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1 Introduction

Violation of the lepton number, which otherwise is an automatic classical symmetry of the
standard model (SM), provides an appealing avenue to account for small but non-vanishing
neutrino masses [1]. It enables neutrinos to become Majorona particles and associates their
masses to a new scale in the theory. The exact relation between the neutrino mass scale and
a new scale depends on the nature of new physics introduced to violate the lepton number
(LN) [2]. For example, the most popular among these is the type I seesaw mechanism [3–6]
in which two or more right-handed (RH) neutrinos are introduced and coupled to the SM
neutrinos through Yukawa interactions. A Majorana mass MN of RH neutrino N denotes the
scale of LN violation in this case. It can be put in by hand or may arise from the spontaneous
breaking of a gauge symmetry that includes the LN [7, 8]. From the perspective of the light
neutrino masses, the RH neutrino mass scale can be as high as 1016 GeV if they strongly
couple to the SM. On the other hand, MN can be as light as of the order of the electroweak
scale provided that their couplings with the SM leptons are small.

The other compelling reason to extend the SM comes from the gauge hierarchy problem.
The electroweak scale can be stabilised in the presence of some large scale in the theory when
the SM is supersymmetrised by replacing it with the minimal supersymmetric standard model
(MSSM), see [9] for a comprehensive review. An efficient implementation of this scheme
requires the mass scale of the MSSM fields not very different from the electroweak scale. The
existence of all [10–12] or at least some [13, 14] of the super-partners around the TeV scale
also improves the unification of gauge couplings. Theoretically, the mass scale of the MSSM
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is set by the µ parameter and the soft supersymmetry (SUSY) breaking scale. The latter
is linked to the mass m3/2 of the gravitino in theories based on supergravity (see [15] for a
review). Like in the case of SM, the MSSM can also be extended to incorporate LN violation
as both are independent extensions of the SM. In this case, the scale of LN violation can
coexist in the theory independent of µ and m3/2.

This paper aims to point out an interesting scenario in which the soft terms generated in
supergravity theory not only break the SUSY but also spontaneously break the LN thereby
linking the LN violation scale to the gravitino mass m3/2. The amalgamation of the otherwise
two distinct scales provides a compelling reason to expect a low-scale LN violation if the SUSY
is to resolve the gauge hierarchy problem or it is responsible for the precision unification of
the strong and electroweak forces. Soft SUSY breaking terms proportional to m3/2 exclusively
generate Majorana masses for both the RH and the light neutrinos. The masses of the
first are O(m3/2) while those of the latter are induced through the seesaw mechanism. We
propose a concrete and minimal realisation of the above scenario in this paper. This minimal
version is shown to be complete in the sense that it leads to a consistent and predictive
description of the neutrino masses and mixing.

It is noteworthy that connections between the mass of RH neutrino(s) and the SUSY
breaking scale can also be established through different mechanisms. In the model known
as µνMSSM [16–20], the RH neutrino masses arise through the most general trilinear terms
in the superpotential when their superpartners acquire non-vanishing vacuum. The later is
linked to the electroweak symmetry breaking scale which is indirectly related to the SUSY
breaking through its radiative induction [21]. The LN symmetry is explicitly violated in this
model and, therefore, the Dirac and RH neutrino mass terms take the most general form. In
another approach [22–27], LN is spontaneously broken but it’s scale is independent of the
SUSY breaking scale. However, one of the RH neutrinos is arranged to be a fermionic partner
of the Goldstone boson of the global LN symmetry and, therefore, this pair remains massless
at the scale of LN violation. Subsequently, the fermionic partner gets a mass of O(m3/2)
when SUSY is broken through supergravity. Even though there is no in-principle connection
between the LN breaking scale and m3/2 in this kind of setup, the viable neutrino masses in
the simplest versions of this framework force these two scales to stay close to each other [27].
In the framework we propose here, these two scales are inherently and directly interlinked.
This connection, along with the presence if LN symmetry in the full theory, is shown to lead to
a realistic and more predictive setup for the neutrino masses compared to previous approaches.

The remainder of the paper is organised as follows. We discuss the basic mechanism
leading to a connection between the SUSY breaking and LN violation in the next section. A
comprehensive analysis of the light neutrino masses and mixing is presented in section 3. We
compute the couplings of Majoron with the light neutrinos and charged leptons in sections 4
and 5, respectively, and discuss the phenomenological constraints. In section 6, we discuss the
RH neutrino mass spectrum and the possibility of probing them in direct search experiments.
The study is concluded in section 7.

2 Lepton number violation from soft SUSY breaking

In the following, we discuss two different types of frameworks. Both lead to violation of
the LN through soft SUSY breaking. However, they are characteristically different in their
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implication for the neutrino masses. The first scenario assumes a conformal superpotential
without any mass scale and the other scenario allows for an explicit µ parameter.

2.1 Conformal W

We consider the MSSM extended by three RH neutrino superfields N̂α, (α = e, µ, τ). To
achieve the required scenario, we demand that the superpotential W is conformal, i.e. it does
not contain any mass scales. This can be done for example by imposing an R symmetry on
W under which all the chiral superfields carry charge 2/3. This leads to only cubic terms
in W . All the standard terms present in the MSSM superpotential, except for the µĤ1Ĥ2
term, are allowed in this case. The superpotential for the RH neutrinos is completely fixed
by imposing an additional global LN-like symmetry under which (N̂e, N̂µ, N̂τ ) carry charges
(−1, 1, 0). This leads to the following most general superpotential:

WS = λN̂eN̂µN̂τ + κ

3 N̂
3
τ . (2.1)

Couplings between the MSSM sector and N̂α also get restricted by the LN symmetry under
which the leptonic doublets L̂′

α carry charge +1. These are given by

WLN = λα L̂
′
αĤ2N̂e + λ′α L̂

′
αĤ

′
1α̂

c + η N̂τ Ĥ
′
1Ĥ2 , (2.2)

where α̂c are the weak singlet charged lepton superfields with lepton number −1. The
couplings between L̂′

α and α̂c are chosen flavour diagonal without loss of generality.
Eqs. (2.1), (2.2) admit a supersymmetric minimum in which scalar components of all

the superfields have a vanishing minimum. All fermions including νLα, Nα are massless
in this limit. These masses are induced by the soft breaking of SUSY. We introduce the
following soft terms corresponding to WS :

Vsoft = m3/2

(
AλλÑeÑµÑτ + 1

3AκκÑ
3
τ + c.c.

)
+m2

3/2
∑

α

a2
Nα

|Ñα|2 , (2.3)

where S̃ denotes a Lorentz scalar component of a superfield Ŝ. The neutrino mass generation
through these soft SUSY-breaking terms proceeds as follows. Minimization of the scalar
potential with these soft terms leads to non-zero vacuum expectation values (VEVs) for
Ñα. These generate the RH neutrino masses which in turn lead to the masses for the
left-handed neutrinos through the weak scale type I seesaw mechanism. The non-zero VEVs
also spontaneously break R-parity along with the LN, generating additional R-violating
contributions to the light neutrino masses. Both these contributions together describe the
observed neutrino masses and mixing. We discuss some of the salient features of this neutrino
mass generation here and differ the detailed discussion to the next section.

Minimisation of the scalar potential derived from WS and Vsoft is carried out and
discussed in appendix A. It leads to the following VEVs:

⟨Ñτ ⟩ = Cτ

λ
m3/2 , ⟨Ñe⟩ = ⟨Ñµ⟩ = Ce

λ
m3/2 , (2.4)

where Cτ and Ce are dimensionless parameters determined in general by κ, λ and the
soft parameters. The equality in the VEVs of Ñe and Ñµ follows from an assumption
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a2
Ne

= a2
Nµ

which makes the full scalar potential invariant under the interchange of Ñe

and Ñµ. In absence of such an assumption, one finds ⟨Ñe⟩ ̸= ⟨Ñµ⟩ but with a constraint,
⟨Ñe⟩2 + ⟨Ñµ⟩2 = C2

em
2
3/2/λ

2. It is noteworthy that all three sneutrinos obtain VEV of the
order of the gravitino mass. In this way, the scale of the LN violation is linked to the
SUSY breaking scale.

Notably, the ⟨Ñτ ⟩ also generates the µ parameter as in the NMSSM [28]. But unlike in
the NMSSM now the magnitude of µ is also naturally tied to the gravitino mass:

µ = −η⟨Ñτ ⟩ = −ηCτ

λ
m3/2 . (2.5)

The VEV ⟨Ñe⟩ also breaks spontaneously the R-parity [29, 30] and generates the bilinear
R-violation from eq. (2.2), described by three parameters:

ϵα ≡ −λα⟨Ñe⟩ = −λαCe

λ
m3/2 . (2.6)

The RH neutrino mass matrix following from eqs. (2.1) and (2.4) is given, in the basis
(Ne, Nµ, Nτ ), by

MR = m3/2

 0 Cτ Ce

Cτ 0 Ce

Ce Ce C̃τ

 , (2.7)

where C̃τ = κ
λCτ . This leads to the three RH neutrino masses as

MN1 = Cτm3/2 ,

MN2 = 1
2Cτm3/2

(
1 + κ

λ
−
(
κ

λ
− 1

)
sec 2θ

)
,

MN3 = 1
2Cτm3/2

(
1 + κ

λ
+
(
κ

λ
− 1

)
sec 2θ

)
, (2.8)

where
tan 2θ = −2

√
2Ce

Cτ (1 − κ/λ) . (2.9)

One also finds

DetMR = m3
3/2Cτ

(
2C2

e − κ

λ
C2

τ

)
. (2.10)

The geometrical mean of three RH neutrino masses is given by (DetMR)1/3. Typically,
DetMR ∼ m3

3/2 when all the three RH neutrinos have masses of O(m3/2). DetMR ≪ m3
3/2

implies one or more RH neutrinos with a mass smaller than m3/2.
The above MR together with the Dirac mass matrix following from eq. (2.2) leads to

the seesaw contribution to the light neutrino masses as

(MSS
ν )αβ = m̃0 λαλβ , (2.11)

where

m̃0 = v2
2

m3/2

λC2
e

Cτ (2λC2
e − κC2

τ ) = v2
2C

2
e

m3/2

(
m3

3/2
DetMR

)
. (2.12)
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The neutrino masses are determined by the Dirac neutrino Yukawa couplings and the inverse
of m3/2. Small (high) values of the former (latter) can result in the required suppression in
the neutrino masses as it happens in the usual seesaw case. The neutrino mass thus would
be automatically suppressed in models with high-scale SUSY breaking.

Interestingly, eqs. (2.11), (2.12) offer an alternative way of lowering the seesaw contribution
to neutrino masses even in low-scale SUSY models. This can be done if the parameter λ/κ in
eq. (2.1) is taken very small.1 This breaks LN at a scale higher than m3/2, see eq. (2.4), and
results in a small m̃0. This way of suppressing neutrino masses can be interpreted in terms of
the inverse seesaw mechanism often used for suppressing neutrino masses in the weak or TeV
scale seesaw models [31–33]. It follows from eq. (2.8) that one of the RH neutrinos, namely
MN3 , becomes heavier compared to the other two if λ/κ ≪ 1.

Integrating out Nτ results in a 5 × 5 mass matrix, written in the basis (ν ′α, Ne, Nµ),

MIS
ν =

 03×3 mD 0
mT

D µS MD

0 MD µS

 , (2.13)

where MD = m3/2Cτ and mD is 3 × 1 matrix of the Yukawa couplings λα multiplied by the
Higgs VEV v2. The matrix MIS

ν has a form typically used in the inverse seesaw with

µS ≡ −λ
κ

C2
em3/2
Cτ

, (2.14)

representing the small LN breaking parameter suppressed by λ/κ. For MD ≫ mD, eq. (2.13)
leads to the light neutrino mass matrix

µSv
2
2

m2
3/2C

2
τ

λαλβ (2.15)

which coincides with the seesaw result, eq. (2.11), for λ/κ ≪ 1.
It follows from eq. (2.2) that only one combination of the neutrino fields λαν

′
α couples to

Ne and obtains its mass through the canonical seesaw mechanism. An independent linear
combination of the neutrino fields obtains its mass from the R-parity violation induced by the
soft terms. The R-violation is characterised by ϵα given in eq. (2.6). They give rise to the VEV
for the left-handed sneutrino leading to the mixing of neutrinos with neutralinos. This mixing
generates mass for the other combination of neutrinos. The R-parity violating parameters
ϵα increase with the gravitino mass. So naively, one would expect that this contribution
to the neutrino masses would increase with m3/2 in contrast to the seesaw contribution.
However, this does not happen and both contributions can be inversely proportional to m3/2
in a typical situation as we show below.

The R-parity violating contribution is specified in the rotated basis in which bilinear
R-parity violation is rotated away from the superpotential [34]. These unprimed bases
are defined as

Ĥ1 = Ĥ ′
1 + ϵα

µ
L̂′

α + O
(
ϵ2α
µ2

)
,

L̂α = L̂′
α − ϵα

µ
Ĥ ′

1 + O
(
ϵ2α
µ2

)
, (2.16)

1This can be done in a technically natural way since the limit λ → 0 increases the symmetry of WS .
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where L̂′
α and Ĥ ′

1 are the original fields present in the superpotential eq. (2.2). The R-parity
violating light neutrino mass matrix is obtained as (see the next section for the derivation)(

MR
ν

)
αβ

= A0 ωαωβ , (2.17)

with
A0 = − µ(g2M1 + g′2M2)

2(M1M2µ− v1v2(g2M1 + g′2M2)) . (2.18)

Here M1,2 are gaugino masses and v1,2 are the VEVs of the Higgs fields H̃1,2.
In eq. (2.17), ωα ≡ ⟨να⟩ denote the VEVs of the scalar superpartners of the electrically

neutral component of L̂α. They are determined in terms of the soft parameters by minimising
the relevant scalar potential. Writing

ωα = kαϵα , (2.19)

we find in this case

kα ≃ v1
µ

(
a2

H1
− a2

Lα

a2
Lα

)
+ v1 tan β

m3/2

(
Aη −Aα

a2
Lα

)
, (2.20)

where tan β = v2/v1. The details of the derivation of the above can be found in appendix B.
If one assumes universal boundary conditions at a high scale then the differences in soft
parameters appearing in kα are generated at the low scale through renormalization effects
and are small. In particular, the first term which gives a dominant contribution to kα is
typically given by

a2
H1

− a2
Lα

a2
Lα

∼ 3y2
b

4π2 log MX

MZ
∼ O

(
10−3

)
. (2.21)

Here, yb is the bottom quark Yukawa coupling and MX is the scale where the universality
of the soft terms is imposed.

It is useful to eliminate Yukawa couplings and consider the ratio of the contributions
MR

ν and MSS
ν . We find

ξ0 ≡ (MR
ν )33

(MSS
ν )33

=
A0k

2
τm

3
3/2

λ2v2
2

(
DetMR

m3
3/2

)
. (2.22)

Following eqs. (2.20), (2.21), kτ can be approximated as

kτ ≈ 10−3 v1
µ
. (2.23)

This implies

ξ0 ≈
A0m

3
3/2

µ2 tan2 β

(
10−6

λ2

) (
DetMR

m3
3/2

)
. (2.24)

Since ξ0 is related to the two non-zero neutrino masses, it cannot be too small or large.
The detailed fit to neutrino masses and mixing presented in the next section show that the
magnitude of ξ0 is of order unity. Requiring ξ0 ∼ 1 has implications for the allowed m3/2
and the SUSY spectrum. Considering MNi ∼ m3/2, we note that:
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• If gaugino masses and the µ parameter are similar to m3/2 then ξ0 is independent of
m3/2 since A0 is inversely proportional to the gaugino masses. This implies that like
the seesaw contribution, the R-parity violating contribution to the neutrino masses is
also inversely proportional to m3/2. Therefore, the neutrino masses can be suppressed
without requiring too small Yukawa couplings as in the high-scale seesaw models. This
scenario would conflict with the gauge coupling unification which requires gauginos at
the electroweak scale.

• If µ is held fixed around electroweak scale by choosing η appropriately and the gaugino
masses are also assumed to be of the order of µ (m3/2) then the ξ0 is proportional to
m3

3/2/µ
3 (m2

3/2/µ
2). Then the requirement, ξ0 ∼ 1, implies an upper bound on m3/2/µ.

We will explore this point more quantitatively in the next section.

• λ cannot be arbitrarily small and can be around 10−2 if µ parameter and the gaugino
masses are similar to m3/2. Thus, λ can provide only a mild suppression in the neutrino
masses through inverse seesaw.

Some of the above features change when W is not conformal and contains an independent
scale as a bare µ term. We discuss this below.

2.2 W with a bare µ-term

An explicit µ parameter can exist if R symmetry used to obtain cubic potential is not insisted
upon. This has a significant effect on neutrino masses which we now discuss. Consider the
same superpotential with an added bare µ-term, namely

W = WS +WLN − µ0 Ĥ
′
1Ĥ2 . (2.25)

The effective µ parameter is now obtained as

µ = −η⟨Ñτ ⟩ + µ0 . (2.26)

We can altogether omit the η-dependent term. In this case, µ = µ0 is not tied to the gravitino
mass and represents an independent scale. This can be technically done by imposing a
discrete Z3 symmetry under which α̂c → ω2α̂c, N̂α → ω2N̂α and L̂′

α → ωL̂′
α with ω3 = 1.

The µ0 term leads to an additional soft term Bµ0µ0H̃
′
1H̃2 in the scalar potential. The

kα of eq. (2.20) is now replaced by a more general expression

kα ≃ v1
µ

(
a2

H1
− a2

Lα

a2
Lα

)
+ v1 tan β

m3/2

(
Aη −Aα

a2
Lα

)
+ µ0

µ

v1 tan β
m3/2

(
Bµ0 −Aα

a2
Lα

)
. (2.27)

The above is obtained using eq. (B.8) derived explicitly in appendix B. Unlike in the previous
case, kα is non-zero even at a high scale since generally B and A parameters are not equal
in supergravity-induced soft terms. The last term, therefore, dominates in eq. (2.27). This
increases the R-parity violating contribution by a factor of around 106. Since the last term
in kα dominates,

kτ ≈ µ0
µ

v2
m3/2

. (2.28)
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The ratio ξ0 defined in eq. (2.22) is now given by

ξ0 ≈ A0m3/2

(
µ0
µ

)2 ( 1
λ2

) (DetMR

m3
3/2

)
. (2.29)

This suggests that λ cannot be chosen small ruling out the possibility of an inverse seesaw
mechanism entirely in this case. Also since A0 is inversely proportional to the gaugino mass,
one requires this mass to be O(m3/2) and µ0 ∼ µ to have ξ0 of order one.

We have neglected in the above discussions one more contribution to the light neutrino
masses which arise from the mixing of the RH neutrinos with Higgsino originating from
eq. (2.2). This gives a much smaller contribution compared to the ones already discussed.
Inclusion of this requires consideration of the full mass matrix of neutral fermions in the
model which we discuss in the following section.

3 Light neutrino masses and mixing

The model has 10 neutral fermions denoted as ψ0 = (ν ′α, Nα,−iλ1,−iλ2, h̃
0
1, h̃

0
2)T . The RH

VEVs generated through soft terms cause mixing among them as mentioned in the earlier
section. The full mixing generated by the superpotential in eq. (2.25) and gauge interactions
can be written as:

−LN = 1
2 ψ

T
0 MN ψ0 + h.c. , (3.1)

where MN is a 10 × 10 matrix parametrized as

MN =

 (0)3×3 (mνN )3×3 (mνχ)3×4
mT

νN (MR)3×3 (mNχ)3×4
mT

νχ mT
Nχ (Mχ)4×4

 . (3.2)

Here,

mνN = v2

 λe 0 0
λµ 0 0
λτ 0 0

 , mνχ =


− 1√

2g
′ω′

e
1√
2gω

′
e 0 −ϵe

− 1√
2g

′ω′
µ

1√
2gω

′
µ 0 −ϵµ

− 1√
2g

′ω′
τ

1√
2gω

′
τ 0 −ϵτ

 . (3.3)

The MR is already given in eq. (2.7) while

mNχ =

 0 0 0 λαω
′
α

0 0 0 0
0 0 ηv2 ηv1

 , Mχ =


M1 0 − 1√

2g
′v1

1√
2g

′v2

0 M2
1√
2gv1 − 1√

2gv2

− 1√
2g

′v1
1√
2gv1 0 −µ

1√
2g

′v2 − 1√
2gv2 −µ 0

 . (3.4)

Mχ is the standard neutralino mass matrix of the MSSM [9]. R parity-violating couplings
mix the neutralinos with the SM neutrinos. This mixing is denoted as mνχ. Specifically,
Higgsino-neutrino mixing is given by ϵα and gaugino mixing is determined by the sneutrino
VEVs ω′

α ≡ ⟨ν ′α⟩. mNχ denotes the mixing of the singlet states Nα with neutralinos following
from eq. (2.25). mνN represents U(1) invariant Dirac mass term between neutrinos and
singlet states. The above MN describes the general case with explicit µ0 term present. The
conformal case is obtained by putting µ0 = 0 in µ appearing in MN .
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3.1 Analytical form of effective neutrino mass matrix

The tree-level light neutrino mass matrix can be obtained from eq. (3.2) in the seesaw
approximation as

mν = −m3×7 M−1
7×7 (m3×7)T , (3.5)

where m3×7 = (mνN ,mνN ,mνχ) and M7×7 is the lower-right 7 × 7 block of the full matrix
given in eq. (3.2). Neglecting λαω

′
α term in mNχ and performing some algebraic simpli-

fication, we get

mν = m̃ (aA + bB + c C) . (3.6)

Here,

m̃ =
D4v

2
2C

2
em

2
3/2

D7
, (3.7)

with
D4 = DetMχ = −µ(M1M2µ− (g2M1 + g′2M2)v1v2) , (3.8)

and

D7 = D4Cτm
3
3/2

(
2λC2

e − κC2
τ

λ
− η2Cτζ

m3/2

)
, (3.9)

is determinant of 7 × 7 matrix M7×7 with

ζ = v4(g2M1 + g′2M2) − 4v1v2µM1M2
2D4

. (3.10)

Substituting eq. (3.9) in eq. (3.7) and using eq. (2.12), we find

m̃ = m̃0

1 − λη2Cτ

(2λC2
e−κC2

τ )
ζ

m3/2

. (3.11)

Since ζ/m3/2 ≪ 1 for v1,2 ≪ m3/2, the denominator provides only a small correction to
the equality, m̃ = m̃0.

The matrices in eq. (3.6) are obtained as

A =

 λ2
e λeλµ λeλτ

λeλµ λ2
µ λµλτ

λeλτ λµλτ λ2
τ

 , B =

 ω2
e ωeωµ ωeωτ

ωeωµ ω2
µ ωµωτ

ωeωτ ωµωτ ω2
τ

 , (3.12)

C =

 2λeωe λeωµ + λµωe λeωτ + λτωe

λeωµ + λµωe 2λµωµ λµωτ + λτωµ

λeωτ + λτωe λµωτ + λτωµ 2λτωτ

 . (3.13)

In the above,

ωα = ω′
α − ϵα

µ
v1 , (3.14)
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denote the VEVs of sneutrino in the basis in which the bilinear term is rotated away from the
superpotential, see eq. (2.16). Finally, the dimensionless coefficients in eq. (3.6) are obtained as

a =
(

1 −
ηCτm3/2

λµ

)2
=
(

2 − µ0
µ

)2
,

b = −
A0C

2
τ C̃τm3/2
C2

e v
2
2

(
1 − 2 C2

e

Cτ C̃τ
+ 2 η2v1v2

C̃τµm3/2

)
,

c = A0ηCτ (v2
2 − v2

1)
Cev2µ

(
1 −

ηCτm3/2
λµ

)
= A0λ(v2 − v2

1/v2)
Cem3/2

(
µ0
µ

− 1
)(

2 − µ0
µ

)
, (3.15)

and A0 is defined in eq. (2.18).
The structures of the first two terms in eq. (3.6) coincide with the seesaw and R parity

violating terms obtained in the earlier section. The last term is generated by the mixing
among the RH neutrino Nτ and Higgsino coming from eq. (2.25). This mixing also modifies
the overall coefficients of the seesaw and R-violating interactions compared to the simplified
case considered earlier. Using ωα = kαϵα, the neutrino mass matrix can be further simplified
to the following form

mν =m


r2

e

(
1+ξs2

e +2δse
)

rerµ (1+δsµ+se (δ+ξsµ)) re (1+δ+(δ+ξ)se)
rerµ (1+δsµ+se (δ+ξsµ)) r2

µ

(
1+ξs2

µ+2δsµ

)
rµ (1+δ+(δ+ξ)sµ)

re (1+δ+(δ+ξ)se) rµ (1+δ+(δ+ξ)sµ) 1+ξ+2δ

 ,
(3.16)

where we have define re,µ = λe,µ

λτ
, kτ ≡ k and se,µ = ke,µ

k . The parameters kα are given by
eqs. (2.20) or eq. (2.27) depending on the choice of µ-term in the model. Also,

m = m̃λ2
τa = m̃0λ

2
τa

(
1 − λη2Cτ

(2λC2
e − κC2

τ )
ζ

m3/2

)−1

,

ξ = ξ0
a

(
1 − 2λη2v1v2Cτ

m3/2µ(2λC2
e − κC2

τ )

)
,

δ = − c
a

kCem3/2
λ

. (3.17)

Here, m̃0 and ξ0 are defined in eqs. (2.12), (2.22), respectively. am̃0 denotes the overall
scale of the seesaw contribution. The ξ corresponds to the ratio of the R-parity violating
and seesaw terms. m̃ and ξ respectively reduce to m̃0 and ξ0 of the earalier section when
η = 0. In the following, we shall only be working with the tree-level neutrino mass matrix
and will neglect the other sub-dominant radiative contributions. These include corrections
to the seesaw mass matrix [35] and corrections generated by the effective trilinear R parity
violating terms present in the rotated basis [30]. The tree-level mass matrix considered here
is by itself sufficient to reproduce the neutrino mass spectrum and the radiative corrections
are not expected to change the results significantly.

The determinant of mν is vanishing. It predicts a massless neutrino. The eigenvector
corresponding to the massless state can be determined using ∑j(mν)ij uj = 0. This gives

(u1, u2, u3) = ± 1√
N

(rµ(sµ − 1), −re(se − 1), rerµ(se − sµ)) . (3.18)
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Parameters NH1 NH2 NH3 NH4
m [eV] 1.0 1.0 0.01 0.01
ξ -0.9831 1.0216 -2.6937 -1.7155
δ 0 -0.9983 0 -0.4891
re 0.0782 -0.1196 1.387 -1.3511
rµ -0.5964 0.9562 -3.2619 3.1967
se 1.1216 0.5015 0.5859 0.501
sµ 0.971 0.8866 0.6797 0.6163

Parameters NH5 NH6 NH7 NH8
m [eV] 1.0 1.0 0.01 0.01
|ξ| 0.9841 0.5857 2.704 1.8462

Arg[ξ] -3.1349 -0.01 -3.096 -3.0176
δ 0 -0.7847 0 -0.4372
re -0.0814 0.1684 1.3628 -1.3123
rµ -0.6049 -0.4458 3.2386 -3.1601
se 1.1158 1.3175 0.5813 0.5004
sµ 0.9714 0.7802 0.678 0.6197

Table 1. Example solutions of the parameters of the effective neutrino mass matrix which reproduces
the neutrino masses and mixing parameters within 1σ assuming normal hierarchy. The first four
solutions correspond to the CP conserving case.

In the diagonal basis of the charged leptons, the above is identified with the first (third)
column of the leptonic mixing matrix for normal (inverted) hierarchy in the neutrino masses.
The observed neutrino mixing angles then necessarily require se ̸= 1, sµ ̸= 1 as well as se ̸= sµ.
This requires sizeable flavour violations in the soft terms, a feature which was noticed also
earlier in [34, 36, 37] in the context of different frameworks.

3.2 Example solutions

We now demonstrate that the effective neutrino mass matrix, mν as obtained in eq. (3.16), can
account for the realistic neutrino masses and mixing observables. As mentioned earlier, the
charged lepton Yukawa couplings can be chosen real and diagonal without loss of generality.
Moreover, the parameters λ, λα, η and µ0 appearing in the superpotential can be made
real through redefinitions of various superfields. This along with an assumption for the
real VEVs of Nα and να lead to real re,µ, se,µ and δ in eq. (3.16). The phase of m is also
unphysical. Altogether, these six real parameters and complex ξ are required to reproduce
the realistic values of six observables, namely the solar and atmospheric neutrino masses,
three mixing angles and the Dirac CP phase.

Following the usual χ2 optimization technique [27], we find several example solutions for
the parameters in mν which lead to the viable neutrino spectrum. First, we consider real ξ
which leads to the vanishing CP phase, δCP. The latter is not directly observed and the present
fits to the neutrino oscillation data [38–40] allows δCP = 0 within ±3σ. We find solutions for
two example values of m and also consider a possibility in which the parameter δ can be zero.
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Parameters IH1 IH2 IH3 IH4
m [eV] 1.0 1.0 0.01 0.01
ξ -0.982 -0.5409 -0.4514 -0.347
δ 0 -0.2272 0 -0.1066
re -0.2517 -0.2393 -11.2255 14.6181
rµ -0.9077 0.8048 3.0287 3.7629
se 1.1493 1.2026 1.5 1.4252
sµ 1.0082 0.9881 1.3626 1.3282

Parameters IH5 IH6 IH7 IH8
m [eV] 1.0 1.0 0.01 0.01
|ξ| 0.9826 0.0836 3.0314 2.8087

Arg[ξ] -3.1412 -0.0039 -3.1386 -3.1384
δ 0 -0.5321 0 -0.0918
re -0.5623 -0.6534 4.3557 4.4436
rµ -0.743 0.725 -1.7175 1.735
se 1.0669 1.1278 0.5083 0.5
sµ 0.99 0.9772 0.7529 0.7463

Table 2. Four example solutions of the parameters of the effective neutrino mass matrix which
reproduces the neutrino masses and mixing parameters within 1σ assuming inverted hierarchy. The
first four solutions correspond to the CP conserving case.

The solutions obtained in this way are displayed as the first four solutions in table 1 2 for
normal (inverted) hierarchy in the neutrino masses. Subsequently, we also consider complex
ξ to account for the Dirac CP phase. These solutions are listed as NH5 to NH8 in the case of
normal and IH5 to IH8 in the case of inverted hierarchy in the respective tables. All the NH (IH)
solutions give ∆m2

21 = 7.41× 10−5 eV2, ∆m2
31 = 2.511× 10−3 eV2 (∆m2

23 = 2.498× 10−3 eV2),
sin2 θ12 = 0.303, sin2 θ23 = 0.572 (sin2 θ23 = 0.578) and sin2 θ13 = 0.02203 (sin2 θ13 = 0.02219).
Solutions with complex ξ give sin δCP = −0.3 (sin δCP = −0.96) for the NH (IH) case. All
these values correspond to the central values as obtained by the latest fit to the neutrino
oscillation data (see, NuFIT 5.2) in [40].

The noteworthy feature of these fits is that |ξ| ∼ 1 implying that the scales associated
with both the R-violating contribution and the seesaw terms are similar in magnitudes. This
can be used to draw important conclusions on the basic parameters of the model. The exact
expression of ξ, using eqs. (3.15), (2.10), can be rewritten as

ξ = A0k
2

λ2v2
2

DetMR

(
2 − µ0

µ

)−2
(

1 − 2λ2v1v2µ

DetMR

(
1 − µ0

µ

)2
)
. (3.19)

Scenarios in which the common gaugino mass scale, M1 ≃M2 ≃ µ ≃ µ0 ≡Mg, is arranged
to stay close to the electroweak scale and m3/2 ≫ v, then leads to

ξ ≃
m3/2
2Mg

1
λ2

(
DetMR

m3
3/2

)
. (3.20)

– 12 –



J
H
E
P
0
1
(
2
0
2
4
)
1
3
5

While deriving the above, we have used the expression eq. (2.28) for the k parameter. The
fact that the value of |ξ| cannot be arbitrarily large, as indicated by the fits, implies that
the gaugino mass scale cannot be much smaller than m3/2 if DetMR ∼ m3

3/2. In other words,
it is not possible to arrange gauginos at the electroweak scale and all the RH neutrinos
at an arbitrarily high scale. The ratio DetMR

m3
3/2

is determined by the soft SUSY breaking
parameters and κ

λ , see eq. (2.10). In supergravity models, the soft parameters are naturally
of order unity and hence DetMR

m3
3/2

∼ O(1). However, it can be suppressed in other models
of supersymmetry breaking. For example, the parameters A and B vanish at a high scale
in the gauge mediated models [41] with the minimal messenger sector and get generated
purely radiatively. In such scenarios, DetMR

m3
3/2

can be naturally small offering the possibility
of raising the value of m3/2 compared to the gaugino masses.

One can also use the fitted value of m and ξ to determine the Yukawa coupling λ2
τ . Using

eq. (3.17) and neglecting small ζ dependent term, one finds

λ2
τ ≃ mξλ2

A0k2C2
em

2
3/2

= µ2

µ2
0

λ2

C2
e

mξ

A0v2
2
, (3.21)

where the second equality is obtained using the value of k from eq. (2.28). It is to be noted
that λ2

τ as given above is determined by the R parity violating contribution mξ rather than
by the seesaw contribution m. For µ ∼ µ0, A0 = (2Mg)−1 and Ce = λ = 1, we get

λ2
τ ∼ 2 × 10−11

(
mξ

0.1 eV

) (100 GeV
v2

)2 ( Mg

1 TeV

)
. (3.22)

This is to be compared with the expectation based on the seesaw, λ2
τ ∼ mνMR

v2 ∼ 10−11,
for a TeV scale MR and mν ∼ 0.1 eV. The similarity of the magnitudes of λ2

τ obtained
through these two different approaches is not a coincidence since the model requires both
these contributions to be of similar order for the realistic neutrino mass spectrum.

The above observations can also be summarized by comparing the overall scales of the
seesaw and R-parity contributions to the light neutrino masses. The first is proportional to
the parameter m given in eq. (3.17) which goes as λ2

τv
2
2/m3/2. The second is determined as

mξ and it is independent of m3/2 for the fixed gaugino mass scale Mg as can be observed
from the expression of ξ in eq. (3.20). The requirement that m and mξ are of a similar order,
therefore, puts an upper bound on m3/2 as it is shown in figure 1. Further, if one chooses
Mg ≃ m3/2, both the contributions scale as λ2

τv
2
2/m3/2 leading to a situation similar to the

one obtained in the case of conformal W discussed in section 2.

4 Majoron-neutrino couplings

In the present framework, there exists a Goldstone boson of the spontaneously broken LN
symmetry, namely the Majoron [42]. It can be identified as

J ≃ 1√
2

(
ÑIµ − ÑIe

)
+ ω′

α

U
ν̃Iα , (4.1)

where U =
√
⟨Ñe⟩2 + ⟨Ñµ⟩2 is the scale of the U(1)L breaking and the subscript I denotes

the imaginary part of the corresponding scalar field. The Majoron is an SU(2) singlet and
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Figure 1. Contours of m = 0.01 eV (red dashed), m = 1 eV (red solid), mξ = 0.01 eV (green dashed),
m = 1 eV (green solid) for various values of m3/2 and λ2

τ and for gaugino mass Mg = 103 GeV (left
panel) and Mg = 105 GeV (right panel). Only in the overlapping region, a realistic light neutrino mass
spectrum can be reproduced.

does not directly couple to the SM neutrinos. However, this coupling is generated through
(a) light-heavy neutrino mixing and (b) neutrino-neutralino mixing. This coupling can be
parametrized as

LνJ = − i

2gij ν
T
LiC

−1νLj J + h.c. , (4.2)

in the physical neutrino basis.
The strongest limits on gij arise from the precision measurement of the acoustic peak

of the CMB spectrum which requires that neutrinos must be free streaming at the time
of photon decoupling and therefore cannot couple strongly to a nearly massless Majoron.
This requirement translates into [43–45]

|gii| ≲ 10−7 ,

|gij | ≲ 0.61 × 10−11
(

0.05 eV
mνj

)2

, (4.3)

for i ̸= j and mνj > mνi . We now show that these limits are satisfied in the model in
spite of relatively low LN breaking scale ∼ m3/2 without conflicting with constraints from
neutrino masses and mixing.

Contribution to gij arising from the light-heavy neutrino mixing in the present model
can be estimated as follows. Eq. (2.25) gives rise to the following interaction between the
heavy neutrinos and the Majoron:

L(a)
νJ = − iλ√

2

(
NT

e C
−1Nτ ÑµI +NT

µ C
−1Nτ ÑeI

)
+ h.c. . (4.4)

Subsequently, the couplings with light neutrinos can be estimated using the diagonalization
of the relevant blocks of MN . The latter can be block diagonalized at the leading order
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by a unitary matrix,

UN =

 1 ρνN ρνχ

−ρ†νN 1 ρNχ

−ρ†νχ −ρ†Nχ 1

 + O(ρ2) , (4.5)

such that UT
NMNUN is a block diagonal matrix. Here,

ρνN ≃ (mνNM
−1
R )∗ , ρνχ ≃ (mνχM

−1
χ )∗ , ρNχ ≃ (mNχM

−1
χ )∗ . (4.6)

The neutral fermions in the block-diagonal basis are given by U †
Nψ

0. Writing the light
neutrinos in block diagonal basis as ν ′α and using eq. (4.6), one finds

Ne = −(ρ†νN )1α ν
′
Lα , Nµ = −(ρ†νN )2α ν

′
Lα , Nτ = −(ρ†νN )3α ν

′
Lα . (4.7)

Substituting the above in eq. (4.4) and using the definition of J in eq. (4.1), we find the
light neutrino-Majoron interaction as

L(a)
νJ = − i

2g
(a)
ij νT

LiC
−1νLj J + h.c. , (4.8)

with

g
(a)
ij = λ

(
(ρ†νN )1α − (ρ†νN )2α

)
(ρ†νN )3β UαiUβj

= λCev
2
2

Cτm2
3/2(Cτ C̃τ − 2C2

e )
λαλβ UαiUβj

= − λm̃0
Cem3/2

λαλβ UαiUβj , (4.9)

where we use eq. (2.12) to arrive at the last equality. In the above, we have used ν ′Lα = UαiνLi

where νLi are the mass eigenstates which are identified as physical light neutrinos. The
couplings g(a)

ij are suppressed by m̃0/m3/2 as a consequence of heavy-light mixing.
The second contribution arises from the Yukawa interaction in eq. (2.25) and through

gauge interactions quantified by the following terms:

L(b)
νJ = − i√

2
λα ν

′T
LαÑeIC

−1h̃0
2 −

i

2(g′B̃T − gW̃ 0T )C−1ν ′Lβ ν̃Iβ + h.c. , (4.10)

where −iλ1 ≡ B̃ and −iλ2 ≡ W̃ 0. The Higgsino, Bino and Wino contain the light neutrinos
through mixing. From the block diagonalization, one finds

h̃0
2 = −(ρ†νχ)4α ν

′
Lα = v1

µ
A0 ωα Uαi νLi ,

B̃ = −(ρ†νχ)1α ν
′
Lα = −

√
2g′M2

g2M1 + g′2M2
A0 ωα Uαi νLi ,

W̃ 0 = −(ρ†νχ)2α ν
′
Lα =

√
2gM1

g2M1 + g′2M2
A0 ωα Uαi νLi . (4.11)
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Substituting the above in eq. (4.10) and using eq. (4.1), we find

L(b)
νJ = − i

2g
(b)
ij νT

LiC
−1νLj J + h.c. , (4.12)

where
g

(b)
ij = − A0λ

Cem3/2
ωαωβ UαiUβj , (4.13)

where A0 is as defined in eq. (2.18).
Combining the two contributions and using the definition eq. (4.2), the 3 × 3 light

neutrino-Majoron coupling matrix can be written as

g = − λ

Cem3/2
UT (m̃0A +A0B) U . (4.14)

Note that the quantity in the bracket above is the effective neutrino mass matrix mν in
the limit η → 0. Therefore, using the simplified expression of mν obtained in eq. (3.16)
with η = 0, we can express

g = g0 U
T


r2

e

(
1 + ξ0s

2
e

)
rerµ (1 + ξ0sesµ) re (1 + ξ0se)

rerµ (1 + ξ0sesµ) r2
µ

(
1 + ξ0s

2
µ

)
rµ (1 + ξ0sµ)

re (1 + ξ0se) rµ (1 + ξ0sµ) 1 + ξ0

 U , (4.15)

with
g0 = −m̃0λ

2
τ

⟨Ñe⟩
, (4.16)

and ξ0 as defined in eq. (2.22). When η = 0, the matrix in the bracket in eq. (4.15) is
identified with mν and g becomes a diagonal matrix leading to only gii nonzero. This case
is relatively poorly constrained as seen from the limits in eq. (4.3).

Numerically, all the dimensionless parameters appearing in the matrix shown in eq. (4.15)
are of order one as can be seen from the numbers in tables 1 and 2. The overall scale of
neutrino-majoron coupling, therefore, is given by g0. Also noting that the numerator in
eq. (4.16) is m in the limit η → 0, one can estimate an overall size of g0 as

|g0| ≃
m

|⟨Ñe⟩|
= 10−11

(
m

1 eV

)(100 GeV
|⟨Ñe⟩|

)
. (4.17)

It is seen that |g0| remains suppressed for a large range in the parameter space. The matrix
appearing in eq. (4.14) is also completely determined by the fits of the table since ξ0 ≈ ξ.
For example, for solution NH8 listed in table 1, we get

|g| ≃ 10−13
(

100 GeV
|⟨Ñe⟩|

)  0 0 0
0 1.79624 2.55013
0 2.55013 1.52902

 . (4.18)

We find that all the solutions listed in tables 1 and 2 satisfy the constraints, eq. (4.3), for
|⟨Ñe⟩| ≳ 100 GeV.
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5 Majoron-charged lepton couplings

As in the case of the neutrinos, the charged leptons eα do not directly couple to Majoron but
these couplings arise from their mixing with the charginos. In general, the Majoron-charged
lepton couplings can be parametrized as

Lej = i hαβ eαe
c
βJ + h.c. . (5.1)

Majoron has both the diagonal and the off-diagonal couplings. The latter is constrained
from the flavour violating decays such as eα → eβ J [46, 47]. Non-observation of these
implies [44, 45]:

|heµ| < 1.9 × 10−11 , |hτe|, |hτµ| < 1.1 × 10−7 . (5.2)

The requirement that the red giant stars do not lose energy through Majoron emission from
electrons constrain |hee|, namely

|hee| ≤ 2.57 × 10−13 . (5.3)

Despite such strong constraints, a Majoron with U(1)L breaking scale as low as ∼ 100 GeV
can satisfy the above limits as we discuss in detail below.

The three charged lepton and two chargino fields can be represented as

ψ− =
(
eα

χm

)
, ψ+ =

(
ec

α

χc
m

)
(5.4)

with
χm =

(
−iλ−

h−1

)
, χc

m =
(
−iλ+

h+
2

)
(5.5)

The charged fermion mass term is parametrized by

−Lc = ψT
−Mc ψ+ + h.c. , (5.6)

where 5 × 5 matrix Mc is defined as

Mc =
(
ml mlc

m′
lc Mc

)
. (5.7)

Here, ml denotes the (diagonal) charged lepton mass matrix before mixing with charginos.
mlc, m′

lc arise from the R-parity violation and are given by

mlc =

 gω′
e ϵe

gω′
µ ϵµ

gω′
τ ϵτ

 , m′
lc =

(
0 0 0

λ′eω
′
e λ

′
µω

′
µ λ′τω

′
τ

)
. (5.8)

Mc is the usual chargino mass matrix in the MSSM,

Mc =
(
M2 gv1
gv2 µ

)
. (5.9)
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Next, we define a basis

ψ′
± = U †

± ψ± , (5.10)

such that Mc assumes a block diagonal form in this basis. Explicitly,

UT
−McU+ =

(
meff

l 03×2
02×3 M

eff
c

)
. (5.11)

The U± can be parameterized as

U± =

√1 −B±B
†
± B±

−B†
±

√
1 −B†

±B±

 . (5.12)

It is always possible [48] to choose 3 × 2 matrices B± which puts Mc in the block diagonal
form of eq. (5.11).

The coupling between the Majoron and charged lepton can be directly obtained from the
basic Lagrangian as done in the case of neutrinos. Alternatively, one can use the effective
Lagrangian describing the coupling of Majoron to the divergence of the broken U(1) current jµ,

−LeJ = − i

U
J ∂µj

µ . (5.13)

Here,
jµ = −ēασ̄

µeα + ēc
ασ̄

µec
α (5.14)

is the leptonic current in the flavour basis. U denotes the U(1)L symmetry breaking scale as
already defined in the previous section. The mixing terms mlc and m′

lc violate U(1)L and
hence contribute to ∂µj

µ. This contribution is given by

∂µj
µ = i ψT

− (qMc + Mcq
c)ψ+ + h.c. , (5.15)

where
q =

(
13×3 03×2
02×3 02×2

)
, qc =

(
−13×3 03×2
02×3 02×2

)
(5.16)

are the diagonal charge matrices representing U(1)L charges of the underlying charged leptons
and charginos. Eq. (5.15) can be rewritten in the block diagonal basis as

∂µj
µ = iψ′T

− U
T
− (qMc + qcMc)U+ψ

′
+ + h.c. . (5.17)

Using eqs. (5.11), (5.12), the Majoron charged lepton coupling can be written in the block
diagonal basis as

LeJ = i√
2⟨Ñe⟩

(
meff

l B+B
†
+ −B∗

−B
T
−m

eff
l

)
αβ

eαe
c
βJ + h.c. . (5.18)

Comparing with the definition eq. (5.1), we get

hαβ = 1√
2⟨Ñe⟩

(
meff

l B+B
†
+ −B∗

−B
T
−m

eff
l

)
αβ

. (5.19)
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This equation is valid to all orders in the seesaw expansion. meff
l is the effective charged

lepton mass matrix whose eigenvalues correspond to the masses of the charged leptons.
B± can be iteratively determined using eq. (5.11) in the seesaw approximation ml <

mlc,m
′
lc,≪ MC . At the leading order, one finds [48]

B+ ≈ (M−1
c m′

lc)† , B− ≈ (mlcM
−1
c )∗ , meff

l ≈ ml −mlcM
−1
c m′

lc . (5.20)

Substitution of the above in eq. (5.19) indicates that the charged lepton-Majoron couplings,
at the leading order, are suppressed by two powers of seesaw expansion parameter mlcM

−1
c

or m′
lcM

−1
c . This is different from neutrino-Majoron coupling which goes as ∼ mνNM

−1
R at

the leading order. The model, therefore, predicts additionally suppressed coupling between
the Majoron and the charged leptons.

Explicit computation of hαβ using the leading order expressions of B± and neglecting
the terms of O(v1,2/µ), we get

hαβ = − 1√
2⟨Ñe⟩

(
mβ

(
ϵαϵβ
µ2 + g2ω

′
αω

′
β

M2
2

)
−mα

λ′αλ
′
βω

′
αω

′
β

µ2

)
. (5.21)

Using eq. (2.16) and noting that kα of eqs. (2.20), (2.27) are smaller than one, the dominant
contribution to hαβ comes from the term proportional to ϵαϵβ. This gives, for example,

hee ≃ r2
eλ

2
τme

⟨Ñe⟩
µ2 ,

= 4 × 10−16
(

λ2
τ

10−10

)(
⟨Ñe⟩

100 GeV

)(500 GeV
µ

)2
, (5.22)

where we take re ≡ λe
λτ

= 4.44 which is the largest value among all the solutions listed in
tables 1 and 2. The obtained value of hee is far below the constraint (5.3). Similarly, the
off-diagonal elements are also found much below the existing constraint, eq. (5.2).

6 Right-handed neutrinos and direct search prospects

The three RH neutrinos in the model have masses close to the electroweak scale and they
can be produced at colliders if their mixing with the other particles is favourable. In this
section, we discuss such possibilities in detail and point out ranges of parameters of the model
where the direct detection of RH neutrinos is possible. There are two standard methods
of detecting the RH neutrinos, see [49] for a review. The RH neutrinos can couple to the
standard W and Z through their mixing with the active neutrinos. The same mixing also
causes the decay of the Ni into charged leptons. This leads to dilepton + 2 jet signals which
are free from the SM background. Such signals however depend on the fourth power of
the RH mixing |VαNi | and are therefore sensitive to relatively large mixing only. It is also
possible to probe slightly smaller |VαNi | through a technique involving displaced vertices
at the LHC, see for example [50–59].

In the R-parity violating supersymmetric models, the RH neutrinos can also mix with
the neutralinos and this mixing could be much larger than |VαNi |. In such a situation, the RH
neutrinos are produced in the decays of neutralinos and further decay through their mixing
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with the active neutrinos. Relatively small mixing with active neutrinos can result in the
delayed decays of the RH neutrinos which lead to the distinctive displaced vertex signatures
as discussed in [26]. We focus on this possibility and discuss it at length in this section.

The RH neutrino mass eigenstates Ni are related to the flavour states Nα as

Nα = (UR)αiNi , (6.1)

where UR diagonalizes the mas matrix MR given in eq. (2.7). Explicitly, UR is given by

UR ≃


i√
2

cos θ√
2

sin θ√
2

− i√
2

cos θ√
2

sin θ√
2

0 − sin θ cos θ

 . (6.2)

Mixing of Ni with the charged leptons follows from eqs. (4.5), (6.1). Specifically, one can write

ν ′α = (ρνD)αβNβ = (ρνD)αβ(UR)αiNi ≡ VαNiNi . (6.3)

Using the above relation, we find

VαN1 == −iλαv2√
2MN1

= −irαλτv2√
2MN1

,

VαN2 = cθλαv2√
2MN2

= cθrαλτv2√
2MN2

,

VαN3 = sθλαv2√
2MN3

= sθrαλτv2√
2MN3

. (6.4)

The predicted RH mixing, VαNi ∼ (mνN UR)αi

MNi
is in agreement with a typical seesaw

scenario. For λτ ∼ 10−5 and MNi ∼ 100 GeV, one gets VαNi ∼ rα 10−7. This is much smaller
than the current limit from the direct searches, |VαN |2 < 10−5 [60, 61], see for example,
the left panel in figure 3. One can raise VαNi for a smaller MNi and a larger λτ . For
example, µ/µ0 ∼ 5 and MN1 = 100 GeV in eq. (3.21) gives λτ ∼ 2 × 10−3 and leads to
VeN3 ∼ 3 × 10−3 sin θ. While this is much larger than the typical TeV scale seesaw prediction,
this still falls short of the existing limits from the collider searches. Nevertheless, it is possible
to probe such or even smaller mixing through the specific displaced vertex signature as
suggested in [26] provided that RH neutrinos are produced through neutralinos.

The mixing between heavy neutrinos Ni and neutralinos, relevant for displaced vertex
signatures at the colliders, can be estimated using

Nα = (ρNχ)αm (ψ0)m . (6.5)

Using eqs. (4.6), (3.2) and ignoring the term λαω
′
α in mNχ, we find that only the state Nτ

has mixing with Higgsinos and gauginos at the leading order. It is given by

Nτ ≃
2ηA0vM1M2

µ(g2M1+g′2M2)

(
cosβ h̃0

1+sinβ h̃0
2+ g′v√

2M1
cos2β B̃− gv√

2M2
cos2β W̃ 0

)
. (6.6)
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Figure 2. Regions in θ and κ/λ leading to MN3 < MN1,2 . The black contours indicate the correlation,
eq. (6.8), resulting from a specific choice of soft parameters.

Overall, the couplings with Higgsinos are suppressed by v/µ only while the ones with Bino
(Wino) are suppressed by additional power of v/M1 (v/M2). Replacing Nτ by physical states
through eq. (6.2), we find the heavy neutrino-Higgsino mixing as

VN2h̃0
1
≃− 2ηA0vM1M2

µ(g2M1+g′2M2) cosβ sinθ , VN3h̃0
1
≃ 2ηA0vM1M2
µ(g2M1+g′2M2) cosβ cosθ . (6.7)

As it can be seen, N1 does not mix with Higgssinos at the leading order.
The states N2 and N3 can be efficiently produced in the decays of Higgsinos provided

that MN2,3 are smaller than the Higgsino masses. Motivated by this, we look for the values of
parameters for which N3 is the lightest among all three RH neutrinos.2 As can be seen from
eq. (2.8), the ratios MN3/MN1 and MN3/MN2 depend only on θ and κ/λ. By varying the values
of these parameters in reasonable ranges, we look for the region in which MN3 is the lightest
RH neutrino. The results are displayed in figure 2 in which the regions shaded in orange
correspond to MN3 < MN1,2 . In the same figure, we also show the contours corresponding to

tan2 2θ = 8
1 − κ

λ

. (6.8)

The above arises from a relation between Ce and Cτ obtained as eq. (A.22) as a result of
a specific choice of the soft parameters.

Next, for MN3 < MN1,2 , we estimate the values of mixing parameters VeN3 and VN3h̃0
1

given in eq. (6.4) and (6.7), respectively. This requires the specification of several parameters.
Using eqs. (2.26), (2.8), we set

η = λ
µ0 − µ

MN1
= λ

µ0 − µ

2MN3

(
1 + κ

λ
+
(
κ

λ
− 1

)
sec 2θ

)
. (6.9)

For λτ , we use the expression obtained in eq. (3.21) and replace Ce using eq. (2.9). Also,
λ can be determined from eq. (3.19) and using the leading order expression of ξ and also

2The role of N2 and N3 can be interchanged by changing the sign of cos 2θ, see eq. (2.8).
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Figure 3. Variations of |VeN3 |2 (|VN3h̃0
1
|2) with MN3 in the left (right) panel, for example, values

of various parameters as described in the text. The darker points correspond to cases in which
|VN3h̃0

1
|2/|VeN3 |2 ≥ 108. The solid black line in the left panel depicts the values of |VαN |2 expected

from a typical seesaw relation, |VαN |2 = 0.05 eV
MN

. The grey region covered by dashed contour is excluded
at 95% C.L. by the direct searches of heavy neutral leptons [60, 61].

using eqs. (2.8), (2.10). It leads to

λ2 ≃ 2MN3
A0
ξ

(
µ0/µ

2 − µ0/µ

)2 2C2
e − κ

λC
2
τ

1 + κ
λ +

(
κ
λ − 1

)
sec 2θ . (6.10)

For the MSSM parameters, we take M1 = 1 TeV, M2 = µ0 = 2 TeV, µ = 500 GeV, tan β = 2
and choose Cτ = 0.1 as a specific example. The pair of the lightest neutralinos are dominantly
Higgssinos with mass around 500 GeV in this case. With these, VeN3 and VN3h̃0

1
are obtained

as functions of re, mξ, κ/λ, θ and MN3 . The first two can be extracted directly from the
neutrino mass fits while the next two can be appropriately chosen from figure 2 such that N3
is the lightest RH neutrino. We chose re and mξ from solution NH8 and randomly vary κ/λ
(θ) in range 0.1-5 (1.0-2.0) and compute VeN3 and VN3h̃0

1
as function of MN3 .

The results are displayed in figure 3. We also show the typical value of |VαN |2 expected
naively from a seesaw relation, |VαN |2 = 0.05 eV

MN
, as a solid line in the left panel of figure 3. The

predicted values of |VeN3 | can be larger than the typical expectation from seesaw estimates
by several orders of magnitude. Also, a number of points for MN3 < 100 GeV fall either in
the already excluded region or are quite close to it.

For the Higgssinos with mass around 500 GeV that we have considered in the present
analysis, their production cross section at a center-of-mass energy of

√
s = 13 TeV at the LHC

is typically of O( fb) [62]. This is notably smaller, by six to seven orders of magnitude, than the
cross section for W -boson production. Nevertheless, the production of RH neutrinos resulting
from the latter process is directly proportional to |VαN |2. Consequently, RH neutrinos can be
predominantly generated through Higgsinos when the ratio |VN3h̃0

1
|2/|VeN3 |2 exceeds 107. In

figure 3, we depict points satisfying |VN3h̃0
1
|2/|VeN3 |2 > 108 in a darker shade. These points

stand out as particularly conducive to the production of RH neutrinos through Higgsinos. A
dedicated analysis of the expected number of events would be needed to firmly establish the
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observability or otherwise of the RH neutrinos through the search of the displaced vertices at
the LHC. We note however that a similar analysis for two specific benchmark points is already
done in [26] where |VNχ̃0

1
|2 ∼ 10−4 and |VeN3 |2 ∼ 10−12 are shown to lead to observable

displaced vertices at the LHC for MN ∼ 100 GeV and for the similar values of M1,2 and µ. The
magnitudes of |VN3h̃0

1
| and |VeN3 | obtained for MN3 ∼ 100 GeV in figure 3 are comparable and

may even lean towards being somewhat larger. Hence, the parameter range within the current
model presents an opportunity to investigate RH neutrinos in the direct search experiments,
particularly when their signatures through conventional processes are suppressed.

7 Discussions

Extension of the SM to include the LN as an explicit global or local symmetry is primarily
aimed at providing tiny but non-vanishing masses for the light neutrinos through the seesaw
mechanisms. On the other hand, extension with enlarged space-time symmetries such as
supersymmetry is aimed to ameliorate some structural issues pertaining to the SM. In
general, these are two separate classes of new physics and they may be operating at two
different scales. They are often combined to play complementary roles. A more intriguing
possibility is that both these frameworks arise from a common mechanism and, therefore,
their scales are closely related. We have put forward one such mechanism and discussed its
most relevant phenomenological aspects in detail.

The mechanism uses a global LN symmetry and three SM singlet superfields, two of which
are charged under the U(1)L. The Lorentz scalar components of these superfields acquire
non-zero vacuum expectation values and break U(1)L spontaneously only when the soft
terms in supergravity are switched on. This relates the U(1)L breaking scale with the SUSY
breaking scale which is proportional to the gravitino mass m3/2. The fermionic components
of the SM singlet superfields which play the role of RH neutrinos also get masses of order
m3/2. The same scale also governs the neutrino-neutralino mixing through R-parity violation
effectively induced by the VEVs of the SM singlet scalars. It is also possible to link the MSSM
µ-parameter with the common scale m3/2 utilising the vacuum structure of the RH sneutrinos.

The identification of various scales with a common scale m3/2 in the underlying framework
leads to the following interesting and noteworthy observations:

• The light neutrinos acquire masses through the usual seesaw mechanism as well as
from R-parity violation. The realistic neutrino mass spectrum requires that both
these contributions are of similar magnitude. In the case of µ ∼ m3/2 (i.e. conformal
superpotential), both these contributions are proportional to m−1

3/2. Therefore, the usual
scale of the seesaw would also imply high-scale SUSY. On the other hand, keeping
the SUSY scale close to the electroweak scale necessarily leads to low scale seesaw
mechanism with RH neutrino masses of the order of a few hundred GeV.

• If µ is kept independent of m3/2 and held fixed close to the electroweak scale, the viable
light neutrino masses do not allow a large hierarchy between µ and m3/2. This again
implies a low-scale seesaw mechanism and a SUSY breaking scale not very far from the
electroweak scale. In particular, the gauginos and RH neutrinos are not allowed to be
arbitrarily heavy in this case.
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• The spontaneous breaking of U(1)L at the scale ∼ m3/2 leads to a Majoron with
coupling to the light neutrinos of O(mν/m3/2). This turns out to be small enough to
satisfy all the present constraints even for massless Majoron.

• The framework offers an interesting possibility of probing the existence of near weak-
scale RH neutrinos through their displaced vertex signature in which they are produced
dominantly from Higgssinos at the colliders and subsequently decay into the SM particles.
It is seen that for a range of parameters, the model predicts sizeable mixings between
Higgssino and RH neutrino and between the heavy and light neutrinos enhancing the
possibility for direct detection.

All along, we have assumed that supergravity is responsible for the generation of the soft
SUSY breaking. However, the underlying mechanism is applicable even if the SUSY breaking
arises from some other sources.

The basic framework presented in this work utilizes an exact global LN symmetry which
is spontaneously broken through soft SUSY breaking terms. The considered superpotential
and the soft terms in the conformal case also possess a discrete Z3 symmetry. It is known that
the spontaneous breaking of these exact symmetries lead to formation of topological defects
like comic strings and domain walls. However, small explicit breaking of such symmetries,
possibly induced through gravity effects (see for example, [63–65]), can make these structures
unstable. For example, spontaneous breaking of an approximate global U(1) is shown to
lead to strings connected by domain walls which decay quickly and do not dominate the
universe [66]. Similarly, the domain walls produced due to Z3 breaking can be made to
disappear effectively before nucleosynthesis if Planck scale suppressed explicit Z3 breaking
terms are introduced [67]. From a phenomenological standpoint, explicitly breaking LN
results in a small mass for the Majoron the exact magnitude of which depends on the nature
of the Z3 breaking. While it could also contribute to light and heavy neutrino masses, the
impact remains negligibly small with Planck scale suppressed LN symmetry breaking. Thus,
small explicit breaking of the underlying global symmetries can address cosmological concerns
without significantly altering the primary mechanism for neutrino mass generation presented
in this study. The non-conformal case considered here does not have a discrete Z3 symmetry
and is thus free from the domain wall problem.
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A Potential minimization and VEVs of RH sneutrinos

In this appendix, we provide a derivation of the vacuum expectation values given in eq. (2.4).
The relevant scalar potential of the model derived from WS in eq. (2.1) along with the
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soft terms is obtained as

V = |λ|2|Ñτ |2
(
|Ñe|2 + |Ñµ|2

)
+ |λÑeÑµ + κÑ2

τ |2 + Vsoft , (A.1)

where Vsoft is given in eq. (2.3).
We parametrize the VEVs of the three scalar fields as

⟨Ñτ ⟩ = q , ⟨Ñe⟩ = p cosϕ , ⟨Ñµ⟩ = p sinϕ . (A.2)

The parameters p, q and ϕ are to be obtained by solving the minimization conditions ∂V
∂Ñα

= 0
at the minimum for Ñα = Ñτ , Ñe, Ñµ. For simplicity, we assume all the parameters in V

real and also require real solutions for the VEVs. Using a linear combination of two of
the minimization conditions

cosϕ ∂V

∂Ñe
− sinϕ ∂V

∂Ñµ
= 0 , (A.3)

we obtain

cos 2ϕ =
(a2

Nµ
− a2

Ne
)m2

3/2
(a2

Nµ
+ a2

Ne
)m2

3/2 + 2q2λ2 , (A.4)

at the minimum of the potential. Using the orthogonal linear combination

sinϕ ∂V

∂Ñe
+ cosϕ ∂V

∂Ñµ
= 0 , (A.5)

we solve for p2 and obtain

p2 = 0 or p2 = − 1
λ2

(
(a2

Ne
+ a2

Nµ
)m2

3/2 + 2q2λ2 + 2qλ
sin 2ϕ(m3/2Aλ + qκ)

)
. (A.6)

Next, we assume a2
Ne

= a2
Nµ

for simplification which leads to cos 2ϕ = 0 and degenerate
VEVs for Ñe and Ñµ. Using the remaining minimization condition, ∂V

∂Ñτ
= 0, and substituting

the non-vanishing solution for p2 given in eq. (A.6) along with cos 2ϕ = 0, we find the
following equation:

q3 + bq2 + cq + d = 0 , (A.7)

with

b = 3Aλ(κ+ λ) −Aκκ

2λ(2κ+ λ) m3/2 ,

c =
(A2

λ − a2
Nτ

)λ+ 2a2
Ne

(λ+ κ)
2λ2(2κ+ λ) m2

3/2 ,

d =
Aλa

2
Ne

2λ2(2κ+ λ) m
3
3/2 . (A.8)

The other solution, p2 = 0, leads to q = 0. Eq. (A.7) needs to be solved to determine q which
then can be used to find the VEVs in terms of the parameters of the scalar potential.
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It is convenient to convert eq. (A.7) into the so-called “Depressed cubic” equation [68]
by the following change of variable:

q = u− b

3 . (A.9)

In the new variable, the equation has no quadratic term and it is given by

u3 + Pu+Q = 0 , (A.10)

where

P = 3c− b2

3 ,

Q = 2b3 − 9bc+ 27d
27 . (A.11)

The discriminant of the Depressed cubic equation is given by

∆ = −(4P 3 + 27Q2) . (A.12)

The following possibilities exist for the solutions [68] of eq. (A.10):

• If ∆ > 0, then the underlying polynomial has three distinct real roots. They are
explicitly given by

uk = 2
√

−P
3 cos

[
1
3 cos−1

(
3Q
2P

√
−3
P

)
− 2πk

3

]
, k = 0, 1, 2 . (A.13)

• For ∆ = 0 and P ̸= 0, the polynomial has three real roots out of which two are
degenerate. These are

u1 = 3Q
P

, u2,3 = −3Q
2P . (A.14)

• If ∆ < 0 then the polynomial has one real and two complex roots. The real root can be
represented, for P < 0, as

u0 = −2 |Q|
Q

√
−P3 cosh

[
1
3 cosh−1

(
−3|Q|

2P

√
− 3
P

)]
, (A.15)

and, for P > 0, as

u0 = −2
√
P

3 sinh
[

1
3 sinh−1

(
3Q
2P

√
3
P

)]
. (A.16)

Substituting b, c and d from eq. (A.8) in eq. (A.11), one can determine ∆ which turns out to
be proportional to (m3/2/λ)6. With an appropriate choice of the values of the soft parameters,
∆ ≥ 0 can be obtained leading to the real solutions for qi.

As an explicit example, consider

Aκ = Aλ ≡ A , a2
Ne

= a2
Nτ

= A2/8 . (A.17)
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This leads to ∆ = 0 for which the roots can be estimated from eq. (A.14). Substituting
this choice of the soft parameters in eq. (A.8) and using eq. (A.14) and (A.9), we find the
real solutions qi as

q1 = −
Am3/2
2κ+ λ

and q2 = q3 = −
Am3/2

4λ (A.18)

Substitution of the above in p2 expression eq. (A.6) leads to

p2
1 = −

A2m2
3/2(λ− 2κ)2

4λ2(λ+ 2κ)2 and p2
2 = p2

3 =
A2m2

3/2(λ− κ)
8λ3 . (A.19)

The first solution leads to an imaginary p while the second corresponds to real p if λ > κ.
Moreover, the solution corresponding to (q2, p2) is a global minimum.

In summary, for aNµ = aNe , the scalar potential given in eq. (A.1) can lead to the
following VEV configuration:

⟨Ñτ ⟩ = Cτ

λ
m3/2 , ⟨Ñe⟩ = ⟨Ñµ⟩ = Ce

λ
m3/2 , (A.20)

where Cτ and Ce are dimensionless parameters determined by λ, κ and the soft parameters.
The non-trivial relation between the VEVs obtained in eq. (A.6) implies the following
correlation between Ce and Cτ :

C2
e

C2
τ

= −1 − κ

λ
−
a2

Ne

C2
τ

− Aλ

Cτ
. (A.21)

For the specific choice of the soft terms used in eq. (A.17) and the resulting q2 in eq. (A.18),
the above becomes

C2
e

C2
τ

= 1 − κ

λ
, (A.22)

which is completely determined in terms of the ratio κ/λ. However, the desired value of Cτ and
Ce can be obtained by the appropriate choice of aNe and Aλ in general. Therefore, the VEVs
in eq. (A.20) are parametrized in a general way and considered for phenomenological analysis.

B Calculation of kα

We derive expressions for kα displayed in eqs. (2.20), (2.27) in this appendix following a
similar calculation carried out earlier in [34, 69] for a different framework. When the scalar
components of N̂e,τ take VEVs, the bilinear terms in W are given by

W ⊃ − ϵα L̂
′
αĤ2 − µ Ĥ ′

1Ĥ2 (B.1)

Here, ϵα = −λα⟨Ñe⟩ and we consider a general case in which µ contains both the contributions
such as shown in eq. (2.26). The scalar potential evaluated from the above is then given by

VF,D =
∣∣∣µH̃ ′

1 + ϵαL̃
′
α

∣∣∣2 +
(
|µ|2 + |ϵα|2

)
|H̃2|2 + |η|2|H̃ ′

1|2|H̃2|2

+ 1
8(g2 + g′2)

(
|H̃1|2 − |H̃2|2 + |L̃′

α|2
)2

, (B.2)
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where the last term in the first line arises from the F -term of N̂τ . Further, the relevant
soft terms can be written as

Vsoft = m3/2
(
AαϵαL̃

′
αH̃2 +BµµH̃

′
1H̃2 + c.c.

)
+m2

3/2

(
a2

H1 |H̃
′
1|2 + a2

H2 |H̃2|2 + a2
Lα

|L̃′
α|2
)
, (B.3)

where we have defined

Bµµ = Bµ0µ0 −Aηη⟨Ñτ ⟩ . (B.4)

In eqs. (B.2), (B.3), the index α is summed over.
Rotating away the term proportional to ϵα form eq. (B.1) using the redefinitions:

µĤ ′
1 + ϵαL̂

′
α = µĤ1 , −ϵαĤ ′

1 + µL̂′
α = µL̂α , (B.5)

one finds that VF,D and Vsoft get modified to

ṼF,D = |µ|2
(
|H̃1|2 + |H̃2|2

)
+ |η|2

∣∣∣∣H̃1 −
ϵα
µ
L̃α

∣∣∣∣2 |H̃2|2

+ 1
8(g2 + g′2)

(
|H̃1|2 − |H̃2|2 + |L̃α|2

)2
,

Ṽsoft = m3/2
(
(Aα −Bµ)ϵαL̃αH̃2 +BµµH̃1H̃2 + c.c.

)
+m2

3/2

(
a2

H1 |H̃1|2 + a2
H2 |H̃2|2 + a2

Lα
|L̃α|2 −

{
ϵα
µ

(a2
H1 − a2

Lα
) H̃∗

1 L̃α + c.c.
})

.

(B.6)

In the new basis, the VEV of the electrically neutral components of the L̃α are denoted by
ωα. It is related to the VEV ω′

α in the original basis by eq. (B.5). Using the defining relation,
ωα = kαϵα, and minimizing the potential ṼF,D + Ṽsoft, we obtain

kα ≃ v1
µ

(
a2

H1
− a2

Lα
+ |η|2 v2

2
m2

3/2

)
+ µ

m3/2
(Bµ −Aα) tan β

a2
Lα

+ 1
2

M2
Z

m2
3/2

cos 2β
. (B.7)

Neglecting the contributions of O(v2/m2
3/2), the above can be further simplified to

kα ≃ v1
µ

(
a2

H1
− a2

Lα

a2
Lα

)
+ v1
m3/2

(
Bµ −Aα

a2
Lα

)
tan β . (B.8)

The first term in kα is suppressed for the universal soft masses. Depending on the presence
or absence of bare µ0 in the model, the nature of the second term in kα can be decided.
For example, when µ0 = Bµ0 = 0, using eq. (B.4) and the fact that µ = −η⟨Ñτ ⟩, eq. (B.8)
can be reduced to

kα ≃ v1
µ

(
a2

H1
− a2

Lα

a2
Lα

)
+ v1
m3/2

(
Aη −Aα

a2
Lα

)
tan β . (B.9)

Both terms in kα can then be suppressed for the universal soft terms.
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