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1 Introduction

In this paper, we seek to address a basic question about quantum gravity in asymptotically
de Sitter space: what is the space of states in such a theory?

This question has received surprisingly little attention. Considerable attention has
been devoted to the Hartle-Hawking state, or the Euclidean vacuum, which is obtained by
performing the path integral on a Euclidean space with only one boundary [1] and can be
obtained by analytic continuation from AdS [2]. It is sometimes erroneously believed that
other states in the Hilbert space can be obtained, as in a nongravitational quantum field
theory, by simply acting with arbitrary field operators on the vacuum.

Higuchi [3, 4] pointed out that a naive Fock-space construction does not lead to the
correct Hilbert space, even for weakly-coupled gravity. Even as the gravitational coupling is
taken to zero, it is necessary to impose the constraints of the gravitational Gauss law on the
Fock space. Since the Cauchy slices in de Sitter space are compact, the Gauss law implies
that states must have zero charges under the de Sitter isometries [5–7]. At first sight, it
would appear that this constraint excludes all states except for the Euclidean vacuum.

Higuchi proposed an ingenious construction, where one starts with a “seed state” and
then averages it over the de Sitter-isometry group so as to produce invariant states. These
states are not normalizable in the original norm, but Higuchi also proposed a modified norm,
which amounts to dividing the QFT norm of these states by the infinite volume of the de
Sitter-isometry group. It was later checked, that in some examples, the above prescription
leads to a well-defined norm [8, 9].

In this paper, we will systematically investigate the form of the Hilbert space by studying
solutions to the Wheeler-DeWitt (WDW) equation [10] in a theory of gravity coupled to
matter. The WDW equation always constrains the set of allowed states in any theory of
gravity, but it is often impossible to solve it and obtain the structure of the Hilbert space.
However, here we show that the equation simplifies in the limit where the cosmological
constant dominates over the intrinsic curvature of the Cauchy slices and other terms in the
local “energy density”. We will study the case where this condition holds at every point
on the Cauchy slice and we refer to this as the “large-volume limit”. This large-volume
limit is different from the perturbative limit that we studied in [11], and we will argue in
section 3 that the key structural properties of the solutions we find are valid at all orders
in perturbation theory.

Physically, this limit is very easy to understand. An asymptotically de Sitter spacetime
attains the large-volume limit at asymptotically late times or early times. Therefore our
solution to the WDW equation can be thought of as a form of “asymptotic quantization” —
a program [12–14] that can be applied to the full nonlinear theory and has been fruitful in
understanding the structure of the Hilbert space in asymptotically flat spacetimes.

We will show below that the solutions to the WDW equation in this limit can be
characterized by diffeomorphism invariant wavefunctionals that have a simple specified
behaviour under Weyl transformations. The Euclidean vacuum is also described by such
a wavefunctional and is known to have these properties. But the new result in this paper
is that all valid wavefunctionals have the same simple behaviour under diffeomorphisms
and Weyl transformations.
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These wavefunctionals can be expanded in terms of the fluctuations of the metric and
other degrees of freedom. The coefficient functions that appear in this expansion obey the
same Ward identities as CFT correlators. So, one way to understand our result is that the
space of solutions to the WDW equation in asymptotically-de Sitter space is described as
“theory space” i.e. if one is given a set of correlation functions that obey the Ward identities
imposed by conformal invariance (but not necessarily the constraints of unitarity or locality)
then they can be used to construct a solution to the constraints.

Moreover, we will show that Higuchi’s prescription for group averaging emerges naturally
as the weak-coupling limit of such solutions. Therefore our analysis validates Higuchi’s
ansatz in the limit of weak coupling but also explains how it must be generalized in the
interacting theory.

While we provide a complete basis for the vector space of allowed states in the theory
in this paper, it is necessary to define a norm on this space to complete the Hilbert-space
structure. We define the norm in a companion paper [15]. There, we also discuss the meaning
of cosmological correlators when quantum-gravity effects are taken into account, and establish
the principle of holography of information in asymptotically de Sitter space.

Relation to previous work. Our results are entirely consistent with the observation
that the wavefunctional of the Euclidean vacuum can be computed in terms of the partition
function of an appropriate CFT after dressing it with an appropriate phase factor [2, 16–
21]; and that the functional derivatives of the wavefunctional obey the conformal Ward
identities [22]. This is a useful observation. However, the Euclidean vacuum is a single
wavefunctional.1 It does satisfy the WDW equation but it is not the unique wavefunctional
that does so [23]. Our objective in this paper is to systematically consider the space of
all solutions to the constraints.

An interesting proposal for the Hilbert space was made from a top-down perspective
in [24] (building on [25]) for a specific theory with a low-energy description as Vasiliev
gravity [26]. Our approach is complementary since it is “bottom up” and starts from the
bulk. Since the answer in [24] is provided in terms of an auxiliary set of scalars on the
late-time boundary, we cannot immediately compare our proposed answer with [24] but it
is an interesting open problem to perform this comparison.

The WDW equation was also recently studied in AdS [27, 28]. It would be interesting to
apply these techniques to dS. See [17, 21, 29] for earlier analyses of the constraints, [30, 31]
for recent progress in this direction and [32] for related discussion.

There have also been suggestions [33–40] that the Hilbert space in de Sitter space should
be finite dimensional. This might happen due to nonperturbative effects that constrain the
allowed form of states, but our analysis does not shed light on this issue.

2 Summary of results

We study the WDW equation (reviewed below) in the regime where the cosmological constant
dominates pointwise over the Ricci scalar and over the matter potential. In this limit the

1As we discuss in [15], naively, this state does not appear to be normalizable therefore it might not even be
part of the Hilbert space.
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Figure 1. We are considering a late time slice (in red) with topology Sd in an asymptotically de
Sitter spacetime. In the late time expansion, the Wheeler-DeWitt equation can be solved and, up to a
universal phase factor, the space of solutions is the space of functionals that transform under diff ×
Weyl in the same way as CFTd partition functions.

Cauchy slices, which are topologically Sd, grow to a very large volume. This can be thought
of as a late time slice in an asymptotically dSd+1 spacetime, see figure 1.

It is convenient to work in a coordinate system where this limit corresponds to a large
conformal factor Ω(x) = det(g)1/2d for the metric. In section 3, we find the solutions to
the WDW equation take the following form when expressed as functionals of the metric
fluctuations and matter field, χ.

Ψ[g, χ] −→
Ω→∞

eiS[g,χ]Z[g, χ] , (2.1)

where S[g, χ] is a universal phase factor obtained by integrating local densities. Z[g, χ] is, in
general, a nonlocal functional of g and χ that is diffeomorphism invariant and transforms
in a simple way under Weyl transformations

ΩδZ[g, χ]
δΩ(x) = Ad[g]Z[g, χ] , (2.2)

where the anomaly polynomial Ad[g] can be computed explicitly. The anomaly polynomial
vanishes for d odd and is imaginary for d even and therefore |Z[g, χ]|2 is a diff × Weyl
invariant functional. The explicit form of Ad depends on a choice of normal ordering and
may be corrected at higher orders in κ. However, we argue that the structural form (2.1)
is valid at all orders in perturbation theory.

At the cost of a possible phase, we can perform a Weyl transformation to study Z[g, χ]
in the vicinity of the flat metric gij = δij + κhij . Then, provided log Z[g, χ] is well behaved
in the limit gij → δij , χ → 0, we can expand it as

logZ[g, χ] =
∑
n,m

κnGn,m , (2.3)
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where Gn,m are multilinear functionals of the metric fluctuation, hij and matter fluctuations
of order n and m respectively. In section 4 we derive a set of Ward identities that constrain
the form of Gn,m. If one writes

Gn,m = 1
n!m!

∫
dy⃗dz⃗ Gi⃗⃗j

n,m(y⃗, z⃗)hi1j1(z1) . . . hinjn(zn)χ(y1) . . . χ(ym) , (2.4)

then the coefficient functions Gi⃗⃗j
n,m obey the same Ward identities as those obeyed by a

connected correlator of n stress tensors and m operators of dimension d − ∆, where ∆ is
related to the mass of the scalar field by (3.50).

The Euclidean vacuum is a particular state of the form above. Our new result is that
all solutions are spanned by functionals of this form and related in a simple manner to
diff × Weyl invariant functionals.

Since these identities relate functions with different values of n, the different coefficient
functions Gi⃗⃗j

n,m are not independent of each other. A complete set of such correlation functions
satisfying a set of mutually consistent identities can be said to define a “theory”. Therefore
our space of solutions can be thought of as “theory space”. Of course, we emphasize that
this theory is not a unitary, or even a local, CFT.

If we represent the Euclidean vacuum by eiS[g,χ]Z0[g, χ] then we show in section 5 that a
convenient basis for the space of states is given by wavefunctionals of the form

Ψ[g, χ] = eiS[g,χ] ∑
n,m

κnδGn,mZ0[g, χ] , (2.5)

where δGn,m is the difference of two sets of multilinear functionals, each of which is of
the form (2.4).

The differences δGn,m also obey Ward identities that relate δGn+1,m to δGn,m and therefore
the series in (2.5) is infinite. However, in the limit κ→ 0, it is possible to focus on a single
term in (2.5). We show that the nongravitational states so obtained correspond precisely
to the group-averaged states found by Higuchi. For each state, we also explicitly find the
corresponding “seed state”.

Therefore our analysis justifies Higuchi’s proposal in the nongravitational limit. However,
it also reveals how Higuchi’s prescription must be generalized away from zero coupling. At
nonzero κ, one must add the terms required by the Ward identities to complete the series (2.5).

3 Asymptotic solutions to the Wheeler-DeWitt equation

In this section, we will show that solutions to the Wheeler-DeWitt equation take on the
asymptotic form displayed in (2.1).

We consider Einstein gravity in d+ 1 dimensions with a positive cosmological constant
in units where

Λ = d(d− 1)
2 . (3.1)

In a d + 1 split, the spacetime metric can be written in the form

ds2 = −N2dt2 + gij(dxi +N idt)(dxj +N jdt) , (3.2)
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where N and N i are the lapse and shift functions [41, 42]. The spatial slices are taken to
be compact with metric gij . In addition, we might have matter degrees of freedom in the
theory. As an illustration, we consider a massive scalar χ although we do not expect that
our results will depend on the choice of matter.

In the canonical formalism, a state in such a theory is represented by a wavefunctional
Ψ[gij , χ] that assigns an amplitude to a particular configuration of the metric and the matter
fields on a spatial slice. This wavefunctional must obey the Hamiltonian and momentum
constraints that arise simply by imposing diffeomorphism invariance on the theory [10]

HΨ[gij , χ] = 0 , Hi Ψ[gij , χ] = 0 . (3.3)

The Hamiltonian constraint is

H = 2κ2g−1
(
gikgjlπ

klπij − 1
d− 1(gijπ

ij)2
)
− 1

2κ2 (R− 2Λ) + Hmatter + Hint , (3.4)

and the equation in (3.3) setting it to annihilate the wavefunctional is called the Wheeler-
DeWitt (WDW) equation. The momentum constraint is

Hi = −2gij∇k
πjk

√
g

+ Hi,matter . (3.5)

The gravitational coupling is κ2 = 8πGN . The momentum operator acts on the wave-
functional as

πij = −i δ

δgij
. (3.6)

We take the matter energy density to be of the form

Hmatter = 1
2g

−1π2
χ + Vmatter; Vmatter = 1

2g
ij∂iχ∂jχ+ 1

2m
2χ2 , (3.7)

and Hi,matter = 1√
gπχ∂iχ is the matter momentum density.

The self-interactions of matter, its interaction with gravity and also potentially higher-
order interactions have all been included in Hint. The analysis that follows will be largely
insensitive to the details of Hint.

3.1 Asymptotic expansion

The Hamiltonian constraint (3.4) has terms that involve functional derivatives, which we can
call “kinetic terms”, and terms without functional derivatives that we can call “potential
terms”. Here, we will study the equation in the regime where the cosmological constant
dominates over all other potential terms everywhere on the Cauchy slice. In particular,
this means that the Ricci scalar and the matter potential are very small compared to the
cosmological constant,

R≪ Λ; Vmatter ≪ Λ . (3.8)

In some cases below, we will encounter higher curvature invariants and we will work in
the regime where these are also small in cosmological units. We will find that the WDW
equation simplifies in this regime. Since these conditions must apply everywhere on the
spatial slice, our analysis does not apply to geometries that have singularities on the Cauchy
slice under consideration.

– 6 –
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An intrinsic notion of time. We will present solutions to (3.3), which are valid when the
assumption (3.8) is met. Our physical interpretation is that these solutions describe “late
times” in an asymptotically de Sitter universe. This includes states that might have very
complicated features at finite times but settle down asymptotically to de Sitter space.

However, the equations (3.3) do not make any reference to time. Nor, in the case of de
Sitter space, do we have an asymptotic boundary that can be used to set up an external
clock. It was pointed out long ago by DeWitt [10], that this problem can be addressed by
using an intrinsic observable as a clock. Correlators of other observables with this intrinsic
clock then provide a notion of how the state varies with “time”.

Here, we note that the assumption that the curvature is small everywhere on the Cauchy
slice suggests that the volume of the Cauchy slice

log
∫
ddx

√
g

becomes large.2 So we can use the logarithm of the volume, which is a dimensionless quantity
in the units chosen above, as a clock. This provides an operational meaning to the phrase
“late time”. Our discussion is similar in spirit to [44], where dynamical variables were used to
define a clock, although we note that the measure used above is distinct from the “York time.”

If one studies a spacetime that contracts from an infinitely large volume in the asymptotic
past, then our analysis also applies to asymptotically early times when (3.8) is met. But
to ask questions about “finite times”, one must necessarily go beyond the assumption (3.8)
somewhere on the slice. We will not address this regime here.

Intermediate variables. To facilitate our analysis, we will introduce intermediate variables,
Ω and γij and write the metric on the spatial slice as

gij = Ω2γij , (3.9)

where det(γij) = 1. In terms of the original degrees of freedom, we define

Ω = (det(gij))
1

2d ; γij = gij det(gij)−
1
d . (3.10)

Subject to the assumption (3.8) and the assumption that the volume of the Cauchy slice
is large, it is possible to find a coordinate system where Ω is everywhere large and we will
assume that such coordinates have been chosen.

It is also expected on physical grounds that the density of matter fields will get “diluted”
as the scale factor increases. This leads us to define a set of intermediate variables O for
the matter fields according to

χ = Ω−∆O . (3.11)

In the analysis below, we will fix ∆ in terms of the mass of the field and the cosmological scale.
2For instance, in d = 2 combining the Gauss-Bonnet theorem,

∫ √
gRd2x = 8π, with (3.1) and (3.8) implies∫ √

gd2x ≫ 1. However, strictly speaking, it is an independent physical assumption that the volume is large
since a small Ricci scalar is insufficient to guarantee this for d ≥ 3 (see theorem 3 of [43]).

– 7 –
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We emphasize that (3.9) and (3.11) correspond to an exact change of variables, and so
the content of the equations (3.3) is preserved. Second, we note that the split of the original
metric into a Weyl factor and a Weyl-invariant part is coordinate dependent. Nonetheless,
we will be careful to write all our final answers in a diffeomorphism-invariant form in terms
of the original variables g and χ. So the reader should think of the change of variables
simply as an intermediate technical trick.

3.2 Solution algorithm

In this subsection we outline and implement an algorithm to find solutions to the constraints
in the limit (3.8). This subsection is somewhat technical and the reader who is interested
just in the results can jump ahead to subsection (3.3).

Our procedure to find a solution to the constraints has three steps.

1. We rewrite the Hamiltonian constraint in terms of the conformal variables, Ω and γ.

2. We then seek a solution where the wavefunctional can be represented as the exponential
of a functional, F , that can be expanded in a series of terms that have a distinct
scaling at large Ω. With suitable assumptions about normal ordering, the Hamiltonian
constraint can be written in terms of F .

3. The functional F involves two distinct series expansions — one that is present even
for pure gravity and another that involves the matter fields. We first solve for the
gravitational part and then for the matter part.

The solution that we present below can be thought of as an elaboration of the solution to
the radial WDW equation given in AdS by Freidel [45].

Rewriting the constraints. It is shown in appendix A.1 that, in terms of these new
variables, the Hamiltonian constraint can be rewritten as

H = 2κ2

Ω2d

[
1

4d(d− 1)

(
Ω δ

δΩ + ∆O δ

δO

)2
−
(
γikγjℓ −

1
d
γijγkℓ

)
δ

δγij

δ

δγkℓ

]
(3.12)

+ Λ
κ2 − 1

2κ2R[Ω2γ] − 1
2Ω2(∆−d) δ

2

δO2 + 1
2m

2Ω−2∆O2 + 1
2Ω2γij∂i(Ω−∆O)∂j(Ω−∆O) + Hint .

We do not seek to rewrite the momentum constraint. This is because the momentum constraint
simply imposes that the wavefunctional is invariant under d-dimensional diffeomorphisms.
This can be seen more easily in terms of the original variables g and χ that transform as
tensors rather than tensor densities.

Series expansion. We expand the solution to (3.3) as

Ψ = eiF ; F =
α∑

n=0
Xα−n +

mβ∑
m=0

Yβ−m + O
( 1

Ω

)
. (3.13)

Here, the functionals Xk and Yk are undetermined functionals that grow as Ωk at large
Ω. More precisely we have

Xk, Yk ∼ Ωk, Ω → +∞ , (3.14)

– 8 –
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except for k = 0 in even d where we find an anomalous term that can be thought of as scaling
with log(Ω). For now, we keep α and β as undetermined parameters. It will turn out below
that the solution to the WDW equation will require a series that grows with integer powers
of Ω, corresponding to α = d, and a series that grows with non-integer powers, β = d− 2∆.
The maximum value of m is mβ = ⌊Reβ⌋.

It is justified to separate the two series since β can be varied by varying parameters in the
theory, and therefore, the two kinds of terms can be distinguished at a generic point in param-
eter space. The entire expression (3.13) has an undetermined remainder denoted by O

(
1
Ω

)
which corresponds to terms that decay at large Ω. We will not work out the specific form of this
remainder in this paper. It is the term that is necessary to understand “finite-time” physics.

We do not assume that the functionals Xα−n and Yβ−m are local functionals of gij

and χ. It will turn out however that the leading terms in the series Xα−n will depend
on local functionals of the metric. These correspond to the “gravitational part” of the
solution. However, X0 will be, in general, a nonlocal functional that depends both on gij

and χ. The series Yβ−m corresponds to the “matter part” of the solution and will comprise
local functions of gij and χ.

Normal ordering and simplification. Acting with the rewritten constraint (3.12) on
the ansatz (3.13) we find that the WDW equation can be written as

0 =−2κ2 1
Ω2d

[
1

4d(d−1)

(
ΩδF
δΩ +∆OδF

δO

)2
−
(
γikγjℓ−

1
d
γijγkℓ

)
δF
δγij

δF
δγkℓ

]
+DF (3.15)

+ Λ
κ2 −

1
2κ2R[g]+ 1

2Ω2(∆−d)
(
δF
δO

)2
+ 1

2m
2Ω−2∆O2 + 1

2Ω2γij∂i(Ω−∆O)∂j(Ω−∆O)+Hint,

Here, we have substituted the form (3.13) into the Hamiltonian constraint (3.12). We have
explicitly displayed bilinear combinations of terms where a single functional derivative acts
on F . Indices are still raised and lowered using gij and gij and therefore gij = Ω2γij . We
have used DF to indicate the action of second-order functional derivatives on F and the
form of DF can be read off from (3.12).

The action of the second-order functional derivatives is subtle. This is because the action
of a double functional derivative on a local term in F can generate a divergent δ(0) term.
The precise form of these terms depends on the normal ordering prescription used to define
the Hamiltonian constraint and it is reasonable to believe that the δ(0) terms can be removed
by a judicious choice of normal ordering. (See appendix A.2 for more discussion.)

Fortuitously these terms do not enter the leading-order analysis. This is because the
terms in DF are linear in F whereas the first-order functional derivative terms displayed
in (3.15) are quadratic. Since all the terms in (3.13) (except for X0) grow with Ω the terms in
DF always contribute with a lower power of Ω. We will see below that the leading contribution
from DF can, at most, change the form of the anomaly polynomial at subleading order in
GN but does not change any of the structural features of the answer.

The expression above involves the Ricci scalar of the metric g. In terms of the variables,
Ω and γ, this can be written as

R[g] = 1
Ω2

[
R[γ] − 2(d− 1)Ω2∇i∇i log(Ω) + (d− 1)(d− 2)Ω2∇i log(Ω)∇i log(Ω)

]
. (3.16)
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Note that since indices are raised by gij , the terms inside the bracket involving derivatives
of log(Ω) are O(1). Therefore we expect that R is of order Ω−2. In fact, the magnitude of
R in cosmological units can be used as an estimate of Ω−2 that does not rely on a specific
choice of coordinate system.

3.2.1 Gravitational part

We now solve the WDW equation order by order in the large-Ω expansion, focusing first
on the gravitational part.

Leading term. The largest term that appears without a derivative in (3.15) is the cosmo-
logical constant term. This immediately leads to the conclusion that

α = d

since any larger term in the expansion cannot be cancelled in (3.15). The leading term
in the WDW equation gives

2κ2

Ω2d

1
4d(d− 1)

(
ΩδXd

δΩ

)2
= Λ
κ2 . (3.17)

Using (3.1), this leads to the equation

ΩδXd

δΩ = ±d(d− 1)
κ2 Ωd . (3.18)

This yields

Xd = −d− 1
κ2

∫
ddx

√
g , (3.19)

where we have chosen the negative sign for physical reasons explained below, and rewritten the
expression in terms of the original variables to make manifest its diffeomorphism invariant form.

We would like to make a few comments.

1. We neglected a possible contribution from terms that involve δ
δγij

in going from (3.15)
to (3.17). It may be checked that no diffeomorphism invariant γ-dependent term can
be added to (3.19) while keeping the right hand side of (3.17), which is independent of
γ, unchanged.

2. The choice of negative sign in (3.19) corresponds to the fact that we wish to study an
expanding de Sitter universe at late times [46]. With this sign, the leading part of the
wavefunctional satisfies

πijΨ −−−−→
Ω→∞

−i δ

δgij
eiXd = −d− 1

2κ2
√
ggij eiXd . (3.20)

This is precisely the relation between the canonical momentum and the metric at late
times in an expanding universe. A choice of positive sign in (3.19) is allowed but would
correspond to the part of the wavefunctional that describes a contracting universe.
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3. As advertised, Xd is local. This property arises because the right hand side of (3.18) is
a number, which does not allow any nonlocal contributions.

4. Xd is real, which corresponds to an oscillatory phase in the wavefunctional. So although
Xd has the highest scaling with Ω, it does not contribute when the wavefunctional is
squared to study expectation values [15].

At the next order, matching orders in Ω we now find that

δXd−1
δΩ = 0 =⇒ Xd−1 = 0. (3.21)

Beyond the universal terms, Xd and Xd−1, the form of the solution varies slightly in
different dimensions. We explain the different cases for low dimensions and the general
pattern below. In each case, we will use the following observation. We ignore any term that
decays when Ω → +∞ in (3.13). When combined with the contribution from Xd, such a
term can yield a contribution that decays like Ωd−1 in (3.15). Therefore any term in (3.13)
that yields a contribution of the same order when inserted in (3.15) will be undetermined
in our procedure since we expect that its contribution to (3.15) can be cancelled by an
appropriate choice of the remainder term.

d = 2. In d = 2, we find that Xd−2 = X0 must obey the equation

ΩδX0
δΩ = 1

2κ2 Ω2R (d = 2) . (3.22)

When rewritten in terms of the original variables, this takes on the familiar form(
2gij

δ

δgij
− ∆χ δ

δχ

)
eiX0 = A2 e

iX0 (d = 2) , (3.23)

with
A2 = i

2κ2
√
gR . (3.24)

We note that (3.23) is analogous to the trace anomaly equation for the partition function of
a 2d CFT except that the central charge is imaginary with c = 12πi

κ2 . This can be thought
of as the Brown-Henneaux [47] central charge in AdS but analytically continued to dS as
proposed in [2].

We note some interesting features of (3.23) that will carry over to other dimensions.

1. Note that (3.23) does not have a unique solution. The addition of any term that is
independent of Ω to an existing solution of (3.22) yields another solution. (In terms of
partition functions, this is simply the observation that the trace anomaly equation does
not uniquely fix the CFT partition function but only the central charge.) The reader
might wonder why this freedom appears for X0 but not for Xd−1. In fact, it is possible to
add a nontrivial functional independent of Ω to the solution in (3.21) and obtain another
solution, but such a functional is ruled out by the asymptotic scaling requirement (3.14).
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2. The form of Hint does not place any constraints on X0 through (3.15). This is for the
following reason. The O

(
Ω−1) remainder in F yields a contribution to (3.15) that is

O
(
Ω−d−1

)
(Such a contribution arises when one δ

δΩ derivative acts on Xd and the other
acts on the remainder.) Since we are not keeping track of this remainder, we can consis-
tently neglect terms that decay O

(
Ω−(d+1)

)
in (3.15). But in d = 2, higher-derivative

terms decay at least as fast as 1
Ω3 .

3. The anomaly may receive a possible correction through the action of double derivative
terms on Xd. After accounting for the leading 1

Ω2d factor in (3.15), such terms contribute
at the same order as X0. The correction is O

(
κ0) and so it is subleading compared

to (3.24) and its precise value depends on the choice of normal ordering. In appendix A.2,
we show how this term can be made to vanish by a specific choice of normal ordering.

d = 3. For d ≥ 3, Xd−2 is determined from the subleading term in the WDW equation,
which takes the form

−2κ2

Ω2d

2
4d(d− 1)

(
ΩδXd

δΩ

)(
ΩδXd−2

δΩ

)
− 1

2κ2R = 0 . (3.25)

This gives the equation

ΩδXd−2
δΩ = 1

2κ2
√
gR . (3.26)

For d ≥ 3, this can be integrated to give

Xd−2 = 1
2(d− 2)κ2

∫
ddx

√
gR , (3.27)

which can be checked to be a solution using that Ω δ
δΩ = 2gij

δ
δgij

.
The next term X0 is unconstrained and can be any function of γ that is independent of Ω.

The action of the differential operators in (3.15) on such a function does yield non-zero terms.
However such terms can be cancelled by an appropriate choice of the remainder term in F . In
terms of the original variables, this means that X0 is a Weyl invariant function and we have

Ω δ

δΩX0 = 0 (d = 3) , (3.28)

or, in terms of the original variables,(
2gij

δ

δgij
− ∆ δ

δχ

)
eiX0 = 0 (d = 3) . (3.29)

Once again, it is not necessary to keep track of interactions since they do not contribute to
the non-decaying parts of F by the same power-counting argument that was given for d = 2.

d ≥ 3. The procedure outlined above can be continued to any dimension. The pattern is
that higher order terms are determined by the recursive equation coming from

2κ2

Ω2d

[
1

4d(d− 1)

(
ΩδF
δΩ

)2
− gikgjℓ(δij

g F)(δkℓ
g F)

]
= Hint , (3.30)
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where the power-counting argument above tells us that Hint can contribute to higher-order
terms. Here we have rewritten the metric variations in terms of the traceless metric variation

δij
g = δ

δgij
− 1
d
gijgkl

δ

δgkℓ
, (3.31)

using the identity (A.17). The term of order d− 2n is determined from this equation as

Ω δ

δΩXd−2n

= −2κ2

Ωd

n−1∑
k=1

(
gikgjℓ(δij

g Xd−2k)(δkℓ
g Xd−2(n−k)) −

1
4d(d− 1)

(
ΩδXd−2k

δΩ

)(
Ω
δXd−2(n−k)

δΩ

))
+ ΩdHint . (3.32)

This recursive structure determines all the higher order terms from the first two Xd and Xd−2.3

As we have pointed out in d = 2 and d = 3, since the equation involves functional
derivatives with respect to Ω, it never fixes X0 uniquely. Given one solution, there is always
the freedom to add an Ω-independent functional to X0.

We illustrate the procedure with the next term Xd−4 in pure Einstein gravity where
Hint = 0. The above equation gives

ΩδXd−4
δΩ = − 1

2(d− 2)2κ2
√
g

(
RijR

ij − d

4(d− 1)R
2
)

, (3.33)

as derived in appendix A.3.
In d = 4, we obtain the equation

ΩδX0
δΩ = − 1

8κ2
√
g

(
RijR

ij − 1
3R

2
)
, (3.34)

which leads to (
2gij

δ

δgij
− ∆χ δ

δχ

)
eiX0 = A4 e

iX0 , (3.35)

where we have defined

A4 ≡ − i

8κ2
√
g

(
RijR

ij − 1
3R

2
)
. (3.36)

We recognize the trace anomaly equation for a four-dimensional CFT partition function
Z = eiX0 . The anomaly can be written as

A4 = 1
16π2

√
g(−aE4 + cWabcdW

abcd) , (3.37)

using the Euler density and Weyl squared curvature given in (A.31) with the coefficients

a = c = − iπ
2

κ2 = − iπ

8GN
. (3.38)

3Note that a similar recursive structure was also observed in [48] in the context of holographic renormaliza-
tion.
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This is, up to the factor of −i, the anomaly of a holographic CFT4 obtained using holographic
renormalization in AdS5 [49]. It may be checked that this anomaly polynomial receives
corrections at subleading order in κ from higher-derivative terms and also from a choice
of normal ordering in the WDW equation.

In d ≥ 5, this equation can be integrated to give

Xd−4 = − 1
2(d− 2)2(d− 4)κ2

∫
ddx

√
g

(
RijR

ij − d

4(d− 1)R
2
)
. (3.39)

For d = 5 , the formula above completes the gravitational part of the series. X0 can be any
functional independent of Ω. For higher d, one must continue the expansion above until X0.

3.2.2 Matter part

We now solve for the matter part.

Leading term. The leading term Yβ is determined from the equation

−2κ2

Ω2d

2
4d(d− 1)

(
ΩδXd

δΩ

)(
ΩδYβ

δΩ + ∆OδYβ

δO

)
+ 1

2Ω2(∆−d)
(
δYβ

δO

)2
+ 1

2m
2Ω−2∆O2 = 0 .

(3.40)
A solution is only possible if these terms compete which requires

β = d− 2∆ , (3.41)

and leads to the equation

2
√
g
gij
δYβ

δgij
+ 1

2g

(
δYβ

δχ

)2
+ 1

2m
2χ2 = 0 , (3.42)

which we have written in terms of the original variables. The solution takes the form

Yβ = bβ

∫
ddx

√
gχ2 , (3.43)

where bβ satisfies

4b2
β + 2dbβ +m2 = 0 . (3.44)

Mass formula. We can determine the relation between bβ and ∆ by examining the classical
limit. In the classical theory, in an asymptotically de Sitter spacetime we have

π = gij
δS
δġij

= −d(d− 1)
2Nκ2 Ωd−1Ω̇, πχ = δS

δχ̇
= 1
N

Ωdχ̇ , (3.45)

where N is the lapse function, and S is the Einstein-Hilbert action with possible interactions.
From the definition of ∆ we expect that

χ̇

χ
= −∆Ω̇

Ω , (3.46)

up to terms that vanish at large Ω. Here we have not used the equations of motion but
simply the kinematic definition of ∆ in (3.11) which determines the scaling behaviour of
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the field at large volume. In terms of the corresponding canonical momenta, this equation
can be written as

1
χ
πχ = 2κ2∆

d(d− 1)π , (classical expectation) . (3.47)

We can compare this classical expectation with the relation obtained from our wavefunctional.
Using the leading order solution for the matter and metric sector, and the relations π =
−igij

δ
δgij

and πχ = −i δ
δχ on the wavefunctional, we find

1
χ
πχΨ = 2bβΩd Ψ ,

πΨ = −d(d− 1)
2κ2 Ωd Ψ ,

(3.48)

up to subleading terms in the Ω → +∞ limit. By matching this with (3.47), we see that
we must have

bβ = −∆
2 . (3.49)

Substituting this in (3.44) we find that ∆ must be related to the mass through

∆(d− ∆) = m2 . (3.50)

With these substitutions, the leading term in the matter series becomes

Yβ = −∆
2

∫
ddx

√
gχ2 . (3.51)

Our derivation involved a correspondence with the classical limit, and the choice of specific
orderings, such as the ordering of 1

χπχ in (3.48). Therefore the result (3.50) can be thought
of as being valid to leading order in κ.

There is a class of solutions to (3.50) corresponding to m > d
2 of the form

∆ = d

2 ± iν, ν =

√
m2 − d2

4 . (3.52)

If one studies a nongravitational quantum field theory with this mass, then the single-particle
states in such a theory lie in the principal series of representations of the conformal group
SO(1, d+ 1) that is the isometry group of dSd [50]. The complementary series correspond
to masses in the range 0 < m < d

2 and we can restrict to the range 0 < ∆ < d/2. For a
nice recent review, we refer the reader to [51].

Subleading term. In the principal series, the leading matter term is the only term we
have since Reβ = 0 so that the subleading term decays as Ω → +∞.

In the complementary series, the subleading term Yβ−2 contributes when

∆ ≤ d− 2
2 . (3.53)

– 15 –



J
H
E
P
0
1
(
2
0
2
4
)
1
3
2

It is determined by the equation

− 2κ2

Ω2d

1
4d(d− 1)

[
2
(

ΩδXd

δΩ

)(
ΩδYβ−2

δΩ + ∆OδYβ−2
δO

)
+ 2

(
ΩδXd−2

δΩ

)(
ΩδYβ

δΩ + ∆OδYβ

δO

)]
+ Ω2∆

2Ω2d
2
(
δYβ

δO

)(
δYβ−2
δO

)
+ 1

2Ω2γij∂i(Ω−∆O)∂j(Ω−∆O) = 0. (3.54)

Restoring the variables χ and gij and substituting in the known higher order functionals
gives the simpler looking form

2
√
g

(
gij

δ

δgij
+ bβχ

δ

δχ

)
Yβ−2 −

bβ

2(d− 1)Rχ
2 + 1

2g
ij∂iχ∂jχ = 0. (3.55)

The solution (derived in appendix A.4) is

Yβ−2 = − 1
2(d− 2 − 2∆)

∫
ddx

√
g

(
gij∂iχ∂jχ+ ∆

2(d− 1)R[g]χ2
)
, (3.56)

where we have substituted bβ from (3.49).
When ∆ < d−4

2 , additional terms appear in the matter series and these terms can be
worked out recursively using the WDW equation.

3.3 Asymptotic solution

We now give the general form of the asymptotic solution in the limit Ω → ∞. What we
showed is that the constraints imply that it takes the form

Ψ −→
Ω→+∞

eiS[g,χ]Z[g, χ] . (3.57)

Here, S is a universal phase factor that comprises integrals of local densities. It takes the form

S =
d−1∑
n=0

Xd−n +
⌊Re β⌋∑
m=0

Yβ−m , (3.58)

where β = d− 2∆ and ∆ is related to the mass of the field by (3.50). Terms corresponding
to odd values of m and n vanish in (3.58). Explicit expressions for n = 0, 2, 4 are given
in (3.19), (3.27) and (3.39) respectively and for m = 0, 2 in (3.51) and (3.56) respectively.
All terms in S are subject to the momentum constraint and so they are invariant under
d-dimensional diffeomorphisms.

The factor Z[g, χ] = eiX0 is a diffeomorphism invariant functional involving possibly
nonlocal terms in g and χ and it has simple Weyl transformation properties.

Ω δ

δΩ(x)Z[g, χ] = Ad[g]Z[g, χ] . (3.59)

The anomaly Ad[g] vanishes for d odd. For even d, it can be expressed in terms of curvature
invariants and explicit expressions for d = 2 and d = 4 are provided in (3.24) and (3.36)
respectively. Since S is real and the anomaly is imaginary, the absolute value of the
wavefunctional |Ψ[g, χ]|2 is always diffeomorphism and Weyl invariant.
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Z[g, χ] is not uniquely fixed by the WDW equation. Structurally, this is because the
WDW, at large Ω, relates functional derivatives of a term with a given scaling in Ω to a source
term that arises from terms with higher scaling in Ω. Therefore an existing solution for X0
can be modified by the addition of an Ω-independent term (i.e. a Weyl invariant term) to yield
another solution. This can also be seen from the fact that the solution to (3.59) is not unique.

Once Z[g, χ] has been chosen it is possible to use the equation (3.3) to continue the series
expansion in Ω. The choice made for Z[g, χ] then controls the terms in the wavefunctional
that decay with Ω. Physically, this can be thought of as follows. We specify a state at late
times (Ω → ∞) by specifying the arbitrary functional in Z[g, χ]. If we wish to ask questions
about finite-time physics, then we must determine the full dependence of the wavefunctional
on Ω. This dependence is sensitive to the interaction terms that appear in the Hamiltonian
constraint, and we do not investigate it in this paper.

The precise numerical values that we have found for the anomaly polynomials, and for
Xd−n and Yβ−m rely on a choice of normal ordering and, in some cases, can be affected
by higher-order terms in the interactions. However, the structural properties of the WDW
equation at large Ω — which are that the higher-order terms are fixed by a recursive set
of functional equations, eiX0 is left undetermined up to its Weyl transformation properties,
and the momentum constraint imposes diffeomorphism invariance on each term — are
robust. Therefore we conjecture that the form of the solution (3.57) is valid to all orders
in the κ-expansion.

Discussion and comparison to AdS/CFT. The phase factor S[g, χ] is closely related
to the counterterm-action that arises in holographic renormalization [49, 52–56]. The reason
for this can be understood as follows.

In Euclidean AdS, it is possible to study the action of the bulk theory, with boundary
conditions imposed on radial slices of the spacetime. The procedure of holographic renor-
malization identifies the divergences in this on-shell action. The wavefunctional in dS in
the Euclidean vacuum can be obtained by analytically continuing this action [2]. Since
the phase factor is universal, it is sufficient to determine it in a single state, as can be
done using this procedure.

However, the analytic continuation introduces factors of i in the anomaly. Also, it makes
the phase factor oscillatory in the dS case, whereas the counterterm action is real in AdS. The
terms that appear in the matter sector are also slightly different in dS. This is because the
dimension of operators dual to matter fields is always real in AdS but it can be complex in dS.

Second, the on-shell action on radial slices also obeys the constraints of diffeomorphism-
invariance that lead to a WDW-type equation. As one approaches the boundary of AdS,
it is possible to solve this equation asymptotically [45] (See also [57]) and this procedure
also yields the correct divergent terms.

However, there is an important conceptual difference between the “radial WDW” equation
and the one that we are studying. The radial wavefunctional is subject to regularity at
r = 0. This fixes its asymptotic form at r = ∞ to be a phase factor times the partition
function of a specific CFT — the CFT that is dual to the bulk AdS theory by the AdS/CFT
correspondence [58–60]. These constraints cannot be seen from the asymptotic analysis in AdS.
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The rules of quantum mechanics suggest that such constraints should not apply to our
solutions. The specification of Z[g, χ] is equivalent to the specification of a state on a late-time
spatial slice. But, in quantum mechanics, states can be specified on any time slice. Moreover,
this specification is not subject to constraints that come from the time evolution of the state.

A comparison with asymptotically flat space might help to clarify this point. The “in” and
“out” states that appear in the flat-space S-matrix are specified on Cauchy slices that are taken
to be in the infinite past and infinite future, respectively. We do not restrict the set of “in”
or “out” states by placing constraints on how these states evolve at finite times. In contrast,
“radial wavefunctionals” in AdS specify data on a timelike boundary. They do not correspond
to states, and no principle of quantum mechanics tells us that such data can be specified freely.

Some forms of Z[g, χ] are ruled out by normalizability [15] and it is possible that there
are additional constraints that restrict the allowed set of Z[g, χ] [61] but they are not evident
in our analysis.

4 Solution space as theory space

In the previous section, we have argued that, in the large-volume limit, all solutions of the
WDW equation take the form given in (3.57) — a universal phase factor multiplied with a
diffeomorphism invariant function, Z[g, χ] with simple Weyl transformation properties.

Since the phase factor is universal, each distinct choice of Z[g, χ] leads to a distinct
solution of the WDW equation. Second, in quantum mechanics, states can be read off from
any time slice — even if that time slice is at arbitrarily late times. So, we expect that
the large-volume behaviour of the wavefunctional completely specifies its form everywhere.
Therefore each distinct state leads to a distinct choice of Z[g, χ]. The two observations
above lead to the conclusion that there is a one-to-one map between the space of allowed
Z[g, χ] and the space of states in the theory.

We now investigate the properties of Z[g, χ] more carefully and argue that the space
of allowed functionals can be thought of as “theory space”.

4.1 Z as a CFT partition function

Now, let us examine the equation (3.59) together with the momentum constraint as written
in terms of the original variables, g and χ.

The relations that we find on Z are the following(
2√g∇i

1
√
g

δ

δgij
− gij∂iχ

δ

δχ

)
Z[g, χ] = 0; (diffeomorphism invariance)(

2gij
δ

δgij
− ∆χ δ

δχ

)
Z[g, χ] = AdZ[g, χ]. (Weyl transformation)

(4.1)

The first equation comes from the momentum constraint and expresses diffeomorphism
invariance while the second equation comes from the Hamiltonian constraint and expresses
the anomalous Weyl transformation.

This can be made more explicit by writing the action of an infinitesimal diff × Weyl
transformation on the metric and the scalar field

δ(ξ,φ)gij = Lξgij + 2φgij , δ(ξ,φ)χ = ξi∂iχ− ∆φχ . (4.2)
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Then the equations (4.1) are equivalent to

δ(ξ,φ) logZ[g, χ] =
∫
ddxφ(x)Ad(x) , (4.3)

which can be proven by taking the functional derivatives with respect to φ(x) and ξk(x).
The equations (4.1) are also obeyed by the partition function of d-dimensional CFT

with a source χ turned on for an operator ϕ of dimension ∆̄ = d − ∆ on a Euclidean
spacetime with metric gij

ZCFT[g, χ] = ⟨e−
∫

ddx χϕ⟩gij , (4.4)

which obeys (4.1) with an appropriate choice of Ad.
However, several cautionary remarks are in order.

1. First, the anomaly polynomial that appears for even d in (4.1) is imaginary. Second,
the dimension of ϕ can be complex for sufficiently large mass. This can be seen from
the mass-dimension relation (3.50).

2. Second, it is possible to obtain correlation function of the stress-tensor and of the opera-
tor ϕ by differentiating ZCFT. In a local CFT, such correlators obey various constraints,
including the constraints of cluster decomposition that follow from locality. Our anal-
ysis does not provide any reason to believe that the quantities obtained by functional
differentiation of Z with respect to the metric or χ should obey such constraints.

3. Relatedly, the space of allowed Z’s has a natural vector-space structure since this space
is the space of states for a quantum-mechanical system. But a vector-space structure
is unnatural in the space of CFT partition functions since the linear combinations of
two partition functions of local CFTs does not, in general, correspond to the partition
function of any other local CFT.

Therefore, although Z[g, χ] obeys the same equations that are obeyed by a CFT partition
function, it does not necessarily correspond to the partition function of a unitary or local CFT.

4.2 Coefficient functions as CFT correlators

We will now expand log Z[g, χ] in the metric and matter fluctuations. This will give a basis
of functionals for the solution space, comprising those Z[g, χ] that do not vanish in the
limit where gij → δij and χ → 0.4

4.2.1 Weyl transformation of the variables

So far we have considered the wavefunctional in the limit where the volume of the spatial
slice becomes arbitrarily large. Physically, we are interested in studying fluctuations about
an asymptotically de Sitter spacetime, where the metric on a spatial slice takes on the form

gphys
ij = 4ω2

(1 + |x|2)2 (δij + κhij) , (4.5)

4When we introduce a norm on solutions [15], it will turn out that such solutions do not yield normalizable
states. For the present analysis, this issue is not relevant. In the next section, we will study a different
basis corresponding to functionals that vanish in the limit gij → δij and χ → 0. Those functionals are linear
combinations of the functionals studied here, and provide a normalizable basis for the Hilbert space.
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which is a perturbation of the round metric on Sd in coordinates xi rescaled with a large
Weyl factor ω.

It may be seen from (4.1) that |Ψ[g, χ]|2 = |Z[g, χ]|2 is diffeomorphism and Weyl
invariant. The Weyl anomaly is imaginary so we have[

2gij
δ

δgij
− ∆χ δ

δχ

]
(Z[g, χ]Z[g, χ]∗) =

(
AdZ[g, χ]

)
Z[g, χ]∗ + c.c = 0 , (4.6)

using that A∗
d = −Ad.

Therefore, at the cost of an additional phase in the wavefunctional in even dimensions,
we can make a Weyl transformation of the physical fields and study the behaviour of Z[g, χ]
in the regime where

gij = δij + κhij . (4.7)

In converting the physical metric (4.5) to the form above, we have not only removed the
large factor ω(x) but also made use of the fact that the round metric is related by a Weyl
transformation to the flat metric. This does not change the fact that the spatial slices are
topologically Sd and in [15], we will utilize this when we place boundary conditions at |x| → ∞.

The Weyl transformation that takes the physical metric gphys
ij to gij also rescales the

matter fields according to

χ =
( 2ω

1 + |x|2
)∆

χphys . (4.8)

We will now study an expansion of Z[g, χ] in powers of χ and h as it appears in (4.7). This is
a convenient regime in which to study Z. If the value of Z is required in the physical regime,
the phase factor in the wavefunctional can always be worked out using the anomaly equation
and undoing the transformation from (4.7) to the original physical metric (4.5).

4.2.2 Expansion of Z

In what follows, we will assume that the perturbation in (4.7) is small enough that it makes
sense to study a series expansion of Z about hij = 0. This focuses us on states whose
wavefunctionals are concentrated on metrics that are close to the round sphere up to a
Weyl transformation. The assumption in the analysis below is that these are the states of
physical interest. Note that the analysis in the previous sections remains valid even if the
wavefunctional does not have a good series expansion in hij .

it is convenient to introduce some notation. We write

Z[g, χ] = exp
[∑

m,n

κnGn,m[h, . . . h, χ, . . . χ]
]
, (4.9)

where we have defined multi-linear functionals, Gn,m that take n tensor fields and m scalar
fields as input and return a c-number.

Gn,m[h(1), . . . h(n), χ(1), . . . χ(m)]

≡ 1
n!m!

∫
dy⃗dz⃗ Gi⃗⃗j

n,m(y⃗, z⃗)h(1)
i1j1

(y1) . . . h(n)
injn

(yn)χ(1)(z1) . . . χ(m)(zm) .
(4.10)
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The “coefficient functions” Gi⃗⃗j
n,m(y⃗, z⃗) depend on y⃗ = (y1, . . . , yn), z⃗ = (z1, . . . , zm) and are

tensors with multi-indices i⃗ = (i1, . . . , in), j⃗ = (j1, . . . , jn) that are symmetric in the (ia, ja)
indices. Here x⃗ = (y⃗, z⃗) is a collective symbol for all the coordinates in the equation. We
demand that these functionals Gn,m be symmetric under the interchange of any two of the
h(k) or any two of the χ(k), which means that Gi⃗⃗j

n,m are symmetric under interchange of
any two z coordinates and the simultaneous interchange of any two y-coordinates and the
associated tensor indices.

We will now use the relations (4.1) to derive constraints on the functions Gn,m. A
similar analysis was performed in [22] for the Euclidean vacuum. (See also [29].) The
general strategy that we adopt will be the following. Under an infinitesimal diff × Weyl
transformation (4.2), hij transforms as

δξ,φhij = Hij + 1
κ
Iij , (4.11)

where Hij = Lξhij + 2φhij is a piece linear in hij and Iij = ∂iξ
kδjk + ∂jξ

kδik + 2φδij is an
inhomogeneous piece that comes from the transformation of the background metric.

We then have the variation

δξ,φ logZ =
∑
n,m

κn(δξ,φ logZ)n,m, (4.12)

where we have collected terms according to the expansion in κ:

(δξ,φ logZ)n,m ≡ (n+ 1)Gn+1,m[I, h, . . . h, χ, . . . χ] + nGn,m[H,h, . . . h, χ, . . . χ]
+mGn,m[h, . . . h, δχ, . . . χ] .

(4.13)

The constraint (4.3) then leads to identities that relate Gn+1,m to Gn,m. These identities
are derived in appendix B. As a consequence of the anomalous Weyl transformation, we
obtain a “trace identity”

2δijG
ij⃗i⃗j
n+1,m(u, y⃗, z⃗) =

(
−2

n∑
a=1

δ(d)(u− ya) + ∆
m∑

b=1
δ(d)(u− zb)

)
Gi⃗⃗j

n,m(y⃗, z⃗) + δm,0Ai⃗⃗j
d (u, y⃗) ,

(4.14)
where

Ai⃗⃗j
d (u, y⃗) = 1

κn

δn

δhi1j1(y1) . . . δhinjn(yn)Ad(u) , (4.15)

is an ultra-local term obtained from the expansion of the anomaly Ad in the fluctuation,
which only appears for even d.

The invariance under diffeomorphisms leads to a “divergence identity”.

2δjk∂iG
ij⃗i⃗j
n+1,m(u, y⃗, z⃗) =−

m∑
b=1

∂

∂zk
b

[
δ(d)(u−zb)Gi⃗⃗j

n,m(y⃗, z⃗)
]

(4.16)

+
n∑

a=1

[
− ∂

∂yk
a

[
δ(d)(u−ya)Gi⃗⃗j

n,m(y⃗, z⃗)
]
+Gi⃗′j⃗′

n,m(y⃗, z⃗)
(
δia

i′a
δja

k

∂

∂yj′a
+δja

j′a
δia

k

∂

∂yi′a

)
δ(d)(u−ya)

]
,

where in the bracketed expression, we use i⃗′ and j⃗′ to denote the multi-index where (ia, ja)
has been replaced by (i′a, j′a) for the current a in the sum. (See (B.27).)
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4.2.3 Conformal symmetry of the coefficient functions

A special role is played by the combinations of diffeomorphism and Weyl transformations
that leave the background flat metric invariant. These are conformal transformations. Under
these transformations, the inhomogeneous piece in (4.11) vanishes:

Iij = ∂iξ
kδjk + ∂jξ

kδik − 2
d
δij∂kξ

k = 0 , (4.17)

and corresponds to taking ξ to be a conformal Killing vector.
This imposes conformal invariance on the functions G. More specifically under a conformal

transformation y⃗ → y⃗′, z⃗ → z⃗′, we have

Gi⃗⃗j
m,n(y⃗′, z⃗′) =

( n∏
a=1

Ria
i′a

(ya)Rja

j′a
(ya)Λ(ya)d

)( m∏
b=1

Λ(zb)d−∆
)
Gi⃗′j⃗′

m,n(y⃗, z⃗) , (4.18)

where
Ri

i′(x) = Λ(x)J i
i′(x), J i

i′(x) = ∂xi

∂xi′
, Λ(x) = |det J(x)|−1/d , (4.19)

see appendix B.3 for the derivation.
This shows that the coefficient functions Gi⃗⃗j

n,m obey the same identities as connected
CFT correlators. We can write

Gi⃗⃗j
n,m(y⃗, z⃗) ∼ ⟨T i1j1(y1) . . . T injn(yn)ϕ(z1) . . . ϕ(zm)⟩connected

CFT , (4.20)

where T ij is an operator of spin 2 and dimension d and ϕ is an operator of dimension d−∆.5

The reason we put the subscript “connected” is because Gn,m are obtained by functional
differentiation of the logarithm of Z. The reason we write ∼ rather than equality is to
indicate that the similarity between the two sides of (4.20) is only restricted to the fact that
both sides obey the same Ward identities. We reiterate that (4.20) should be interpreted
cautiously beyond this shared property.

4.3 Solution space and theory space

We have therefore reached the following conclusion. Say that we are given a set of functions,

{Gi⃗⃗j
n,m(y⃗, z⃗)} , (4.21)

for all values of n and m, which satisfy the Ward identities (4.14) and (4.16) and transform
under conformal transformations as (4.18). Such a list of functions uniquely specifies a valid
solution to the WDW equation when assembled together through (4.9).

Such a list can also be thought of as defining a “theory” with the caveats mentioned above:
this theory is a CFT but need not be unitary or local. Moreover, the list of correlators (4.21)
does not make reference to other operators in the theory beyond those that correspond
to fields in the physical spacetime. In this generalized sense, the space of solutions to the
WDW equation is like “theory space”.

5From (4.9) and (4.10) it may be seen that the “correlators” differ from the conventional correlators,
⟨. . . T ij . . . ϕ . . .⟩conv = [. . . 1√

g
δ

δgij
. . . 1√

g
δ

δχ
. . .] log(Z), since they are defined without a factor of 1√

g
. So the

contact terms that appear in our Ward identities are slightly different even when gij = δij .
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4.3.1 Relation to the set of Hartle-Hawking wavefunctionals

The Hartle-Hawking no boundary proposal [1] provides a recipe of computing the wavefunc-
tionals that constitute the solution space. Hartle and Hawking proposed that the vacuum
wavefunctional should be computed by performing the Euclidean path integral on a manifold
with a single boundary. An alternative technique is to compute the path-integral with
boundary sources turned on for the same bulk theory in AdS and then continue the answer
to dS [2]. The latter technique allows for the easy inclusion of perturbative corrections to
the wavefunctional through the computation of AdS correlators.6

This computation produces a wavefunctional that we can denote by Ψ0[g, χ] and which
satisfies the Wheeler-DeWitt equation. It explicitly has the general form we have deduced
above; the phase S is the analytic continuation of the divergent part of the on-shell action
in AdS and the wavefunctional is obtained by multiplying the phase factor with Z0[g, χ] —
the analytic continuation of the partition function of the boundary CFT. Since the details of
the coefficient functions that enter the partition function depend on the bulk Lagrangian,
Lbulk, we can represent this entire process schematically as

Lbulk −→ Ψ0[g, χ] . (4.22)

The prescription (4.22) leads to an interesting observation. Consider a different bulk
Lagrangian, L̃bulk but one which gives rise to the same phase factor and therefore has the same
holographic anomaly. It is possible to compute a second wavefunctional using this Lagrangian:

L̃bulk −→ Ψ̃0[g, χ] . (4.23)

But since the coefficient functions inside Ψ0[g, χ] and Ψ̃0[g, χ] satisfy the same Ward
identities, both wavefunctionals are valid states in either bulk theory. The Hartle-Hawking
wavefunctional computed for the Lagrangian L̃bulk can be thought of as an “excited state” in
the theory where the bulk interactions are specified by Lbulk. Conversely, if one thinks of the
bulk theory with the Lagrangian L̃bulk then it is Ψ̃0[g, χ] that is the vacuum wavefunctional
and Ψ0[g, χ] that is an excited state.

Therefore the space of states contains the set of Hartle-Hawking wavefunctionals for all
possible bulk interactions that give rise to the same holographic anomaly. If one considers a
specific bulk theory, then this picks out a specific vector in this space as the one corresponding
to the vacuum. But the wavefunctionals for other bulk interactions are still in the state
space; they just correspond to non-vacuum states.

5 The “small fluctuations” basis for the Hilbert space

In this section, we describe an alternate basis for solutions to the WDW equation at late times
that is particularly convenient in the limit where GN → 0. Although we use the adjective
“small fluctuations”, this basis spans the entire Hilbert space. We show, using this basis,

6As emphasized in [62], AdS correlators continue to the coefficient functions Gi⃗⃗j
n,m in (4.10) and not to

correlators on the late-time boundary of dS. These latter correlators are called cosmological correlators and
are discussed further in [15]. They must be computed by further squaring and integrating the wavefunctional
(see [63] for an example) or by means of the in-in formalism [64].
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that as GN → 0, the space of states we have constructed coincides precisely with the Hilbert
space constructed by Higuchi [4, 8, 9]. However, our construction also provides a procedure
to systematically correct Higuchi’s construction at nonzero GN .

The basis we introduce in this section has the additional advantage that it will yield
normalizable states in the Hilbert space [15].

5.1 Basis of “small fluctuations”

In section 3 and 4 it has been shown that a general solution to the WDW equation is spanned
by wavefunctionals of the form

Ψ[g, χ] = eiSexp
[∑

n,m

κnGn,m

]
, (5.1)

where, as above, each Gn,m takes the form of a conformally invariant “coefficient function”
integrated with the fluctuations of the metric and the matter fields. The coefficient functions
must obey a set of Ward identities and can be identified as correlation functions of n-
insertions of the “stress tensor” and m-insertions of a scalar operator with dimension d− ∆
in a non-unitary conformal-field theory.

Here, and in what follows, we do not display the arguments of Gn,m to condense the
notation. It is understood that all n tensor arguments correspond to the metric fluctuation
hij and all m scalar arguments correspond to the matter fluctuation χ.

Consider a state with a specific choice of functionals, Gn,m. Now consider another set of
functionals G̃n,m, which also satisfy the Ward identities of section 3. Then the combination

Gλ
n,m = (1 − λ)Gn,m + λG̃n,m , (5.2)

also satisfies the identities of section 3. The linear combination chosen above ensures that Gλ
n,m

satisfies the Ward identities with the same trace anomaly term. Therefore, the wavefunctional

Ψλ[g, χ] = eiSexp
[∑

n,m

κnGλ
n,m

]
, (5.3)

also satisfies the WDW equation asymptotically. Since the solution space is linear this
means that

∂Ψλ[g, χ]
∂λ

∣∣∣∣
λ=0

=
∑
n,m

κn(G̃n,m − Gn,m
)
Ψ[g, χ] , (5.4)

is also a valid state. The combination above will appear frequently and so we define the
notation

δGn,m ≡ G̃n,m − Gn,m (5.5)

= 1
n!m!

∫
dy⃗dz⃗ δGi⃗⃗j

n,m(y⃗, z⃗)hi1j1(y1) . . . hinjn(yn)χ(z1) . . . χ(zm) .

We can think of the states (5.4) as corresponding to “small fluctuations” about the base
state Ψ[g, χ]. Nevertheless, states of the form (5.4) provide a complete basis for the Hilbert
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space provided we consider all possible changes δGn,m. We can refer to this as the “small
fluctuations” basis for the Hilbert space.

The construction above can be performed about any base state but to make contact
with the existing literature we will, henceforth, choose the base state in (5.1) to be the
Hartle-Hawking state, Ψ0[g, χ]. The basis above then naturally corresponds to the basis
of fluctuations about the Euclidean vacuum.

A few comments are in order.

1. Naively, it might appear possible to take the functionals Gn,m and G̃n,m to coincide
for all value of n,m except for some particular values of n = n0,m = m0. However,
this is not possible as both sets of functionals must satisfy the Ward identities. This
relates the longitudinal components and the trace of G̃n+1,m to G̃n,m for each n,m by
equations (4.14) and (4.16). Therefore

δGn,m ̸= 0 ⇒ δGn+1,m ̸= 0 . (5.6)

2. Nevertheless, note that the right hand side of (5.6), δGn+1,m is not completely fixed by
the left hand side, δGn,m This is because the Ward identities only fix the longitudinal
components and the trace in G̃n+1,m. Except for n+m ≤ 2 there are an infinite number
of possible ways to satisfy the Ward identities.

3. On the other hand, the Ward identities do not prevent the possibility that δGn,m = 0
for n < n0,m < m0 for some choice of n0,m0 but that δGn,m ̸= 0 for other values of
n,m. This might appear slightly puzzling since, in a CFT, all higher-point functions
are fixed by three-point functions. However, the coefficient functions can be thought
of as correlators of “stress-tensor” and the operators dual to the matter fields. The
wavefunctional does not directly contain terms that correspond to correlators of other
primary operators. Within this restricted class of correlators, it is usually possible
to change higher-point correlation functions without changing lower-point functions
although some correlators such as the three-point function of a stress-tensor and two
scalars are completely fixed in terms of lower-point functions [65].

5.2 The nongravitational limit

The basis above is particularly convenient in the nongravitational limit. When κ→ 0, the
constraints imposed by the Ward identities become trivial. As we show below, this allows us
to obtain a precise correspondence with Higuchi’s basis [4] of dS-invariant states.

Consider two sets of functionals δGn,m and G̃n,m which differ for some particular m = m0
at n = n0 but coincides for all lower-point correlators:

δGn,m = 0, ∀n < n0; δGn0,m = 0, ∀m ̸= m0 , δGn0,m0 ̸= 0 . (5.7)

The Ward identities imply that the higher-point functionals cannot coincide. However, all
of these come with a higher power of κ. Therefore we can consider the state

1
κn0

∂Ψλ[g, χ]
∂λ

∣∣∣∣
λ=0

= (δGn0,m0 + O(κ)) Ψ[g, χ] , (5.8)
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which clearly has a good limit as κ→ 0. The notable feature above is that all the higher-order
terms in (5.4) have disappeared.

It is useful to recast this in slightly different notation. Representing the Euclidean
vacuum by |0⟩, and choosing the wavefunctional Ψ[g, χ] to correspond to this state, we see
that the set of states that satisfy the constraints in the κ → 0 limit can be written as

|Ψng⟩ =
∫
dy⃗dz⃗ δGi⃗⃗j

n0,m0(y⃗, z⃗)hi1j1(y1) . . . hin0 jn0
(yn0)χ(z1) . . . χ(zm0)|0⟩ . (5.9)

Our conclusion can be summarized in the following two points.

1. The set of valid states in the nongravitational limit can be obtained by studying grav-
itational and matter fluctuations at late times, integrating them with a conformally
invariant function on the late-time slice and acting on the Euclidean vacuum. This func-
tion is the difference of any two functions that obey the Ward identities of section 4.2.2.
So it also obeys the Ward identities but without an inhomogeneous term.

2. The smearing function in (5.9) is not arbitrary and is constrained by conformal invariance.
This means that, even in the nongravitational limit, the effect of the constraints does
not trivialize. This is consistent with the idea that when one takes the zero-coupling
limit of a gauge theory, it is still necessary to impose the Gauss law on the Hilbert space.

Examples of states in the nongravitational limit. We now provide a few examples
to help elucidate the idea above. To lighten the notation, we provide examples of states
obtained by the action of matter-sector operators. It is simple to generalize this to consider
states of gravitons, which exist for d > 2.

Conformal symmetry sharply constrains the Hilbert space at small “particle number.”
Here, by particle number, we refer to the number of fields that must act on the Euclidean
vacuum to produce the state. There is a unique two-particle state with gravitons or with
matter excitations corresponding to the fact that the two-point coefficient function is fixed up
to an overall constant. Similarly, there is a unique three-particle state with scalar excitations
and two possible three-particle states with graviton excitations. There exist an infinite number
of four-particle states parameterized by functions of conformally invariant cross ratios.

1. Two-particle states. The unique two-particle matter state has the form

|χχ⟩ =
∫
ddx1d

dx2
1

|x1 − x2|2(d−∆)χ(x1)χ(x2)|0⟩ . (5.10)

Similarly, for d > 2, one can construct nontrivial two-particle states of free gravitons.

2. Three-particle states. The three-point function of scalar operators is also fixed
uniquely by conformal invariance up to an overall normalization. Therefore, we find
the unique three-particle state

|χχχ⟩ =
∫
ddx1d

dx2d
dx3

1
|x1 − x2|d−∆|x2 − x3|d−∆|x1 − x3|d−∆χ(x1)χ(x2)χ(x3)|0⟩ .

(5.11)
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3. Four-particle states. Four-point functions that satisfy the Ward identities are
undetermined up to a function of the conformal cross ratios. There is an infinite number
of four-particle states that can be written in the form

|χχχχ⟩=
∫
ddx1 . . .d

dx4Q

(
x12x34
x13x24

,
x12x34
x23x14

)∏
i<j

|xij |−
2(d−∆)

3 χ(x1)χ(x2)χ(x3)χ(x4)|0⟩ ,

(5.12)
where Q is an arbitrary function.

Apart from graviton excitations, it is also possible to consider states with both graviton and
matter excitations. These can be constructed using a procedure similar to the one above.
There is no state with one graviton and two matter particles. This is because, as noted above,
the corresponding correlation function, including its normalization, is completely fixed by
the Ward identities and the two-point matter correlation function [65].

5.3 Correspondence with Higuchi’s construction

We now show that the κ→ 0 limit of our construction described above corresponds precisely
to Higuchi’s construction of the Fock space for weakly-coupled gravity in de Sitter space.
For simplicity, we discuss Higuchi’s construction for a scalar field.

5.3.1 Review of Higuchi’s proposal

So far, we have been careful to discuss the metric and fields only on a single Cauchy slice.
To make contact with Higuchi’s construction we will briefly discuss the properties of fields
in spacetime.

Consider a quantum field theory with a scalar field of mass m, χ, propagating in a
background de Sitter geometry with spacetime metric

ds2 = −dt2 + cosh2t dΩ2
d; dΩ2

d = 4dx2

(1 + |x|2)2 . (5.13)

Then χ can be expanded in terms of solutions to the equations of motion that, at late
times, have the asymptotic behaviour [50, 66]

χphys(t, x) −→
t→∞

e−∆t

(
1 + |x|2

2

)∆

χ(x) + e−∆̄t

(
1 + |x|2

2

)∆̄

χ̄(x) , (5.14)

where ∆ and ∆̄ are the two solutions of the equation (3.50). We are interested in the operator

χ(x) = lim
t→∞

e∆t

(
1 + |x|2

2

)−∆

χphys(t, x) , (5.15)

which is well defined even when ∆ has an imaginary part since even in that case the expression

e(∆−∆̄)t
(

1+|x|2
2

)∆̄−∆
χ̄(x) can be neglected by the Riemann-Lebesgue lemma. These rescaled

late-time operators are precisely the ones that we have been studying in the previous sections.
This can be seen by comparing (5.15) with (4.8).
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Starting with the Euclidean vacuum we see that states of the form

|Ψseed⟩ =
∫
dx⃗ ψ(x⃗)χ(x1) . . . χ(xn)|0⟩ (5.16)

span the Hilbert space in a nongravitational QFT where ψ is a square-integrable smearing
function. More details and an oscillator construction can be found in [8, 9, 50].

When the theory is coupled to gravity, it is necessary to impose the gravitational Gauss
law even in the limit of arbitrarily weak coupling. The Gauss law requires that states be
invariant under the de Sitter-isometry group SO(1, d+ 1) [3, 6, 7]. This constraint can also
be derived by integrating the Hamiltonian constraint (3.4) with the Killing vectors of dS.
But, except for the vacuum, no state of the form (5.16) satisfies this constraint.

Higuchi’s proposal [4] was to consider the space of states obtained by “averaging” such
seed states over the de Sitter isometry group

|Ψ⟩ =
∫
dUU |Ψseed⟩ , (5.17)

where U is the unitary operator that implements the action of the de Sitter isometries in the
quantum field theory and dU is the Haar measure on this unitary group. By construction
we now have

U |Ψ⟩ = |Ψ⟩ (5.18)

for the action of any unitary element of the symmetry group.
The states |Ψ⟩ are not normalizable in the original Hilbert space but Higuchi proposed

a modified norm

(Ψ,Ψ) = 1
vol(SO(1, d+ 1))⟨Ψ|Ψ⟩ =

∫
dU⟨Ψseed|U |Ψseed⟩. (5.19)

In [67], it was shown that this procedure can be understood in terms of imposing the
equivalence relation |Ψseed⟩ ∼ U |Ψseed⟩ on the original Hilbert space. The final Hilbert space
of equivalence classes is the same as the Hilbert space obtained by Higuchi’s construction.

5.3.2 Invariance of states under SO(1, d + 1)

We now show that the states (5.9) that we have found in the nongravitational limit are
invariant under the de Sitter isometries. To simplify the notation, we restrict to scalar
states of the form

|Ψ⟩ =
∫
dx⃗ δG0,m(x1, . . . , xm)χ(x1) . . . χ(xm)|0⟩ . (5.20)

The inclusion of graviton states is simple but just requires us to keep track of some additional
rotation matrices below.

The de Sitter isometries map the late-time boundary back to itself and act as conformal
Killing vectors on it. (See [68] for a pedagogical explanation.) Their finite action at late
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times can be read off from (5.13) and is

translations : x̃i = xi + ci, t̃ = t+ log (1 + |x̃|2)
(1 + |x|2) ;

rotations : x̃i = Ri
jx

j , t̃ = t; (5.21)

dilatations : x̃i = λxi, t̃ = t+ log (1 + |x̃|2)
λ(1 + |x|2) ;

SCTs : x̃i = xi − βi|x|2

1 − 2(β · x) + |β|2|x|2
, t̃ = t+ log (1 + |x̃|2)

(1 + |x|2)(1 − 2(β · x) + |β|2|x|2) ,

where ci and βj are constant vectors, Ri
j is a constant rotation matrix and λ is a real number.

Here we have neglected terms that vanish exponentially in t since such terms are unimportant
on the late-time boundary. We note that the transformations above satisfy

et̃−t = Λ(x) 1 + |x̃|2

1 + |x|2
, (5.22)

where

Λ(x) =
∣∣∣∣∣det

(∂x̃i

∂xj

)∣∣∣∣∣
−1/d

. (5.23)

Using (5.15), we see that the unitary operator that implements this transformation on the
fields acts as

Uχ(x̃)U † = Λ(x)∆χ(x) . (5.24)

Therefore, using the transformation of δG under conformal transformations as given in (4.18),
the state above transforms as

U |Ψ⟩ =
∫
ddx̃1 . . . d

dx̃m δG(x̃1, . . . , x̃m)Uχ(x̃1)U † . . . Uχ(x̃m)U †|0⟩

=
∫
ddx̃1 . . . d

dx̃m

( m∏
i=1

Λ(xi)d−∆
)
δG(x1, . . . , xm)

( m∏
i=1

Λ(xi)∆)χ(x1) . . . χ(xm)|0⟩

=
∫
ddx1 . . . d

dxm δG(x1, . . . , xm)χ(x1) . . . χ(xm)|0⟩ = |Ψ⟩, (5.25)

and is therefore invariant. In the equalities above, we have used that ddx̃ = Λ(x)−dddx which
ensures that the eventual expression has no factor of Λ.

5.3.3 Lifting seed states

It is also possible to obtain the seed states corresponding to (5.9). The intuition is that
the expression (5.9) has an implicit integral over the conformal group that can be pulled
out to yield the seed state. This relies on the geometric observation that, in any number of
dimensions, the conformal group can be used to fix three points leaving behind an unfixed
SO(d − 1) that leaves those three points invariant.

This can be made precise by considering the quantity

f =
∫

SO(1,d+1)
dγ δ(d)(x̂1 − γx1)δ(d)(x̂2 − γx2)δ(d)(x̂3 − γx3) . (5.26)
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f must be invariant under an arbitrary conformal transformation xk → γxk (as x̂k are kept
unchanged) by invariance of the Haar measure dγ. Since the only conformally invariant
function of three points is a constant, f cannot depend on xk. Under transformations
x̂k → γx̂k, we have f →

(
Λ(x̂1)Λ(x̂2)Λ(x̂3)

)d
f . This fixes the dependence of f on x̂k and,

by normalizing the measure appropriately, we can set

f = vol(SO(d− 1))
(
|x̂1 − x̂2||x̂2 − x̂3||x̂3 − x̂1|

)−d (5.27)

From this we obtain the identity

1 = 1
f

∫
SO(1,d+1)

dγ δ(d)(x1 − γ−1x̂1)δ(d)(x2 − γ−1x̂2)δ(d)(x3 − γ−1x̂3)

×(Λ(x1)Λ(x2)Λ(x3))d, (5.28)

using δ(d)(x̃ − γx) = δ(d)(x − γ−1x̃)Λ(x)d.
Inserting this in the expression (5.20) removes the integrals over x1, x2, x3 and gives

|Ψ⟩ = 1
f

∫
SO(1,d+1)

dγ

∫
ddx4 . . . d

dxm δGm(γ−1x̂1, γ
−1x̂2, γ

−1x̂3, x4, . . . , xm)

× (Λ(γ−1x̂1)Λ(γ−1x̂2)Λ(γ−1x̂3))dχ(γ−1x̂1)χ(γ−1x̂2)χ(γ−1x̂3)χ(x4) . . . χ(xm)|0⟩

= 1
f

∫
SO(1,d+1)

dγ

∫
ddx4 . . . d

dxm

( m∏
i=4

Λ(xi)−d
)
δGm(x̂1, x̂2, x̂3, x̃4, . . . , x̃m) (5.29)

× Uχ(x̂1)U−1Uχ(x̂2)U−1Uχ(x̂3)U−1Uχ(x̃4)U−1 . . . Uχ(x̃m)U−1|0⟩

= 1
f

∫
SO(1,d+1)

dγ

∫
ddx̃4 . . . d

dx̃m δGm(x̂1, x̂2, x̂3, x̃4, . . . , x̃m)

× Uχ(x̂1)χ(x̂2)χ(x̂3)χ(x̃4) . . . χ(x̃m)|0⟩ ,

where in the second step we have applied γ to all the variables and used the conformal
transformation properties of δGm and χ to simplify the answer.

We recognize that this takes the form of a group average

|Ψ⟩ =
∫
dU U |Ψseed⟩ , (5.30)

where the seed state is given by

|Ψseed⟩ = 1
f

∫
ddx4 . . . d

dxmδGm(x̂1, x̂2, x̂3, x4, . . . , xm) (5.31)

×χ(x̂1)χ(x̂2)χ(x̂3)χ(x4) . . . χ(xm)|0⟩ .

As a result, up to normalization, we obtain a valid seed state by simply dropping the integral
over three points in (5.9) and fixing those points to arbitrary positions.

6 Discussion

In this paper, we studied solutions to the WDW equation in asymptotically de Sitter space. A
natural clock in de Sitter space is provided by the volume of the Cauchy slices. We found that,
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in the limit of large volume, all solutions could be written as the product of a universal phase
factor multiplied by a diffeomorphism-invariant functional with simple Weyl transformation
properties. This result is derived in section 3 and we argued that the structural form of the
solution is valid at all orders in perturbation theory. The Euclidean vacuum is well known to
have these properties but the new result is that all states in the theory have these properties.

In section 4, we showed that a solution could be specified by providing a list of coefficient
functions that obey the same constraints as correlation functions of a CFT. These functions
are related to one another by Ward identities. A specification of these functions provides a
complete description of the state but it can also be said to specify a “theory”. In this sense,
the space of solutions to the WDW equation is similar to theory space.

In section 5, we rewrote these solutions in a basis of “excitations” about the Euclidean
vacuum. Here, each solution is written as a series of multilinear functionals of the metric and
other fields multiplied with the wavefunctional for the Euclidean vacuum. These excitations
must again obey the constraints of conformal invariance and the Ward identities. It is shown
in section 5 that, in the nongravitational limit, these states reduce to those constructed by
Higuchi through “group averaging”. Therefore, our procedure not only provides a systematic
justification for Higuchi’s result, it specifies how the result should be generalized away from
zero gravitational coupling.

In our analysis, we have assumed that the Cauchy slice has the topology of the sphere
Sd. From a technical perspective, there does not appear to be any immediate obstruction
to generalizing our asymptotic solution to alternate topologies but some of the interesting
physics might require us to go beyond perturbation theory. It would be interesting to examine
the effects of change in topology and to understand whether a nonperturbative analysis
reveals additional restrictions on the Hilbert space.

In an accompanying paper [15], we describe a norm on the space of solutions to the
WDW equation. The norm we propose is to simply average the square of the absolute value
of the wavefunctional over the space of all possible metrics and matter fluctuations. In [15],
we show that the states examined in section 5 yield a normalizable basis for the Hilbert space.
We also show that this prescription for the norm reduces, in the nongravitational limit, to
the group-averaged norm proposed by Higuchi but differs at finite κ.

In [15], we define and study “cosmological correlators” in a gravitational theory. We find
that these correlators display a remarkable property: knowledge of cosmological correlators
in an arbitrary small region of the late-time spatial slice suffices to fix them everywhere, even
in an arbitrary state. This result relies on the observation that all states, and not just the
Euclidean vacuum, are covariant under scale transformations and translations. This provides
a generalization of the principle of “holography of information” — previously explored in
AdS and in flat space [11, 69–74] — to asymptotically de Sitter space.

One interesting implication of our analysis is that all states in the Hilbert space share
the symmetries of the Hartle-Hawking state. The inflationary era was presumably described
by a state from this Hilbert space. On the one hand, this strengthens arguments like [75]
that are based only on symmetries. But it makes the effort to extract early-universe physics
from inflationary correlators [76] more interesting since one must contend not only with
inflationary physics but also the possible states of the system.
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A Wheeler-DeWitt expansion

In this appendix we include technical details about the asymptotic expansion of the WDW
equation and its solutions described in section 3.

A.1 Rewriting the constraints

We first explain how to rewrite the constraints in terms of intermediate variables to make the
asymptotic expansion manifest. The original Hamiltonian constraint is

H = 2κ2

g

(
πijπ

ij − 1
d− 1π

2
)
− 1

2κ2 (R− 2Λ) + Hmatter + Hint . (A.1)

We define new variables Ω, γij and χ by the relations

gij = Ω2γij , χ = Ω−∆O, det γij = 1 , (A.2)

and they can be written in terms of the original variables as

Ω = det(g)1/2d, γij = 1
det(g)1/d

gij , O = det(g)∆/2dχ . (A.3)

Their variations are then given by

δΩ = 1
2dΩgijδgij (A.4)

δγij = Ω−2
(
δgij −

1
d
gijg

kℓδgkℓ

)
(A.5)

δO = 1
2d∆Ogijδgij + Ω∆δχ . (A.6)

From the identification

δΨ = δΨ
δgij

δgij + δΨ
δχ
δχ = δΨ

δΩ δΩ + δΨ
δγij

δγij + δΨ
δO

δO , (A.7)
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we obtain the differential operators

iπij = δ

δgij
= 1

2dg
ij
(

Ω δ

δΩ + ∆O δ

δO

)
+ Ω−2

(
δ

δγij
− 1
d
γijγkℓ

δ

δγkℓ

)
, (A.8)

iπ = gij
δ

δgij
= 1

2Ω δ

δΩ + 1
2∆O δ

δO
, (A.9)

iπχ = δ

δχ
= Ω∆ δ

δO
. (A.10)

We see that what appears is the traceless differential

δij
g ≡ Ω−2

(
δ

δγij
− 1
d
γijγkℓ

δ

δγkℓ

)
. (A.11)

A useful fact is that it can be written in terms of the original metric g as

δij
g = δ

δgij
− 1
d
gijgkℓ

δ

δgkℓ
. (A.12)

The momentum then takes the form

iπij = 1
2dg

ij
(

Ω δ

δΩ + ∆O δ

δO

)
+ δij

g , (A.13)

and so the kinetic piece is

πijπ
ij − 1

d− 1π
2 = 1

4d(d− 1)

(
Ω δ

δΩ + ∆O δ

δO

)2
− gikgjℓδ

ij
g δ

kℓ
g , (A.14)

using the tracelessness condition gijδ
ij
g = 0 to cancel off-diagonal terms.

Now note that the Hamiltonian constraint, (A.1), involves a composition of two such
differential operators. This yields terms where the second differential operator acts on the
variable coefficients that appear in (A.8) and produces the divergent expression, δ(0). Such
terms can also arise if the second-order functional derivative acts on a local expression. We
discuss these terms further in appendix A.2 but we drop these terms for now. As explained
in subsection 3.2, this issue does not affect our leading-order analysis.

The Hamiltonian constraint is then

H = 2κ2

Ω2d

[
1

4d(d− 1)

(
Ω δ

δΩ + ∆O δ

δO

)2
− gikgjℓδ

ij
g δ

kℓ
g

]
− 1

2κ2 (R− 2Λ) + Hmatter + Hint

(A.15)
and for a scalar field we have

Hmatter = −1
2g

−1
(
δ

δχ

)2
+ 1

2(gij∂iχ∂jχ+m2χ2) . (A.16)

We obtain the form given in (3.15) after rewriting the second term in the bracket in terms
of γij using that

gikgjℓδ
ij
g δ

kℓ
g = γikγjℓ

(
δ

δγij
− 1
d
γijγab

δ

δγab

)(
δ

δγkℓ
− 1
d
γkℓγcd

δ

δγcd

)
=
(
γikγjℓ −

1
d
γijγkℓ

)
δ

δγij

δ

δγkℓ
. (A.17)
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A.2 Normal ordering prescription

We describe a natural choice of normal ordering prescription that gets rid of the δ(0) terms
appearing at leading order when acting with the Hamiltonian constraint on an asymptotic
wavefunctional

Ψ = eiF , F =
∫
ddx

√
g

(
−(d− 1)

κ2 + bβχ
2 + . . .

)
, (A.18)

where . . . corresponds to subleading pieces in our asymptotic expansion.
The leading contributions come from the derivatives with respect to the Weyl factor.

We can choose the normal ordering prescription

: H : = 2κ2

4d(d− 1)
1

Ωd

(
Ω δ

δΩ + ∆ : O δ

δO
:
) 1

Ωd

(
Ω δ

δΩ + ∆ : O δ

δO
:
)

(A.19)

+ Λ
κ2 − 1

2Ω2(∆−d) δ
2

δO2 + 1
2m

2Ω−2∆O2 + Hsub ,

where Hsub corresponds to terms that are subleading when acting on Ψ. For the matter
we choose the normal ordering

: O δ

δO
:= 1

2

(
O
δ

δO
+ δ

δO
O

)
= O

δ

δO
+ 1

2δ(0) . (A.20)

Recalling that √
g = Ωd, it is clear that the choice of ordering cancels the δ(0) appearing in

the leading gravity piece. At leading order in the matter sector, we have

: H : Ψ
Ψ = 2κ2

4d(d− 1)
2

Ωd

(
iΩδXd

δΩ

) ∆
2 δ(0) − ibβΩ−dδ(0) (A.21)

= − i

Ωd

∆
2 δ(0) − ibβ

Ωd
δ(0) ,

which vanishes since bβ = −∆
2 .

The contribution of second order derivatives on subleading terms in the gravitational
and matter part of the solution produces terms that compete with the remainder term
in (3.13). Therefore, these terms are important for understanding finite-time physics but
not for the asymptotic form of the solution. This is to be expected since finite-time physics
should depend on the details of the UV-completion whereas the form of the Hilbert space
can be determined more easily.

A.3 Anomaly in d = 4

For pure Einstein gravity, the term Xd−4 satisfies the equation

ΩδXd−4
δΩ = −2κ2

Ωd

(
gikgjℓ(δij

g Xd−2)(δkℓ
g Xd−2) − 1

4d(d− 1)

(
ΩδXd−2

δΩ

)2)
. (A.22)

Using that δij
g it the traceless part of the variation with respect to gij , we see that

δij
g Xd−2 = − 1

2(d− 2)κ2
√
g

(
Rij − 1

d
gijR

)
, (A.23)
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so that we have

gikgjℓ(δij
g Xd−2)(δkℓ

g Xd−2) = Ω2d

4(d− 2)2κ4

(
RijR

ij − 1
d
R2
)
. (A.24)

The second contribution takes the form

1
4d(d− 1)

(
ΩδXd−2

δΩ

)2
= 1

16d(d− 1)κ4 Ω2dR2 , (A.25)

and so the equation becomes

ΩδXd−4
δΩ = − 1

2(d− 2)2κ2
√
g

(
RijR

ij − d

4(d− 1)R
2
)
. (A.26)

In d ̸= 4, this equation can be integrated to give

Xd−4 = − 1
2(d− 2)2(d− 4)κ2

∫
ddx

√
g

(
RijR

ij − d

4(d− 1)R
2
)
, (A.27)

which matches with the holographic renormalization results, see e.g. (B.4) in [55].
In d = 4, we obtain the equation

ΩδX0
δΩ = − 1

8κ2
√
g

(
RijR

ij − 1
3R

2
)
, (A.28)

which leads to

Ω δ

δΩe
iX0 = A4e

iX0 , A4 ≡ − i

8κ2
√
g

(
RijR

ij − 1
3R

2
)
. (A.29)

We recognize the trace anomaly equation for the CFT partition function Z = eiX0 . The
anomaly can be written as

A4 = 1
16π2

√
g(−aE4 + cWabcdW

abcd) (A.30)

using the Euler density and Weyl squared curvature

E4 = RabcdR
abcd − 4RabR

ab +R2 ,

WabcdW
abcd = RabcdR

abcd − 2RabR
ab + 1

3R
2 ,

(A.31)

with the anomaly coefficients

a = c = − iπ
2

κ2 = − iπ

8GN
. (A.32)

This is, up to the factor of −i, the anomaly of a holographic CFT4 obtained using holographic
renormalization in AdS5 [49].
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A.4 Subleading matter term

The subleading matter term Yβ−2 is determined by the equation

2
√
g

(
gij

δ

δgij
+ bβχ

δ

δχ

)
Yβ−2 −

bβ

2(d− 1)Rχ
2 + 1

2g
ij∂iχ∂jχ = 0. (A.33)

An ansatz for the solution is to take the local and diffeomorphism invariant functional

Yβ−2 = c1

∫
ddx

√
gRχ2︸ ︷︷ ︸

I

+c2

∫
ddx

√
ggij∂iχ∂jχ︸ ︷︷ ︸
II

, (A.34)

where c1,2 are undetermined coefficients. These functionals I and II have been chosen due
to their Ωβ−2 = Ωd−2∆−2 scaling. Defining

δ1 = gij√
g

δ

δgij
, δ2 = χ

√
g

δ

δχ
, (A.35)

we have the formulae

δ1I = gij√
g

δ

δgij

∫
ddx

√
gRχ2 =

(
d

2 − 1
)
Rχ2 − 2(d− 1)

(
(∇χ)2 + χ□χ

)
, (A.36)

δ1II = gij√
g

δ

δgij

∫
ddx

√
ggij∂iχ∂jχ =

(
d

2 − 1
)

(∇χ)2, (A.37)

δ2I = χ
√
g

δ

δχ

∫
ddx

√
gRχ2 = 2Rχ2, (A.38)

δ2II = χ
√
g

δ

δχ

∫
ddx

√
ggij∂iχ∂jχ = −2χ□χ . (A.39)

Our equation now becomes

(δ1 + bβδ2)(c1I + c2II) = −1
4(∇χ)2 + bβ

4(d− 1)Rχ
2 . (A.40)

Requiring that the χ□χ term cancels out from the left side gives

−2(d− 1)c1 − 2bβc2 = 0 =⇒ c2 = −(d− 1)
bβ

c1 . (A.41)

Matching the coefficients of Rχ2 on both sides then gives

c1

(
d− 2

2 + 2bβ

)
= bβ

4(d− 1) . (A.42)

Solution to above equation gives c1 and the proportionality gives c2 as

c1 = bβ

2(d− 1)(d− 2 + 4bβ) , c2 = − 1
2(d− 2 + 4bβ) . (A.43)

We can see that this choice also matches the coefficient of (∇χ)2 on both sides, meaning the
system of equations was overdetermined, albeit with a solution. Substituting bβ = −∆/2
from (3.44) we have,

Yβ−2 = − 1
2(d− 2 − 2∆)

∫
ddx

√
g

(
gij∂iχ∂jχ+ ∆

2(d− 1)Rχ
2
)
. (A.44)
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B Derivation of the Ward identities

In this appendix, we derive the Ward identities for the coefficient functions. We have

Z[g, χ] = exp
[∑

m,n

κnGn,m[h, . . . h, χ, . . . χ]
]
, (B.1)

where we remind the reader of the definition of the multi-linear functionals, Gn,m that take n
tensor fields and m scalar fields as input and return a c-number. They are defined as

Gn,m[h(1), . . . h(n), χ(1), . . . χ(m)] (B.2)

≡ 1
n!m!

∫
ddy1 . . . d

dynd
dz1 . . . d

dzmGi⃗⃗j
n,m(y⃗, z⃗)h(1)

i1j1
(y1) . . . h(n)

injn
(yn)χ(1)(z1) . . . χ(m)(zm) ,

so that

Gi⃗⃗j
n,m(y⃗, z⃗) = δn

δhi1j1(y1) . . . δhinjn(yn)
δm

δχ(z1) . . . χ(zm)Gn,m[h, . . . , h, χ, . . . , χ] . (B.3)

Under a diffeomorphism and Weyl transformation, we have

δ(ξ,φ)gij = ∇iξj + ∇jξi + 2φgij , δ(ξ,φ)χ = ξi∂iχ− ∆φχ (B.4)

so that hij transforms as

κδhij = κHij + Iij , (B.5)

where
Hij = Lξhij + 2φhij , Iij = ∂iξ

kδjk + ∂jξ
kδik + 2φδij , (B.6)

and the definition of the Lie derivative gives

Lξhij = ξk∂khij + ∂iξ
khkj + ∂jξ

khik . (B.7)

We then have the variation

δ(ξ,φ) logZ =
∑
n,m

κn(δ(ξ,φ) logZ)n,m , (B.8)

where we have collected terms according to the expansion in κ:

(δ(ξ,φ) logZ)n,m = (n+ 1)Gn+1,m[I, h, . . . h, χ, . . . χ] + nGn,m[H,h, . . . h, χ, . . . χ] (B.9)
+mGn,m[h, . . . h, δχ, . . . χ] .

The Weyl and diffeomorphism invariance can be summarized by the identity

δ(ξ,φ) logZ =
∫
ddxφ(x)Ad(x) . (B.10)

That this is equivalent to the equations (4.1) can be proven by taking the functional derivatives
with respect to φ(x) and ξk(x) . This follows from the fact that

δ

δφ(x)δ(ξ,φ) logZ =
(

2gij
δ

δgij
− ∆χ δ

δχ

)
logZ , (B.11)

δ

δξj(x)δ(ξ,φ) logZ =
(
−2√g∇i

1
√
g

δ

δgij
+ gij∂iχ

δ

δχ

)
logZ .
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B.1 Trace identity

The trace identity is obtained by considering only a Weyl transformation. Under this we have

Hij = 2φhij , Iij = 2φδij , δφχ = −∆φχ . (B.12)

As a result, we get

(δφ logZ)n,m = 2(n+ 1)Gn+1,m[φδ, h, . . . , h, χ, . . . , χ] + 2nGn,m[φh, h, . . . , h, χ, . . . , χ]
−m∆Gn,m[h, . . . , h, φχ, χ, . . . , χ] . (B.13)

We can expand the anomaly in the κ to get

Ad(x) =
∑

n

κn

n!

∫
ddy1 . . . d

dyn Ai⃗⃗j
d (x, y⃗)hi1j1(y1) . . . hinjn(yn) . (B.14)

This defines the coefficients Ai⃗⃗j
d (x, y⃗) which can be recovered as the functional derivative

κnAi⃗⃗j
d (x, y⃗) = δn

δhi1j1(y1) . . . δhinjn(yn)Ad(x) . (B.15)

As Ad(x) is local, these coefficients are ultralocal, in the sense that

Ai⃗⃗j
d (x, y⃗) = Ai⃗⃗j

d (x)
n∏

a=1
δ(d)(ya − x) , (B.16)

where Ai⃗⃗j
d (x) are the coefficients appearing in expanding Ad(x) in the metric.

The Weyl transformation equation then becomes

(δφ logZ)n,m = δm,0
1
n!

∫
ddxddy1 . . . d

dyn φ(x)Ai⃗⃗j
d (x, y⃗)hi1j1(y1) . . . hinjn(yn) . (B.17)

To obtain the relations satisfied by the coefficient functions Gi⃗⃗j
n,m(y⃗, z⃗), we take n functional

derivatives with respect to the metric and m functional derivatives with respect to the matter.
For the l.h.s., we get

δn

δhi1j1(y1) . . . δhinjn(yn)
δm

δχ(z1) . . . χ(zm)(δφ logZ)n,m = 2
∫
ddxφ(x)δijG

ij⃗i⃗j
n+1,m(x, y⃗, z⃗)

+ [2(φ(y1) + · · · + φ(yn)) − ∆(φ(z1) + · · · + φ(zm))]Gi⃗⃗j
n,m(y⃗, z⃗) . (B.18)

The equality with the r.h.s. implies that

δn

δhi1j1(y1) . . . δhinjn(yn)
δm

δχ(z1) . . . χ(zm)(δφ logZ)n,m = δm,0

∫
ddxφ(x)Ai⃗⃗j

d (x, y⃗) . (B.19)

Equating these two expressions and taking the functional derivative with respect to φ(x)
gives the trace identity

2δijG
ij⃗i⃗j
n+1,m(x, y⃗, z⃗) =

(
−2

n∑
a=1

δ(d)(x− ya) + ∆
m∑

b=1
δ(d)(x− zb)

)
Gi⃗⃗j

n,m(y⃗, z⃗) + δm,0Ai⃗⃗j
d (x, y⃗) .

(B.20)

– 38 –



J
H
E
P
0
1
(
2
0
2
4
)
1
3
2

B.2 Divergence identity

Under a diffeomorphism we have

Hij = Lξhij = ξk∂khij + ∂iξ
khkj + ∂jξ

khik , (B.21)
Iij = Lξδij = ∂iξ

kδjk + ∂jξ
kδki , (B.22)

δξχ = Lξχ = ξk∂kχ . (B.23)

The Ward identity is

δξ logZ = 0 , (B.24)

which we expand as

0 = (δξ logZ)n,m = (n+ 1)Gn+1,m[Lξδ, h, . . . , h, χ, . . . , χ] + nGn,m[Lξh, h, . . . , h, χ, . . . , χ]
+mGn,m[h, . . . , h,Lξχ, χ, . . . , χ] . (B.25)

As above we take functional derivatives and obtain

0 = δn

δhi1j1(y1) . . . δhinjn(yn)
δm

δχ(z1) . . . χ(zm)(δξ logZ)n,m (B.26)

= 2
∫
ddx δjk∂iξ

k(x)Gij⃗i⃗j
n+1,m(x, y⃗, z⃗) −

m∑
b=1

∂

∂zk
b

(ξk(zb)Gi⃗⃗j
n,m(y⃗, z⃗))

+
n∑

a=1

[
− ∂

∂yk
a

(ξk(ya)Gi⃗⃗j
n,m(y⃗, z⃗)) + (δia

i′a
∂j′aξ

ja(ya) + δja

j′a
∂i′aξ

ia(ya))Gi⃗′j⃗′
n,m(y⃗, z⃗)

]
,

where in the bracketed expression, we use the notation

(⃗i′⃗j′) = (i1, j1 . . . ia−1, ja−1, i
′
a, j

′
a, ia+1, ja+1 . . . in, jn) (B.27)

for the current a in the sum. We now take the functional derivative with respect to ξk(x) which
can be done by simply replacing ξℓ(x′) by δℓ

kδ
(d)(x−x′). This leads to the divergence identity

2δjk∂iG
ij⃗i⃗j
n+1,m(x, y⃗, z⃗) =−

m∑
b=1

∂

∂zk
b

[
δ(d)(x−zb)Gi⃗⃗j

n,m(y⃗, z⃗)
]

(B.28)

+
n∑

a=1

[
− ∂

∂yk
a

[
δ(d)(x−ya)Gi⃗⃗j

n,m(y⃗, z⃗)
]
+Gi⃗′j⃗′

n,m(y⃗, z⃗)
(
δia

i′a
δja

k

∂

∂yj′a
+δja

j′a
δia

k

∂

∂yi′a

)
δ(d)(x−ya)

]
.

B.3 Conformal symmetry

The conformal symmetry is obtained by combining a diffeomorphism ξ and a Weyl trans-
formation with φ = −∂kξ

k/d so that

Iij = ∂iξ
kδjk + ∂jξ

kδik − 2
d
δij∂kξ

k = 0 . (B.29)

This is achieved by taking ξ to be a conformal Killing vector on the sphere. We then have

δhij = Hij = ξk∂khij + ∂iξ
khkj + ∂jξ

khik − 2
d
∂kξ

khij , δχ = ξi∂iχ+ ∆
d
∂kξ

kχ . (B.30)
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The variation of logZ doesn’t mix different terms in the expansion as I = 0. So we get

(δ logZ)n,m = nGn,m[H,h, . . . h, χ, . . . χ] +mGn,m[h, . . . h, δχ, . . . χ] , (B.31)

and the constraint gives

(δ logZ)n,m = −δm,0
1
dn!

∫
ddxddy1 . . . d

dyn ∂kξ
k(x)Ai⃗⃗j

d (x, y⃗)hi1j1(y1) . . . hinjn(yn) . (B.32)

Taking successive functional derivatives gives
δn

δhi1j1(y1)...δhinjn(yn)
δm

δχ(z1)...χ(zm) (δ logZ)n,m

=
n∑

a=1

[(
δia

i′
a
∂j′

a
ξja(ya)+δja

j′
a
∂i′

a
ξia(ya)

)
Gi⃗′ j⃗′

n,m(y⃗,z⃗)− ∂

∂yk
a

[
ξk(ya)Gi⃗⃗j

n,m(y⃗,z⃗)
]
− 2
d
∂kξ

k(ya)Gi⃗⃗j
n,m(y⃗,z⃗)

]

+
m∑

b=1

[
− ∂

∂zk
b

[
ξk(zb)Gi⃗⃗j

n,m(y⃗,z⃗)
]
+ ∆
d
∂kξ

k(zb)Gi⃗⃗j
n,m(y⃗,z⃗)

]
,

=
n∑

a=1

[
−ξk(ya) ∂

∂yk
a

Gi⃗⃗j
n,m(y⃗,z⃗)− 2+d

d
∂kξ

k(ya)Gi⃗⃗j
n,m(y⃗,z⃗)+

(
δia

i′
a
∂j′

a
ξja(ya)+δja

j′
a
∂i′

a
ξia(ya)

)
Gi⃗′ j⃗′

n,m(y⃗,z⃗)
]

+
m∑

b=1

[
−ξk(zb) ∂

∂yk
b

Gi⃗⃗j
n,m(y⃗,z⃗)+ ∆−d

d
∂kξ

k(zb)Gi⃗⃗j
n,m(y⃗,z⃗)

]
. (B.33)

Ignoring the anomaly which is ultralocal, we get the conformal Ward identity

0=
n∑

a=1

[
−ξk(ya) ∂

∂yk
a

Gi⃗⃗j
n,m(y⃗,z⃗)− 2+d

d
∂kξ

k(ya)Gi⃗⃗j
n,m(y⃗,z⃗)+

(
δia

i′
a
∂j′

a
ξja(ya)+δja

j′
a
∂i′

a
ξia(ya)

)
Gi⃗′ j⃗′

n,m(y⃗,z⃗)
]

+
m∑

b=1

[
−ξk(zb) ∂

∂zk
b

Gi⃗⃗j
n,m(y⃗,z⃗)+ ∆−d

d
∂kξ

k(zb)Gi⃗⃗j
n,m(y⃗,z⃗)

]
(B.34)

Under a finite conformal transformation x → x′, the Jacobian is

J i
i′(x) = ∂x′i

∂xi′
, (B.35)

and the scale factor is defined as

Λ(x) = |det J(x)|−1/d . (B.36)

The rotation matrix is defined as

Ri
i′(x) = Λ(x)J i

i′(x) , (B.37)

so that it satisfies detR = 1.
The finite conformal transformation takes the form

Gi⃗⃗j
n,m(y⃗′, z⃗′) =

( n∏
a=1

Ria
i′a

(ya)Rja

j′a
(ya)Λ(ya)d

)( m∏
b=1

Λ(zb)d−∆
)
Gi⃗′j⃗′

n,m(y⃗, z⃗) . (B.38)

We can check that this is the integrated version of the conformal Ward identity by expanding
infinitesimally. Under an infinitesimal conformal transformation, we have

x′a = xa+ξ(xa)+. . . , J i
i′(x) = δi

i′ +∂i′ξ
i(x)+. . . , Λ(x) = 1− 1

d
∂kξ

k(x)+. . . , (B.39)
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so that we get

Gi⃗⃗j
n,m(y⃗′, z⃗′) =

n∏
a=1

(δia
i′a

+ ∂i′aξ
ia(ya))(δja

j′a
+ ∂j′aξ

ja(ya))
(

1 − 2 + d

d
∂kξ

k(ya)
)

(B.40)

×
m∏

b=1

(
1 + ∆ − d

d
∂kξ

k(zb)
)
Gi⃗′j⃗′

n,m(y⃗, z⃗) ,

which reproduces at linear order the conformal Ward identity (B.34). This shows that (B.38)
is the finite conformal transformation properties of the coefficient functions.

We note that the coefficient functions have the same symmetries of a CFT correlator:

Gi⃗⃗j
n,m(y⃗, z⃗) ∼ ⟨T i1j1(y1) . . . T injn(yn)ϕ(z1) . . . ϕ(zm)⟩CFT , (B.41)

where ϕ is an operator of dimension d− ∆ and T ij is an operator of spin 2 and dimension d.
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Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
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