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1 Introduction

The conformal N = 6 supersymmetric Chern-Simons matter theory proposed by Aharony,

Bergman, Jafferis and Maldacena (ABJM) [1] in order to describe the worldvolume of M2-

branes (building on the earlier work [2–4]) has been the subject of intense study. It is a

3-dimensional theory with gauge group U(N)×U(N) and superconformal group OSp(6|4)
(see also [5, 6]).

The dynamical fields of the ABJM theory are four complex scalars φi and their

fermionic partners ψ̄i, i = 1, . . . , 4, which transform in the (N, N̄ ) of the gauge group

and in the so-called ‘singleton’ representation of the superconformal group, denoted V1.
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In addition we have their complex conjugate fields φ̄i, ψi in the (N̄ ,N) and conjugate sin-

gleton V1
representations of the gauge and superconformal groups respectively. Finally

the gauge fields are non-dynamical, with Chern-Simons actions and opposite levels +k and

−k for the two gauge groups. Gauge invariant single-trace operators are formed by taking

the trace of a product of an even number of matter fields (or their covariant derivatives),

alternating between V1 and V1
.

Similarly to the ’t Hooft limit in N = 4 Yang-Mills (SYM) theory, the existence of

two parameters N, k allows us to take them to infinity with λ = N/k fixed. In this limit

the theory admits a dual description in terms of type IIA string theory on AdS4 × P
3 and

provides an important example of the AdS4/CFT3 correspondence [1].

Integrability plays a key role in unveiling the structure of planar ABJM theory [7–14].

At leading order in the weak coupling expansion, it was proven that the spectrum of of

anomalous dimensions for certain subsets of single-trace, gauge invariant operators of the

theory is encoded in an integrable spin chain Hamiltonian [7–9], of the general form

∆2 = λ2
2L∑

i=1

(D2)i,i+1,i+2

where the Hamiltonian density D2 acts simultaneously on three adjacent sites of a spin

chain with 2L sites in total. This result was extended with the construction of the full

2-loop dilatation operator [15, 16], and aspects related to integrability have been studied

also at higher loops [17–19].

A set of all-loop Bethe equations encoding the full asymptotic spectrum of the planar

theory has been proposed in [12], with a later proposal [14] also incorporating corrections

due to wrapping interactions. The all-loop equations were in turn derived from a conjec-

tured S-matrix [13], which successfully passed a 2-loop test [20]. An unusual feature of

the proposed S-matrix is that that the scattering between odd- and even-site excitations

is reflectionless, studied in more detail in [21].

In this paper we study the spectrum of the 2-loop dilatation operator of the ABJM

theory for states of length 4 and 6 in various sectors of the superconformal group OSp(6|4),
using a combination of Bethe ansatz techniques and direct Hamiltonian diagonalization.

Specifically we present new analytic formulas for three new infinite sequences of rational

eigenvalues, and a numerical method for determining further (irrational) eigenvalues with

relative ease. Our results for length-4 states are summarized in table 2, which may be

thought of as the ABJM theory analogue of table 3 of [22] (also table 3.10 of [23]) for

N = 4 SYM. See [24, 25] for eigenvalues of other states in the ABJM theory.

In section 2 we review a few necessary details regarding OSp(6|4) representation the-

ory (mostly from [26]). We begin section 3 by presenting our results for the eigenvalue

sequences, then describe the special states which have the energies shown in table 2, ex-

plain how the results were obtained from the Bethe ansatz equations (BAE), and finally

describe a numerical method which may be used to find more general eigenvalues. Sec-

tion 4 explains an apparent ‘coincidence’ in the sequence of eigenvalues as a consequence

of two short multiplets of OSp(6|4) combining into a long multiplet at finite coupling.
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In section 5 we discuss various subsectors in detail (including some results from direct

Hamiltonian diagonalization in the OSp(4|2) sector) before mentioning a few comments on

length-6 operators in section 6.

2 Preliminaries

The superconformal group of the ABJM theory, OSp(6|4), has Sp(4,R) × SO(6) as its

bosonic subgroup, where Sp(4,R) ≃ SO(2, 3) is the conformal group of 3-dimensional

spacetime and SO(6) ≃ SU(4) is the R-symmetry group. Representations of OSp(6|4)
formed by any number f of fundamental fields of the theory (and their derivatives) are

conventionally labeled by the Cartan charges [∆, j; d1, d2, d3] and the length f , where (∆, j)

are the classical scaling dimension and spin charges of SO(2, 3) and [d1, d2, d3] are the

Dynkin labels of SU(4).

Alternatively, we can also characterize OSp(6|4) representations with a set of super-

Young tableau (SYT) labels (k1, k2, . . . , kn), where the number of labels n can take various

values, but for our discussion won’t extend beyond n = 3. The interested reader can find

out more about the physical significance of the SYT and their corresponding labels in the

context of the ABJM theory in [26] (see [27–32] for a more general discussion). Here we

will use the SYT labels as a significantly more compact formalism for describing multiplets

than the Cartan charges. At any stage one can translate from the SYT labels to the usual

language of the Cartan charges with the help of the relations

∆ =
1

2
(max(k1 − 3, 0) + max(k2 − 3, 0) + f) ,

j =
1

2
(max(k1 − 3, 0) − max(k2 − 3, 0)) ,

d1 = f −
n∑

i=1

min(ki, 2) , d2 =

n∑

i=1

δki,2 , d3 =

n∑

i=1

δki,1 .

(2.1)

We will denote a multiplet in the Cartan or SYT formalism as Vf
(∆,j)[d3,d2,d1]

or Vf
k1,k2,...,kn

respectively, and we will use a bar to denote the ‘conjugate’ of a representation, which is

obtained by reversing the order of the SU(4) labels, Vf
(∆,j)[d1,d2,d3] = Vf

(∆,j)[d3,d2,d1]. The

complete set of length-4 multiplets, which will be the focus of most of our study, are

displayed in table 1.

The decomposition of all states of the ABJM theory with f = 4 into irreducible

OSp(6|4) multiplets is

(V1 ⊗ V1
)2 =

∞∑

j=1

1

2
j(j + 1)

(

V4
2j + V4

2j

)

+

∞∑

j=1

j
∑

p=1

{[
j(j + 1) − p2

]
V4

2j,2p +
[
j2 − p(p− 1)

]
V4

2j−1,2p−1

}
. (2.2)

Perhaps more important is the subset of multiplets which are (graded) symmetric

under exchange of the two V1 ⊗ V1
factors, since these correspond to physical gauge
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1 V4 = V(2,0)[4,0,0]

�
�
�
�

V4
1,1,1,1 = V4

(2,0)[0,0,4] = V4

� V4
1 = V4

(2,0)[3,0,1]

�
�
�

V4
1,1,1 = V2

(2,0)[1,0,3] = V4
1

�� V4
2 = V4

(2,0)[2,1,0]

��
�
�

V4
2,1,1 = V4

(2,0)[0,1,2] = V4
2

k≥ 3
︷ ︸︸ ︷
�� · · · � V4

k = V4

(k+1

2
, k−3

2 )[2,0,0]

k≥ 3
︷ ︸︸ ︷
��

�

�

· · · � V4
k,1,1 = V4

(k+1

2
, k−3

2 )[0,0,2]
= V4

k

�
� V4

1,1 = V4
(2,0)[2,0,2]

k≥ 3
︷ ︸︸ ︷
��

�
· · · � V4

k,1 = V4
(k+1

2
, k−3

2 )[1,0,1]

��
� V4

2,1 = V4
(2,0)[1,1,1]

k≥ 3
︷ ︸︸ ︷
��
��

· · · � V4
k,2 = V4

(k+1

2
, k−3

2 )[0,1,0]

��
�� V4

2,2 = V4
(2,0)[0,2,0]

k1≥k2
︷ ︸︸ ︷
�

�
· · · �

�
︸ ︷︷ ︸

k2≥3

· · · � V4
k1,k2

= V4
“

k1+k2−2

2
,
k1−k2

2

”

[0,0,0]

Table 1. The f = 4 OSp(6|4) multiplets.

invariant operators,

(V1 ⊗ V1
)2+ =

∞∑

j=1

j(j + 1)(V4
4j + V4

4j + V4
4j+2 + V4

4j+2) + [2j(j − 1) + 1]V4
4j−3,1

+

∞∑

j=1

j
∑

p=1

{
2
[
j(j + 1) − p2

]
(V4

4j,4p + V4
4j+2,4p)

+ 2
[
j2 − p(p− 1)

]
(V4

4j−1,4p−1 + V4
4j−1,4p−3)

+
[
2j2 − 1 − 2p(p − 1)

]
(V4

4j−2,4p−2 + V4
4j,4p−2)

+
[
2j(j + 1) + 1 − 2p2

]
(V4

4j+1,4p−1 + V4
4j+1,4p+1)

}
.

(2.3)

We should note that the corresponding formulas for the OSp(4|2) sector are given by the

same expressions if we simply drop all multiplets that have a second SYT label greater or

equal to 3.

3 Unpaired OSp(6|4) multiplets

We have developed a method for solving the 2-loop OSp(6|4) BAE for certain states of each

irreducible representation appearing in the cyclic tensor product decomposition (2.3). In

this manner, we have been able to compute the low-lying spectrum of 2-loop anomalous di-

mensions ∆2, and consequently identify three new infinite sequences of rational eigenvalues.
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Figure 1. The OSp(6|4) distinguished Dynkin diagram. The Bethe roots si, wi, ri, vi and ui

in (3.3) correspond respectively to excitations of the indicated simple roots.

Our results are summarized in table 2, with the new sequences given by1

∆2 = 4
(
S1(m) + S−1(m)

)
+

2(1 − (−1)m)

m+ 1
+ 8 for V4

2m+1,3,

∆2 = 4
(
S1(m) − S−1(m)

)
+

1 + (−1)m

m+ 1
− 1 − (−1)m

m
+ 4 for V4

2m,4,

∆2 = 4
(
S1(m) + S−1(m)

)
+

2(1 − (−1)m)

m+ 1
+

32

3
for V4

2m+1,5 (m odd).

(3.1)

In these expressions Sa(j) is a generalized harmonic number, defined as

Sa(j) ≡
j
∑

i=1

(sign a)i

i|a|
, (3.2)

with S1(j) corresponding to the ordinary harmonic numbers.

Throughout this section we work with the Bethe ansatz of the ABJM spin chain

corresponding to the distinguished Dynkin diagram of figure 1,
(
ui + i/2

ui − i/2

)L

=

Mu∏

k=1,k 6=j

ui − uk + i

ui − uk − i

Mr∏

k=1

ui − rk − i/2

ui − rk + i/2

(
vi + i/2

vi − i/2

)L

=
Mv∏

k=1,k 6=i

vi − vk + i

vi − vk − i

Mr∏

k=1

vi − rk − i/2

vi − rk + i/2

1 =

Mr∏

k=1,k 6=i

ri − rk + i

ri − rk − i

Mu∏

k=1

ri − uk − i/2

ri − uk + i/2

Mv∏

k=1

ri − vk − i/2

ri − vk + i/2

Ms∏

k=1

ri − sk − i/2

ri − sk + i/2

1 =

Mr∏

k=1

si − rk − i/2

si − rk + i/2

Mw∏

k=1

si − wk + i/2

si − wk − i/2

1 =

Mw∏

k=1,k 6=i

wi − wk − i

wi − wk + i

Ms∏

k=1

wi − sk + i/2

wi − sk − i/2
(3.3)

as derived in [7].

1Since we are solely interested in the 2-loop contribution to the anomalous dimension, we omit the overall

λ2 factor in all formulas for scaling dimensions.
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Acceptable solutions to these equations cannot have two or more roots of the same

kind being equal, and for physical states we additionally need to impose the trace

cyclicity condition,
Mu∏

k=1

uk + i/2

uk − i/2

Mv∏

k=1

vk + i/2

vk − i/2
= 1 . (3.4)

The 2-loop anomalous dimensions, or energies, of the states are given by

∆2 =
Mu∑

k=1

1

u2
k + 1

4

+
Mv∑

k=1

1

v2
k + 1

4

. (3.5)

Evidently the Bethe equations (3.3) are invariant when changing the sign of every root,

so their solutions will generically come in pairs related by this transformation, which due

to (3.5) will have the same energies. The only case when this arrangement of solutions into

pairs doesn’t occur is for solutions that are themselves invariant under this transformation,2

namely if ui+Mu−1 = −ui and similarly for the other four kinds of roots. Following the

analysis for the BAE of N = 4 SYM [23] we refer to the latter kind of states as “unpaired”.

When Mu = Mv the Bethe equations are also symmetric under the map ui ↔ vi, so

a similar pairing of states should occur, except for solutions that obey ui = vi. Indeed

such states can be found when examining length-4 multiplets, as apart from V4
k (and its

conjugate) all other multiplets do have Mu = Mv. Hence most of our analysis will focus on

solutions to the Bethe equations that are both unpaired and obey ui = vi, as is the case for

all solutions shown in table 2. Such solutions will have multiplicity 1 by construction, as

they are mapped to themselves under the two aforementioned symmetry transformations.

Finally, in order to find the BAE that correspond to a certain multiplet we need the

relation between the root excitation numbers Mu, . . . ,Mw of the former and the Cartan

charges of the latter, which are given by [16, 26]










Mu

Mv

Mr

Ms

Mw










=










∆ − 3
4d1 − 1

2d2 − 1
4d3

∆ − 1
4d1 − 1

2d2 − 3
4d3

2∆ − L− 1
2d1 − d2 − 1

2d3

2∆ − 2L

∆ − L− j










, (3.6)

where L = f
2 is half the length of the spin chain or multiplet.

In the following sections we explain how the new results of table 2 and equation (3.1)

were obtained.

3.1 Proof of the V4
2m,2 eigenvalue sequence

Let us start with the V4
2m,2 multiplets occupying the second column of table 2, as the

V4
4m+1,1 multiplets in the first column correspond to the twist-2 states whose anomalous

dimensions have been already determined in [24],

∆2 = 4S1(m) for V4
4m+1,1, (3.7)

2Solutions only differing in the ordering of roots are of course equivalent.
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j\p 1 2 3 4 5 6 7 8 9

1 0

2 8

3 10

4 8 38
3

5 4 12 14.43

6 32
3 14 15.94

7 13 47
3 17.20

8 32
3

226
15 17.01 18.29

9 6 14 16.59 18.15 19.25

10 184
15

238
15 17.84 19.14

11 44
3

52
3 18.91 20.02

12 184
15

1738
105 18.52 19.84

13 22
3

46
3 17.96 19.54

. . .

14 1408
105

1798
105 19.11

. . .

15 95
6

37
2

. . .
. . .

16 1408
105

5554
315

. . .
. . .

17 25
3

49
3

. . .
. . .

. . .

Table 2. Unpaired (multiplicity 1) eigenvalues of the multiplets denoted by V4
j,p in SYT notation.

The numbers containing decimal points are numerical approximations to the exact values, which

are irrational. The first column was derived in [24]. The interested reader may find analogous

results for N = 4 SYM in table 3 of [22].

and were merely included in the table for completeness.

Using (2.1) and (3.6) we find that the root excitation numbers of V4
2m,2 are

[Mu,Mv,Mr,Ms,Mw] = [m,m, 2m− 2, 2m− 3, 0] (3.8)

for m ≥ 2. The Bethe equations for the s roots then take the form

2m−2∏

k=1

si − rk − i/2

si − rk + i/2
= 1 , i = 1, 2, . . . , 2m− 3, (3.9)

and it is easy to show that each of them becomes the same polynomial equation of order

2m− 3 for the single variable si. Since the number of s roots is also 2m− 3, they precisely

correspond to the solutions of this single polynomial equation.

With the help of the argument of appendix A for n → 2m − 2, xi → si, yi → ri and

– 7 –
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a→ ∓i/2, it is then easy to prove that (3.9) implies the relation3

2m−3∏

k=1

ri − sk − i/2

ri − sk + i/2
=

2m−2∏

k=1,k 6=i

ri − rk − i

ri − rk + i
. (3.10)

Plugging this relation into the Bethe equations for the r roots leads to the greatly simpli-

fied equation
m∏

k=1

ri − uk − i/2

ri − uk + i/2

m∏

k=1

ri − vk − i/2

ri − vk + i/2
= 1 . (3.11)

This equation is similar to (3.9) and we could repeat the same story here, except for a

subtlety which arises. The equation turns into a polynomial of degree 2m − 1 in ri, but

there are only 2m − 2 different ri, so the polynomial equation also gives one additional,

“dual” root. In order to overcome this difficulty we first notice that for ri → 0, the

equation (3.11) turns into the cyclicity condition (3.4), and hence for cyclically invariant

states it is a solution. Then we can ensure that ri = 0 corresponds to the additional, dual

root, by restricting to unpaired states (which means rMr+1−i = −ri, and similarly for the

other roots), since Mr = 2m− 2 is even and we can’t have any two roots coinciding. Thus,

for unpaired states, application of the argument of appendix A yields the relation

2m−2∏

k=1

ui − rk − i/2

ui − rk + i/2
=
ui + i/2

ui − i/2

m∏

k=1,k 6=i

ui − uk − i

ui − uk + i

m∏

k=1

ui − vk − i

ui − vk + i
(3.12)

and similarly for uj ↔ vj . If we further substitute (3.12) into the Bethe equations for the

u and v roots, these simplify drastically to

ui + i/2

ui − i/2
=

m∏

k=1

ui − vk − i

ui − vk + i
,

vi + i/2

vi − i/2
=

m∏

k=1

vi − uk − i

vi − uk + i
,

(3.13)

which we recognize as the SL(2|1) BAE for length-2 (L = 1) operators [16], corresponding

to the V2
2m+1 multiplets.4 Namely for each m the unpaired V4

2m,2 multiplet has the same

energy as the single V2
2m+1 multiplet, and as we will see in section 4 this is no accident.

It is rather a manifestation of the fact that the two multiplets are short in the classical

theory but they combine into a long multiplet in the interacting theory and so must have

the same anomalous dimension.

In fact since (3.13) has the symmetry ui ↔ vi but there exists only one V2
2m+1 in the

V1 × V1
tensor product, the corresponding solutions must necessarily have ui = vi and

3 This kind of replacement is the simplest case of a more general procedure for exchanging one set

of supersymmetric BAE for another, called fermionic root dualization. In the appendix A we review the

aspects which are relevant to our discussion, see [33] for more information.
4The connection between the notation of [16] for the SL(2|1) multiplets and our SYT labels will be made

more precise in section 5.2.

– 8 –
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hence the aforementioned equations become equivalent to

ui + i/2

ui − i/2
= −

m∏

k=1,k 6=i

ui − uk − i

ui − uk + i
. (3.14)

These are the BAE for the twist-1 states in the SL(2) sector, first written in [12], reflecting

the fact that a subset of V2
2m+1 states belong to this sector. We will refer to such BAE

as “SL(2)-like” (see section 5.3 for more details). The equations (3.14) were subsequently

solved in [15] and [24] with the Baxter polynomial technique, and in particular the roots

ui for the unique solution of (3.14) are the solutions of the polynomial equation

Qm(u) = 2F1

(

−m, iu+
1

2
; 1; 2

)

= 0 . (3.15)

The energy of the solution is shown to be

∆2 = 4
(
S1(m) − S−1(m)

)
, (3.16)

and this concludes the proof that the unpaired states with vi = ui belonging to the V4
2m,2

multiplets have the same eigenvalues with the twist-1 states.5 It is also worth mentioning

that once we derive the u roots from (3.15) we can replace them in (3.11) (for vi = ui) to

determine the r roots and similarly obtain the s roots from the r roots through (3.9).

3.2 Proof of the V4
4m+1,3 eigenvalue sequence

Of course the results of the previous section could be straightforwardly obtained from mul-

tiplet splitting considerations, raising the question of whether the techniques we presented

could be extended in order to find new eigenvalue sequences. The answer turns out to be

positive, up to some extent analytically and further on numerically.

We first focus on the V4
2m−1,3 multiplets, which apart from being the first obvious set

to study since we just increase the second SYT label by one, they also have very similar

root excitation structure,

[Mu,Mv,Mr,Ms,Mw] = [m,m, 2m− 2, 2m− 4, 0] (3.17)

form ≥ 2, namely they have just one fewer s excitation as compared to the V4
2m,2 multiplets.

The Bethe equations for the s roots will thus be identical to (3.9), but now the problem is

that they again correspond to a degree a 2m− 3 polynomial equation for the si, whereas

there exist only 2m−4 of them. We can get around this problem by restricting to unpaired

states with rMr+1−i = −ri (and similarly for the u, v and s roots as well), in which case we

see that (3.9) is satisfied for si = 0, the additional solution which does not correspond to

an s root. So similarly as before we can prove that

2m−4∏

k=1

ri − sk − i/2

ri − sk + i/2
=
ri + i/2

ri − i/2

2m−2∏

k=1,k 6=i

ri − rk − i

ri − rk + i
, (3.18)

5We could arrive at the same conclusions for V4
2m,2 in a relatively simpler manner, had we started with

the BAE related to the Dynkin diagram of figure 2(a), our choice however will simplify the analysis of the

following sections.
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which in turn simplifies the BAE for the r roots to

ri + i/2

ri − i/2

m∏

k=1

ri − uk − i/2

ri − uk + i/2

m∏

k=1

ri − vk − i/2

ri − vk + i/2
= 1 . (3.19)

For general m we run into the same problem, as the above polynomial equation for ri is of

degree 2m whereas there only exist 2m− 2 r roots, namely there will be another two dual

roots whose value we don’t know a priori.

If however we focus on m odd, then given that we are looking at unpaired states with

uMr+1−i = −ui, then the leftmost phase in (3.19) cancels that term in the first product

corresponding to ui = 0. Now the polynomial equation becomes of degree 2m − 2 as it

should, and once again using the theorem of appendix A we obtain

2m−2∏

k=1

ui − rk − i/2

ui − rk + i/2
=
ui + i

ui − i

m∏

k=1,k 6=i

ui − uk − i

ui − uk + i

m∏

k=1

ui − vk − i

ui − vk + i
, (3.20)

and similarly for vj ↔ uj , from which the BAE for the u and v roots follow,

(
ui + i/2

ui − i/2

)2

=
m−1∏

k=1

ui − vk − i

ui − vk + i
,

(
vi + i/2

vi − i/2

)2

=

m−1∏

k=1

vi − uk − i

vi − uk + i
.

(3.21)

Here the product of m−1 terms implies that out of the m roots we have excluded the root

ui = 0, and since we have restricted ourselves to m odd, consequently m − 1 will always

be even.

Finally if we consider the even more symmetric configuration of roots with vj = uj ,

the equations reduce again to the SL(2)-like form [12] (this time for L = 2)

(
ui + i/2

ui − i/2

)2

= −
m−1∏

k=1,k 6=i

ui − uk − i

ui − uk + i
, (3.22)

the solution of which was also given in [24]. In this sector the two terms in the energy (3.5)

become equal so in order to determine the anomalous dimensions of the multiplets in

question we just need to add 8, coming from the additional ui = 0 root, to the energy

eigenvalues of [24]. Therefore we have proven that

∆2 = 4S1(m) + 8 for V4
4m+1,3. (3.23)

3.3 Numerical methods for other eigenvalues

As we saw in the previous section, V4
2m−1,3 multiplets have just one fewer s excitation than

the V4
2m,2 multiplets, which implies that their Bethe equations will be similar. From that

perspective, our observation that the V4
2m,2 Bethe roots are quite close to satisfying the

V4
2m−1,3 BAE comes as no surprise, and it is thus natural to look for numerical solutions

of the latter equations in this vicinity.
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In fact, there is a whole series of multiplets with very similar excitation numbers. With

the help of (2.1) and (3.6), it is easy to prove that a generic length-4 multiplet V4
k1,k2

with

k1 ≥ k2 ≥ 3 has excitation numbers

[Mu,Mv ,Mr,Ms,Mw] =

[
k1 + k2

2
− 1,

k1 + k2

2
− 1, k1 + k2 − 4, k1 + k2 − 6, k2 − 3

]

,

(3.24)

from which we conclude that all multiplets with the same k1 + k2 will only differ in the

number of w roots. In particular starting withMw = 0 and increasing the number of w roots

we obtain the multiplets V4
2m−1,3,V4

2m−2,4,V4
2m−3,5, . . . ,V4

m+1,m+1. So we can successively

obtain the roots for all multiplets in this sequence by looking for numerical solutions at

each step near the roots obtained in the previous step.

In more detail, we obtain the results of table 2 in the following way:

1. We first calculate the u roots for V4
2m,2 from (3.15), and subsequently the correspond-

ing r and s roots through (3.11) (for vi = ui) and (3.9).

2. We use Mathematica’s FindRoot[] command to search for numerical solutions to the

V4
2m−1,3 and V4

2m−2,4 BAE using the V4
2m,2 Bethe roots determined in the previous

step as starting points.6 To avoid trouble when the search approaches singular values

for the roots we have to express the BAE in polynomial rather than rational form.

3. The remaining multiplets in the set, V4
2m−3,5,V4

2m−4,6 and so on will have more w

roots and hence more unknowns. We estimate their starting values by plugging the

values for the u, r and s roots of the previous step into the new BAE and solving

for the wi. In fact at each step we have to estimate only one w root even though

Mw increases, because we notice that the remaining starting points can be very well

estimated by the w roots of the multiplets with Mw smaller by 2, namely the ones

calculated two steps back.7

4. Each set of multiplets whose roots we can determine in this iterative manner termi-

nates with V4
m+1,m+1, and so for a given m we have filled a bottom-left to top-right

diagonal line in table 2. If desired one could determine new sets of roots for higher

values of m indefinitely, and to arbitrarily high precision for the roots. The corre-

sponding energy eigenvalues are then calculated via (3.5).

The identification of the rational sequences (3.1) from the data generated by this algo-

rithm is facilitated by first splitting each column into two pieces by taking the differences

of next-to-consecutive eigenvalues in the same column, and then combining the two sets

of results. For example in V4
2m+1,3, where the answer was determined analytically for m

even (3.23) and hinted at the existence of a simpler structure when m increases by two,

6Since we are looking at unpaired states, Dynkin roots with an odd number of excitations will necessarily

have one zero Bethe root. Hence V4
2m,2,V

4
2m−1,3 and V4

2m−2,4 will all have the same number of unknown,

positive Bethe roots.
7In all cases we saw the wi are purely imaginary, so when selecting from all possible solutions for the

estimated w we can use this as a guiding principle.
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we separately identified the sequence ∆2 = 4(S1(m+ 1) + S1(m)) + 8 for m odd and then

moved on to combine the odd and even results. We should also note that the immense

number of identities involving harmonic numbers allows us to rewrite (3.1) in many equiv-

alent forms, for example we can replace the 1 ± (−1)m terms in favor of more harmonic

numbers, and/or combine formulas for more than one sequence to more general ones. We

mention here the intriguing formula

∆2 = 2
(
S1(m) + S−1(m) + S1(m+ 1) + S−1(m+ 1)

)
+ 4
(
S1(2p) − S−1(2p)

)
, (3.25)

which holds exactly for V4
2m+1,2p+1 with m even for p = 0, m odd for p = 2 and m both

odd and even for p = 1, and more surprisingly it even gives good approximations to the

irrational values of the remaining multiplets.

Another observation we can make is that the eigenvalues of the unpaired V4
j,j multiplets

are just 4 times the Hamiltonian density D123 eigenvalues, which can be obtained with

the Hamiltonian diagonalization techniques we discuss in section 5.1. Since all length-3

OSp(6|4) multiplets have OSp(4|2) submultiplets [26], it is sufficient to diagonalize this

subset of states. This connection, apart from providing another way for calculating the

unpaired V4
j,j eigenvalues from the simpler OSp(4|2) sector, raises the question whether

something similar holds for other cases as well, for example for the paired eigenvalues. It

would also be interesting to find a group-theoretic proof of this relation.

4 Shortening conditions and multiplet splitting

As is well known, for the states transforming in a representation of any superconformal

group to respect unitarity certain inequalities between the scaling dimension and the re-

maining Cartan charges have to hold. Multiplets which saturate these inequalities turn

out to have a large number of states with zero norm which can be consistently removed,

resulting in a multiplet with a smaller number of positive norm states compared to generic,

long multiplets.

In this section we classify all length-2 and -4 OSp(6|4) supermultiplets according to

which (if any) unitarity bounds they saturate, or in other words according to the shortening

conditions they obey. For 3-dimensional superconformal groups these were first derived

in [34] (see also [35]) and were further refined recently in [36]. We will be using the

classification and notations laid out in table 1 of the latter paper, where the R-symmetry

group is described in terms of Gelfand-Zetlin instead of Dynkin labels.8 Here we mention

for reference that all semi-short representations and conserved currents obey ∆ = r1+j+1,

their difference being that the former additionally obey r1 6= 0, whereas the latter have

r1 = 0. BPS and 1
2BPS multiplets obey ∆ = r1 while all of the rest are long.

The classification is given in table 3. We see that for length-2 there exist no long or

even semi-short multiplets, where as for length-4, there exist no conserved currents. It

is also interesting to note that all multiplets which have representatives in the OSp(4|2)
8For the case at hand the SO(6) Gelfand-Zetlin labels ri are related to the SU(4) Dynkin labels di by

(r1, r2, r3) = (d2 + 1

2
(d3 + d1),

1

2
(d3 + d1),

1

2
(d3 − d1)).
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Irrep ∆ j r1 r2 r3 Type Denoted

V2,V2
1 0 1 1 ∓1 1

2BPS,± (3, B,∓)

V2
1 1 0 1 1 0 BPS, n = 2 (3, B, 2)

V2
2 1 0 1 0 0 BPS, n = 1 (3, B, 1)

V2
k

k−1
2

k−3
2 0 0 0 Conserved current (3, cons.)

V4,V4
2 0 2 2 ∓2 1

2BPS,± (3, B,∓)

V4
1 ,V

4
1 2 0 2 2 ∓1 BPS, n = 2 (3, B, 2)

V4
1,1 2 0 2 2 0 BPS, n = 2 (3, B, 2)

V4
2,1 2 0 2 1 0 BPS, n = 1 (3, B, 1)

V4
2,2 2 0 2 0 0 BPS, n = 1 (3, B, 1)

V4
k ,V

4
k

k+1
2

k−3
2 1 1 ∓1 Semi-Short 2 & 3 (3, A,∓)

V4
k,1

k+1
2

k−3
2 1 1 0 Semi-Short 1, n = 2 (3, A, 2)

V4
k,2

k+1
2

k−3
2 1 0 0 Semi-Short 1, n = 1 (3, A, 1)

V4
k1,k2

k1+k2−2
2

k1−k2

2 0 0 0 Long (3, A, 0)

Table 3. The classification of 2- and 4-site supermultiplets of the ABJM theory according to [36].

The first row refers to the SYT labeling of the representations, whereas the ri correspond to the

Gelfand-Zetlin indices of SO(6), (see footnote 8 for more details).

sector, namely the V4
j,p multiplets with p ≤ 2, are short. Consequently the OSp(4|2)

Hamiltonian diagonalization discussed in section 5.1 can be used to find eigenvalues for all

short OSp(6|4) multiplets.

We should note that so far we have considered whether the classical dimension ∆

satisfies the shortening conditions, since in the spin chain picture it is the dilatation op-

erator that induces the correction ∆2. When we also include the latter, multiplets which

are classically short will no longer saturate the unitarity bounds and hence they have to

necessarily combine into long multiplets of the interacting theory. This process, which

can be equivalently seen as the decomposition or splitting of the long interacting multiplet

into short classical multiplets has been studied for the case of OSp(2N, 4) superconformal

groups in [36] as well. We mention here a particular decomposition of interest, respecting

the notations of the latter reference,

χ
(3,long)
(j+1;j;0,0,0) = χ

(3,cons.)
(j+1;j;0,0,0) + χ

(3,A,1)

(j+ 3

2
;j− 1

2
;1,0,0)

, (4.1)

where subscripts refer to the quantum numbers (∆, j; r1, r2, r3) and superscripts to the

type of the multiplet as in rows 2-6 and row 8 of table 3 respectively. Comparing with

the SYT notation of the leftmost row we learn that the short multiplets V2
2m+1 and V4

2m,2

(m = j − 1) combine to form a long multiplet, and for this joining to occur the anomalous
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dimensions of the two short multiplets must be equal. This explains the reduction of the

V4
2m,2 BAE to those of V2

2m+1 that we saw in section 3.1.

5 Multiplets in various subsectors

5.1 OSp(4|2) sector

The two-loop dilatation operator acting on a spin chain state of length 2L in the ABJM

theory in the R-matrix form is given by [15, 16]

∆2 =

2L∑

i=1

(D2)i,i+1,i+2 (5.1)

where the Hamiltonian density D2 acts simultaneously on three adjacent sites of the chain

according to9

(D2)123 =

∞∑

j=0

S1(j)P(j)
12

+

∞∑

j1,j2,j3=0

(−1)j1+j3
(

1
2S1

(
j2− 1

2

)
+log 2

)(

P(j1)
12 P(j2−1/2)

13 P(j3)
12 +P(j1)

23 P(j2−1/2)
13 P(j3)

23

)

.

(5.2)

Here P(j)
ab is the projection operator that acts on sites a and b and equals the identity if

the length-2 state belongs to an irreducible multiplet labeled by OSp(6|4) spin j, and zero

otherwise. In more detail, j is related to the eigenvalue of the OSp(6|4) Casimir operator

J2 = j(j + 1), expressed in terms of the Cartan labels of the multiplet in question as

J2 = 1
2

(

∆(∆+3)+j(j+1)− 1
4d1(d1+2)− 1

4d3(d3+2)− 1
8(2d2+d1+d3)

2−(2d2+d1+d3))
)

,

which through (2.1) can be expressed in terms of the SYT labels as well. For the relevant

length-2 multiplets V2
k (see [26] for more details) k and j turn out to be related simply by

j = 2k+ 1, which also demonstrates why j uniquely characterizes a multiplet appearing in

the V1 × V1
or V1 × V1 decompositions.

An explicit form of the projectors P(j)
ab has not been worked out for the full OSp(6|4)

group, but it has been derived for the OSp(4|2) sector [15] by looking at states containing

fields from the following subsets of the two singleton representations,

φi , ψ̄
4−i+1, i = 1, 2 for V1,

φ̄4−i+1, ψi , i = 1, 2 for V1 (5.3)

where we only keep the first Lorentz component of the fermions, and just one covariant

derivative D11 in the corresponding direction, acting on both fields.

9Harmonic numbers with half-integer arguments are related to ordinary harmonic numbers by the iden-

tity S1(j−1/2)+2 log 2 = 2S1(2j)−S1(j), which also implies that all coefficients in the second sum of (5.2)

will be rational.
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In this sector (5.2) continues to hold, and so we can obtain the anomalous dimensions

of OSp(4|2) multiplets by explicit diagonalization of the dilatation operator. Our case of

interest will be the shortest states the dilatation operator in the form (5.2) can act on,

namely of length 4. The diagonalization can be performed in any set of states which are

closed under the action of (5.2), and for our purposes it will suffice to consider all states

with a given classical scaling dimension ∆.

Another operator that can easily be seen to commute with the Hamiltonian ∆2 (and

also the OSp(6|4) Cartan charges) is the translation operator T that sends site i to i+ 1,

T |A1B1A2 · · ·ALBL〉 = (−1)deg(A1) deg(B1A2B2···ALBL)|B1A2B2 · · ·ALBLA1〉 . (5.4)

However since the action of T is from a (V × V)L Fock space to a (V ×V)L one, its square

T 2 that shifts each site by two will be more relevant. We can thus find a common basis of

eigenstates, and for length-4 states the possible eigenvalues of T 2 will be ±1 since T 4 = 1.

In fact, we can diagonalize the combination T 2∆2 to obtain the T 2 and ∆2 the eigenvalues

simultaneously since the latter are always positive.

Our results are summarized in table 4, where the ∆2 eigenvalues have been distributed

to the different multiplets, and we have included both T 2 = ±1 cases for completeness,

even though physical, cyclically invariant states have T 2 = 1 only.10 Since a OSp(4|2)
representation will belong to a larger representation of the full superconformal group, states

which are primary in OSp(4|2) will generically be descendants in OSp(6|4). This is why

we have chosen to label the representations in terms of the charges of the corresponding

OSp(6|4) primary. From those we can obtain the charges of the OSp(4|2) primary state in

the following manner; for ∆ (or equivalently j), we have to shift all V4
2m+1,1,V4

2m+2,V4
2m+2,2

for m ≥ 1 by 1
2 , and leave the remaining multiplets the same, whereas the SO(4) charges

are obtained from the SU(4) charges simply by dropping the middle label.

We have used numbers with two decimal digits to denote irrational eigenvalues, which

we see appear already at ∆ = 3.5 (∆ = 4 if one restricts to cyclic states). All irrational

eigenvalues correspond to roots of polynomial equations, and generically one cannot express

them in terms of a nice closed form. For example the three eigenvalues of V4
8 are solutions

of the cubic polynomial equation x3 − 32x2 + 1669
5 x− 152894

135 .

The results of table 4 were obtained by explicit diagonalization of (5.1) within the

(finite-dimensional) subspace of states for various ∆. At each level ∆, the ∆2 eigenvalues

will come both from descendant and primary states. The eigenvalues for the descendant

states are known from their primaries that have appeared at a previous step with lower ∆,

and so we can remove as many eigenvalues as the number of descendants we expect at this

level. The number of descendants can in turn be found with the help of the 4-fold tensor

product decompositions (2.2), (2.3) (restricted to OSp(4|2)) and the relevant characters for

the length-4 OSp(4|2) multiplets from [26]. We attribute the remaining eigenvalues to new

multiplets once more by comparing their multiplicities with the number of primary states

that are expected from the decomposition and character formulas. This iterative process

10As a consistency check, we notice that for each multiplet, the total number of eigenvalues is equal to

its multiplicity in the tensor product decompositions (2.2), (2.3).
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we have described is a particular realization of the so-called “Eratosthenes’ supersieve”

technique (see [23, 37, 38]).

We should mention that we have not yet exhausted the set of charges which commute

with the Hamiltonian. Another such charge is the spin chain parity p [15], which acts on

a state by reversing the order of the spin chain sites (with a minus sign if an odd number

of fermions cross each other),

p|A1B1A2 · · ·ALBL〉 = (−1)nf (nf−1)/2|BLAL · · ·B1A1〉 , (5.5)

where nf is the total number of fermions in the state. For the length-4 states we focus on

it is easy to show that the spin chain parity commutes with T 2 as well, and more generally

it commutes with the operator 1
L

∑L
a=1 T

2a that projects to cyclically invariant states for

any length. Even though acting with p changes the type of representation at each site, we

can combine it with T to get an operator that maps states within the same (V1 × V1
)L

Fock space. This operator pT ≡ pT , which we could perhaps call “shifted parity”, inherits

the commutation relations of p, and obeys pT
2 = 1. Hence it can be used to label states

with an additional (+) or (-) sign, similar to the plain parity operator in N = 4 SYM.

An important observation related to our discussion of parity is that the multiplicity

of the eigenvalues is either even or 1, no other odd values appear. Namely almost the

entire spectrum is arranged in pairs of states with degenerate energies, with the only

exception coming from unpaired states. With our definition of pT we can additionally

check that all pairs have opposite parities, and it is the combination of parity symmetry

and integrability that accounts for this phenomenon. In particular, the third integrable

charge Q3 commutes with the Hamiltonian ∆2 and anticommutes with pT , so that acting

on a common eigenstate of the three operators with Q3 creates a state with opposite parity

(from the anticommutation with pT ) and the same energy (from the commutation with

∆2). The only exception to this pairing is when the initial state is annihilated by Q3, which

accounts for the existence of unpaired states in the spectrum. See [23] for a discussion of

parity in the context of N = 4 SYM.

Focusing on the unpaired states of the OSp(4|2) sector, we notice that in the cyclically

invariant part we find one for each level of m in the V4
4m+1,1 and V4

2m,2 multiplets only,11

with their parities being (+) and (-) respectively, which perhaps suggests an alternating

pattern as we increase the second SYT label. As an additional check, we verify that their

eigenvalues {0,4,6,. . . } and {8,8,32/3,32/3,184/15. . . } indeed agree with the sequences (3.7)

and (3.16) respectively.

5.2 SL(2|1) sector

The SL(2|1) ≃ OSp(2|2) sector [16] contains fields at each site which are obtained by (5.3)

for i = 1, and is thus a subsector of the OSp(4|2) sector. In the notation of the latter

paper, the corresponding algebra apart from the usual SL(2) generators

[J0, J±] = ±J± [J+, J−] = 2J0, (5.6)

11For completeness, we mention that the unpaired noncyclic V4
2m states and their conjugates V

4

2m have

shifted parities (-) and (+) respectively.
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∆ SU(4) SYT ∆2, T
2 = +1 ∆2, T

2 = −1

2 [2, 0, 2] V4
1,1 0

[2, 0, 0] V4
2 4 + conj.

[0, 2, 0] V4
2,2 8

[1, 0, 1] V4
3,1 62 42

5
2 [2, 0, 0] V4

4 62 28/3 + conj.

[0, 1, 0] V4
4,2 8 (22/3)2, 102

3 [1, 0, 1] V4
5,1 4, 82, 112 (22/3)4

7
2 [2, 0, 0] V4

6 102 6.61, (25/3)2 , 12.86 + conj.

[0, 1, 0] V4
6,2 (25/3)4, 32/3, 122 102, (182/15)2

4 [1, 0, 1] V4
7,1 (7.94)2, (134/15)4 , (14.06)2 (6.26)2, (173/15)4 , (11.07)2

9
2 [2, 0, 0] V4

8 (7.87)2, (10.76)2 , (13.36)2 (157/15)2 , 10.87, 15.30 + conj.

[0, 1, 0] V4
8,2 32/3, 122 , (63/5)4 (8.89)2, (143/15)4 , (11.88)2 , (13.79)2, (14.95)2

5 [1, 0, 1] V4
9,1 6, (28/3)2 , (247/21)4 , (12.28)2 , (40/3)2, (16.22)2 (8.87)4, (10.82)4, (14.52)4

11
2 [2, 0, 0] V4

10 (11.25)2, (79/7)2 , (15.75)2 8.13, (9.69)2 , (12.96)2, (13.52)2 , 14.01, 17.17 + conj.

[0, 1, 0] V4
10,2 (9.62)4, (11.03)4 , 184/15, (40/3)2 , (46/3)2, 15.384 (11.88)2, (447/35)4 , (13.23)2 , (13.79)2 , (16.96)2

Table 4. Two-loop planar anomalous dimensions ∆2 of low-lying states of length-4 in the OSp(4|2) sector of the ABJM theory. The Cartan labels

correspond to the charges of the OSp(6|4), rather than the OSp(4|2), primary state of the multiplet, and the SO(3) charge is always given by

j = ∆ − 2 in this sector. The SYT column refers to the super-Young tableau labeling of the multiplets. Superscripts denote the multiplicities of

eigenvalues, when they are larger than one. The label ‘+conj.’ refers to the entire line and represents conjugate states with SU(4) labels reversed.
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also has a second antihermitian Cartan charge H and four fermionic charges, Q+, Q−, S+ =

−(Q−)†, S− = −(Q+)† with (anti)commutation relations

[J0, Q
±] =

1

2
Q± {Q+, Q−} = J+ [J−, Q

±] = S±

[H0, Q
±] = ±1

2
Q± {Q+, S−} = H − J0, (5.7)

together with what can be obtained from the above by hermitian conjugation. It is trivial

to show how the SL(2|1) algebra in this basis is embedded into the full OSp(6|4) algebra

of appendix B,

J0 =
1

2
I1

1 J+ =
1

2
P 11 Q+ =

1√
2
S11 S+ = − 1√

2
M 1

1

H =
1

2
U1

1 J− = −1

2
K11 Q− =

1√
2
M1

1 S− = − 1√
2
S11, (5.8)

from which we see that the SL(2|1) sector includes all states that can be constructed from

superoscillators whose bosonic and fermionic indices each take only a single value.

From this point on we can use the oscillator method [39] (see also [40–43] for other

applications in supergravity and N = 4 SYM) to determine what subset of OSp(6|4)
representations appears in this sector and relate their (j, h) charges, corresponding to

the (J0,H) generators, with the alternative labels we have been using throughout this

paper. Finding these representations is equivalent to investigating how a particular graded

(anti)symmetrized combination of superoscillators, corresponding to the lowest weight of

the representation and encoded in its SYT, can decompose into bosonic and fermionic

oscillators. For SL(2|1) this is particularly simple since restricting to an oscillator whose

index can only have one value means that we can only have symmetric combinations. Then,

translating our results to any system of Cartan labels requires expressing the corresponding

charges in terms of number operators and reading their value for the primary state of the

multiplet (see [26] for additional information).

In this manner we find that for any length f the SL(2|1) multiplets that appear are,

in terms of both (j, h) and the usual embedding OSp(6|4) charges,

SYT (2j, 2h) [∆, j, d1, d2, d3]

Vf
(

f
2 ,−

f
2

) [
f
2 , 0, f, 0, 0

]

Vf

k,1, . . . , 1
︸ ︷︷ ︸

m

(

k − 1 + f
2 ,m+ 1 − f

2

) [
1
2(k + 1 − f), 1

2(k − 1), f −m− 1, 0,m + 1
]

where m ≤ f−1. We notice that for each multiplet one can take its conjugate with d1 ↔ d3

by replacing m→ f −m− 2, which in the (j, h) charges translates into flipping the sign of

h. The Cartan labels on the right hand side now refer to SL(2|1), not OSp(6|4), primaries.

Finally the existence of only a subset of OSp(6|4) multiplets in the SL(2|1) sector also

simplifies the four-fold (symmetric) tensor product decompositions, which can be obtained

from (2.2) and (2.3) by simply dropping all multiplets whose second SYT label is greater

than or equal to 2.
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1 1

1

1

(a) (b)

Figure 2. Super-Dynkin diagrams for (a) OSp(6|4) (b) SL(2|1).

A nice feature of the SL(2|1) sector is that its Bethe equations (in a certain Dynkin

basis) become much simpler (as does, of course, the direct Hamiltonian diagonalization).

In order to see this, one can start with the BAE corresponding to the distinguished Dynkin

diagram, (3.3), dualizing the fermionic root s according to the method explained in ap-

pendix A and then dualizing the r root (which becomes fermionic in the first dualization).

In this way we arrive at a symmetric Cartan matrix of the form

K =










−1

−1 +2 −1

−1 +1 +1

+1 −2

+1 −2










, (5.9)

where the columns from left to right correspond to the w, s̃, r̃, v, u roots (tildes denote the

dual roots), encoded in the Dynkin diagram of in figure 2(a). It is straightforward to show

that the SL(2|1) algebra corresponds to the 2× 2 lower right corner of the Cartan matrix,

with S± the lowering, Q± the raising and 2(±H0 − J0) the Cartan generators respectively.

Hence the SL(2|1) Dynkin diagram reduces to that of figure 2(a), giving rise to the

simple BAE
(
ui + i/2

ui − i/2

)L

=

Mv∏

k=1

ui − vk − i

ui − vk + i
,

(
vi + i/2

vi − i/2

)L

=

Mu∏

k=1

vi − uk − i

vi − uk + i
,

(5.10)

which we already encountered in section 3 for the f = 2L = 4 case of interest. Since

we would like to know which multiplet it is whose roots are to be calculated with (5.10),

the next step is to determine the relation between the excitation numbers [Mu,Mv] and

the Cartan charges (j, h). In the oscillator notation of appendix B and [26], the SL(2|1)
Cartan generators are expressed in terms of number operators as (J0,H) = (NB1

/2 +

f/4, NF1
/2−f/4), whereas the ground state Tr

[
(φ1φ̄

4)L
]
is equivalent to the tensor product

(|0〉 × γ1|0〉)L, and hence has charges (j, h) = (f/4, f/4). From this we infer that a state
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with excitation numbers [Mu,Mv] has charges

(j, h) =

(
1

2
(Mu +Mv + L),

1

2
(Mu −Mv)

)

. (5.11)

In terms of the SYT notation this means that the Vf multiplets do not appear as excitations

of the aforementioned ground state, whereas the remaining multiplets have

Vf

k,1, . . . , 1
︸ ︷︷ ︸

m

: k = 1 +Mu +Mv, m = Mu −Mv + L− 1. (5.12)

5.3 SL(2) (-like) sectors

It is worth mentioning that there exist two smaller subsectors of the SL(2|1) sector which

are closed under the action of ∆2 [15], even though their ground states are not the primary

states Tr
[
(φ1φ̄

4)L
]
.

In particular these are the two SL(2) subsectors with ground state the descendant

Tr
[
(φ1ψ1)

L
]

(resp. Tr
[
(ψ̄4φ̄4)L

]
), and excited states having an arbitrary number of n sym-

metrized derivatives D11 that belong to the multiplets V2L
L+2n (resp. V2L

L+2n), and excitation

numbers [n, n+ L− 1] (resp. [n+ L− 1, n]) due to (5.12).

Another interesting subset of states in the SL(2|1) sector are those with Mu = Mv = M

and ui = vi, which as we have mentioned are described by the SL(2)-like12 BAE

(
ui + i/2

ui − i/2

)L

= −
M∏

k=1,k 6=i

ui − uk − i

ui − uk + i
. (5.13)

These states necessarily have (j, h) = (M + L/2, 0), and hence in SYT notation they

correspond to the multiplets V2L
k,1,...,1 with m = L−1 labels equal to 1 and k = 2M +1. We

notice that states with this simplified BAE belong to the abovementioned SL(2) subsectors

only for L = 1. It is also straightforward to check that the form of the projectors in (5.2)

is such that the dilatation operator mixes states with different numbers of fermions for any

other ordering of the SL(2|1) fields. Hence there does not exist any other SL(2) sector and

so strictly speaking the simplified BAE (5.13) describes a particular set of states rather

than an SL(2) sector.

A final observation for the BAE (5.13) is that the total numberNtot of regular solutions

(not restricted to cyclic ones) seems to depend on L and M as

Ntot =
(L− 1 +M)!

(L− 1)!M !
=

(

L− 1 +M

M

)

. (5.14)

Comparing with (2.2) we see that from a total of j2 V4
2j−1,1 multiplets, j of them will be

described by the SL(2)-like BAE (5.13), namely will have ui = vi (but are not necessarily

unpaired), whereas the remaining j(j − 1) will have ui 6= vi.

12Namely, it is identical to the SL(2), or SU(1, 1), sector of N = 4 SYM except for the overall minus sign

on the right-hand side.
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M D2,unpaired Sum

0 0 0

1 8 8

2 2.34, 13.65 16

3 9.12, 17.54 80/3

4 3.75, 14.44, 20.47 116/3

5 9.92, 18.20, 22.82 764/15

6 4.76, 15.04, 21.02, 24.78 328/5

7 10.55, 18.71, 23.29, 26.46 8296/105

Table 5. Two-loop planar anomalous dimensions D2 for unpaired low-lying states of length 6,

belonging to V6
2M+1,1,1 multiplets.

6 Some comments on length-6 operators

In this section we sketch a preliminary analysis of length-6 states. For simplicity we focus on

the unpaired states of the SL(2|1) sector, which from what we saw in section 5.3 correspond

to the multiplets V6
2M+1,1,1.

As for the case of length 4, a guiding principle for attributing the eigenvalues of the

dilatation operator to certain multiplets is the 6-fold tensor product decomposition of

singleton representations. After presenting this result we discuss a pattern that we have

found in the sum of unpaired eigenvalues of like representations (i.e., the trace of the

dilatation operator in a certain subspace).

6.1 6-fold tensor product decomposition in the SL(2|1) sector

The proof of the 6-fold tensor product decomposition is similar to the 4-fold case that we

investigated in [26], and it requires character formulas for SL(2|1) ≃ OSp(2|2) representa-

tions, which we have obtained from [36]. We find that

(V1 ⊗ V1
)3 =

∞∑

j=0

(
j + 4

4

)

(V6
2j+3 + V6

2j+3)

+ (j + 2)

(
j + 3

3

)

(V6
2j+2,1 + V6

2j+2,1)

+

(
j + 2

2

)2

V6
2j+1,1,1 ,

(6.1)

where we can translate to different notations for the multiplets as explained in section 5.2.

Once again, comparison with (5.14), reveals that (j + 1)(j + 2)/2 of the V6
2j+1,1,1

multiplets will have equal u and v roots, whereas the remaining j(j + 3)/2 won’t.
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6.2 Sums of unpaired eigenvalues

We have obtained the unpaired (multiplicity 1) eigenvalues for low-lying states of length-6

in the SL(2|1) sector,first by Hamiltonian diagonalization, and as an independent cross-

check by numerically solving the SL(2)-like BAE (5.13). The first method is slightly more

advantageous since we can simultaneously obtain the “shifted parity” pT eigenvalue as

well, which always turns to out to be (+).

The results are shown in table 5 where the integer M , apart from denoting the repre-

sentations the unpaired states belong to (V6
2M+1,1,1), is equal to the number of excitations

in (5.13). Irrational eigenvalues, which we approximate with two decimal digits, already

appear at M = 2, and we notice that the number of unpaired states now grows with M as

[M/2+1]. This renders the identification of eigenvalue sequences rather difficult. However

the sum of all unpaired eigenvalues at each M remains rational.

Both the number of solutions and the values for the energies suggest that their sum

for each M , which we’ll call q(M), belongs to two different rational sequences, for odd and

even M . Indeed we find that our results are consistent with the sequences

q(M) = 4(M + 1)S1(M) + 2(M + 3)S1

(
M

2

)

− 6M if M even,

q(M) = 4(M + 2)S1(M + 1) + 2MS1

(
M + 1

2

)

− 6(M + 1) if M odd.

(6.2)

As it was the case for paired length-4 states, the length-6 unpaired eigenvalues can be

obtained by a polynomial equation, this time of degree [M/2 + 1], for which q(M) must

therefore be the constant term. Perhaps the identification of the remaining coefficients is

also possible, though challenging as they increase with M much faster than q(M).

7 Outlook and open questions

In this paper we have studied the two-loop spectroscopy of (primarily length-4) operators in

planar ABJM theory. We were able to calculate the anomalous dimensions of all operators

with classical dimension ∆ ≤ 11/2 in the OSp(4|2) sector, and, more generally developed

a method that allows us to determine the Bethe roots of one unpaired state for each

OSp(6|4) representation that appears in the Fock space of length-4 operators. From the

data obtained in this manner we identified three new sequences of rational eigenvalues.

In the analysis of section 3 we only looked for regular unpaired solutions to the Bethe

ansatz, so it would be interesting to also investigate singular ones. To that end it would be

useful to determine the number of unpaired solutions for a given set of excitation numbers.

For example, from the tensor product decomposition (2.3) we see that the V4
2j,4p and

V4
4j−1,2p−1 multiplets always appear an even number of times, so at least one more of each

one must be unpaired. We note that in the particular case of V4
3,3 it was indeed found [7]

that the other unpaired solution is singular.

It would also be nice to extend our analysis to higher loops. In particular we could

derive the next-to-leading (NLO) order Baxter polynomial for the V2
2m+1,1 (equivalently,

unpaired V4
2m,2) multiplets according to the methods of [44], or even use the known NLO
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Baxter polynomial of [24] for the unpaired V4
2m+1,1 multiplets, and search for numerical

solutions of the Bethe equations corresponding to other multiplets, in the vicinity of its

roots. At this order wrapping effects start to appear, which we would have to address

according to the proposal [14].
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A Fermionic root dualization

A.1 A useful example

Let us start by reviewing a simple argument presented in [45] (also independently discovered

by K. Zarembo) which plays an important role in the analysis of section 3.

Statement: The equation
n∏

k=1

x− yk + a

x− yk − a
= 1 (A.1)

for the variable x implies the relation

n−1∏

k=1

(yi − xk + a) =
1

2an

n−1∏

k=1

(yi − yk + 2a) =
1

n

n−1∏

k=1,k 6=i

(yi − yk + 2a) , (A.2)

where xi, i = 1, 2, . . . , n− 1 are the solutions of (A.1).

Proof: Consider the polynomial

P (x) =

n∏

k=1

(x− yk + a) −
n∏

k=1

(x− yk − a) . (A.3)

It is of degree n − 1 since the term xn cancels out between the two products, and the

coefficient of the xn−1 term can be easily evaluated with the use of Vieté’s formulas

cn−1 = −
(

n∑

k=1

yk − na−
n∑

k=1

yk − na

)

= 2na . (A.4)

Equation (A.1) is equivalent to P (x) = 0 and hence we can express the polynomial in terms

of its solutions xi as P (x) = 2na
∏n−1

k=1(x− xk). Equating the two expressions for P (x) we

obtain,
n−1∏

k=1

(x− xk) =
1

2na

[
n∏

k=1

(x− yk + a) −
n∏

k=1

(x− yk − a)

]

, (A.5)

from which relation (A.2) follows by taking x→ yi + a.
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A.2 General considerations

The application of the simple example presented above allows us to simplify a set of BAE

by completely decoupling the xi fermionic roots, in the case when there are n− 1 of them

and the respective equation has the form (A.1). More commonly it turns out that if our

original BAE have m ≤ n − 1 xi roots, though decoupling is no longer possible, we can

still replace them in all equations with the remaining n−1−m solutions of the polynomial

equation P (x) = 0, say x̃i.

This replacement of the roots xi with their “dual” roots x̃i is only possible for fermionic

roots, which don’t interact with themselves,13 allowing all of them to be described by the

same single variable equation. The new BAE that will arise from this process will have

a different Cartan matrix and Dynkin diagram, and hence fermionic root dualization be-

comes a method for obtaining BAE corresponding to different choices of Dynkin diagrams,

reflecting the existence of this non-unique choice in superalgebras.

Dualization of fermionic roots has been extensively considered for GL(N |M) superal-

gebras in the context of N = 4 SYM [33], and be can applied with small modifications

to our case as well. For a fermionic root which is connected with its adjacent roots with

simple lines in the respective Dynkin diagram, such as the s with the w, r roots in the

distinguished Dynkin diagram of figure 1, the corresponding BAE will be

(

si + i
2Vs

si − i
2Vs

)L

=

Mw∏

k=1

si −wk + i/2

si −wk − i/2

Mr∏

k=1

si − rk − i/2

si − rk + i/2
, (A.6)

where we’ve now allowed the fermionic root s to also have a spin representation Vs for more

generality. This is equivalent to setting the following polynomial to zero,

P (s) =

(

s+
i

2
Vs

)L Mw∏

k=1

(s− wk − i/2)

Mr∏

k=1

(s− rk + i/2)

−
(

s− i

2
Vs

)L Mw∏

k=1

(s− wk + i/2)

Mr∏

k=1

(s− rk − i/2)

=

Ms∏

k=1

(s− sk)

Ms̃∏

k=1

(s− s̃k),

(A.7)

where s̃k are the dual roots of which there are

Ms̃ = L+Mw +Mr −Ms − 1. (A.8)

Similarly with what we did for the simple example, we can now take s → wi ± i/2 or

13Namely, there exist no xi −xj terms in their BAE, which can otherwise be completely general, not just

restricted to the simple form (A.1).
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Figure 3. The Dynkin diagram that arises from the distinguished one after dualizing the fermionic

root s.

s→ ri ± i/2 and equate the two right-hand sides of (A.7) in order to reexpress the phases

Ms∏

k=1

wi − sk + i/2

wi − sk − i/2
=

Ms̃∏

k=1

wi − s̃k − i/2

wi − s̃k + i/2

Mw∏

k=1,k 6=i

wi −wk + i

wi −wk − i

(

wi − i
2(Vs − 1)

wi + i
2(Vs − 1)

)L

,

Ms∏

k=1

ri − sk − i/2

ri − sk + i/2
=

Ms̃∏

k=1

ri − s̃k + i/2

ri − s̃k − i/2

Mr∏

k=1,k 6=i

ri − rk − i

ri − rk + i

(

ri − i
2(Vs + 1)

ri + i
2(Vs + 1)

)L

,

(A.9)

which are the only factors including the si in the remaining Bethe equations (in particular,

they appear in the w and r equations), and in this manner eliminate si in favor of the

s̃i.
14 The corresponding formulas for the case Vs = 0 are obtained if we simply set L → 0

in (A.6) through (A.9). So specifically, if we dualize the s root of the distinguished OSp(6|4)
Dynkin diagram, we can see that the w and r roots will also become fermionic because the

self-interaction terms in (A.9) and (3.3) cancel out, so the Dynkin diagram corresponding

to the new, dualized BAE will be given by that shown in figure 3. Due to (A.8) and (3.6)

the dual root excitation number will be related to the Cartan charges by

Ms̃ = ∆ − j − 1

2
d1 − d2 −

1

2
d3 − 1. (A.10)

The analysis becomes only slightly more complicated when we move on to dualize the

r root, which is connected to three neighboring roots and has BAE

1 =

Ms∏

k=1

ri − s̃k + i/2

ri − s̃k − i/2

Mu∏

k=1

ri − uk − i/2

ri − uk + i/2

Mv∏

k=1

ri − vk − i/2

ri − vk + i/2
. (A.11)

Because the u and v roots have identical phases, for the purposes of this calculation we can

think them as the same root x with a total of Mx = Mu +Mv excitations, xi = (uk, vl).

Then (A.11) becomes identical to (A.6) with L → 0, si → ri, wi → s̃i, ri → xi and the

calculation proceeds as before, this time yielding the BAE corresponding to the Dynkin

diagram of figure 2(a). The excitation number for the r̃ is expressed in terms of the Cartan

charges as

Mr̃ = ∆ + L− j − d1 − d2 − d3 − 2 . (A.12)

14For the fermionic Bethe equations, we simply replace si → s̃i, since they are just different sets of

solutions to the same equations.
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If needed dualization can be performed to the remaining fermionic roots in a similar fashion,

for example if we pick one of the two momentum-carrying roots, the only modification (A.6)

required after we adapt it to the corresponding roots is to replace i → 2i in the second

product. In this manner one can construct different sets of Bethe equations. Even though

their solutions yield the same energies and higher charges, in practice each set is more

suitable for studying a certain subset of the spectrum as the equations take a simpler form.

B The OSp(6|4) algebra

Here we mention the form of the OSp(6|4) algebra in a basis where the generators of the

maximal compact subgroup U(2|3) are singled out. This particular form is very convenient

for constructing representations with the oscillator method [39].

We start with the bosonic spacetime Sp(4,R) algebra,
[

Kij , P
kl
]

= δl
jI

k
i + δk

i I
l
j + δk

j I
l
i + δl

iI
k
j ,

[

Ii
j , P

kl
]

= δk
jP

il + δl
jP

ik ,
[
Ii

j ,Kkl

]
= −δi

kKjl − δi
lKjk ,

[

Ii
j , I

k
l

]

= δk
j I

i
l − δi

lI
k
j ,

(B.1)

where we recognize ∆ = 1
2I

i
i as the dilatation operator.

The bosonic R-symmetry algebra SU(4) is given by

[Aµν , A
ρσ ] = −δσ

µU
ρ
ν + δρ

µU
σ

ν − δρ
νU

σ
µ + δσ

νU
ρ
µ ,

[Uµ
ν , A

ρσ ] = δρ
νA

µσ + δσ
νA

ρµ ,

[Uµ
ν , Aρσ ] = −δµ

ρAνσ − δµ
σAρν ,

[Uµ
ν , U

ρ
σ] = δρ

νU
µ

σ − δµ
σU

ρ
ν .

(B.2)

The anticommutators among the odd generators are explicitly given by

{Siµ, S
jν} = δν

µI
j
i − δj

iU
ν
µ , {Siµ,M

j
ν} = −δj

iAµν ,

{M i
µ,M j

ν} = δν
µI

i
j + δi

jU
ν
µ , {Siµ,Mj

ν} = δν
µKij ,

(B.3)

together with others obtained by hermitian conjugation. Finally, the commutators between

even and odd generators are
[

Ii
j ,M

k
µ

]

= δk
jM

i
µ ,

[

Uµ
ν ,M

k
λ

]

= −δµ
λM

k
ν ,

[
Ii

j,Mk
µ
]

= −δi
kM j

µ ,
[

Uµ
ν ,Mk

λ
]

= δλ
νMk

µ ,
[
Ii

j , Skµ

]
= −δi

kSjµ , [Uµ
ν , Skλ] = −δµ

λSkν ,
[

Ii
j, S

kµ
]

= δk
j S

iµ ,
[

Uµ
ν , S

kλ
]

= δλ
νS

kµ ,
[

Kij ,M
k
µ

]

= δk
i Sjµ + δk

j Siµ ,
[

Aµν ,M
λ

k

]

= −δλ
µSνk + δλ

νSµk ,
[

Kij, S
kµ
]

= δk
i M j

µ + δk
jM i

µ ,
[

Aµν , S
kλ
]

= −δλ
µM

k
ν + δλ

νM
k
µ ,

(B.4)

where we have again omitted commutators which can be obtained from these by hermi-

tian conjugation.
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As we mentioned in the beginning of this appendix, the advantage of this basis is that

it makes the mapping of generators to bilinears of superoscillators very straightforward.

In particular, for a length-f representation we need f = 2p + ǫ U(2|3) contravariant and

covariant superoscillators, where p = [f2 ] and ǫ is either zero or one, defined as

ξA(r) =

(

ai(r)

αµ(r)

)

, ξA(r) = ξA(r)† =

(

ai(r)

αµ(r)

)

= �,

ηA(r) =

(

bi(r)

βµ(r)

)

, ηA(r) = ηA(r)† =

(

bi(r)

βµ(r)

)

= �,

ζA =

(

ci
γµ

)

, ζA = ζA
† =

(

ci

γµ

)

= �,

(B.5)

with the super-index A taking the values 1, 2|1, 2, 3 and r = 1, . . . , p.

Then all the OSp(6|4) generators we presented above are written in terms of these

superoscillators as

SAB = ~ξA · ~ηB + ~ηA · ~ξB + ǫ ζAζB = ��,

SAB = ~ξA · ~ηB + ~ηA · ~ξB + ǫ ζAζB = (SBA)† ,

MA
B = ~ξA · ~ξB + (−1)(deg A)(deg B)~ηB · ~ηA

+
ǫ

2

(

ζAζB + (−1)(deg A)(deg B)ζBζ
A
)

= (MB
A)† ,

(B.6)

where in order to avoid confusion when the superindices take specific values we have re-

named
M i

j → Ii
j Mµ

ν → Uµ
ν Mµ

i →M i
µ

Sij → Kij Sµν → Aµν

Sij → P ij Sµν → Aµν

(B.7)
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