2

spectrum. The result of processing these effective energies through eq. (4.5) shows that

beyond the very shortest flux tube length, the SU(3) and SU(5) excitation energies show

no significant N -dependence within reasonably small errors.

The above SU(3) and SU(5) results have been obtained at a single common value

of the lattice spacing, a
√
σ ∼ 0.2. Do these results survive the continuum limit? We

address this question with an SU(3) calculation at β = 6.338 where the lattice spacing is

significantly smaller, a
√
σ ∼ 0.13. The lightest q = 0, 1, 2 energies are plotted in figure 7

and if we compare to figure 4 we see that there appears to be no significant a-dependence

within the errors. Reassured by all this we choose not to attempt a comparable small-a

SU(5) calculation.

We can assume from these checks that our calculations, although at fixed lattice spac-

ings and fixed values of N , do in fact describe the continuum limit of the gauge theory, at

arbitrary N ≥ 3, within the errors of our calculations.

4.3 Excited states

Having examined the ground state energy levels for q = 0, 1, 2, we now turn to the first, and

sometimes second, excited energy levels. We shall mostly restrict ourselves to flux tubes

with q = 0 and q = 1, since only here are the errors small enough for a precise analysis.

For each value of pq = 2πq/l, we shall begin by recalling the excitation spectrum in the

Nambu-Goto model. The string tension σ is calculated from the ground state energy so
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Figure 7. Lightest flux tube energies for q = 0, q = 1 and q = 2, in SU(3) at β = 6.338. States

labelled as in figure 4. Lines are Nambu-Goto predictions.

there are no free parameters. We shall find that not only are the quantum numbers of the

lightest states precisely as predicted by this model, but that the calculated energies of most

of these states are close to the Nambu-Goto predictions down to remarkably small values

of the flux tube length l. However we shall also find that, for each value of q, the lightest

excited state has an energy that is much lower than predicted, and that this energy increases

only weakly as l grows. In each case the anomalous state has J = 0, Pt = − quantum

numbers and, partly because it is light, it is accurately determined in our calculations.

4.3.1 q = 0 excited states

In the Nambu-Goto model, the states in the first excited q = 0 energy level have two

phonons of opposite momentum, with this momentum taking its minimal absolute value

|p| = 2π/l. Each phonon carries unit spin, and these can be either parallel or anti-parallel,

leading to two states with J = 0 and two with J = ±2. (See table 1.) These can be re-

organised into four states with quantum numbers (|J |, Pt, Pl)=(0,+,+), (0,−,−), (2,+,+),

(2,−,+). In the Nambu-Goto model all these states are degenerate.

In our numerical calculations we are able to obtain, with reasonable accuracy, the first

four excited states above the absolute ground state, and we find that these have precisely

the quantum numbers predicted by Nambu-Goto. We then process the calculated energies

through eq. (4.5) so as to obtain the excitation energies, ∆E2(q = 0, l). We display the

results in figure 8, together with the Nambu-Goto prediction. We observe that 3 of the 4

states show the by now familiar rapid convergence to the Nambu-Goto prediction as l
√
σ

increases. However one state, the one with 0−− quantum numbers, displays a very different

behaviour: it is much lower than the predicted value and approaches that value only very

slowly as l
√
σ increases. The fact that the energy is so much lower is robust against all our

systematic errors: that is to say, this anomalous behaviour is a reliable result.
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Figure 8. Excitation energies, as defined in eq. (4.5), of the lightest few q = 0 states in SU(3)

at β = 6.0625. The states are JPtPl = 0++ (N), 0−− (•), 2++ (◦), 2−+ (⋆). Line is Nambu-Goto

prediction.

Since it is only in the N → ∞ limit that we should expect a simple stringy description

to be possible, it is natural to ask if this anomalous behaviour is a finite N effect. To

investigate this we repeat the calculation in SU(5) at a value of a that is similar to that of

SU(3) at β = 6.0625. Since the leading large N corrections are expected to be O(1/N2),

if the anomaly is a finite-N correction it should be smaller in SU(5) by a factor of ∼ 3.

We plot the excitation energies obtained in SU(5) in figure 9. We see that the anomalous

behaviour of the lightest 0− state becomes more rather than less pronounced in SU(5). It

is clear that this anomaly is a prominent feature of the gauge theory at N = ∞.

Does this anomalous behaviour survive the continuum limit? To address this question

we repeat the calculation at β = 6.338 where a2σ is smaller by a factor of ∼ 2.3. The latter

is the relevant measure for lattice spacing corrections, since these are expected to be O(a2)

for our plaquette action. We plot the corresponding excitation energies of the 0−− state in

figure 9. We see that it continues to be anomalous, much as it was at the coarser value of

a. This confirms that what we are seeing is continuum physics.

4.3.2 q = 1 and q = 2 excited states

For q = 1 the first excited energy level in the Nambu-Goto model is composed of states

that have either two or three phonons. (See table 1.) In the states with two phonons,

one has momentum p = 2πk/l with k = 2, and the other has k = −1. The two unit

spins add to give 2 states with J = 0 and two with J = ±2 and these can, as usual, be

re-organised into states with Pt = ± for each of |J | = 0, 2. In the three phonon case, two of

the phonons have k = 1 and one has k = −1. There are now three unit spins to be added,

giving three sets of states: two pairs with J = ±1 and another pair with J = ±3. On a

cubic lattice the states that become J = 1 and J = 3 in the continuum limit reside in the
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Figure 9. Excitation energies, as in figure 8, but for SU(5), together with the 0−− in SU(3) at

β = 6.338 (�). Line is Nambu-Goto prediction.

same E representation and cannot be distinguished on straightforward symmetry grounds.

Moreover the Pt = ± partners are in the same multiplet, and are exactly degenerate, and

so it suffices to focus on the Pt = + states. Thus we are looking for 4 states with even J

and 3 with odd J . We shall refer to the latter as J = 1, although of course the state may

in fact have any odd value of J — in particular J = 3.

In our numerical calculations we are able to obtain, with reasonable accuracy, a number

of q = 1 excited states above the ground state. In the even-J sector we find that the lightest

four states have the quantum numbers JPt = 0±, 2±, which is precisely what one expects

for the 2 phonon component of the first excited energy level. Moreover, in the odd-J sector,

we find three states that are close in energy, which is, again, precisely what one expects

for the 3 phonon component of the first excited energy level.

We begin by processing the even-J energies through eq. (4.5) to obtain the excitation

energies, ∆E2(q = 1, l). We first do this for our most accurate and extensive calculation,

SU(3) at β = 6.0625, using the energies listed in table 9. The results, for lengths l/a ≤ 24,

are displayed in figure 10, where they are compared to the Nambu-Goto prediction. For

comparison we also show in this plot the q = 1 ground state, which has J = 1 and was

shown earlier in figure 6. We see, just as we saw for the lowest 4 excited states with q = 0,

that 3 of the 4 states show a rapid convergence to the Nambu-Goto prediction as l increases,

but one state, again with 0− quantum numbers, displays a very different behaviour: it is

much lower than the predicted value and only appears to approach that value very slowly

as l increases. As before, the fact that the energy is lower means that this anomalous result

is robust against essentially all our systematic errors.

As in the case of q = 0, we repeat the calculation at the smaller value of a. The results

for the 0− state are plotted in figure 11, and we see that there is no significant dependence

on a. So once again, we are able to claim that this anomalous behaviour is clearly part of
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aE(q = 0, l)

|J | Pt Pl l/a N = 3 N = 5 l/a N = 3f

0 + + 10 0.905(12) 0.945(13) 16 0.6211(97)

12 0.9764(92) 1.006(18) 18 0.6419(77)

16 1.0787(61) 1.113(26) 24 0.7248(80)

20 1.1919(99)

24 1.278(26)

0 - - 10 0.6606(68) 0.614(12) 16 0.4513(60)

12 0.7472(59) 0.733(13) 18 0.4821(65)

16 0.911(12) 0.881(15) 24 0.6278(70)

20 1.054(20)

24 1.216(21)

32 1.646(54)

2 + + 10 1.035(14) 0.996(17) 16 0.699(21)

12 1.049(11) 1.070(21) 18 0.698(12)

16 1.122(17) 1.176(29) 24 0.777(21)

20 1.223(24)

24 1.327(23)

32 1.531(46)

2 - + 10 1.083(11) 1.077(20) 16 0.738(11)

12 1.094(16) 1.113(23) 18 0.740(10)

16 1.158(18) 1.129(32) 24 0.792(15)

20 1.201(24)

24 1.313(20)

32 1.503(61)

Table 8. Energies, E(q, l), of the four lightest excited flux tube states with zero longitudinal

momentum p = 2πq/l = 0. Quantum numbers as shown. Calculations are labelled as in table 11.

the physics of the continuum theory. Similarly a calculation in SU(5), whose results are also

displayed in figure 11, shows that any large N corrections to this anomalous behaviour are

small. Once again we can claim that this represents the continuum physics of all theories

with N ≥ 3.

We turn now to the J = odd states with q = 1. In figure 12 we plot the energies of

the ground state and the first four excited states. We see that above the ground state

there are three nearly degenerate excited states, consistent with the degeneracy predicted

by Nambu-Goto for the first excited energy level. Moreover their energies are close to

the Nambu-Goto prediction for that energy level. We may therefore assume that what

we are seeing is in fact two J = 1 states and one J = 3 state. The fourth state is well

separated from the other three and is very close in energy to what Nambu-Goto predicts

for the second excited energy level. There should of course be several J = odd states in this

energy level, but we do not attempt to identify these since their energies are quite large,
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aE(q = 1, l) , J = even

|J | Pt l/a N = 3 N = 5 l/a N = 3f

0 + 10 1.341(26) 1.330(47) 16 0.933(16)

12 1.421(24) 1.363(56) 18 0.883(25)

16 1.378(36) 1.422(75) 24 0.921(29)

20 1.415(13)

24 1.538(38)

32 1.641(78)

0 - 10 1.084(10) 1.090(18) 16 0.724(11)

12 1.089(11) 1.064(18) 18 0.718(14)

16 1.129(19) 1.126(34) 24 0.746(16)

20 1.229(24)

24 1.358(25)

32 1.575(71)

2 + 10 1.457(37) 1.384(72) 16 0.992(26)

12 1.408(46) 1.500(87) 18 0.954(39)

16 1.422(50) 24 0.926(38)

20 1.501(63)

24 1.480(43)

32 1.582(71)

2 - 10 1.682(65) 16 1.098(74)

12 1.474(47) 18 1.056(52)

16 1.526(57) 24 0.969(43)

20 1.421(76)

24 1.567(40)

32 1.778(110)

Table 9. Energies, E(q, l), of the lightest excited flux tube states with even spin J and with

the lowest non-zero longitudinal momentum, p = 2πq/l = 2π/l. Quantum numbers as shown.

Calculations are labelled as in table 11.

so that the errors will be large as well. However we can say that there do not appear to

be any anomalously light odd-J states belonging to this energy level. So we can conclude

that in the q = 1 odd-J sector we see no sign of any anomaly up to the second excited

energy level.

We end this section by extending our analysis to the q = 2 sector. In figure 13 we show

the energy of the lightest 0− state in our two SU(3) calculations. For comparison we show

the Nambu-Goto q = 2 ground state energy, to which the lightest 0+, 2± states rapidly

converge, and the energy of the first excited Nambu-Goto level, to which the lightest 0−

should converge as l → ∞. This plot clearly confirms that the lightest 0− state is anomalous

for q = 2, just as it is for q = 0 and q = 1.
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Figure 10. Excitation energies, as defined in eq. (4.5), of the lightest few excited q = 1 states with

even J . In SU(3) at β = 6.0625. These are JPt = 0+(◦), 0−(•), 2+(∗), 2−(+). Also shown is the

q = 1 ground state (�) which has J = 1+. Lines are Nambu-Goto predictions.
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Figure 11. Excitation energy, as defined in eq. (4.5), of the lightest 0− flux tube with q = 1: for

SU(5), ◦, and SU(3) at β = 6.338, ∗, compared to the values in SU(3) at β = 6.0625, •. Lines are

Nambu-Goto predictions.

4.3.3 The anomalous 0− states

We have seen that nearly all the lightest states of a closed flux tube converge very rapidly to

the free-string Nambu-Goto prediction as l increases. The striking and sole exceptions have

been the lightest JPt = 0− states, and this is so in every sector of longitudinal momentum

that we have investigated. These 0− states show a very large deviation from the free-
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Figure 12. Energies of the lightest five q = 1 states with J =odd, in SU(3) at β = 6.338. Lines

are Nambu-Goto predictions.
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Figure 13. Energy of the lightest q = 2 state with JPt = 0− in SU(3) at β = 6.0625, •, and at

β = 6.338, ♦. Solid line is the Nambu-Goto prediction; dotted line is the prediction for the q = 2

(0+, 2±) ground energy level.

string prediction, with what is at best a very slow approach to the latter. This deviation

persists, perhaps becoming even slightly larger, at larger N . This makes these states very

interesting: they are our first candidates, whether in 2+1 or 3+1 dimensions, for states

that might be reflecting the non-stringy massive modes that one expects to be present for

a confining flux tube.

One possibility is that this 0− state is a mixture of the massive and massless modes,

with this mixing becoming large at small l. The coupling will inevitably involve derivatives
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of the massless Goldstone field and since the momenta of the phonons in the first excited

Nambu-Goto state is |p| = 2π/l → 0 as l → ∞, the mixing will decrease as we increase

l. Moreover as l increases the gap between the massless modes decreases ∝ 1/l and so the

number of these modes that are close enough in energy to the massive mode to mix with

it grows ∝ l. So the mixing with any individual mode must eventually decrease as l grows.

In such a scenario we expect this 0− state to approach the lightest 0− Nambu-Goto energy

level as l increases.

A different possibility is that the lightest 0− state is simply a massive excitation of

the ground state string. Because of the underlying flux tube, the energy of this state

should grow with l, and because its energy maintains a finite gap with respect to the

ground state, it will initially appear to approach the first excited Nambu-Goto level, but

at some higher l it will cross that level, and at even larger l it will cross higher excited

Nambu-Goto energy levels. In such a scenario there should be an additional 0− state that

is the first massless excitation and which approaches the lightest 0− Nambu-Goto energy

level as l grows. Although such an excited 0− state will lie at a higher energy at small

and moderate values of l, and so will be harder to identify accurately, it is clear that its

identification is important if we are to make any progress with understanding the nature

of our anomalous states.

We therefore begin by trying to identify the next excited 0− states, to see if they

include plausible candidates for stringy states. In figure 14 we plot the excitation energies,

obtained using eq. (4.5), of the lightest and first excited p = 0 0− states, taken from all

our three calculations. We observe that in the range of smaller l, l
√
σ ≤ 3.2, where we

have results from all three calculations, the excited 0− state appears to be approaching

the second excited Nambu-Goto energy level as we increase l, much as the lowest 0−

state appears to be approaching the first excited Nambu-Goto level, and with a similar

anomalously large deviation. So this would suggest that there is no higher excited 0− state

to approach the first Nambu-Goto 0− level, and therefore that the lightest 0− will have

to do so: and this would point to the first scenario discussed above. However the larger l

calculations in figure 14, which we have performed only in SU(3) at β = 6.0625, radically

alter this picture: as l grows the excited 0− state turns over and begins to approach the

first excited energy level. We include here, for the first time, some results from our l = 32

(l
√
σ ∼ 6.3) calculation. As warned, the errors are large, but the result is qualitatively

striking: the lightest 0− appears to have crossed the first excited Nambu-Goto level and is

approximately degenerate with the first excited 0−, which is consistent with approaching

this Nambu-Goto level. This now suggests that the physics is in fact closer to the second

scenario described above: the state that is the lightest 0− at smaller l is (mainly) a massive

excitation that crosses the stringy energy levels, while the first excited 0− is (mainly) the

stringy state associated with the first excited Nambu-Goto energy level.

We now turn to the q = 1 0− states where we are able to obtain some results for the

second as well as for the first excited states. We plot the corresponding excitation energies

in figure 15. For l
√
σ ≤ 3.2, what we see is similar to what we saw for q = 0 in this range of

l: the first excited 0− state also appears to be anomalous, approaching only very slowly the

corresponding free-string prediction (the upper horizontal line). However this behaviour

continues at our larger values of l, in contrast to what we have just seen for the q = 0
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Figure 14. Excitation energies, as defined in eq. (4.5), of q = 0, 0− states: the ground state in

SU(3) at β = 6.0625, •, in SU(3) at β = 6.338, �, and in SU(5), N; and the first excited states, ◦,
� and △ respectively. Solid lines are the Nambu-Goto predictions; dashed line is the massive mode

ansatz in eq. (4.8).
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Figure 15. Excitation energies, as defined in eq. (4.5), of the lightest three q = 1, 0− states in

SU(3) at β = 6.0625, •, in SU(3) at β = 6.338, ∗, and in SU(5), ◦. Solid lines are Nambu-Goto

predictions for the 0−; dashed line is the massive mode ansatz in eq. (4.8). (Dotted horizontal line

is for the J = 1± ground state).

states in figure 14: there appears to be no clear signal that the 0− excited state turns over,

so as to approach the Nambu-Goto 0− ground state (although the errors are large enough

to allow that at larger l), or that the 0− ground state crosses this energy level.

This difference between the q = 0 and q = 1 results is highlighted if one considers the
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Figure 16. Difference of the excitation energies of the lightest two q = 1, 0− states in SU(3) at

β = 6.0625, •. Line is Nambu-Goto prediction.

difference of the excitation energies of the lightest and first excited energy levels (labelled

E0, E1 respectively):

δ
{

∆E2(q, l)
}

= ∆E2
1(q, l) − ∆E2

0(q, l)
NG
= 8πσ. (4.6)

Looking at the q = 1 results in figure 16 we see that the difference remains consistent with

the Nambu-Goto expectation for all values of l. The large anomalous contribution in the

lightest and first excited q = 1 0− states appears to be a common additive contribution that

simply cancels in the difference leaving just the excitation energy of the massless stringy

modes. But with the important caveat that the errors are quite large at larger l. By

contrast, the q = 0 results in figure 17 show that after an initial behaviour similar to that

seen for q = 1, the gap in the excitation energies unambiguously decreases towards zero.

Since the q = 0 results for the turnover appear unambiguous, and the q = 1 results

at larger l have much larger errors, the simplest hypothesis consistent with these errors is

that the q = 1 excited 0− has in fact begun to turn over at the largest values of l, and

so is paralleling the behaviour of the q = 0 state, albeit at somewhat larger values of l.

This latter behaviour is to be expected because of the phonon contents of the q = 1 and

q = 0 Nambu-Goto states, (a+
2 a

−
−1 − a−2 a

+
−1)|0〉 and (a+

1 a
−
−1 − a−1 a

+
−1)|0〉 respectively. As

remarked earlier, one would expect higher momentum phonons to interact more strongly

with the massive modes, because the interaction involves derivatives of the massless fields.

Since the phonon momentum is 2πk/l, one expects the k = 2 phonon for a length l to have

the same interaction as a momentum k = 1 phonon at length l/2. This heuristic argument

would roughly suggest that the interaction energy of the q = 1 state of length l will have

corrections that are a mean of those of the q = 0 states of length l and l/2, so that the

turn-over (indicating a decrease in this interaction energy) will be delayed for the q = 1

state as compared to the q = 0 state. All this would seem to be consistent with what we
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Figure 17. Difference of the excitation energies of the lightest two q = 0, 0− states in SU(3) at

β = 6.0625, •. Line is Nambu-Goto prediction.

see for the first excited 0− states, although without more accurate calculations one cannot

say anything stronger than that.

To decide whether the q = 0 and q = 1 0− ground states are in fact excitations of

massive modes, a quantitative analysis is needed. Since we are not in a position to provide

that at present, the following simple heuristic analysis may be useful in deciding whether

such a scenario is plausible.3 Let us make the simple assumption that the lightest state

with a massive mode excitation of the flux tube has an energy

E(p) = E0(l) +
(

m2 + p2
)

1

2 (4.7)

where m is the mass scale of this mode, p is the momentum it carries, and E0(l) is the

energy of the flux tube ground state. One then finds

∆E2(p)

4πσ
≃

(

m√
σ

)2 1

4π
+
l
√
σ

2π

[

(

m√
σ

)2

+

(

2πq

l
√
σ

)2
]

1

2

. (4.8)

We plot this function in figures 14 and 15 with a value for the mass scale

m√
σ

= 1.85. (4.9)

chosen to provide a qualitative fit. We note that this is an entirely reasonable value for

the mass scale, being roughly half the mass gap, m ≃MG/2, where G is the lightest scalar

glueball. However, while this simple ansatz readily fits both the q = 0 and q = 1 0− ground

states and the differences between them, it does not have anything specific to say about

the behaviour of the higher 0− states.

3This arose in a discussion with Arttu Rajantie and David Weir.
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If on the other hand we wish to include both the ground and first excited 0− states

in a single analysis, a simple way to do so is to assume a simple 2-body mixing between

a Nambu-Goto stringy state and a new, possibly massive state, with a mixing parameter

that eventually decreases as l increases (for the reasons given earlier). Such a mixing leads

to an equal splitting in ∆E2 around the average of the un-mixed energies and since, as

we see from figure 14, this average is close to the Nambu-Goto energy (taking seriously

the large errors on our largest value of l) and since the unmixed stringy state already has

this energy, this means that our putative massive mode is also close in energy to that of

the Nambu-Goto state and so looks like a massless mode — an unexpected conclusion.

Moreover the same analysis does not then describe the q = 1 energies in figure 16. So such

a simple mixing picture does not appear to be tenable.

Turning now to the second excited state in the q = 1 0− sector, we see from figure 15

that it does not seem to be anomalous, but is close to the appropriate Nambu-Goto pre-

diction. Recall that while the lightest q = 1 0− Nambu-Goto state is constructed from two

phonons, the first excited 0− energy level involves states with both 2 and 4 phonons, with

both sectors producing 0− excited states. Thus there is room in the Nambu-Goto first

excited energy level for this 0− state, irrespective of whether the anomalous first excited

state turns out to belong to the lightest or to the first excited string energy level.

4.4 Closed loops of k=2 flux

In this paper our main focus is on confining flux tubes that carry flux in the fundamental

representation. However, one can also study flux tubes carrying flux in higher represen-

tations. In particular consider fluxes that emanate from sources that transform as the

product of k fundamentals and any number of adjoints, where 0 ≤ k ≤ N/2. The corre-

sponding flux tubes are called k-strings. At finite N such a flux tube will be unstable if it

can decay via gluon screening to a flux tube with lower energy per unit length. However the

latter will also be in the same k-sector since gluons are adjoint particles. So the k-string

with the smallest string tension, σk, will be absolutely stable. It turns out [46, 50, 51]

that σk < kσ, so the lightest k-string is not merely k independent fundamental flux tubes,

but may be thought of as a bound state of these. Such a flux tube clearly has additional

internal structure to that possessed by a fundamental flux tube and it would be interesting

to see how this affects the energy spectrum of closed k-strings. This would provide us with

some insight into how such extra massive modes are encoded in the effective string theory

that describes the k-strings. Precisely such a study has been carried out in D = 2 + 1

gauge theories [49].

In this paper we do not attempt such a study but initially limit ourselves to the k = 2

ground state, as calculated in our high statistics SU(6) calculation (where our operator

basis is too small to attempt a full spectrum calculation). Let ψ0 be the best operator that

our variational calculation produces for the absolute ground state, using our full basis of

operators. We list in table 10 the energy of this ground state as a function of its length l.

Now, the operator basis we use contains equal numbers of totally symmetric, k = 2S, and

totally anti-symmetric, k = 2A, operators. (We refer to [49] and [46] for a more detailed

discussion of the appropriate operators.) What we find is that the absolute ground state,
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SU(6); β = 25.55

l Ek=2A
0 (l) Ek=2S

0 (l)

10 0.5125(122) 0.694(38)

12 0.7030(190) 0.957(64)

16 1.0192(29) 1.291(7)

18 1.1647(40) 1.453(26)

Table 10. Energies of the lightest closed k = 2 flux tubes of length l, carrying flux in the totally

symmetric, k = 2S, and anti-symmetric, k = 2A, representations in SU(6).

ψ0, is almost entirely k = 2A, corroborating the observation in [47]. To be specific, if we

denote by Φ2S the space of k = 2S operators, φ2S , spanned by our basis, then the overlap

of ψ0 on Φ2S turns out to be as follows:

max
φ2S∈Φ2S

|〈ψ†
0φ2S〉|2 = 0.0079(6) : l = 10

= 0.00019(3) : l = 12

= 0.00161(3) : l = 16

= 0.00003(1) : l = 18 (4.10)

This is extremely small and tells us that to a very good approximation the k = 2 absolute

ground state is in the totally antisymmetric representation. (And indeed, if we restrict

our operator basis to k = 2A, the ground state ψ0 that we obtain differs insignificantly

from the one obtained using the full basis.) This strongly suggests that, just as we showed

in D = 2 + 1 [49], the low-lying eigenspectrum consists of states that are, to a good

approximation, either wholly k = 2S or k = 2A. While we cannot attempt here an

analysis as complete as the one we performed in D = 2 + 1, we are able to calculate the

ground state in the k = 2S sector, whose energies we list in table 10. This is again a state

that changes negligibly if we use the full k = 2 basis rather than the restriction to k = 2S.

In figure 18 we show how the energies of the k = 2A and k = 2S ground states vary

with l. On the plot we also show the best fits using the free string Nambu-Goto expression,

where the parameters being fitted are the respective string tensions, σk=2A and σk=2S. On

such a plot, where both E and l are rescaled by the appropriate string tensions, the two

Nambu-Goto curves will of course coincide. What is interesting is that the two sets of

energies also appear to coincide: the (slightly) unstable k = 2S flux tube behaves just like

the stable k = 2A flux tube. And both show the approximately linear rise with l associated

with the formation of a confining flux tube.

It is clear from figure 18 that at smaller l the corrections to the Nambu-Goto fit become

quite substantial. To resolve this more clearly we perform fits using eqs. (4.2) and (4.3)

just as we did in the case of the fundamental flux tube. The results are shown in figure 19

for the k = 2A flux tube. (The errors on our k = 2S energies are too large to allow a useful

analysis of this kind.) Comparing to the comparable plots for fundamental flux tubes, in

figures 1 and 2, we see that the corrections to Nambu-Goto are very much larger here.
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Figure 18. Energies of the lightest closed k = 2 flux tubes of length l, carrying flux in the totally

antisymmetric representation R = 2A, •, and the totally symmetric one R = 2S, ◦. In SU(6). Line

is Nambu-Goto fit.
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Figure 19. Effective central charge for the lightest totally antisymmetric k = 2 flux tube in SU(6):

from Lüscher (•) and Nambu-Goto (◦) using eqs. (4.2), (4.3).

This is just what we observed in our D = 2+1 [49] calculations. (And has previously been

observed for the effective Lüscher correction in the D = 3 + 1 SU(6) gauge theory in [44].)

Nonetheless this plot does provide some additional significant evidence that the k = 2 flux

tube is also in the bosonic string universality class.
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Figure 20. Energies of the lightest q = 0 excited states in SU(3) at β = 6.0625. States are

JPtPl = 0++, N, 2++, ◦, 2−+, ⋆. Solid line is Nambu-Goto, dotted is universal expansion to

O(1/l3), and dashed is expansion to O(1/l) (Lüscher correction).

4.5 Effective string theory: discussion

Our above results show that most of the low-lying excited states of the fundamental flux

tube are remarkably close to the predictions of the free-string Nambu-Goto model, even

down to values of l where the flux tube is not much longer than it is wide (∼ 1/
√
σ).

Now, we recall that the effective string analysis in [12] has shown that if we expand the

excited string state energies En(l) in inverse powers of l then they are universal to O(1/l5)

in D = 2+1 and to O(1/l3) in D = 3+1, and that they must therefore agree with Nambu-

Goto to that order. (If they are in the bosonic string universality class as is strongly implied

by the numerical results for the ground state.) It is therefore natural to ask to what extent

our numerical results are merely reflecting this theoretical result.

To address this question we take, as an example, the q = 0 excited states in SU(3)

at β = 6.0625, whose excitation energies were plotted in figure 8, but omitting for the

moment the ‘anomalous’ JPt = 0− state. We plot their energies as a function of length l

in figure 20. We also plot the theoretical prediction to O(1/l3),

E(l) = σl +
11π

3

1

l
− 121π2

18

1

σl3
(4.11)

which includes all the terms that are currently known to be universal. The value of σ

comes from fitting the ground state energy so this prediction is in fact parameter-free.

(The variation of σ with the precise form of the ground state fit is completely negligible in

the present context.) For comparison we also plot the prediction to just O(1/l), i.e. just

the ‘Lüscher correction’, and also the full Nambu-Goto prediction.

We see from figure 20 that the agreement of our numerical results with Nambu-Goto

is, in fact, far too good to be a mere corollary of the known theoretical universality results.
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Does this perhaps indicate that the next one or two terms, in powers of 1/σl2, are also

universal, and would this then suffice to explain our numerical results? The answer to

the latter question is no. As indicated by the way that the O(1/l) and O(1/l3) curves

in figure 20 oscillate around the Nambu-Goto curve, the expansion of the Nambu-Goto

expression in powers of 1/l is divergent in the range of l where most of our numerical

results are located. Indeed, as we see from eq. (2.21), the expansion of the energy in

powers of 1/σl2, for these NR = NL = 1 states, ceases to be convergent for

l
√
σ ≤

(

22π

3

)
1

2

≃ 4.8. (4.12)

So the analytical derivative expansion for this state only holds for l
√
σ & 4.8. Although we

have one or two values in this range, and therefore make contact with the region to which

the theoretical analysis applies, the bulk of our calculations lie at smaller values of l. Thus

in reality they complement the theoretical analysis, while maintaining enough overlap to

ensure some continuity between the numerical and analytical results.

Our results for the range of smaller l where the derivative expansion no longer con-

verges, are telling us something simple about that expansion: it should, to all orders,

remain close to that of Nambu-Goto. In effect our numerical results are telling us that

the appropriate starting point for an effective string picture of closed flux tubes is neither

the classical background string nor the Gaussian action, but rather the full free string

Nambu-Goto action. That is to say, if we write the energy of the the n′th eigenstate as

En(l) = ENG
n (l) + δEn(l), (4.13)

where ENG
n (l) is the Nambu-Goto energy, then figure 20 tells us that for the 0+ and 2±

states that are shown there this correction term, δEn(l), is ‘small’ over the whole range

l
√
σ ≥ 2.5:

δEn(l) ≪ √
σ ; l

√
σ ≥ 2.5. (4.14)

Since the theoretical analysis in [12] tells us that the expansion of δEn(l) in powers of 1/l

cannot start with a power smaller than 1/l5, we know that at large l it must have the form:

δEn(l)√
σ

l→∞
=

cn
(
√
σl)5

(

1 +
cn,1

σl2
+

cn,2

(σl2)2
+ . . .

)

. (4.15)

The different possibilities can be usefully illustrated by the following two scenarios.

• The fact that the corrections are small down to small l would follow most simply if the

expansion coefficients in eq. (4.15) were to be small so that the first term dominated

even at small l:
δEn(l)√

σ
≃ cn

(
√
σl)5

; l > lc (4.16)

Indeed if we fit the observed deviations of the states in figure 20 from Nambu-Goto,

we find that they can be roughly described by simple O(1/l5) corrections. This is

demonstrated in figure 21, where the dotted curves incorporate such a correction to
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the Nambu-Goto prediction. The magnitude of the coefficients in the two fits are

cn ≃ −16, +9 respectively. These may appear quite large, but they are in fact ∼ 50

times smaller than the coefficient of the O(1/l5) term in the expansion of ENG(l),

and so should be regarded as ‘very small’ in natural units that include appropriate

powers of 4π. Nonetheless, while this qualitative fit demonstrates the possibility of

such a scenario, our calculations are not accurate enough to encourage a more precise

analysis.

• Alternatively, it may well be that as we decrease l from large values, the series

expansion for δEn(l) diverges at some value of l well above lc, in the same way as the

Nambu-Goto expansion does. For lower l it should be resummable into some finite

expression, since we know the flux tube energy does not diverge for any finite l > lc.

This means that at small l
√
σ the apparent power of l may well be very different

from the asymptotic ∝ 1/l5 behaviour. This can be illustrated by the following

simple example of a resummed series:

δEn(l)√
σ

=
cn

(
√
σl)5

(

1 +
dn

σl2

)γn
small l∝ cnd

γn
n

(l
√
σ)5+2γn

. (4.17)

(We assume that dn/σl
2 ≫ 1 over most of our range of l, as this is dictated by

the radius of convergence we have assumed.) At small l this can decrease faster or

slower than 1/l5 depending on the sign of γn (which in turn depends on how the

coefficients in eq. (4.15) oscillate in sign). Let us assume, for example, that this

series expansion diverges around the same length as Nambu-Goto, i.e. at l
√
σ ∼ 5 in

the context of the states in figure 20. This implies that dn ∼ 25 in eq. (4.17). Given

that the deviation from Nambu-Goto in figure 21 is δE/
√
σ ∼ 0.5 at l

√
σ ∼ 2, we

see from eq. (4.17) that, very roughly, we need cn ∼ 16/6γn . If γn > 0 this leads

to a value for cn that seems unnaturally small when compared to the corresponding

Nambu-Goto coefficient. To allow a larger value of cn one needs to have γn < 0.

In that case, as we see from eq. (4.17), the effective power of 1/l that one sees at

small l will be smaller than 5. One sees from this example the linkage between the

coefficient cn of the leading asymptotic correction, the value of l
√
σ at which the

expansion of δEn diverges, and the effective power of the correction at smaller l
√
σ.

We illustrate this in figure 22 with a fit to the excitation energies of these states,

using a simple c/(l
√
σ)4 correction term in ∆E2. It is straightforward to see that

this corresponds to a correction term in eq. (4.13) of δE =
(

E2
NG + ∆

)1/2−ENG where

∆ = 4πσc/(l
√
σ)4, which is a resummed expression that diverges at the same place

as Nambu-Goto and whose leading piece is of the form in eq. (4.17) with γn = −1/2.

Clearly this illustrates that such a fit is possible.

So far this is very similar to what we found in 2+1 dimensions [16, 17]. However,

the important difference is that here we have also identified some additional states, the

ground and first excited 0− states with longitudinal momenta q = 0 and q = 1 (as well as

the ground state with q = 2), which are far from the Nambu-Goto predictions over much

of our range of l. At moderate values of l
√
σ the deviation from Nambu-Goto decreases
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Figure 21. Energies of the lightest q = 0 excited states in SU(3) at β = 6.0625. States are

JPtPl = 0++, N, 2++, ◦, 2−+, ⋆. Solid line is Nambu-Goto, dotted line is with an additional

O(1/l5) correction.

much more slowly with increasing l than O(1/l5): the dotted line in figure 22 represents a

very slowly varying ∝ 1/l1.7 correction to ∆E2. Such a behaviour could, in principle, be

accommodated by the small-l behaviour of a correction of the form shown in eq. (4.17). In

addition, we have also seen that at larger l the p = 0 0− state does appear to break away

from this slow variation, approaching the Nambu-Goto energy level more rapidly. This

can also be naturally accommodated by a correction as in eq. (4.17), since at larger l the

term dn/σl
2 becomes small enough that the power behaviour of the correction returns to

its asymptotic value (∝ 1/l5 in this case). Such an interpretation is however less plausible

if we take seriously the apparent crossing of the Nambu-Goto level at our largest value of

l. And it is not consistent with the apparent behaviour of the p = 0 excited 0− state which

at larger l appears to turn over and approach the lightest 0− Nambu-Goto energy level. As

discussed in some detail in section 4.3.3, a much more natural explanation of these states

is that they reflect massive mode excitations, and these cannot be easily described in the

framework of a simple effective string action.

5 Conclusions

In this paper we have calculated the energies of ∼ 20 of the lightest excitations of a confining

flux tube that is closed around a spatial torus. We have varied the size l of the torus from

the very short, close to the critical length l
√
σ ∼ 1.6 where the theory undergoes a finite-

volume deconfining transition, up to moderately large lengths, l
√
σ ∼ 6.3. Although our

most extensive calculations have been in the SU(3) gauge theory at a fixed value of the

lattice spacing a, we have also performed calculations in SU(5) and SU(6), at the same a,

so as to have control over the large-N limit, and in SU(3) at a smaller value of a, so as to
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Figure 22. Excitation energies of the lightest q = 0 excited states in SU(3) at β = 6.0625. The

states are JPtPl = 0−− (•), 0++ (N), 2++ (◦) and 2−+ (⋆), the solid horizontal line is the Nambu-

Goto prediction, the curved lines are fits (see text) with a resummed O(1/l5) correction, and the

curved dotted line is a fit with a resummed O(1/l1.7) correction. Also shown is the next excited

0−− (♦) and the horizontal dotted line is the NG prediction for that state.

have control over the continuum limit. We find no significant a or N dependence of our

energy spectra, within our statistical errors, so that our results can be read as being for

the continuum gauge theory, and for all N ≥ 3.

Our goal has been to learn more about the effective string action that describes con-

fining flux tubes and which can hopefully teach us something about the string theory that

may describe the physics of a confining gauge theory, at least at large N . In the last few

years there has been startling analytic progress in this direction [6–12], and one has learned

that if one expands the effective string action in powers of 1/l, then the first few terms are

universal. This also implies that, to this approximation, the effective action is the same as

Nambu-Goto in flat space-time, i.e. a free string theory.

Our calculations are largely complementary to this analytic work. The latter focuses on

long flux tubes, where 1/l
√
σ is small, and on excited states whose gap to the ground state is

small: ∆E(l) ≪ mG where mG is the mass gap of the theory. By contrast our calculations

concentrate on small to medium values of l
√
σ. This is largely dictated by the fact that

most of the systematic errors in a numerical estimate of an energy increase as that energy

increases (as discussed in section 3.2). To control these errors in our calculation, which

makes important use of a variational approach, we use a very large basis of lattice operators,

as described in section 3.4. This is the main technical innovation of our calculations.

This strategy works reasonably well, but is significantly less successful than in our similar

calculations in 2+1 dimensions [16, 17]. For that reason the present calculations should be

regarded as exploratory. A better choice of operators could increase the range and accuracy

of such calculations quite dramatically. This is an important direction for future work.
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One of our main systematic errors does not affect the lightest state in a sector with

particular quantum numbers, and most of our calculated states fall into this category.

These include ground states with momenta along the flux tube p = 0, 2π/l and 4π/l, and

with spin around the flux tube axis of |J | = 0, 1, 2 (a continuum and so not entirely reliable

labelling of the content of the relevant representations of the cubic group), and with various

parities, as described in section 3.3. Almost all these quantum numbers entail non-trivial

excitations of the flux tube and so are dynamically interesting. (In contrast to transverse

momentum which would teach us nothing new and which we therefore ignore.)

Our high statistics calculation of the absolute ground state, described in section 4.1.2,

demonstrates quite accurately that the O(1/l) universal Lüscher correction is in the simple

bosonic string universality class, and so confirms earlier work. (In a brief aside in sec-

tion 4.4, we also confirmed that k = 2 flux tubes appear to belong to the same universality

class.) In the case of SU(6), but not SU(3), we obtained some weak numerical evidence

that the leading non-universal O(1/lγ) term is consistent with γ ∈ [3, 7]. This is to be

compared to the recent analytic result that γ ≥ 7 [12]. It will be hard to do much better

than this because one is analysing very small ‘Casimir energy’ corrections to the ground

state energy, ideally on long flux tubes that have a large energy. By contrast, the excited

states receive a much larger contribution from the excitations of the string and thus provide

a much better arena within which to test ideas about the effective string action.

The most striking feature of our spectrum of excited states is how closely most of these

states track the predictions of the Nambu-Goto free string theory, and that they do so all

the way down to lengths l
√
σ ∼ 2 − 3 where the flux tube is presumably not much longer

than it is wide. This is evident from the various plots in section 4.2 and section 4.3, where

we compare our calculated energies to the parameter-free predictions of the free string

theory. (The only parameter is σ and that is determined by fitting the absolute ground

state.) It is of course natural to ask whether this might not simply be a consequence of

the fact that we now know [12] on general grounds that an expansion of the energy E(l) in

powers of 1/l must coincide with the corresponding expansion of the Nambu-Goto energy

ENG(l) up to at least O(1/l3). The answer to that question, as illustrated in figure 20, is

‘no’. Indeed, the agreement with Nambu-Goto persists down to values of l
√
σ where the

expansion of ENG(l) in powers of 1/l is no longer convergent and one has to use its full,

resummed expression. Note that our range of flux tube lengths, while focused on smaller

values, does in fact extend into the region where the Nambu-Goto expansion converges

(for these states), so that we overlap with the range of l to which the analytic calculations

apply. So, just as in our earlier 2+1 dimensional calculations [16, 17], the implication of

this result is very clear: the sensible starting point for analysing the effective string action

is the Nambu-Goto free string theory and not the conventional Gaussian string action (in

static gauge). If we do the latter then we will need to calculate corrections to all orders in

1/l in order to access the shorter values of l where we find that the spectrum still maintains

a simple stringy character. If, on the other hand, we do the former, then it appears that

something like a modest O(1/l5) correction might be sufficient, as illustrated in figure 21,

or some resummed version, with a modest leading coefficient, as illustrated in figure 22.

This is, however, not the whole story. We have also found a few states for which the
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corrections to Nambu-Goto are very large. These corrections reduce the energy, making

the state relatively light — incidentally ensuring that our calculations of these energies

are accurate and reliable. These states are of particular interest because they potentially

encode the excitation of the massive modes that we expect to be associated with the non-

trivial intrinsic structure of the flux tubes. (Something we were unable to detect in our

more accurate analysis of fundamental flux tubes in D = 2 + 1.) All of these ‘anomalous’

states, or at least all those that we have identified so far, turn out to have JPt = 0−

quantum numbers. (Here Pt is the two dimensional parity in the plane transverse to the

flux tube axis.) The lightest 0− flux tube with the lowest non-zero longitudinal momentum,

pq = 2π/l, remains far from the Nambu-Goto prediction over our whole range of lengths

l
√
σ ∈ [1.8, 6.3] and, as we see in figure 15, it appears to approach the stringy prediction

only very slowly. By contrast, the lightest 0− flux tube in the pq = 0 sector shows a very

similar behaviour till about l
√
σ ∼ 4, but then turns upwards and appears to have crossed

the Nambu-Goto energy level in our largest-l calculation at l
√
σ ≃ 6.3. At the same time,

as we see in figure 14, the first excited 0−, after initially appearing to increase towards the

first excited Nambu-Goto level, turns downwards, appearing to approach the Nambu-Goto

0− ground state as l increases. A natural interpretation of this is that the lightest state is

(largely) a massive excitation, while what we took to be the first excited state becomes the

0− stringy ground state at large l. To go beyond such a qualitative observation requires

a good understanding of how to simultaneously describe the massive and massless modes

of a flux tube, and this we do not have at present. However, as we saw in section 4.3.3,

a simple ansatz for the massive modes naturally describes the behaviour of the lightest

0− states for both pq = 0 and pq = 2π/l with a mass scale that is about one half of the

lightest glueball mass. While such a simple picture does not say anything specific about

the observed large corrections to the next, heavier 0− states, it is natural, if these states

are (approximately) the lightest massless mode excitations, that they should show the

somewhat different behaviour for pq = 0 and pq = 2π/l that is observed, as a results of the

derivative couplings such Goldstone fields must possess.

In summary, our result is that the lightest closed flux tube states appear to fall into

two distinct classes. The first class includes most of the states and here the spectrum

is remarkably well described by the free bosonic string theory. This complements and

extends to shorter lengths recent analytic results for very long flux tubes. The second class

includes only a few states, all of which (so far) possess 0− quantum numbers, and here

the energies are remarkably far from the predictions of the simple Nambu-Goto model.

The lightest of these states, for both zero and non-zero longitudinal momenta, display

a behaviour that is consistent with being primarily a massive excitation that does not

couple too strongly with the massless modes. It is clear that a significant, but realistic,

improvement to our calculations would have the potential of providing convincing answers

to some very interesting questions.

Note added. As the revised version of this paper was being prepared, two further papers

have appeared containing interesting new analytic results on the effective string action [52,

53]. A summary of these and other results may be found in a recent talk [54]. From the
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point of view of our work in this paper, a very interesting result is that the coefficients of

all those operators in the full effective action that appear in the expansion of the Nambu-

Goto action (the ‘scaling 0’ operators) are in fact universal and equal to their Nambu-Goto

values [54]. This result provides a conceptually clean separation of the full effective action

into a piece that is Nambu-Goto and a qualitatively different piece that is the correction

to it. Another interesting result is that the leading correction to Nambu-Goto is in fact

universal [54]; this arises not from the constraint of open-closed duality described earlier

in this paper, but from the constraint that world-sheet conformal symmetry should be

maintained at the quantum level — a constraint that is not obvious in static-gauge, but

can be seen in the conformal gauge approach of Polchinski-Strominger, and which the

Nambu-Goto model fails to satisfy.
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A Compilation of the energy spectra

In this appendix we list the numerical results which form the basis for the analysis in the

body of this paper. We try to do so in sufficient detail that they can be used by the

interested reader to test theoretical ideas about the spectrum.

Before doing so we list in table 7 the parameters of the calculations that were used to

calculate the closed flux tube eigenspectra. Note that while the total number of operators

is O(1000), after organising them into linear combinations of particular quantum numbers,

one typically has ∼ 50 − 200 operators.

This table complements the ealier table 3 where we listed various physical properties

in the lattice units appropriate to each of the different calculations. Note that the string

tension in lattice units, a2σ, which is extracted from the absolute ground state of the flux

tube, will vary (very) slightly with the functional form of the fit. Thus the reader may

wish to perform his own fits to the q = 0, |J | = 0, Pt = + energies listed in table 11, in

order to obtain a value of a2σ appropriate to the model they are testing.
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aEgs(q, l)

q |J | Pt l/a N = 3 N = 5 l/a N = 3f

0 0 + 10 0.2448(27) 0.2497(38) 16 0.1841(27)

12 0.3491(32) 0.3591(54) 18 0.2321(26)

16 0.5393(38) 0.5520(59) 24 0.3499(55)

20 0.7037(77)

24 0.8734(48)

32 1.165(19)

1 1 ± 10 0.9763(63) 0.971(15) 16 0.6259(62)

12 0.9311(67) 0.968(15) 18 0.6299(60)

16 0.970(10) 0.979(22) 24 0.6545(57)

20 1.057(17)

24 1.152(12)

32 1.408(35)

2 0 + 10 1.686(10) 1.685(23) 16 1.041(36)

12 1.456(40) 1.468(81) 18 1.021(13)

16 1.338(37) 1.392(65) 24 0.920(12)

20 1.404(37)

24 1.421(32)

2 1 ± 10 1.540(37) 1.508(85) 16 1.040(43)

12 1.421(43) 1.483(70) 18 0.977(39)

16 1.342(37) 1.342(60) 24 0.904(32)

20 1.389(35)

24 1.440(29)

2 2 + 10 1.612(49) 1.56(11) 16 1.077(50)

12 1.525(44) 1.63(10) 18 0.970(46)

16 1.428(37) 1.38(8) 24 0.970(36)

20 1.371(45)

24 1.382(24)

2 2 - 10 1.729(85) 1.79(13) 16 1.155(64)

12 1.569(52) 1.62(10) 18 1.035(40)

16 1.405(62) 1.52(10) 24 0.935(48)

20 1.412(32)

24 1.442(33)

Table 11. The energy, Egs(q, l), of the lightest flux tube state with length l and longitudinal

momentum p = 2πq/l for q = 0, 1, 2. (We include more than one state where these are approximately

degenerate.) Quantum numbers are as shown. Calculations are: SU(3) at β = 6.0625 (N = 3),

SU(5) (N = 5) and SU(3) at β = 6.338 (N = 3f).

In any given calculation all our dimensionful parameters and results are necessarily

given in units of the lattice spacing, e.g. aE or L = l/a. Any expression for the spectrum
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0
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0
3
0

aE(q = 1, l) , J =odd

l/a N = 3 N = 5 l/a N = 3f

10 1.417(24) 1.359(44) 16 0.8602(149)

12 1.337(27) 1.377(58) 18 0.8622(94)

16 1.400(49) 1.416(65) 24 0.9261(123)

20 1.431(48)

10 16 0.9423(259)

12 18 0.9366(116)

16 24 0.9279(115)

20

10 16 0.9736(318)

12 18 0.9864(139)

16 24 0.9658(425)

20

10 16 1.1264(382)

12 18 1.0804(165)

16 24 1.1343(247)

20

Table 12. Energies of the four lightest excited flux tube states with longitudinal momentum

p = 2πq/l = 2π/l and with J =odd. See table 11 for the lightest odd-J state. Calculations are

labelled as in table 11.

should look exactly the same if all dimensionful quantities are expressed in lattice units.

For example, to use the expression in eq. (2.21) with our tabulated values simply replace

E, σ, l by aE, a2σ, l/a respectively.

Before listing our energies, some preliminary remarks.

1. The most accurate calculation, covering the largest range of flux tube lengths, is the

SU(3) one at β = 6.0625.

2. The energies that are the largest in lattice units, are the least reliable. (Typically the

larger the error, the greater the uncertainty on the estimate of that error.)

3. Our use of the term ‘ground state’ may sometimes be ambiguous. Sometimes we mean

the lightest state with given values for all conserved quantum numbers, but sometimes we

mean the lightest state with a subset of those quantum numbers, e.g. the ground state with

p = 0. The reader should not be perturbed when this arises in the text or captions: the

quantum numbers are clearly indicated in the tables and for each set of quantum numbers

all states are listed up to some energy, i.e. we do not miss any states of intermediate energy

just because they may be difficult to estimate.

4. We remind the reader that since we only have the square group of rotations in a plane as

exact symmetries, what |J | = 0, |J | = 1, |J | = 2 really mean is |J | = 0, 4, . . ., |J | = 1, 3, . . .,

|J | = 2, 6, . . ..
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J
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P
0
2
(
2
0
1
1
)
0
3
0

aE(q, l) , JPt = 0−

q l/a N = 3 N = 5 l/a N = 3f

0 10 1.144(12) 1.179(32) 16 0.7852(141)

12 1.273(26) 1.237(31) 18 0.7983(177)

16 1.340(31) 1.346(52) 24 0.8555(278)

20 1.366(38)

24 1.432(31)

32 1.633(79)

1 10 1.456(34) 1.372(46) 16 0.983(13)

12 1.388(33) 1.469(73) 18 0.984(13)

16 1.512(50) 1.576(19) 24 0.991(21)

20 1.562(86)

24 1.689(78)

1 10 1.607(48) 1.622(18) 16 1.107(16)

12 — 1.630(22) 18 —

16 1.674(18) 1.662(25) 24 1.140(21)

20 1.705(19)

2 10 1.771(12) 16 1.150(21)

12 1.622(15) 18 1.060(18)

16 1.522(10) 24 0.999(14)

20 1.554(15)

Table 13. Energies of the lightest excited 0− flux tube states with longitudinal momentum,

p = 2πq/l, apart from those states in table 8 and table 9 Calculations are labelled as in table 11.

In tables 8, 9, 11, 12, 13 we list the energy E in lattice units as aE, the length l of the

flux tube also in lattice units as l/a, the longitudinal momentum p = 2πq/l (often labelled

as pq in the text) is labelled by the integer q, and we give the absolute spin around the

flux tube axis, |J |, and the transverse parity Pt (and the longitudinal parity Pl for p = 0

states). The ‘phonon’ content in the Nambu-Goto model of the lightest such states is listed

in table 1.
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