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1 Introduction

Recently an interesting observation has been made on the relationship between the N = 2

supersymmetric gauge theory and the 2d conformal field theory. In [1], it has been shown

that Nekrasov’s partition function [2] of N = 2 SU(2) superconformal gauge theory can

be identified with the correlation function of 2d Liouville theory. This relation was further

studied and checked from various directions [3–26]. For general discussions on S-duality in

N = 2 superconformal gauge theories, see [27–39].

In ref. [40], the following matrix model with a Penner like action

W (M) =

3
∑

i=1

µi log(M − qi), q1 = 0, q2 = 1, q3 = q (1.1)

has been proposed to describe N = 2 SU(2) superconformal gauge theory with four hyper-

multiplets. It is suggested that this matrix theory explains the correspondence of [1], by

making use of the CFT description of the matrix model [41, 42]. (This matrix model cor-

responds to c = 1 (or b = i) case in the Liouville theory.) The four mass parameters of the

gauge theory are identified with µi in the matrix model action and µ0 which corresponds

to the charge at infinity. These parameters satisfy the following relation [40]

3
∑

i=1

µi + µ0 = −2gsN, (1.2)

where N is the size of the matrix.
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We study this matrix model in details in this article and show that they in fact correctly

reproduce the physics of SU(2) Seiberg-Witten theory [43, 44].

In section 2 we first consider the M-theory curve for the Nf = 4, N = 2 supersymmetric

SU(2) gauge theory based on the brane construction [45]. We study its period integrals

and by comparing with those of the standard Seiberg-Witten curve we obtain the relation

between gauge coupling constants at UV regime and IR regime as qUV = ϑ2(qIR)4/ϑ3(qIR)4.

The parameter q which appears in the matrix model action (1.1) is identified as the UV

coupling q = qUV.

We discuss in section 3 the modular property of the matrix model (1.1) by making use

of the IR-UV relation of gauge coupling constants. We study the modular transformation

of the spectral curve and determine its precise mass-dependence by imposing modular in-

variance.

In sections 4, we consider the decoupling of massive flavors and find matrix model

actions corresponding to asymptotically free gauge theories with Nf = 2, 3. We check that

the discriminants of the spectral curve and free energy of these matrix models match well

with those of Seiberg-Witten theories.

2 N = 2 gauge theory and UV and IR gauge coupling constants

2.1 M-theory curve of Nf = 4, SU(2) gauge theory

N = 2 SU(2) gauge theory with four hypermultiplets is known to be scale invariant and

has the exactly marginal coupling constant

τUV =
θUV

π
+

8πi

g2
UV

. (2.1)

The flavor symmetry of the theory is SO(8) whose maximal subgroup is SU(2)4. While

introducing the masses of the hypermultiplets breaks the conformal invariance, the theory is

modular invariant involving the triality of SO(8) which rotates the mass parameters [44].

We introduce the mass parameters of four hypermultiplets m± and m̃±. By combining

these, we define

m0 =
1

2
(m+ − m−), m2 =

1

2
(m+ + m−), m1 =

1

2
(m̃+ − m̃−), m3 =

1

2
(m̃+ + m̃−), (2.2)

each of which is a mass parameter associated with each SU(2) flavor symmetry.

This gauge theory can be obtained by considering the intersecting brane system in

type IIA string theory [45]. The SU(2) gauge part is induced by two D4-branes suspended

between two NS5-branes. The D4-branes occupy the x0,1,2,3 and x6 directions and the NS5-

branes occupy x0,1,2,3 and x4,5 which are denoted by the complex coordinate v. A massive

hypermultiplet can be introduced by a semi-infinite D4-brane attached to an NS5-brane.

We here choose the configuration such that two semi-infinite D4-branes are attached to

the left NS5-brane and extended to x6 = −∞ and two more D4-branes are attached to

the right NS5-brane extending to x6 = +∞. By the M-theory uplift, the Seiberg-Witten

curve [43] of this theory becomes a hypersurface on (t, v) ∈ C
2 where t = e−(x6+ix10)/R:

(v − m+)(v − m−)t2 + c1(v
2 + Mv − U)t + c2(v − m̃+)(v − m̃−) = 0, (2.3)
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where M and U are constants which depend on the masses and the Coulomb moduli u.

The first and the third terms are determined as follows: in the large t, the first term is

dominant and we obtain v ∼ m+,m− which should be the masses of the hypermultiplets

induced by the left semi-infinite D4-branes (large t corresponds to x6 → −∞). On the

other hand, in the small t, the third term is dominant and v ∼ m̃+, m̃− which are the mass

parameters induced by the right semi-infinite D4-branes (small t corresponds to x6 → +∞).

The dimensional analysis and the regularity constraint in the massless limit show that M

is linear in the mass parameters and U is linear in the Coulomb moduli parameter u and

also contains additional terms in mass squared. Also, c1 and c2 are the constants which

parametrize the gauge coupling constant. Then, the curve can be written as

v2(t − 1)(t − q) = v((m+ + m−)t2 + (1 + q)Mt + q(m̃+ + m̃−))

−m+m−t2 − (1 + q)Ut − qm̃+m̃−, (2.4)

where we have chosen that c1 = −(1 + q) and c2 = q.

By eliminating the terms linear in v and changing the coordinate as v = xt, the curve

can be written as the following form [27]:

x2 =

(

m2t
2 + (1 + q)M

2 t + m3q

t(t − 1)(t − q)

)2

+
(m2

0 − m2
2)t

2 − (1 + q)Ut + (m2
1 − m2

3)q

t2(t − 1)(t − q)
, (2.5)

where x2dt2 is considered as a quadratic differential on a sphere (t is a coordinate on the

sphere) and has double poles at t = 0, 1, q,∞. In this coordinate, the Seiberg-Witten

one-form is

λSW =
xdt

2
√

2πi
, (2.6)

where we have divided by the factor 2
√

2πi in order to be consistent with the convention

in later sections. Here, (t, x) are local coordinates on the cotangent bundle of the sphere.

The Seiberg-Witten curve is the double cover of this sphere with four punctures.

The moduli space of the sphere with four punctures is parametrized by q above. As

discussed in [27, 45], this moduli space can be identified with the parameter space of the

exactly marginal operator of 4d gauge theory, that is the gauge coupling constant (2.1).

Therefore, we identify q with qUV = eπiτUV . Note that this is the UV gauge coupling

constant. The effective gauge coupling at IR is derived using the full information of the

Seiberg-Witten theory. We will discuss this point in the next subsection.

The masses of the flavors can be read from the residues of λSW at the punctures. As

seen in [27], each puncture is associated with each SU(2) flavor symmetry. Indeed, we can

easily see that the residues at t = 0,∞ are ±m1 and ±m0 where the signs represent their

value on the upper and the lower sheets respectively. (More precisely, the residues are

± m0,1

2
√

2πi
, but we will ignore the factor 2

√
2πi in what follows when discussing the residues.)

Also, the requirement that the residues at t = 1, qUV should be ±m2,±m3 determines the

form of M as follows:

M = − 2qUV

1 + qUV
(m2 + m3). (2.7)
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The Coulomb branch vev a can be obtained by the period integral

a =

∮

A
λSW. (2.8)

This is the function of the Coulomb moduli u. Also, the dual B cycle integral computes

the derivative of the prepotential

aD =
∂F
∂a

=

∮

B
λSW. (2.9)

The moduli derivative of λSW is a holomorphic one-form

ω =
∂λSW

∂u
= − (1 + qUV)

4πi
√

2P4(t)

∂U

∂u
dt, (2.10)

whose A and B periods give ∂a
∂u and ∂aD

∂u . P4(t) is a degree-four polynomial whose precise

form does not concern us. As we will see in subsection 2.2, ∂U
∂u becomes 1 in the weak

coupling limit: qUV → 0.

We now consider a way to extract the parameter U (essentially 〈Tr φ2〉) from the M-

theory curve above. In the pure N = 2 SU(N) gauge theory, it is known that such an

operation exists [46–48]

〈Tr φ2〉 =
1

2πi

∮

vλSW =
1

2πi

∮

x2tdt, (2.11)

where v is the coordinate in (2.3). Also in the SU(2) gauge theory with four massive

flavors, we can use this kind of integral to extract the U parameter. Actually, since the

term including U in x2 is

− (1 + qUV)U

t(t − 1)(t − qUV)
, (2.12)

the integral

1

2πi

∮

C∞

x2tndt, for n ≥ 2 (2.13)

is linear in U and contains terms involving mass parameters. We denote a contour around

infinity in the counterclockwise direction as C∞. In the simplest case (n = 2), we easily ob-

tain

1

2πi

∮

C∞

x2t2dt = (1 + qUV)U − (1 + qUV)m2
0 + (qUV − 1)m2

2 + 2qUVm2m3. (2.14)

This relation becomes an important point when we compare the gauge theory with the

matrix model in section 3.
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2.2 UV and IR gauge coupling constants

The M-theory curve (2.5) which we have seen in the previous subsection is different from

the standard Seiberg-Witten curve introduced in [44]. In this subsection, we will see that

the comparison of the M-theory curve and the standard Seiberg-Witten curve leads to a

relation between the UV and IR gauge coupling constants [1, 25, 26, 49, 50]. We first

consider the massless case for simplicity.

On the one hand, we have the standard form of the Seiberg-Witten curve [44]

y2 = 4x3 − g2u
2x − g3u

3, (2.15)

where u parametrizes the Coulomb moduli and is related to 〈Tr φ2〉. The IR gauge coupling

constant

τIR ≡ θIR

π
+

8πi

g2
IR

(2.16)

is calculated from the period integrals of the holomorphic one-form ω which is defined as

ω =

√
2

4π

dx

y
=

√
2

4π

dx
√

4x3 − g2u2x − g3u3
, (2.17)

where g2 and g3 are the functions of qIR = eπiτIR :

g2(ω1, qIR) =

(

π

ω1

)4 1

24

(

ϑ3(qIR)8 + ϑ2(qIR)8 + ϑ4(qIR)8
)

,

g3(ω1, qIR) =

(

π

ω1

)6 1

432

(

ϑ4(qIR)4 − ϑ2(qIR)4
) (

2ϑ3(qIR)8 + ϑ4(qIR)4ϑ2(qIR)4
)

, (2.18)

and 2ω1 = π in this case. A-cycle integral of ω gives

∂a

∂u
=

√
2

4π

∮

A

dx
√

4x3 − g2u2x − g3u3
=

1

2
√

2u
, (2.19)

which leads to a = 1
2

√
2u.

As pointed out in [49], however, the gauge coupling constant receives the correction due

to instanton effects even in Nf = 4 theory and, therefore, qIR 6= qUV. As we saw in the pre-

vious subsection, we obtain the following curve in the massless limit of the M-theory curve:

x2 = − (1 + qUV)U

t(t − 1)(t − qUV)
, (2.20)

where qUV is the UV gauge coupling constant. Note that the parameter U in the above

curve would be different from u in the curve (2.15). Dimensional analysis shows that U is

proportional to u:

U = Au, (2.21)

where A depends only on the UV gauge coupling qUV. The holomorphic one-form is given by

ω =
1

4
√

2πi

√

−(1 + qUV)A

u

dt
√

t(t − 1)(t − qUV)
. (2.22)
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By changing the coordinate as t → t̃ + 1+qUV

3 and by rescaling as t̃ → 4z, t(t− 1)(t − qUV)

is transformed to

16

(

4z3 − 1

12
(1 − qUV + q2

UV)z − 1

432
(2 − 3qUV − 3q2

UV + 2q3
UV)

)

≡ 16y2
0 . (2.23)

Then, the holomorphic one-form reads as

ω =
1

4
√

2π

√

(1 + qUV)A

u

dz

y0
. (2.24)

Now, we want to compare this with the one-form (2.17). In order to reproduce the A

period 1
2
√

2u
, we should obtain

∮

A

dz

y0
=

2π
√

(1 + qUV)A
. (2.25)

Therefore, the following relations must be satisfied:

1

12
(1 − qUV + q2

UV) = g2(ω1, qIR),

1

432
(2 − 3qUV − 3q2

UV + 2q3
UV) = g3(ω1, qIR), (2.26)

and the period is given by

2ω1 =
2π

√

(1 + qUV)A
. (2.27)

By using formula ϑ4
4 = ϑ4

3 − ϑ4
2, the right hand sides of (2.26) can be calculated as

g2 =
1

12
(1 + qUV)2A2ϑ8

3

(

1 − ϑ4
2

ϑ4
3

+

(

ϑ4
2

ϑ4
3

)2
)

,

g3 =
1

432
(1 + qUV)3A3ϑ12

3

(

2 − 3
ϑ4

2

ϑ4
3

− 3

(

ϑ4
2

ϑ4
3

)2

+ 2

(

ϑ4
2

ϑ4
3

)3
)

. (2.28)

This shows that

qUV =
ϑ2(qIR)4

ϑ3(qIR)4
= 16qIR − 128q2

IR + 704q3
IR − 3072q4

IR + . . . . (2.29)

and

A =
1

ϑ2(qIR)4 + ϑ3(qIR)4
, (2.30)

which implies that U = u + O(qUV) = 〈Tr φ2〉 + O(qUV) in the weak coupling limit. The

relation (2.29) between the UV and IR gauge coupling constants has already been suggested

in [50] from the topological string analysis and derived in [25, 26] along the similar line as

above.
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Let us next consider the case with the massive flavors. In this case, the parameter U

appeared in the M-theory curve (2.5) receives additional contributions due to mass terms.

However, the form of A (2.30) should not change. Therefore, we obtain

∂U

∂u
=

1

ϑ4
2 + ϑ4

3

. (2.31)

It follows from this that the holomorphic one-form (2.10) becomes

ω = − dt

4πiϑ4
3

√

2P4(t)
. (2.32)

The A-cycle integral of this one-form can be translated into the following standard form of

the elliptic integral of the first kind, by the coordinate transformation:

∫ 1

0

du
√

(1 − u2)(1 − k2u2)
, (2.33)

up to a constant factor, where k is a function determined from P4(t). We also obtain the

similar form for the B cycle integral. The IR gauge coupling constant is given by the period

of this one form: τIR =
H

B
ω

H

A
ω

and this in turn leads to

k2 =
ϑ2(qIR)4

ϑ3(qIR)4
. (2.34)

This determines the IR gauge coupling constant in terms of the UV one.

3 Matrix model and modular invariance

In this section, we analyze the matrix model with the action (1.1) which was proposed

to describe N = 2 SU(2) gauge theory with four massive hypermultiplets and study its

modular properties. We first review the general technique of the one matrix model and

then consider the modular invariance of the spectral curve.

We define the free energy of the matrix model as follows:

exp

(

Fm

g2
s

)

=

∫

dM exp

(

1

gs
W (M)

)

=

∫

(

N
∏

I=1

dλI

)

exp

[

1

gs

(

N
∑

I=1

W (λI) + gs

∑

I<J

log(λI − λJ)2

)]

, (3.1)

where M is the hermitian matrix whose size is N and W (M) is (1.1). In the second

line, we have switched to integrals over the eigenvalues λI . The last term comes from the

Vandermonde determinant. The critical points are determined by the equation of motion

3
∑

i=1

µi

λI − qi
+ 2gs

∑

J(6=I)

1

λI − λJ
= 0. (3.2)
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By ignoring the second term, we obtain two critical points ep (p = 1, 2). The positions qi

will be chosen as q1 = 0, q2 = 1 and q3 = q. Let each Np (p = 1, 2) be the number of the

eigenvalues which are classically at ep. Let us define the resolvent of the matrix model as

Rm(z) = gstr
1

z − M
. (3.3)

In what follows, we take the large N limit while µp and the filling fractions νi ≡ gsNp

are fixed. The loop equation in the large N limit is written as

〈Rm(z)〉2 = −〈Rm(z)〉W ′(z) +
f(z)

4
, (3.4)

where

f(z) ≡ 4gstr

〈

W ′(z) − W ′(M)

z − M

〉

=

3
∑

i=1

ci

z − qi
(3.5)

has simple poles at z = qi. Note that this function is not a polynomial in contrast to the

ordinary case of polynomial action. ci are functions of µi and the filling fractions but they

satisfy
∑

i ci = 0 which follows from the equations of motion (3.2).

Let us define the meromorphic one-form λm = x(z)dz

2
√

2πi
such that

x(z)2 ≡
(

2〈Rm(z)〉 + W ′(z)
)2

= W ′(z)2 + f(z). (3.6)

This one-form has simple poles at z = qi,∞ with the residues µi, µ0. (As in the field theory

analysis, the residues are precisely µi

2
√

2πi
by the definition of λm. But, for convenience, we

will ignore the factor in the denominator when discussing the residues.) Note that the

residue of the pole at z = ∞ can be evaluated by observing 〈Rm〉 ∼ gsN
z and W ′(z) ∼

P3
i=1 µi

z at large z and by using the relation (1.2).

The spectral curve of the matrix model (3.6) looks like the M-theory curve. The former

includes the parameters µi which will be identified with the masses mi of the latter. These

are the residues of the meromorphic one-form λm and λSW at the simple poles. Hence, the

identification q = qUV is needed. To compare more precisely, we should add a dimensionful

parameter by gs → gsǫ since the parameters in the matrix model are dimensionless. In the

analysis of the gauge theory, the parameter U is obtained from
∮

x2tndt for n ≥ 2 (2.14).

In the matrix model language, the similar integral gives

1

2πi

∮

C∞

x2z2dz =
1

2πi

∮

C∞

(2Rm + W ′)2z2dz = 4µ0gs〈trM〉 + 2µ0(µ2 + qµ3), (3.7)

where C∞ is the contour around infinity. Therefore, the precise correspondence between

the matrix model and the gauge theory is given by the following identification:

4µ0gs〈trM〉+2µ0(µ2+qµ3) = (1+qUV)U−(1+qUV)m2
0+(qUV−1)m2

2+2qUVm2m3, (3.8)

and also µi = mi, q = qUV.

– 8 –
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We can rewrite 〈trM〉 in terms of the coefficients ci in (3.5). First of all, the residue

at z = ∞ imposes the following constraint on ci:

c2 + qc3 = µ2
0 −

(

3
∑

i=1

µi

)2

. (3.9)

Therefore, by recalling
∑

i ci = 0, only one of ci
′s is independent. By using (3.9) and

∑

ci = 0, the spectral curve can be written as

x2 =

(

µ1

z
+

µ2

z − 1
+

µ3

z − q

)2

+

(

µ2
0 −

(

∑3
i=1 µi

)2
)

z + qc1

z(z − 1)(z − q)
. (3.10)

Also, the filling fractions can be obtained by the A-cycle integrals of the one-form:

νp√
2πi

=
1

2πi

∮

Ap

λm, p = 1, 2, (3.11)

where Ap are the cycles around the branch cuts (corresponding to two critical points).

From this, we can in principle determine νp as the function of µi and c1. In other words,

c1 can be treated as an independent parameter.

It follows from the dimensional analysis that c1 has mass dimension two. Therefore, it

is natural to consider that c1 is a linear function in U of the M-theory curve. Indeed, by

substituting the explicit expression (3.10) into the left hand side of (3.7), we obtain

1

2πi

∮

C∞

x2z2dz = −qc1 − (1 + q)µ2
0 + (1 + q)µ2

1 + (q − 1)µ2
2

+(1 − q)µ2
3 + 2qµ1µ2 + 2µ3µ1. (3.12)

This and (3.8) lead to

qUVc1 = (1 + qUV)m2
1 + (1 − qUV)m2

3 + 2qUVm1m2

−2qUVm2m3 + 2m3m1 − (1 + qUV)U. (3.13)

We can show that under this relation, µi = mi and q = qUV, the meromorphic one-

form λm is equal to λSW. Therefore, the A and B-periods of λm and λSW coincide, e.g.,√
2ν1(u) = a(u).

Also, u-derivative of λm gives a holomorphic one-form:

ωm =
∂λm

∂u
= − dz

4πiϑ4
3

√

2Pm4(z)
, (3.14)

where Pm4(z) is the same degree 4 polynomial as P4 in (2.10). The effective gauge coupling

constant τIR can be obtained from the period of ωm.
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3.1 Modular invariance

It is known that the standard Seiberg-Witten curve of SU(2) gauge theory with Nf = 4

is invariant under modular transformation in [44]. We will see in this subsection that

the spectral curve (3.10) which was identified with the M-theory curve (2.5) can be made

modular invariant.

To begin with, we consider the massless limit of the curve (3.10)

x2 = − (1 + qUV)U

z(z − 1)(z − q)
= −

u

ϑ4
3

z(z − 1)(z − q)
. (3.15)

where we have used the relation (2.30). This is invariant under the following transforma-

tions

I : (z, x) → (1 − z, x), qUV → 1 − qUV, u → −u, S (3.16)

II : (z, x) →
(

1

z
,−z2x

)

, qUV → 1

qUV
, u → u, STS (3.17)

Since qUV = ϑ4
2/ϑ

4
3 as seen in subsection 2.2, the former transformation is the exchange

of ϑ4
2 and ϑ4

4, which is the S-transformation. Also, the latter one can be seen as the STS-

transformation: ϑ4
2 ↔ ϑ4

3. We note that the sign of u changes under S-transformation.

This behavior is the same as in the case of standard SW curve. In fact in (2.15) g2 and g3

are even and odd and u changes sign under S-transformation.

Next, let us consider the massive case. As analyzed in [44], the modular transformation

in this case involves the triality of SO(8) which permutes the SU(2) flavor symmetries. In

our notation, this permutes the mass parameters mi (i = 0, . . . , 3) associated with these

SU(2)’s. Under the S- and STS-transformations, positions and residues of the poles of λm

are transformed as

I : (0, 1, qUV,∞) → (1, 0, 1 − qUV,∞), m1 ↔ m2, (3.18)

II : (0, 1, qUV,∞) →
(

∞, 1,
1

qUV
, 0

)

, m0 ↔ m1. (3.19)

Under these transformations, the spectral curve should be invariant. Let us substi-

tute (3.13) into (3.10) and we obtain

x2(z;mi; qUV) =

(

m1

z
+

m2

z − 1
+

m3

z − qUV

)2

+

(

m2
0 − (

∑3
i=1 mi)

2
)

z+(1 + qUV)m2
1

(3.20)

+(1 − qUV)m2
3 + 2qUVm1m2 − 2qUVm2m3 + 2m1m3 − (1 + qUV)U

z(z − 1)(z − qUV)
.

We then impose the conditions

x2 (z;m0,m1,m2,m3; qUV) = x2 (1 − z;m0,m2,m1,m3; 1 − qUV) , (3.21)

x2 (z;m0,m1,m2,m3; qUV) =
1

z4
x2

(

1

z
;m1,m0,m2,m3 :

1

qUV

)

. (3.22)
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Requirement of modular invariance determines completely the mass dependence of the

parameter U . The solution to the above conditions is given by

(1 + qUV)U =
u

ϑ4
3

− qUV(m2 + m3)
2 +

1 + qUV

3

(

3
∑

i=0

m2
i

)

. (3.23)

3.2 Relation for 〈trMm〉
In (3.8), we have written down the parameter U in terms of 〈trM〉 by using the integral
∮

x2z2dz. As seen in subsection 2.1, we can in principle use the other integrals as

1

2πi

∮

C∞

x2zndz, for n ≥ 2, (3.24)

in order to extract the parameter U . This in turn gives the relations for 〈trMm〉’s. For

example, we consider n = 3 case. From the M-theory curve, we can compute

1

2πi

∮

C∞

x2t3dt = 4m0(1 + qUV)gs〈trM〉 + qUVm2
0 − qUVm2

1 + (qUV − 1)m2
2

+qUV(1 − qUV)m2
3 + 2(1 + qUV)m0(m2 + qUVm3), (3.25)

where we have used (3.8). On the other hand, the same integral for the matrix model is

calculated as

1

2πi

∮

C∞

x2z3dz = 4µ0gs〈trM2〉 − 4gs〈trM〉(gs〈trM〉 + m2 + qUVm3)

−(m2 + qUVm3)
2 + 2m0(m2 + q2

UVm3). (3.26)

From these equations, we obtain

4µ0gs〈trM2〉 = 4gs〈trM〉(gs〈trM〉 + (1 + qUV)m0 + m2 + qUVm3)

+qUV(m2
0 − m2

1 + m2
2 + m2

3) + 2qUV(m2m3 + m0m2 + m0m3). (3.27)

Similarly, 〈trMm〉 for m ≥ 3 can be written in terms of the lower order ones.

3.3 Free energy

So far, we have learned that M-theory curve and spectral curve of matrix model can be

identified. However, it is not so obvious that the matrix model free energy coincides with

the prepotential of gauge theory, in other words, the B-period of λm (differential of the

matrix theory) is written as ∂Fm

∂ν1
. Let us see this below. We consider the free energy and

its derivative with respect to the filling fractions. First of all, we rewrite the free energy as

eFm/g2
s = exp

[

1

g2
s

(∫

dλρ(λ)W (λ) +

∫

dλdλ′ρ(λ)ρ(λ′) log |λ − λ′|
)]

, (3.28)

where ρ(λ) is the eigenvalue distribution function normalized as

∫

dλρ(λ) = gsN, (3.29)
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or ρ(λ) = gs
∑

I δ(λ − λI). The resolvent can be written as

Rm(z) =

∫

dλ
ρ(λ)

z − λ
. (3.30)

Now, let us consider the derivative of the free energy with respect to the filling fractions

νp. Here, we will follow the discussion in [51, 52]. The variations with respect to νp can

be considered as the shift ρ(λ) → ρ(λ) + (δνp)δ(λ − e+
p ) where e+

p are any points on the

branch cuts (except for the end points of the cuts). Therefore, the free energy is shifted as

δFm = (δνp)

[

W (e+
p ) + 2

∫

dλρ(λ) log |λ − e+
p |
]

= (δνp)

[

W (e+
p ) +

2

2πi

∮

A1+A2

〈Rm(z)〉 log(z − e+
p )dz

]

. (3.31)

The second term is evaluated by deforming the contour to the cycle around the log cut as

1

2πi

∮

A1+A2

〈Rm(z)〉 log(z−e+
p ) = −

∫ ∞

e+
p

〈Rm(z)〉dz+
gsN

2πi

∮

∞

log(z−e+
p )

z
dz

= −
∫ Λ0

e+
p

〈Rm(z)〉dz+gsN(log Λ0+πi)+O
(

1

Λ0

)

. (3.32)

Note that 〈Rm〉 has a pole only at z = ∞. We regularized the integral by introducing the

cut off Λ0. We will take Λ0 to infinity after the calculation. By changing 〈Rm〉 into λm

we obtain

∂Fm

∂νp
= −2

√
2πi

∫ Λ0

e+

i

λm − µ0 log Λ0 + 2πigsN + O
(

1

Λ0

)

. (3.33)

In order to compare with the prepotential of the gauge theory, we let gs → gsǫ as

above, which gives µi, µ0, νp and Fm dimension. Since Fm has mass dimension 2, it is

written as

2Fm =
3
∑

i=1

µi
∂Fm

∂µi
+
∑

p=1,2

νp
∂Fm

∂νp
. (3.34)

The first term is evaluated as

∂Fm

∂µi
= gs〈Tr log(M − qi)〉 =

1

2πi

∮

A1+A2

〈Rm(z)〉 log(z − qi)dz

=
πi√
2

[

∫ qi

Λ0

+

∫ Λ̃0

q̃i

]

λm − 1

2
W (qi) −

µ0

2
log Λ0 + gsNπi + O

(

1

Λ0

)

, (3.35)

where we have deformed the contour to the cycle around the log cut as in (3.32). Also, by

using (3.33), the second term in (3.34) is

∑

p=1,2

νp
∂Fm

∂νp
= −

√
2πi

[

ν1

∫

B1

+ν2

∫

B2

]

λm − gsNµ0 log Λ0 + 2πi(gsN)2 + O
(

1

Λ0

)

=
πi√
2

(

3
∑

i=1

µi + µ0

)

∫

B2

λm

+
√

2πiν1

∮

B
λm − gsNµ0 log Λ0 + 2πi(gsN)2 + O

(

1

Λ0

)

, (3.36)
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where B1 and B2 are the paths from Λ̃0 to Λ0 through the branch cuts respectively and

we define the cycle B = B2 − B1. Combining these, we finally obtain

2Fm =
πi√
2

[

3
∑

i=1

µi

∫ qi

q̃i

+µ0

∫

B2

]

λm + πi

∮

A1

λm

∮

B
λm

−1

2

3
∑

i=1

µiW (qi) +
1

2
µ2

0 log Λ0 − πigsNµ0 + O
(

1

Λ0

)

. (3.37)

The first line of the above equation is the same as the prepotential of the gauge

theory [53–55] up to a factor πi which can be absorbed by the redefinition of the free

energy. Note that the divergence of integrals in the first line is canceled by the divergence

of terms in the second line and the free energy is finite. There are also finite terms in the

second line which depend only on the mass parameter µi and µ0. However, we should note

that the terms in the first line have ambiguities due to the choice of integration paths.

By deforming the paths, an additional contribution which is bilinear in the masses can

appear. Therefore, we conclude that the free energy of the matrix model is the same as

the prepotential up to these moduli independent terms.

4 Matrix model for asymptotically free theories

4.1 Asymptotically free theory with Nf = 3

In this and next subsections, we consider the decoupling of heavy flavors from the matrix

model (1.1) and introduce the matrix theory with flavors Nf < 4 which would describe the

N=2 gauge theories in the asymptotically free region.

Before taking the decoupling limit we should recall the precise relationship between u

and 〈Tr φ2〉 as pointed out in ref [44]

u = 〈Tr φ2〉 − 1

6

(

ϑ4
4 + ϑ4

3

)

3
∑

i=0

m2
i . (4.1)

By substituting (4.1) into (3.23), we obtain

− (1 + qUV)U = −〈Tr φ2〉
ϑ4

3

+ 2qUVm2m3 +
1

2
qUV

(

m2
3 − m2

1

)

+
1

2
qUV

(

m2
2 − m2

0

)

. (4.2)

In the following subsections we again use the symbol u to denote 〈Tr φ2〉 for simplicity. We

hope that no confusion should arise from this change of notation.

In order to discuss the decoupling limit we write the mass parameters as follows

m± = m2 ± m0, m̃± = m3 ± m1, (4.3)

and consider the limit m̃− → ∞, qUV → 0 and the other masses and m̃−qUV = Λ3 fixed,

where Λ3 corresponds to the dynamical scale of the gauge theory. In this case, the relation

on the mass parameters (1.2) becomes

m0 + m2 + m̃+ = −2gsN, (4.4)
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and this remains finite. The matrix model action leads to

W (M) = m̃+ log M − Λ3

2M
+ m2 log(M − 1). (4.5)

and we obtain the spectral curve for Nf = 3 theory

x2 =
Λ2

3

4z4
− m̃+Λ3

z3(z − 1)
− u − (m2 + 1

2m̃+)Λ3

z2(z − 1)
+

m2
0

z(z − 1)
+

m2
2

z(z − 1)2
− m2Λ3

z2(z − 1)
. (4.6)

Note that the structure of the singularities is similar to that obtained in [28]. Let us

consider u-derivative of the Seiberg-Witten one-form λm = xdz
2
√

2πi
:

ω =
∂λm

∂u
=

dz

2
√

2πi

−1

2xz2(z − 1)
≡ − 1

4πi
√

2Q4(z)
, (4.7)

where

Q4(z) = m2
0z

4 +

(

−u − m2
0 + m2

2 +
1

2
m̃+Λ3

)

z3

+

(

u +
Λ2

3

4
− 3

2
m̃+Λ3

)

z2 +

(

−Λ2
3

2
+ m̃+Λ3

)

z +
Λ2

3

4
. (4.8)

The discriminant of the polynomial above completely matches with that of the Seiberg-

Witten curve for Nf = 3 in [44]:

y2 = x2(x − u) − 1

4
Λ2

3(x − u)2 − 1

4

(

m2
+ + m2

− + m̃2
+

)

Λ2
3(x − u)

+m+m−m̃+Λ3x − 1

4

(

m2
+m2

− + m2
−m̃2

+ + m̃2
+m2

+

)

Λ2
3. (4.9)

Note that the dynamical scale Λ3 differs by a factor from ΛSW that appeared in [44]. This

is due to the difference of the decoupling limit of ours and that of [44] where they fixed

64m̃−qIR ≡ ΛSW. (4.10)

As discussed above, qUV = 16qIR for the weak coupling region. Thus, we obtain ΛSW =

4m̃−qUV = 4Λ3.

For the equal hypermultiplet mass case where m0 = 0, m2 = m and m̃+ = m, the

discriminant becomes

∆ =
Λ2

3

32

(

u − m2 − 1

2
mΛ3

)3
(

−32u2 + 2Λ2
3u − 48umΛ3 + 3mΛ3

3 + 6m2Λ2
3 + 128m3Λ3

)

.

(4.11)

This implies that three (SU(3) triplet) massless particles appear at the singularity u =

m2 + 1
2mΛ3. This is the correct property of the curve (4.9).
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Free energy. Now we consider the free energy of this matrix model. The formula (3.33)

for the derivative of the free energy with respect to the filling fractions can be used without

change. By restoring the dimension, we obtain the following equation

2Fm =



m̃+
∂

∂m̃+
+ m2

∂

∂m2
+ Λ3

∂

∂Λ3
+
∑

p=1,2

νp
∂

∂νp



Fm. (4.12)

By using the result in the previous section, the computation of the first two terms are

straightforward: e.g.,

∂Fm

∂m̃+
=

πi√
2

(

∫ 0

Λ0

+

∫ Λ̃0

0̃

)

λm − 1

2
W (0) − m0

2
log Λ0 + πigsN + O

(

1

Λ0

)

. (4.13)

Also, the last term is exactly the same as (3.36) except that
∑3

i=1 mi becomes m̃+ + m2.

Only the new ingredient which need a little bit care is the third term in (4.12). In order

to compute this, we note that in the spectral curve: x2 = W ′(z)2 + f(z), f(z) is written as

f(z) =
f1

z
+

f2

z − 1
+

f3

z2
, f3 = −2gsΛ3

〈

∑

I

1

λI

〉

. (4.14)

This f3 can be directly evaluated from the curve (4.6), which leads to

∂Fm

∂Λ3
= −gs

2

〈

∑

I

1

λI

〉

=
f3

4Λ3
=

1

4Λ3

(

u +

(

1

2
m̃+ + m2

)

Λ3 − m̃2
+

)

. (4.15)

By collecting these, we finally obtain the expression for the free energy

2Fm =
πi√
2

(

m̃+

∫ 0

0̃
+m2

∫ 1

1̃
+m0

∫

B2

)

λm + πi

∮

A1

λm

∮

B
λm +

u

4
+ . . . . (4.16)

This nicely matches with the prepotential of the theory with Nf = 3 [53–55] up to the

irrelevant factor πi. The ellipsis is the terms which depend only on the masses and the

scale factor. It is reassuring to note that the beta function coefficient b = 1 in front of u is

correctly recovered in the matrix model computation.

4.2 Asymptotically free theory with Nf = 2

In this subsection, we propose a matrix model action which corresponds to SU(2) gauge

theory with Nf = 2. Method of its derivation is similar as the one in the previous section:

we consider the limit where z is rescaled as Λ3

Λ2
z and m− → ∞ while keeping m−Λ3 ≡ Λ2

2.

The spectral curve is given by

x2 =
Λ2

2

4z4
+

m̃+Λ2

z3
+

u

z2
+

m+Λ2

z
+

Λ2
2

4
. (4.17)

Here, we have rescaled x as x → Λ2

Λ3
x. This curve is the same form as the first realization

of SU(2) gauge theory with Nf = 2 in [28]. In this limit, the action of the matrix

model (4.5) becomes

W (M) = m̃+ log M − Λ2

2M
− Λ2M

2
, (4.18)
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where we have ignored irrelevant constant terms. The relation on the mass parameters (4.4)

is, in this limit,

m̃+ + m+ = −2gsN. (4.19)

The holomorphic one-form is

ω =
∂

∂u

xdz

2
√

2πi
=

dz

4
√

2πi
√

R4(z)
, (4.20)

where

R4(z) =
Λ2

2

4
z4 + m+Λ2z

3 + uz2 + m̃+Λ2z +
Λ2

2

4
. (4.21)

The discriminant of the above polynomial agrees completely with that of the Seiberg-

Witten curve for Nf = 2 in [44]:

y2 =

(

x2 − 1

4
Λ4

2

)

(x − u) + m+m̃+Λ2
2x − 1

4

(

m2
+ + m̃2

+

)

Λ4
2. (4.22)

For the equal mass case where m+ = m̃+ = m, the discriminant becomes

∆ = Λ4
2

(

u + 2mΛNf =2 +
1

2
Λ2

2

)(

u − 2mΛ2 +
1

2
Λ2

2

)(

u − m2 − 1

2
Λ2

2

)2

. (4.23)

Free energy. Let us compute the free energy of this model. The procedure is the same

as that in section 3 and 4.1. Only non-trivial point is the calculation of Λ2 derivative:

∂Fm

∂Λ2
= −gs

2

〈

∑

I

(

1

λI
+ λI

)

〉

=
g2

4Λ2
− gs

2
〈
∑

I

λI〉, (4.24)

where g2 is the coefficient of g(z) = g1

z + g2

z2 in the spectral curve: x2 = W ′(z)2 + g(z). By

comparing this form of the spectral curve with (4.17), we obtain g2 = u + 1
2Λ2

2 − m̃2
+. The

second term is 〈∑I λI〉 = 〈trM〉. This can be determined, by using the same argument as

that in subsection 3.2, as

2Λ2〈trM〉 = −u − 1

2
Λ2

2 + m2
+. (4.25)

Therefore, we obtain

Λ2
∂Fm

∂Λ2
=

1

4

(

g2 + u +
1

2
Λ2

2 − m2
+

)

=
u

2
− m2

+ + m̃2
+ − Λ2

2

4
. (4.26)

Then, the similar computation as above leads to

2Fm =
πi√
2

(

m̃+

∫ 0

0̃
+m+

∫

B2

)

λm + πi

∮

A1

λm

∮

B
λm +

2u

4
+ . . . . (4.27)

This is the same form as the prepotential of the theory with Nf = 2. It is nice to find the

appearance of the beta function coefficient b = 2 for Nf = 2 theory in front of u from the

matrix model computation.
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5 Conclusion and discussion

In this article we have studied the Penner type matrix model and gave strong evidence

that it reproduces correctly the physics of N =2 supersymmetric SU(2) gauge theories. It

will be interesting to see if the model can in fact be used to provide a simple derivation of

the AGT relation.

Generalization to SU(2) linear quiver gauge theories [27] may be straightforward. In

this case, the corresponding action of the matrix model is

W (M) =

k−1
∑

i=1

µi log(M − qi), (5.1)

where k corresponds to the number of the simple poles of the Seiberg-Witten one-form. It

will be interesting to study the S-duality group of this matrix theory.

A different type of matrix model has been proposed in ref [56, 57] to derive Seiberg-

Witten theory. It is important to see how this model is related to the matrix theory

discussed in this paper.
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