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1 Introduction

Over the past years, the understanding of asymptotic symmetries in gravity and gauge theories
has been deepened due to several results that relate them to soft theorems in field theory.
The seminal works of Strominger and collaborators (e.g., [2–9]) showed that the well known
Weinberg’s soft theorem [10] can be understood as a Ward identity associated to an infinite
dimensional symmetry group. The group is constructed via large gauge transformations
(LGT) at null infinity. It implies infinite conservation laws in scattering processes from the
past to the future asymptotic regions.

In the case of Quantum Electrodynamics (QED), it was shown in [11] and [12] that
for tree-level amplitudes, there exist an infinite number of soft theorems, each of them
implying a conservation law for the tree level scattering process. Weinberg’s soft photon
theorem corresponds to the first level in the hierarchy, while Low’s subleading soft photon
theorem [13, 14] corresponds to the second level.

The conserved quantities found in [2] for the S-matrix constitute thus the first level in an
infinite hierarchy of soft theorems. Seraj made a first approach towards higher orders in [15],
where an infinite number of conserved quantities are shown at spatial infinity, proportional
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to the multipole moments, and generated by specific large gauge transformations of order
O(rn). At null infinity, Campiglia and Laddha showed in [1] that (for tree-level scattering
and restricting the radiative data space to a suitable subset) exists an infinite tower of
conservation laws, such that at each level there is an infinite dimensional family of conserved
charges, Qnε , labeled by functions on the sphere. The authors also presented evidence that the
Ward identities associated with the level n of the charges are equivalent to sub-n soft photon
theorems, along with the conservation laws within the classical theory. The non-abelian
case is substantially harder since the charges up to level n of the hierarchy do not form
a closed algebra, as in the abelian case. In [16], a first step towards a classical derivation
of the charge hierarchy in the non-abelian case is suggested. Some recent developments
in celestial holography using Operator Product Expansion (OPE) tools [17–19] seem to be
promising avenues in the study of asymptotic symmetries and the role of CCFT in flat
holography for Yang-Mills and gravity.

Working in terms of retarded coordinates (u, r, x1, x2), the massless fields at the asymp-
totic region are determined by the limit t := r + u → +∞ at constant u, where t is the
usual Minkowski time. This limit moves the Cauchy slices to a well-defined manifold, called
the future null infinity and denoted by I+.1 The topology of I+ is that of R× S2 and its
boundaries at u = ±∞ are denoted by I+

± (they are diffeomorphic to S2).
The r-expansion of the LGTs at the bulk establishes a hierarchy of charges at the

asymptotic region. O(1) LGTs correspond to leading charges (for instance, by imposing
a constant LGT we obtain the total electric charge of the system, [20]), while O(r) LGT
corresponds to sub-leading charges, see [6, 21].

The canonical derivation of conserved quantities at null infinity in the context of the
classical theory at the leading and subleading imposes the following question: can the infinite
tower of charges, associated with subn-leading soft theorems, be canonically derived within
the classical theory? One of the main problems that arise when studying O(r) LGT is the
divergent formulas for the charges when calculated from the usual phase space structure,
both at null (e.g., [21]) and spatial (e.g., [15]) infinities. In particular, the expressions for
the symplectic form evaluated on an LGT at level n (and therefore the charges) diverge
in the t → +∞ and u → −∞ limits.

In this paper we provide a renormalization procedure that removes both divergences.
Following ideas from [22], we show that suitable boundary and corner terms exist for the
symplectic form that renormalize the divergences while not changing the dynamics of the
fields. This renormalization is minimal, in the sense that it cancels all the divergent terms
while keeping unchanged the finite ones. We define a subset of the radiative space and an
extended phase space that contains all LGTs up to arbitrary order. This extended space has
a symplectic structure, allowing us to calculate the electric-type charges. Finally, allowing
the duality symmetry to act and extending the phase space with extra boundary gauge
fields (e.g., [23–25]), the magnetic analog of the electric hierarchy is also presented, as well
as the full electromagnetic charge algebra.

1This convergence is point-wise equivalent to the limit r → +∞ at u = cnt, but taking t → +∞ is more
natural since we are defining the charges in terms of Cauchy slices.
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The paper is organized as follows. In section 2 we review the asymptotic structure of
Maxwell theory at null infinity. For simplicity, the charged matter consist of a massless
complex scalar field coupled to the U(1) gauge field. We also review the structure of the LGT
for arbitrary order. In section 3, we revisit the derivation of asymptotic charges associated
with leading and sub-leading soft photon theorems, defining an extended phase space and
calculating the leading and sub-leading charges. Our derivation is along the lines of [1], but
we place special emphasis on the symplectic structure, which will be used later. Section 4
contains the main result: we can renormalize the symplectic potential to have a finite value
for every O(rn) LGT. Section 5 contains the derivation of magnetic charges, and the algebra
of electromagnetic charges is presented. Finally, in section 6, we discuss the results and
possible future directions.

2 Preliminaries

This section reviews previous results on the asymptotic expansion of Maxwell fields at
null infinity.

2.1 Radiative phase space

Consider retarded coordinates (u, r, xa), in terms of which the Minkowski metric is

ds2 = −du2 − 2dudr + r2qabdx
adxb. (2.1)

Indices a, b, c, . . . will indicate sphere coordinates, while Greek indices µ, ν, σ, . . . will indicate
spacetime coordinates. The metric qab is the standard round metric with constant curvature
in the sphere S2, with connection D. The limit r + u =: t→ +∞ at fixed u defines I+, “scri
plus”, a null hypersurface with the topology of R × S2. Its boundaries are defined by the
limits u → ±∞, denoted by I+

± respectively, and have the topology of a sphere.
We consider a massless charged scalar field φ coupled to the Maxwell field Aµ in

Minkowski spacetime, with lagrangian

L = −1
4FµνF

µν +DµφDµφ, (2.2)

and satisfying the field equations,

∇νFµν = jµ, (2.3)
DµDνφ = 0, (2.4)

where jµ = ieφDµφ+ c.c., with Dµφ := ∂µφ− ieAµφ, the gauge covariant derivative and ∇
the metric covariant derivative. In retarded coordinates, Maxwell equations are

r2jr = −∂r(r2Fru) +DaFra, (2.5)
r2ju = −∂r(r2Fru) + ∂u(r2Fru) +DaFua, (2.6)

ja = ∂r(Fua − Fra) + ∂uFra + 1
r2D

bFab. (2.7)
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Bianchi identities, 0 = ∂[aFbc], are the integrability conditions for the electromagnetic
strength tensor: there exists a one-form Aµ such that Fµν = ∂[µAν]. We will work in the
harmonic gauge, ∇µAµ = 0,2 which in this particular coordinates implies

r2∂uAu + ∂r(r2Ar) + r2DaAa = 0. (2.8)

We are interested in the symplectic structure and charges at I, so we will need to take
the t → +∞ limit, fixed u. Therefore, we need the 1/r-expansion of the fields. The usual
fall-offs for the electromagnetic tensor are (see [20] and [16]):

Fru = 1
r2F

(−2)
ru + o(r−2), Far = o(r−1), Fau = O(1), Fab = F

(0)
ab + o(1) (2.9)

where it is understood that all the coefficients in the expansions are functions of u and xa.
The fall-off for the scalar field is,

φ = φ(−1)

r
+ o(r−1). (2.10)

These expressions imply the following fall off’s on the charge current:

ju = j
(−2)
u

r2 + o(r−2), ja = j
(−2)
A

r2 + o(r−2), jr = j
(−2)
r

r4 + o(r−4). (2.11)

Fall off’s for Aµ compatible with the expansion above and the harmonic gauge con-
dition are:

Aa = A(0)
a + o(1), Au = A(−1,ln)

u

ln r
r

+ o(r−1), Ar = o(r−1). (2.12)

The previous asymptotic behaviors are consistent with the field equations and the harmonic
gauge condition.

Using Maxwell equations, the scalar field equation, Bianchi identities and the harmonic
gauge condition, we can solve all the components of the electromagnetic tensor and the scalar
field in terms of A(0)

a and φ(−1) (see appendix A of [16] for Yang-Mills case). These functions
are the free data for the gauge field and the scalar field, respectively. To simplify notation,
we will refer A(0)

a as Aa and φ(−1) as ϕ, respectively.
The hypothesis of “tree-level” decays for Aa in the limits u → ±∞,

∂uAa(u, x1, x2) = O(1/|u|∞), (2.13)

that is, its decay is faster than that of any power 1/|u|n, implies the following fall-offs for
the radiative data of a generic solution of Maxwell’s equations [1, 27],

F (−2)
ru (u, x1, x2) = F−2,0

ru (x1, x2) +O(1/|u|∞). (2.14)

For the massless charged scalar field, we assume a consistent fall off with (2.14) and
the equations of motion, ((2.5), (2.6) and (2.7))

ϕ(u, x1, x2) = O(1/|u|∞). (2.15)
2We leave the study of the renormalization procedure in other gauges for future work. In particular, the

light-cone gauge in the self-dual sector of Yang-Mills theory seems a promising avenue to extend the present
results to non-abelian theories, [26].
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This condition is of a technical nature, and it is imposed only for the sake of consistency of
the equations. Our radiative phase space is thus defined in terms of the functions Aa and ϕ,

F0 = {(AA(u, xa), ϕ(u, xa)) : ∂uAa(u, x1, x2), ϕ(u, x1, x2) = O(1/|u|∞)}. (2.16)

2.2 u-expansions for fields

From Maxwell equations and Bianchi identities, we can obtain recursive formulas for the
coefficients in both Fru and εabFab expansions in r and u, where εab is the area form of the
sphere. By Bianchi identity ∂[aFru] = 0, contracting with Da and the first two Maxwell
equations, we have

∆Fru + ∂r(∂r(r2Fru)− 2r2∂uFru) = r2∂ujr − ∂r(r2ju) (2.17)

where ∆ denotes the Laplacian operator on the sphere, with metric qab. We assume that Fru
can be expanded in an r-series, Fru = 1

r2
∑∞
k=0

F
(−2−k)
ru

rk
. By direct substitution in (2.17),

2(k + 1)∂uF (−2−k−1)
ru + (∆ + k(k + 1))F (−2−k)

ru = ∂uj
(−2−k)
r + kj(−2−k)

r . (2.18)

From the assumed fall off (2.14), and equation (2.18), it is clear that the behaviour of
F

(−2−n)
ru in the limit u → −∞ is

F (−2−n)
ru =

n∑
j=0

ujF (−2−n,j)
ru (xa) + rn(u, xa), (2.19)

where each of the F (−2−n,0)
ru (xa) is a function on the sphere, and rn some function with an

O(1/u∞) decay (analogous expansion can be done in the limit u → +∞). We can solve
order by order recursively in terms of the current and these free functions. As a reference,
the full expression for Fru is

r2Fru =
∑
k≥0

1
rk

k∑
j=0

ujF (−2−k,j)
ru (xa) + . . . (2.20)

The same analysis can be carried out for the function εabFab, obtaining the following
equation,

2εabDajb = 2∂u∂rεabFab − ∂r∂rεabFab −
1
r2 (∆εabFab + 4εabFab), (2.21)

and by performing the r- and u-expansions we obtain a recursive formula for the coefficients
in εabFab (see appendix A for details). In section 5, we will use these results.

2.3 Variation space

We now turn to the large gauge transformations (LGT) on the variation space. The usual
formulas for the gauge symmetries,

Aµ 7→ Aµ + ∂µε, φ 7→ e−ieεφ (2.22)

establish the following action for variations of the fields,

δεAµ = ∂µε, δεφ = −ieεφ. (2.23)
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The variations allowed in our radiative phase space are tangent to F0, i.e., that maintain
the fall-offs of the fields. By the definition of finite symmetry, given a gauge symmetry
generator ε we see that ∂µε must have the same fall offs as Aµ:

∂aε = O(1), ∂uε = o(1), ∂rε = o(r−1) (2.24)

We study the global symmetries as arising from the residual LGT, and by the choice
of harmonic gauge, are solutions to the wave equation,

�ε = 0. (2.25)

This equation can be solved up to order O(r−1) (see appendix A in [21]),

ε(u, r, x1, x2) = ε0(x1, x2) +O(ln(r)/r). (2.26)

2.4 Higher order LGT

We are interested in relating the LGTs containing higher orders in r with the charges that
arise from subn-leading soft photons theorems. The usual mode expansion reasoning in the
soft theorem derivation suggests that for a subn-leading soft photon, we need to look for
an LGT Λ whose O(1) in the r-expansion behaves as un. This asymptotic behavior of the
gauge generator must be compatible with the harmonic gauge and, therefore, implies an
O(rn) leading behavior, as we show below by solving �Λ = 0.

Consider the following r-expansion for a O(rn) large gauge parameter,

Λ(u, xa) = rnε(n) +
n−1∑
k=0

rkε(k) + ln r
r
εln +O(r−1), (2.27)

where ε(i) = ε(i)(u, x1, x2). We have �Λ = 0, which in retarded coordinates reads,

0 = −6rn−1∂uε
(n) +

n−2∑
k=−1

rk
(
∆ε(k+2) − 2(k + 2)∂uε(k+1) + (k + 2)(k + 3)ε(k+2)

)
+ln r
r3 ∆ε(ln) + 2

r2 (∆ε(0) − ∂uε(ln)) + 1
r3 ε

(ln) + . . . . (2.28)

The first term in (2.28) implies that ε(n) is a free function on the sphere. Next, we have a
recursive equation on the successive coefficients:

2(k + 1)∂uε(k) = ∆ε(k+1) + (k + 1)(k + 2)ε(k+1) (2.29)

Integrating (2.29) and fixing each integration constant to zero in each step gives an LGT
of order O(rn) generated by ε ≡ ε(n), which we will call Λn

ε . If the integration constants
are non-zero, each one of them will be a free S2 function that contributes linearly with
an LGT of corresponding order:

Λα = Λnεn + Λn−1
ε(n−1)

+ . . . , (2.30)

where α = {εj}j is the sequence of integration constants εj in the equation (2.29), that
are free S2-functions, each one generating an O(rj) LGT . We will call an LGT “pure” if
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only one free function generates it. When using the notation Λm
f , subscripts indicate the

generating function or sequence of functions, and superscripts indicate the leading term in
the r-expansion, if the generating function is not a sequence.

Some remarks are in order. First, one implication of equation (2.29) for a pure O(rn)
LGT is the following property:

ε(n−1) = O(u), . . . , ε(k) = O(un−k) (2.31)

This shows that the order O(rn) is necessary for a un asymptotic behavior at order O(r0)
for the LGT, as was stated at the beginning of the section. Second, the term ln(r)/r is
needed for the O(r0) to be consistent; otherwise, we would get ∆ε(0) = 0, and since we are in
a sphere, that would give a trivial function. Third, the non-trivial fact that equation (2.29)
resembles the form of equation (2.18), but it presents crucial differences in the constants
multiplying the functions. This similarity between the recursive expressions is useful when
showing the Ward identity equivalence with the subn- soft theorems.

3 Leading and subleading charges

In this section, we review the phase space construction and the symplectic charges in the
case where the LGTs are O(r). We leave the renormalization procedure for the next section,
focusing exclusively on the first step of the phase space extension and the recovery of
the charges.

3.1 Extended phase space

The usual phase space, (2.16), contains the physical information regarding the leading order
charges, restricted to O(r0) LGT. Their usual expressions are ([2, 20]):

Qε0 =
∫
S2

√
qε0

∫
R
∂uF

(−2)
ru du, (3.1)

where ε0 is a function on the sphere. The fall-offs (2.12) are not preserved by an O(r1) LGT as
soon as we allow higher order LGT (through its action (2.22)) and therefore, the variations are
no longer tangent to the radiative phase space F0. We expand the phase space in these extra
directions by first extending the vector potential sector in (2.16). Consider the following space:

F1 = F0 × {ψ(x1, x2) : ψ ∈ C∞(S2)} (3.2)

We define the new vector potential as Âµ = Aµ + ∂µΛ1
ψ, where Aµ is the vector potential

that has Aa as initial data (from section 2) and Λ1
ψ is the pure O(r) LGT generated by ψ.

Observe that this definition is indeed consistent, since ∂[µ∂ν]Λ1
ψ = 0 and thus a makes no

contribution to the electromagnetic tensor, i.e. F̂ = F .3 Observe also that the harmonic
gauge condition is trivially satisfied for the extended electromagnetic potential.4

3This feature in the abelian case is in sharp contrast to the non-abelian case, where the linear extension
was studied in [16].

4It is left for future works to study the phase space extension in more general gauges, and whether it
changes the structure.
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Given a general O(r) LGT, Λ{ε1,ε0}, the variations generated by it on F1 are split in
terms of the S2 free functions ε1 and ε0 corresponding to order O(r) and order O(1) in the
r-expansion respectively (see (2.30)):

Λ{ε1,ε0} = rε1 +
(
ε0 + u

1
2(∆ + 2)ε1

)
+O

( ln r
r

)
(3.3)

The action on the phase space F1 comes from the identity δΛ{ε1,ε0}Âµ = ∂µΛ{ε1,ε0},
which after the splitting reads:

δΛ{ε1,ε0}Aa = ∂aε0, (3.4)
δΛ{ε1,ε0}ψ = ε1. (3.5)

Allowing a O(r) LGT in the massless field sector also implies a change in the massless
field φ. The equations of motion are invariant under the simultaneous change

Aµ 7→ Â = Aµ + ∂µΛ1
ψ, φ 7→ φ̂ = e−ieΛ

1
ψφ. (3.6)

Since the finite gauge symmetry involves a product e−ieΛ
1
ψφ, we can define an extended

field φ̂ = e−ieΛ
1
ψφ, where ψ is the free S2 function now generating a phase for the scalar

field, while φ is the massless field with the usual fall off, with ϕ ∈ F0 as free data. The
covariant gauge derivative is given by

D̂µ := ∂µ − ieÂµ, (3.7)

from where we have that the new current ĵµ maintain its original form,

ĵµ = ieφ̂(D̂µφ̂)∗ + c.c. = ieφ(Dµφ)∗ + c.c., (3.8)

The consistency of the action of the O(r) LGT action on φ̂ with the splitting of the extended
phase space implies

δΛ{ε1,ε0}ϕ = −ieε0ϕ. (3.9)

This type of extension of the phase space and the dressing of the fields is part of a more
general procedure, using “Goldstone modes” on the boundary, that has been introduced both
in the context of gauge theories and gravity (see [16, 24, 28, 29] and references therein).

3.2 Calculation of leading and subleading charges

This subsection reviews the covariant phase space procedure for calculating charges associated
with a gauge transformation generated by ε. Consider the Lagrangian (2.2), in our extended
phase space we have the usual symplectic potential current,

θµ(δ) = √g
(
F̂µνδÂν + D̂µφ̂δ ¯̂

φ+ c.c.
)
, (3.10)

and the symplectic current by taking the exterior derivative in the phase space,

ωµ(δ, δ′) = δθµ(δ′)− δ′θµ(δ)− θ([δ, δ′]). (3.11)

– 8 –
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The symplectic form is obtained by integrating the symplectic current over Σt, Ω(δ, δ′) =∫
Σt ω

µ(δ, δ′)dSµ. We evaluate it on a variation generated by a general LGT (Λε1,ε0) and an
admissible variation (denoted by δ), obtaining an expression for the charge,

δQΛε1,ε0 = Ω(δ, δΛε1,ε0 ) =
∫

Σt
ωµ(δ, δΛε1,ε0 )dSµ (3.12)

where the integrals are taken over a t = cnt surface. As it was shown in [21], one could
find the leading and subleading charges (consistent with the Ward identities) by taking the
limit t = r + u → +∞ at constant u,

QΛε1,ε0 = lim
t→∞

∫
Σt

(∂r − ∂u)(r2Λε1,ε0F̂ru)dx2du, (3.13)

and considering the finite part in the limit. By counting orders in t, it is straightforward
to see that the expression (3.13) contains divergent terms; therefore, the definition of the
charge at the limit is ill-defined. In what follows, we drop the hat ˆ in Fru since it is the
same field as in the radiative space.

As we previously mentioned, the main result of this paper is that we can define a
procedure to renormalize the symplectic potential and get rid of the divergent terms in (3.13)
for any arbitrary higher order O(rn). This will be the content of the next section, while
in the remainder of this section, we motivate the renormalization in the particular case
of the extension for n = 1.

Since we can trace back the divergences to the symplectic potential, due to varying with
δΛε1,ε0 , our starting point is to compute the symplectic potential on the hypersurfaces Σt,

θt(δ) = √q
(
r2Fru(δAr − δAu) + qbcFubδAc

)
︸ ︷︷ ︸

θt0

+√q(∂r − ∂u)(r2FruδΛ1
ψ)︸ ︷︷ ︸

θt1

, (3.14)

where we did not write the total derivative r2Dc(
√
qqbcFubδΛ1

ψ), since it vanishes after
integration on Σt. The first term can be regarded as the radiative phase space symplectic
potential, θt0, while the second term is the new extended term, which we will call θt1.

The term θt0(δ) will contribute to the symplectic form (by integrating by parts and using
the equations of motion) as usual,

ωt0(δ, δ′) = √qqbcδFub ∧ δ′Ac +√qr2δFru ∧ δ′(Ar −Au), (3.15)

The term θt1(δ) presents the divergence: the action of ∂u on δΛ1
ψ leaves an O(r) term,

which in turns imply a t factor when changing variables from (u, r, x1, x2) to (t, r, x1, x2). In
the next section we show a systematic approach for renormalizing such terms while keeping
the finite ones unchanged (i.e., the minimal subtraction to make the expressions finite).
For now, we assume that we can drop the divergent term and that the expression we get
also has a finite limit u → −∞. Assuming the above, we find the following expression for
the renormalization of θt1(δ),

θren,t
1 (δ) = √q

(
Daj(0)

a −
u

2 ∆∂uF (−2)
ru

)
δψ, (3.16)

– 9 –
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where ren stands for “renormalized”. The symplectic current is split then,

ωren,t(δ, δ′) = ωt0(δ, δ′) + ωren,t
1 (δ, δ′), (3.17)

where the last term comes from the exterior derivative of θren,t
1 (δ), and the total symplectic

form on I+ is well defined (by taking t → +∞) ,

Ωren(δ, δ′) =
∫
I
ωren(δ, δ′) =

∫
I
ω0(δ, δ′) +

∫
S2

√
q(δF (−3,0)

ru ∧ δ′ψ). (3.18)

The last term comes from the value of F (−3,0)
ru in (2.19), which can be seen as the value of

the following limit (see [1] for details):

F (−3,0)
ru = lim

u→−∞
F (−3)
ru − uF (−3,1)

ru =
∫
R

(
Daj(0)

a −
u

2 ∆∂uF (−2)
ru

)
du, (3.19)

where the contribution from u = +∞ in integral zero due to the absence of massive charges
(F (2)

ru (u = +∞, x1, x2) = 0). Since ∂uF (−2)
ru decays faster than any polynomial in u, the above

integral is convergent. Observe that F (−3,0)
ru is the canonical conjugate to ψ.

Next, we compute the leading and subleading charges. Taking δ′ to be a large gauge
transformation, and δ any arbitrary admissible variation (compatible with F1), we calculate
the charge associated to any LGT Λ{ε1,ε0} by equation (3.12). Since Fµν is invariant under
δΛ{ε1,ε0} and Λ{ε1,ε0} is not affected by δ,5 the calculation is straightforward,

QΛ{ε1,ε0} =
∫
S2

√
q
(
ε0F

(−2,0)
ru + ε1F

(−3,0)
ru

)
dx2 =: Q0

ε0 +Q1
ε1 , (3.20)

where we also used (2.19) in the radiative space sector, and Qiεi , with i = 0, 1, denotes the
leading and subleading charges, respectively.

The charge Q0
ε0 is the usual for a O(1) large gauge symmetry, while the second term

is the one obtained in [21] and [1]. In both cases, we obtained “corner” charges. They
depend on the values of the fields at the boundary of I, which is by itself the boundary of
the domain we started with (as in [24, 28]).

4 Tower of asymptotic charges

In this section, we derive an infinite hierarchy of charges from a symplectic form in an extended
phase space that contains enough degrees of freedom to allow for O(rn) LGTs for arbitrary n.
Certain difficulties in defining the symplectic potential arise, in particular, the appearance of
several divergent integrals, as shown in the previous section. The renormalization procedure
we apply is based on [22].

First, we define the extended phase space and show the type of divergences we have,
both in the t→ +∞ and u→ +∞ limits inside the expression (3.13). Then, we proceed to
prescribe a renormalization on the symplectic potential that will lead to the correct expression
for the charges while the symplectic form remains finite.

5This again is in contrast with the non-abelian case, where the harmonic gauge condition implies a field
dependent LGT’s.

– 10 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
5

4.1 Extended phase space and charges

Let S be the space of sequences {ψi}i>0 of functions ψi : S2 → R such that only finitely many
are non-zero.6 Given a sequence Ψ ∈ S, we define the LGT associated to the sequence as

ΛΨ :=
∑
i>0

Λiψi (4.1)

where each Λiψi is a pure O(ri) LGT associated to ψi, in the sense of section 2. Observe that
the sum is finite for every Ψ ∈ S. We define the extended phase space as the following set,

F∞ = F0 × S, (4.2)

with the extended electromagnetic potential and scalar field are defined as

Âµ = Aµ + ∂µΛΨ, φ̂ = e−ieΛΨφ, (4.3)

where Aµ and φ are the vector potential and the scalar field generated by the free data
Aa and ϕ from the space F0, respectively.

The admissible variations δ of this phase space are such that when acting on the degrees
of freedom parametrized by Ψ, it satisfies δΨ ∈ S. This property is not restrictive regarding
the variations, as shown below.

Given a sequence ε = {ε0, ε1, . . . , εi, . . .} of free S2 functions, such that {εi}i>0 ∈ S,
consider the LGT associated to it, Λε = Λ0

ε0 +
∑
i>0 Λi

εi . The variation generated by this
LGT acts on F∞ by acting in Aµ with its O(r0) free function and by acting on α on each
sequence term,

δΛεAA = ∂Aε0, δΛεϕ = −ieε0ϕ, δΛεΨ = {εi}i>0 (4.4)

This structure is the same as in the previous section, extended to contain any order in
the r-expansion.

We can write the full symplectic potential, equation (3.10), and proceed in the same
way as in the previous section, obtaining the expression (3.14). In this case, ΛΨ is in place
of Λ1

ψ and the split of the symplectic potential in the radiative phase space contribution
and the extended part is given by

θt∞(δ) = √q(∂r − ∂u)(r2FruδΛΨ), (4.5)

where the ∞ stands for the extension to all orders in r.
Given δ and ΛΨ, let us calculate the symplectic potential evaluated at δ. Consider

the integral,

Θt,∞(δ) =
∫

Σt

√
q(∂r − ∂u)(r2FruδΛΨ)dx2du, (4.6)

and observe that the term inside the integral is divergent in the limit t → +∞ with the
same order as the highest power of r in δΛα. Our aim in this section is to understand better
this integral. For brevity let us call,

ρk(δ) =
+∞∑
i=k

F (−2+k−i)
ru δΛ(i)

Ψ , (4.7)

6In what follows we assume that the sequences of functions have this property unless stated otherwise.
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where δΛ(i)
Ψ is the coefficient corresponding to ri in the r-expansion of δΛΨ. ρk(δ) is thus the

O(rk) coefficient in the expansion of the term inside the brackets. Upon direct computation,
we have,

Θt,∞(δ) =
∫

Σt

√
q
∞∑
k=1

(
krk−1ρk(δ)− rk∂uρk(δ)

)
dx2du, (4.8)

which after we substitute r = t − u, gives,

Θt,∞(δ) =
∞∑
j=0

tj
∫

Σt
θtj(δ)dx2du, (4.9)

for some t−independent functions θtj(δ). This gives us a t-expansion of the symplectic
potential. In the next subsection, we show that these divergences can be renormalized by
adding total variations and total derivatives (corner) terms to the symplectic potential.

Assuming such a procedure can be done, we are left with the O(t0) term, which satisfies
the identity,

ΘI∞(δ) := lim
t→+∞

Θt,∞(δ) =
∫
I

√
q
∞∑
k=1

(
k(−u)k−1ρk(δ)− (−u)k∂uρk(δ)

)
dx2du

= −
∫
I
∂u

(
√
q
∞∑
k=1

(−u)kρk(δ)
)
dx2du, (4.10)

which gives us a boundary term. The charges associated with higher order LGT can be
directly computed using the identity δQΛε = ΩI∞(δ, δΛε),

Qε =
∫
I
∂u

( ∞∑
k=1

(−u)kρk(δΛε)
)
dud2x. (4.11)

When evaluating the term in the brackets in the last line of (4.10) at u = +∞, we use
the hypothesis that Fru = 0 at I+

+ . When evaluating at I+
− , we run into divergences. Since

the general behavior of ρk(δ) admitted by (2.13), (2.15) and (2.17)7 near spatial infinity is
polynomial in u plus a O(1/|u|∞) remainder, we have that the above expression for Θt(δ) is
not well defined. By the renormalization procedure of the next subsection, we will be able
to regularize the above expression, keeping only the O(u0) in ρ0(δ),

ΘI∞(δ) =
∫
S2

√
q
∞∑
i=1

F (−2−i,0)
ru δψidx

2du, (4.12)

where F (−2−i,0)
ru are the O(u0) of F (−2−i)

ru .
The renormalization procedure of the next subsection has to address the previous two

divergences: the t divergence from the limit to I, and the u divergences in the integrals over
I. We leave it as a future work to understand the physical meaning of the boundary and
corner terms in the context of covariant phase space quantities.

7Remember that the fall off (2.14) is a consequence of these equations.
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We end this subsection with some remarks regarding previous works. The idea in [21] is
to relate the divergent terms to the conserved quantities, obtaining a “projected out” charge
equal to the t0 term, while the discarded terms are proportional to lower order charges. While
this is the case for the O(r) subleading charge (the O(t1) part in the charge is proportional to
Qε0), there is, however, a remaining divergent term in the O(r2) that leads to an unresolved
tension, in particular the O(t1) term is not proportional to any lower order charge. This
tension is solved once we renormalize the symplectic potential.

Regarding the concrete expressions of the charges, the order O(u0) of QΛε in equa-
tion (4.11) is exactly what was presented in [1]. This is equivalent to prove that the O(u0)
coefficient of QΛε is

∑+∞
k=1

∫
S2 εkF

−2−k,0
ru d2x (we are considering ε0 = 0, only higher order

charges).
As it stands, (4.11) diverges, due to the orders of un that are involved in the integral.

If we want to write the charge as a corner integral on the sphere at u → −∞, we should
inspect the O(u0) term, corresponding to the finite limit term.

Here, we take the u-decay in the remainder functions ri in equation (2.19) as faster than
any polynomial decay. Therefore, inspecting the expressions for Λ(k)

ε and F−2+k−i
ru , we see

that each ρk(δΛε) has at least order u0, therefore the term in the sum contributes with at
least uk. The only term with a possible u0 order is thus ρ0(δΛε),

ρ0(δΛε) =
∞∑
i=1

Λ(k)
ε F (−2+k)

ru . (4.13)

Again, a close inspection in the u-expansion of the functions shows that the order u0 is
given by the sum of the products εkF

(−2−k,0)
ru .

4.2 Regularization procedure

In this subsection, following [22], we will renormalize the symplectic potential for QED in
the extended phase space to eliminate the divergences. The idea is to write the higher order
terms in the t component of the symplectic potential as boundary plus corner terms and to
subtract them from the original expression, thus obtaining a finite result in the limit t→∞.

From the first variation of the Lagrangian (2.2), we have,

δL = EµδÂµ + Eδφ̂+ ∂µθ
µ(δ), (4.14)

where Eµ and E are the field equations for Âµ and the massless scalar, respectively. By
taking the retarded coordinates u, t, x1, x2 on Minkowski spacetime, we write the previous
equation on-shell and obtain an equation for ∂tθt(δ),

∂tθ
t(δ) = δL − ∂uθu(δ)−Daθ

a(δ). (4.15)

We will assume that all the functions have t and u expansions around t = +∞ and
u = ±∞, as is the case for F (2)

ru , Aa and ϕ (cf. equations (2.14), (2.12) and (2.10)).
Consider the derivation of the divergent part of the symplectic potential done in the

previous section but now applied to our extended phase space, i.e., starting from,

θµ(δ) = √qr2
(
FµνδÂν) + D̂µφ̂δφ̂+ c.c.

)
, (4.16)

– 13 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
5

the general form for the symplectic potential on Cauchy slices at constant t is the following,8

θt(δ) = Y0(δ)(u, t, xa) +
∞∑
i=1

tiYi(δ)(u, xa). (4.17)

where Y0(δ)(u, t, xa) is such that limt→+∞ Y0(δ)(u, t, xa) = Y0(δ)(u, xa) is a well defined
function on I+. We introduce the renormalized symplectic potential as θtren := θt −Hren,
where Hren satisfies the following equation,

∂tθ
t(δ)− ∂tHren(δ) = K(δ)(u, t, xa), (4.18)

where K is such that its limit when t → +∞ vanishes. In general, K and Hren are not
uniquely determined by the previous equation. The natural prescription for Hren to resolve
the divergences is the following,

Hren(δ) =
+∞∑
i=1

tiYi(δ)(u, xa) + C(δ)(u, xa), (4.19)

where C(u, xa) is a function to be determined. Observe that Hren has the same order as θt in
the t-expansion, and that the divergences in the t parameter are canceled, so θtren converges
in the limit t → +∞. The coefficients Yi are obtained from the integration of the terms
in the variation of the lagrangian and the total derivative of the symplectic potential in
equation (4.15), on {t = cnt} surfaces, directly by the t expansion.

Therefore, we can prescribe

Yi(δ) = Finite part
(

lim
t→+∞

1
ti

(δL − ∂uθu(δ)−Daθ
a(δ))

)
, (4.20)

for each i. Observe that in (4.20) each Yi can be written as a total derivative plus a total
variation.

By taking the free function C as a total derivative, C = ∂uX
u +DaX

a, we can add the
last term in (4.20) to obtain a new total derivative term. Then, the renormalized symplectic
potential has the form

θtren(δ) := θt(δ) + ∂νΥtν(δ) + δΞt = P (δ)(u, t, xa) (4.21)

where Υ and Ξ are calculated from Yi, Xu
i and Xa

i directly, and P is at most O(t0) in the
t−expansion. This symplectic potential does not contain divergences in the t → ∞ limit.
The general form of the symplectic potential will be changing the upper index t by a 4d
index µ. We have that Υµν = −Υνµ, by definition of “corner terms” (see [22]). Without
any loss of generality, we can define Υjl = 0, for j, l running in the set {u, xa}, since these
terms are not uniquely defined and do not affect the renormalization of θt. Therefore, we
have a well-defined limit

θIren(δ)(u, xa) := lim
t→+∞

θtren(δ)(t, u, xa) = Y0(δ)(u, xa)− C(δ)(u, xa) (4.22)

8In the following equations we write the explicit dependence of the functions on variations and coordinates.
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We still have at our disposal the function C(u, x1, x2) (the only condition we imposed
so far is that it is a total derivative), which can be determined by imposing a finite limit
when u → −∞ for the symplectic potential, as we will show below.

Under a general LGT, the O(t0) of the symplectic potential has O(uN ) terms. Therefore,
θtren have an expansion in powers of u, starting in some uN (corresponding to the highest
power in δ or α), the coefficients of the expansion depending in general on which limit we are
computing, u→ ±∞. We consider the following u-expansion for Y0(δ) near u = ±∞,

Y0(δ)(u, xa) u→±∞= RY0(δ)(u, xa) +
∞∑
k=1

ukY ±0,k(δ)(x
a), (4.23)

where ∂uRY0(u, xa) = O(1/|u|∞). This condition comes from the tree-level assumption on the
soft theorems and implies in particular that the limits when u→ ±∞ are in principle different,

R±Y0
(δ)(xa) := lim

u→±∞
RY0(δ)(u, xa). (4.24)

By inserting (4.23) in (4.22), we have

θIren(δ) = RY0(δ)(u, xa) +
∞∑
k=1

ukY ±0,k(δ)(x
a)− ∂uXu(δ)(u, xa)−DaX

a(δ)(u, xa). (4.25)

Observe that we can find functions Xu, Xa such that their expansions around u = ±∞
renormalize the limits of the symplectic potential. For Xu we find,

Xu
±(δ)(u, xa) =

∞∑
k=1

1
k + 1u

k+1Y ±0,k(δ)(x
a), (4.26)

Observe that the coefficient for u0 vanishes to avoid ambiguities. For Xa we have,

DaX
a(δ)(u, xa) =

{
R−Y0

(δ)(xa) +O(1/|u|∞) when u→ −∞
R+
Y0

(δ)(xa) +O(1/|u|∞) when u→ +∞
(4.27)

Finally, the symplectic potential density gives a finite result upon integration on I due
to the fall-offs of RY0 .

Remark. It is a well-known fact that the equation,

DaV
a = 0, (4.28)

for a certain vector field V a on the sphere, has infinite solutions. In fact, it has as many
solutions as there are scalar functions on the sphere (since it is a simply connected manifold).
On the one hand, we have an ambiguity when solving Xa in (4.27). Since DaX

a is the
object that enters in the definition of C, such ambiguity resolves trivially in the renormalized
symplectic potential, not affecting the outcome.

On the other hand, the contribution from C to the symplectic potential is computed
only at the boundary. Thus, it is important only for the limit value u → ±∞ for DaX

a.
Then, any ambiguities in the prescription of Xa are “washed away” by the limiting process.
More on this detail in the next subsection.
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As mentioned in the introduction, this renormalization is minimal because it cancels
all the divergent terms while keeping unchanged the finite ones. The linearity of the theory
played a central role in the previous derivation, and also in the definition of the extended
phase space. We leave for future works to delve into such a renormalization procedure in
the case of non-abelian theories.

4.3 Electric-like charge algebra

The previous renormalization procedure adjusts exactly all the divergences while maintaining
the same convergent terms discussed in subsection 4.1. The expression for the renormalized
symplectic potential is therefore:

Θren(δ) =
∫
I+
θ0(δ)dudx2 +

∫
S2

∞∑
i=1

F (−2−i,0)
ru δaidx

2 (4.29)

where θ0 is the usual symplectic potential in F0. The symplectic form is the exterior derivative
(in the extended phase space) of the symplectic potential:

Ωren(δ, δ′) =
∫
I
ω0(δ, δ′)dudx2 +

∫
S2

∞∑
i=1

δF (−2−i,0)
ru ∧ δ′aidx2 (4.30)

All three ingredients in the charge calculation are well defined and finite: the limit t→ +∞,
the integration on I and the series.

We can now show the full hierarchy of charges for arbitrary O(rn) LGT in QED. The
electric charges associated with an LGT Λε can be calculated from (4.30), substituting the
sequence coordinates {εi}. By the equation

δQε = Ωren(δ, δΛε), (4.31)

we have

Qε =
∞∑
j=0

∫
S2

√
qεjF

−2−j,0
ru dx2 (4.32)

where we are using that Fνµ is invariant under δΛε . This expression is the same as the
one obtained in [1].

Observe that the full algebra of charges is abelian:

{Qε1 , Qε2} = 0, ∀ε1, ε2 (4.33)

Remark. The expression we found for the renormalized symplectic potential gives a sym-
plectic form from which the electric charges Qε can be obtained. Given the procedure shown
in this section, some ambiguities can, in principle, spoil the conservation of the charges from
I− to I+ in a scattering process. Nevertheless, observe that the charges we obtain here
are exactly the ones given in [1] for I+, and it can also be shown, via the same arguments
and prescriptions, that the charges for I− are,

Q−ε =
∞∑
j=0

∫
S2

√
qεjF

−2−j,0
rv dx2, (4.34)
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where v is now the advanced coordinate (suitable to describe I−), with respect to which the
fall off’s (2.14), (2.10), etc., are written in analogy. Since the conservation of the charges
in the classical theory was proven by Campiglia and Laddha (cf. [1]), then any possible
ambiguities in the renormalization do not affect the scattering processes between I− and
I+. It would be interesting to study if there is any impact of these ambiguities beyond the
tree-level, in the non-abelian case, or in the presence of other fields.

5 Duality extension of tower of asymptotic charges

In the previous sections, we treated only the electric part of Maxwell theory, renormalizing
the symplectic potential in the extended phase space to contain the subn-leading charges in a
natural framework. In this section, we extend the phase space (again) in order to include
the magnetic freedom, á la Freidel-Pranzetti, as in [24]. This type of extension has been
thoroughly studied in recent years in several contexts: electromagnetic duality (e.g., [23, 30]),
BF theories ([25]) and under more general structures ([29]). Throughout this section, we
use differential form notation without explicitly writing the indexes to ease the notation.
Also, we are considering no extra fields.

Electromagnetism possesses a duality symmetry, which can be characterized as follows:
the Lagrangian for the theory is

L[F ] = 1
2 ∗ F ∧ F, (5.1)

where ∧ is the wedge product in the space of p-forms on Minkowski space M and ∗ is the
Hodge dual operator, ∗ : Ωp(M) → Ω4−p(M), in M . This operator satisfies

∗ ∗α = (−1)p(4−p)+1α, α ∈ Ωp(M), (5.2)

where the extra +1 in the exponent comes from the signature of the metric in Minkowski
space. Therefore, taking p = 2 and applying ∗ to F in (5.1), we have

L[∗F ] = 1
2 ∗ F ∧ F, (5.3)

which shows the duality symmetry.
The first step in including duality symmetry is to consider the duality extension in

the standard radiative phase space. On each Σt, we have the Freidel-Pranzetti extension
for the symplectic form, [24],

Ω(δ, δ′) =
∫

Σt
δA ∧ δ′ ? F +

∫
S2
δa0 ∧ δ′B0, (5.4)

where ? is the Hodge dual in the hypersurface, a0
S2
= A+ dω0 is the electric boundary gauge

field, and B0 is the magnetic boundary gauge field. ω0 is the edge mode, which extends
the phase space, (A, a0), which now contains this boundary field. The symplectic form now
contains a corner term living in ∂Σt.

To make the connection with our past sections definition for A, we have

Anew + dω = Aold, (5.5)
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where old refers to the A used in the previous sections, and new is the one in the present
section. In particular, the expressions for curvature tensor and the charges are still valid.
Observe that ω can be thought of as a zero-order extension, using the same idea as the
previous sections: extending the vector potential with a large gauge symmetry.

We distinguish between symmetries that leave fixed the bulk variable A and symmetries
that act only on the boundary. In the previous sections, we use this difference when defining
the extension to higher order LGT, where δΛε only acts on Aa through the first component.
In the present section, as it was done in [24], we are isolating the bulk from the boundary
action on the ε0 variation in order to have a well-defined canonical action that includes
the duality symmetry, and such that the symplectic potential is invariant under the gauge
transformation of the fields.

We are working in I+, so in (5.4), we take t→ +∞. The “bulk” part now is A along I,
while the boundary is I+

− , with topology S2. The values at the boundary are not independent
since the boundary symmetries act simultaneously on both I+

± (i.e., they are independent of u).
Under a gauge transformation generated by G, both the bulk and the corner fields transform,

δG(A, a0, B0) = (dG,−dG, 0), (5.6)

so the variation δG is indeed gauge, in the sense that it has a vanishing charge Ω(δ, δG) = 0,
on-shell. The electric (magnetic) symmetry δε0(δλ0) acts only on the electric (magnetic)
boundary field,

δε0(A, a0, B0) = (0, dε0, 0), δλ0(A, a0, B0) = (0, 0, dλ0), (5.7)

where dλ0 is locally but not globally exact (such as in the standard examples of a charge in the
z-axis, see section V in [24]). Observe that on-shell, upon acting with G, we obtain the identity

dB0 = ?F, (5.8)

which on I+ gives us dB0 = F
(−2,0)
ru .

Our extended phase space of section 4.1 adapts well to the construction given above to
the duality extension. The gauge transformation Λα is the “bulk” potential, generated by
the boundary fields in the sequence α, in a hierarchy graded by the correspondent power
of r. Therefore, we can extend directly as,

Ωren(δ, δ′) =
∫
I

[
δA ∧ δ′ ? F

]
ren +

∫
S2
δa0 ∧ δ′B0 +

∫
S2

∞∑
k=1

δakδ
′dBk, (5.9)

where ak are functions on the sphere, Bk are 1-forms in the sphere locally (but not necessarily
globally) exact, a0 is a 1-form,9 and ren indicates that is the renormalized term, given
by (4.30). We define the action of a gauge transformations G (of order rn arbitrary) as

δGA = dG, δGa0 = dG0, δGaj = Gj , δGBj = 0, j ≥ 1. (5.10)

Evaluating the symplectic form in δG,

Ωren(δ, δG) = −δ
(∫
I

[dG ∧ ?F ]ren +
∫
S2
δdG0 ∧ δ′B0 +

∫
S2

∞∑
k=0

GkδdBk

)
, (5.11)

9a0 is not generally a gradient.
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which on-shell and after integrating by parts, we obtain (after the renormalization, allowing
variations δ such that δA has order higher than r0 before taking the limit t→ +∞)

dBk = F (−2−k,0)
ru , k ≥ 0. (5.12)

This equality establishes the value of the magnetic boundary gauge field as the field strength
functions.

Finally, we will denote the magnetic variations acting on Bk’s as λ = {λi}i≥0, in the
same fashion as we define the LGT generators. Electric (magnetic) variations act as follows
on the extended phase space variables,

δεkA = 0, δεka0 = δ0kdεk, δεkaj = δkjεk, δεkBj = 0, k ≥ 0, j ≥ 1 (5.13)
δλkA = 0, δλkaj = 0, δλkBj = δkjdλk, k, j ≥ 0, (5.14)

where dλk is locally but not globally defined, and δij is Kroenecker delta.

5.1 Charges and dual charges and their algebra

By computing Ωren(δ, δΛε) and Ωren(δ, δΛλ), we obtain the electric (denoted as Q) and
magnetic (denoted as Q̃) charges,

Qε =
∞∑
k=0

∫
S2
εkdBk (5.15)

Q̃λ =
∞∑
k=0

∫
S2
akd

2λk, (5.16)

where the first integral gives directly (4.32), thanks to (5.12), and the last integral does not
vanish due to the failure of dλ to be globally exact.

Finally, we have can compute the charge algebra. As the electric charges, the magnetic
charges Q̃λ are abelian,

{Q̃λ, Q̃λ′} = δλ

∞∑
k=0

∫
S2
akd

2λ′k = 0. (5.17)

The mixed Poisson bracket gives a non-trivial component of the algebra,

{Qε, Q̃λ} = δε

∞∑
k=0

∫
S2
akd

2λk =
∞∑
k=0

∫
S2
εkd

2λk =: ck (5.18)

This term shows that the boundary duality symmetry algebra possesses a hierarchy of central
charges, {ck}k≥. We leave it to future works to analyze in detail this fact in the context
of soft theorems and Ward identities.

6 Outlook

In this work, we obtain a well-defined symplectic form on I+ for the extended phase space
of classical QED through a renormalization procedure from the original symplectic form,
giving a derivation from first principles. With this symplectic form, the higher order LGT
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can be associated with the subn-leading electric charges acting canonically on the phase
space. The expressions of the charges associated with the O(rn) LGT are then obtained,
in agreement with the expressions previously proposed in [1] by means of the tree-level
subn-leading formulas. We compute the full electromagnetic charge algebra using the duality
symmetry extension, showing a hierarchy of central extensions. Several future directions
are possible in the framework of our work.

First, within the abelian theory, it would be interesting to extend the analysis to include
loop corrections to the soft photon factorization formulas ([31, 32]). This could lead to some
new structure within the charge hierarchy and between electric and magnetic charges. One
of the main difficulties in this line of work is the appearance of infrared divergences. New
advances in celestial CFT methods (see [17, 19, 33–35], and references therein) seem to be
well suited for the incorporation of these effects. It would also be interesting, given the recent
developments in the study of electromagnetic asymptotic charges at spatial infinity, such
as consistently accommodating ln(r) terms ([36]) and the study in higher dimensions ([37]),
to establish a connection between the symplectic structure at null infinity with that at
spatial infinity.

Second, the extension to non-abelian gauge theories. In Yang-Mills theory, extending the
renormalization procedure would allow us to construct a well-defined symplectic structure on
an extended phase space to compute the subleading charges and their algebra. As shown
in [16], the first step towards this is to consider a linearized extension of the phase space and
restrict the charges up to O(r) terms. Some progress is being made in this direction, [26].

Finally, it would be interesting to study possible extensions of this renormalization
procedure in the context of gravity. As recent works suggest, the study of higher-order
diffeomorphisms seems to be a key ingredient in the extensions of the phase spaces for gravity.
In [38], higher-order multipole moments generated via specific diffeomorphisms were studied
and showed that they are Noether charges. In the null infinity sector it has been proposed
in [39, 40], and worked out more recently in [41, 42], that asymptotic diffeomorphisms
generated by certain O(r) sphere-vector fields are behind the sub-subleading soft graviton
factorization [5]. A similar idea as the one presented here could be used to identify an
extended space supporting these singular transformations.
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A Recursive formula for εabFab

In this appendix we prove eq. (2.21). By writing the Bianchi identities

∂rFab + ∂aFbr + ∂bFra = 0, (A.1)
∂uFab + ∂aFbu + ∂bFua = 0, (A.2)
DcFab +DaFbc +DbFca = 0, (A.3)

and taking the u and r derivative of the first equation, the r derivative of the second one,
the Dd derivative of the third one and contracting with εab, we obtain,

∂u∂rε
abFab = 2∂uεabDaFrb (A.4)

∂r∂rε
abFab = 2∂rεabDaFrb (A.5)

∂u∂rε
abFab = 2∂rεabDaFub (A.6)

Ddε
abDcFab = −2εabDdDaFbc. (A.7)

In equations (A.4), (A.5) and (A.6) we substituted ∂i by Di for every i = a, b, since we
are contracting with εab.

Using identities

DaDbFcd = DbDaFcd − qefRecabFfd − qefRedabFcf , Rabcd = R

2 (qacqbd − qadqbc), (A.8)

we have

DdDaFbd = DaD
dFbd +RFab. (A.9)

By contracting (A.7) with qcd and u, and the previous equation,

∆εabFab = −2εabDaD
dFbd − 2RεabFab. (A.10)

Next, consider Maxwell equation (2.7), and take de Dd derivative and contract with εda,

εdaDdja = −∂rεdaDd(Fua − Fra) + ∂uε
daDdFra + 1

r2 ε
daDdD

bFab. (A.11)

Substituting the previous equations, we arrive at

2εabDajb = 2∂u∂rεabFab − ∂r∂rεabFab −
1
r2 (∆εabFab + 2RεabFab). (A.12)

where R = 2, is the scalar curvature of qab.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
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