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1 Introduction

In string theory, the parameters are given by vacuum expectation values of massless scalar
fields called moduli, and these vevs parametrize manifolds called moduli spaces of string
vacua. Charting and studying the properties of these moduli spaces is of great importance
in string phenomenology and the Swampland Program [1–4].

These moduli spaces have natural metrics. To see this, suppose that the coordinates
of a moduli space are given by the vacuum expectation values of some set of moduli ϕi,
indexed by i. Then1 the metric on this moduli space is defined by the kinetic matrix Gij(ϕ)
appearing in the low-energy effective action,

S = 1
2κ2

d

∫
ddx

√
−g

(
R

2 − 1
2Gij(ϕ)∂µϕi∂µϕj + . . .

)
. (1.1)

With such metrics, significant and well studied conjectures have been made about moduli
spaces and the associated spectra. In particular, the seminal paper [5] by Ooguri and Vafa

1In this paper, I will consider only the cases where the moduli have no potentials.
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proposed several influential conjectures. For instance, given any point ϕ1 in a moduli space
and any positive real number T , Ooguri and Vafa conjectured that one can find a point
ϕ2 such that the distance between ϕ1 and ϕ2 is greater than T . Building on this, these
authors then proposed the following conjecture constraining the spectra of asymptotically
far out regions of moduli spaces:

The Distance Conjecture. Let M be the moduli space of a quantum gravity theory in
d ≥ 4 dimensions, parametrized by vacuum expectation values of massless scalar fields. Fixing
a point ϕ1 ∈ M, the theory at a point ϕ2 ∈ M sufficiently far away in the moduli space has
an infinite tower of light particles, with characteristic mass in Planck units (κ2

d = M2−d
Pl;d = 1)

scaling as
m(ϕ2) ∼ exp(−α ||ϕ1, ϕ2||) as ||ϕ1, ϕ2|| → ∞, (1.2)

where ||ϕ1, ϕ2|| is the length of the shortest geodesic in M between ϕ1 and ϕ2, and α > 0 is
some order-one number.

A primary aim of this current paper is to connect the Distance Conjecture with local,
rather than asymptotic, statements about moduli spaces. As will be shown below, this can
be achieved by introducing two new conjectures about geodesics and towers of particles that
together imply a sharpened version of the Distance Conjecture as well as the Tower Scalar
Weak Gravity Conjecture (defined later in the introduction), which is a local statement
about tangent spaces of moduli space.

The Distance Conjecture has been tested, explored, and refined in a variety of contexts
and ways (see, e.g., [6–22]). In [23], a sharp lower bound on the exponential rate for the
lightest tower in the Distance Conjecture was first proposed, resulting in the Sharpened
Distance Conjecture:

The Sharpened Distance Conjecture. The Distance Conjecture remains true with the
added requirement that

α ≥ 1√
d − 2

, (1.3)

where d is the spacetime dimension.

The Sharpened Distance Conjecture has been tested in various contexts [23, 24] and will
be the primary focus of this paper.

The Sharpened Distance Conjecture is closely connected to, and perhaps implied by, the
Emergent String Conjecture proposed in [25, 26]. The Emergent String Conjecture states that
infinite distance limits are either decompactification limits or limits in which fundamental
strings become tensionless, and this has been tested in a variety of contexts [26–33]. The
Sharpened Distance Conjecture seems related to the Emergent String Conjecture because,
in tensionless string limits, the string oscillators of perturbative strings have α’s satisfying
αosc = 1/

√
d − 2, whereas in all studied cases thus far decompactification limits have KK-

modes with coefficients αKK ≥ 1/
√

d − 2. However, for KK modes, it is not yet clear whether
αKK ≥ 1/

√
d − 2 is always true. For typical toroidal decompactifications from d-dimensions
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to D = d + n dimensions, the formula for the KK-modes is

αKK =
√

D − 2
n(d − 2) ≥ 1√

d − 2
. (often) (1.4)

A general formula for KK modes when decompactification to a running solution occurs is not
currently known, and there are examples of decompactification [24] where the formula (1.4)
does not apply. So, it is not clear whether the Sharpened Distance Conjecture follows from
the Emergent String Conjecture, unless one can be sure that αKK ≥ 1/

√
d − 2. It is also not

fully clear what happens in emergent string limits that are not strictly perturbative.
Let us turn our attention to scalar charges, which are sections of the tangent bundles

of moduli spaces. For two particles of mass m1 and m2 separated by a long distance, the
1/rd−2 component of the long-range force between them is proportional to [34–36]

F12 = fABQ1AQ2B − Gabµ1aµ2b −
d − 3
d − 2κ2

dm1m2, (1.5)

where Qi,A is the charge of the ith particle under the Ath U(1) gauge field, fAB is the inverse
gauge kinetic matrix, Gab is the inverse scalar kinetic matrix, and µia is a-th component of
the scalar charge of the ith particle. The scalar charge for a particle of moduli-dependent
mass m(ϕ) is defined as the negative gradient (with respect to the moduli) of the mass
of that particle,

µ⃗ ≡ −∇m. (1.6)

The reason that µ⃗ is called scalar charge is because it appears in the long range force
formula (1.5) in a way that is analogous to the appearance of the electric charge. However,
the word “charge” should not be taken to imply conserved, because scalar charges are not
conserved, unlike electric and magnetic charges.

It is convenient to rescale scalar charges and introduce “α-vectors”:

Definition 1 (Scalar-charge-to-mass ratio (α-vector)). Consider a particle with moduli-
dependent mass m(ϕ). Then the scalar-charge-to-mass ratio, or “α-vector”, for this
particle is defined as

α⃗ = −∇ log m, (1.7)

where the gradient is with respect to the moduli and the Planck mass is set to one.

These α-vectors allow for a local conjecture about the tangent bundle of moduli space
called the Tower Scalar Weak Gravity Conjecture (Tower SWGC) [23, 24, 37]:

Tower Scalar Weak Gravity Conjecture (Tower SWGC). Consider an arbitrary point
ϕ in the moduli space M. Suppose that there exists a set of towers of particles at that point.
The closure of the convex hull generated by the set of α-vectors for these towers contains the
ball of radius 1/

√
d − 2, where d is the number of spacetime dimensions.
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The Scalar Weak Gravity Conjecture (SWGC) has appeared in a variety of contexts and
has meant different things in different contexts, but the above version is the version I will
use in this paper.2

The version of the Tower SWGC used in this paper is subtly but importantly different from
the version stated in [23, 24]. The version in [23, 24] states that the convex hull of α-vectors
contains the ball of radius 1/

√
d − 2, but the correct version of the Tower SWGC holds that

the convex hull of the closure of the set of α-vectors that contains the ball of radius 1/
√

d − 2.
Sometimes there is an uncountably infinite set of points on the boundary of the ball of
radius 1/

√
d − 2 that are not in the convex hull of α-vectors. This phenomenon occurs in, for

instance, IIB string theory in 10d and in 9d, and this will play an important role in sharpening
the connections between the Tower SWGC, geodesics, and the Distance Conjecture.

The Tower SWGC has been connected3 with the Distance Conjecture [9, 19, 23, 24, 37,
38, 46]. But, as will be demonstrated in this paper, such a relationship is complicated. This
is because the Distance Conjecture requires that α-vectors align with infinite distance limits,
but α-vectors can behave in complicated ways. As demonstrated in [23, 24], α-vectors often
“slide” (i.e., have moduli-dependent lengths and directions). Even worse, the existence of
certain towers can be moduli-dependent.

The main focus of this paper is to illustrate how, in maximal supergravity, the α-vectors
conspire with geodesics in ways that imply both the Tower SWGC and the Sharpened
Distance Conjecture. I find in examples that the following two new conjectures hold and,
when combined, imply both the Sharpened Distance Conjecture and the Tower SWGC. I
propose the following two new conjectures for maximal supergravity theories (and possibly
more theories).

New Conjecture 1 (Dense Direction Conjecture). Consider an arbitrary point ϕ in the
moduli space and all geodesics passing through ϕ that go to infinite distance limits. The set of
directions of these geodesics at ϕ is dense in the set of all directions in the tangent space at ϕ.

New Conjecture 2 (Tower Alignment Conjecture). Consider an arbitrary infinite distance
geodesic γ. Then there exists a tower with an α-vector such that its projection along the
geodesic satisfies, at all points along the geodesic,

α∥ ≥ 1/
√

d − 2. (1.8)

I also discuss a possible weakening of this conjecture where the towers only are required to
exist and align when their masses are light enough, perhaps being below the species scale.

These two new conjectures combine to imply the Tower SWGC and the Sharpened
Distance Conjecture. In this paper, I provide tests of these conjectures where these two new
conjectures just barely manage to pass. In particular, I highlight examples where α-vectors
of length 1/

√
d − 2 just barely manage to align everywhere with non-straight geodesics in

curved spaces. Such examples provide nontrivial tests of these conjectures.
2Originally, several papers investigated inequalities involving scalar forces (see, e.g., [38–45]). In [37], the

authors introduced a convex hull version of the SWGC, but without fully specifying the region enclosed in the
convex hulls. Eventually in [23], it was argued that the convex hull of α-vectors contains a ball centered at the
origin with radius at least 1/

√
d − 2.

3In section 4 of this paper, I propose several refinements of the Convex Hull Distance Conjecture of [37].
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In addition to the above two conjectures, I also discuss how the Tower SWGC motivates
the following new conjecture about heavy towers appearing in infinite distance limits:

New Conjecture 3 (Heavy Towers Conjecture). Fixing a point ϕ1 in the moduli space, the
theory at a sufficiently far away point ϕ2 in the moduli space has an infinite tower of heavy
particles with characteristic mass scaling as

m ∼ e|α|||ϕ1,ϕ2||, as ||ϕ1, ϕ2|| → ∞, (1.9)

where ||ϕ1, ϕ2|| is the length of the shortest geodesic in M between ϕ1 and ϕ2, and |α| ≥
1/

√
d − 2.

This proposal implies that under any infinite-distance limit, there exists a tower that
becomes exponentially heavy. While such towers in some contexts may be anticipated by
duality, this proposal places a precise lower bound on the exponential rate of the heavy
towers. Heavy towers have also been observed in [47].

In this paper, I perform explicit tests of these conjectures in 10d and 9d maximal
supergravity cases. For 16 supercharge cases in 9d, I perform limited, but nontrivial, tests
of these conjectures in asymptotic regions of the moduli space.

One might worry about the Tower SWGC when the necessary towers are not BPS,
because these non-BPS towers may be unstable when heavy, or ill-defined in non-perturbative
regimes. This is not a problem when considering M-theory reduced on T 2 through T 7 (and
possibly also T 8) [24] since in these cases the conjecture is satisfied by considering only 1/2
BPS particles. But, the Tower SWGC is confronted with this issue in 10d IIA and IIB
string theory, since the oscillator modes of the strings are necessary for the Tower SWGC
to hold in strong-coupling regimes.

To deal with the non-BPS states in 10d maximal supergravity cases, it is interesting
to consider a closely-related stringy alternative to the Tower SWGC that does not need to
involve heavy non-BPS towers in strongly coupled regimes. As will be discussed below, I
will use this alternative as a proxy for testing the regular Tower SWGC in 10d maximal
supergravity examples. Before I define this Stringy SWGC, I first generalize the notion of
scalar-charge-to-mass ratios, or α-vectors, from particles to branes.

Definition 2 (Scalar-charge-to-tension ratio for branes (α-vector)). Consider a p-brane with
moduli-dependent tension T (ϕ). Then the scalar-charge-to-tension ratio, or “α-vector”, for
this brane is defined as

α⃗ = − 1
p + 1∇ log T, (1.10)

where the gradient is with respect to the moduli and the Planck mass is set to one.

Importantly, this definition does not require weak coupling, and so it makes sense in
strong coupling regimes, where BPS branes may be present but oscillator modes might be
difficult to study. When p = 0, this definition describes an α-vector for a particle. When
p = 1, this definition produces the α-vector for a string oscillator tower if the masses scale
with the square-root of the string tension, as is the case for fundamental strings in low-tension
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limits. But, such oscillators are not required for this generalized definition of α-vectors. The
power of this definition is that it allows us to work with α-vectors for strings (which are often
well-defined and BPS objects), avoids speculation about nonperturbative properties of string
oscillators, and still constrains the α-vectors for these oscillators in tensionless limits.4

In this paper, I show that the following stringy version of the SWGC holds in the
maximal supergravity examples examined in this paper.

New Conjecture 4 (Stringy Scalar Weak Gravity Conjecture (Stringy SWGC)). Consider
an arbitrary point ϕ in the moduli space M. Stringy Scalar Weak Gravity Conjecture requires
that the following two conditions are met at ϕ.

1. There exists a set of towers of particles and/or there also exists some set of fundamental
strings.

2. The completion of the convex hull generated by the set of α-vectors for these towers
and strings contains the ball of radius 1/

√
d − 2, where d is the number of spacetime

dimensions.

In this paper, I discuss evidence for this Stringy SWGC in maximal supergravity examples,
and I also discuss tests of it in half-maximal supergravity examples.

The Stringy SWGC and the Tower SWGC are closely related, but the Stringy SWGC
does not necessarily imply the Tower SWGC. In the 10d maximal supergravity examples in
this paper, I will use tests of the Stringy SWGC as substitutes for directly testing the Tower
SWGC. This is justified in weak-coupling regimes, where string oscillation tower masses scale
with the square roots of the tensions of the strings. In these regimes the Stringy SWGC
implies the Tower SWGC. However, this approach is subtle in strong coupling regimes. I leave
it to future work to see to what extent the Stringy SWGC can tell us about the Tower SWGC.

We can explore direct connections between the Stringy (and Tower) SWGC and the
Distance Conjecture with the following example. Suppose one is traveling an infinite distance
limit given by a unit-speed geodesic γ(t), and suppose that the α-vector for a string or particle
tower satisfies everywhere on that geodesic (by the Tower Alignment Conjecture)

α⃗ · γ̇ ≥ 1√
d − 2

. (1.11)

Then this string, or tower, gets a tension or mass that scales asymptotically with the distance

Tp ≲ e
− p+1√

d−2 t
, (1.12)

with p = 0 for the particle case and p = 1 for the string case. For the case where (1.11) is
satisfied by a particle tower, the Sharpened Distance Conjecture is satisfied in this limit since
the equation (1.12) is precisely the exponential behavior required by the Sharpened Distance
Conjecture.5 Meanwhile, for the case where (1.11) is satisfied by a fundamental string, we

4In this paper, I consider only “fundamental strings” that oscillate with towers in low tension limits, and I
do not consider cases where low-tension strings do not oscillate with towers. For more on this distinction,
see [48].

5Note that, if we further require in the Stringy SWGC that these towers have KK-like tower spacing
mn ∼ n, then these towers resemble KK towers of decompactification limits, thus resembling the predictions
of the Emergent String Conjecture.
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obtain a weak-coupling limit of the string as the string becomes tensionless. In this low-tension
regime, there is a tower of string oscillators that scale with the square root of the tension. So,
in this regime, equation (1.12) tells us that the tower of string oscillators gives us an emergent
string limit. Thus, the Stringy SWGC can imply the Sharpened Distance Conjecture, when
accompanied by certain additional assumptions that this paper makes precise. This example
demonstrates the essence of what happens in the examples considered in this paper. For non-
flat moduli spaces, this phenomenon requires highly-nontrivial alignment properties between
α-vectors and infinite-distance geodesics, as formalized by the Tower Alignment Conjecture.

It should be emphasized that neither the Stringy SWGC nor the Tower SWGC implies
the Distance Conjecture without additional assumptions. The perspective proposed by
this paper is that both the Tower SWGC and Sharpened Distance Conjecture can be
viewed as consequences of the Tower Alignment and Dense Direction Conjectures being
simultaneously true. It is these two new conjectures that precisely connect the Sharpened
Distance Conjecture and Tower SWGC.

To summarize, the order of logic in this paper is as follows. The Sharpened Distance
Conjecture and Tower SWGC do not imply each other. To deal with this, I propose a stronger
version of the Sharpened Distance Conjecture, which is the Tower Alignment Conjecture,
which extends into the interior of the moduli space. However, this does not yet imply the
Tower SWGC. However, I then propose a conjecture about the geometry of moduli space, the
Dense Geodesics Conjecture. With the Dense Geodesics conjecture, then the Tower Alignment
Conjecture implies the Tower SWGC. I also discuss various related possible conjectures, as
well as variations (both weaker and stronger) of the Tower Alignment Conjecture.

An outline of this paper is as follows. In section 2, I examine how in special examples the
Tower SWGC implies the Sharpened Distance Conjecture and the Heavy Towers Conjecture.
This involves examining a toy example of the Tower SWGC where the α-vectors are moduli
independent. In section 3, I discuss how in general the Tower SWGC does not imply the
Sharpened Distance Conjecture, as can when α-vectors are moduli dependent and slide. In
section 4 I propose new conjectures. In particular, when the Tower Alignment and Dense
Direction Conjectures are both true, the Sharpened Distance Conjecture and Tower SWGC
both follow as consequences. In sections 5 and 6, I show6 how these conjectures are satisfied in
10d and 9d theories with maximal supergravity, and in section 7 I examine these conjectures
in 9d theories with half-maximal supergravity. I conclude in section 8 with a summary
and list of future directions.

2 How the Tower SWGC sometimes implies the Distance Conjecture

In this section, I discuss toy examples where the Stringy SWGC, and Tower SWGC, imply
the Sharpened Distance Conjecture. However, in section 3, I show that the Tower SWGC
does not imply the Sharpened Distance Conjecture in general.

A simple first example to consider is IIA string theory in 10d. Here, the moduli space is
one dimensional, and the Stringy SWGC is satisfied by D0-branes and fundamental strings.

6For the 10d case, I test the Stringy SWGC as a proxy for the Tower SWGC.
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αD0αstring

1

d - 2
-

1

d - 2

Figure 1. α-vectors of fundamental strings and D0-branes in 10d IIA string theory. The blue dashes
indicate the ball of radius 1/

√
d − 2 centered at the origin.

These states have α-vectors satisfying

αD0 =
√

9
8 , αstring = − 1√

8
. (2.1)

These are depicted in figure 1.
We can use the Stringy SWGC to imply the Sharpened Distance Conjecture. Consider

a point ϕ1 in the moduli space. At ϕ1, we have that the D0-branes have a tower with
characteristic mass mD0(ϕ1) and we have that the fundamental strings have some tension
Tstr(ϕ1). Consider a different point ϕ2. We can use the α-vectors of the D0-branes and
strings to relate the masses and tensions at ϕ2 with the masses and tensions at ϕ1. For the
D0-branes and strings, these relations are given by

log mD0(ϕ2)
mD0(ϕ1) =

∫ ϕ2

ϕ1

d log mD0
dϕ

dϕ = −αD0 × (ϕ2 − ϕ1), (2.2)

log Tstring(ϕ2)
Tstring(ϕ1) =

∫ ϕ2

ϕ1

d log Tstring
dϕ

dϕ = −2αstring × (ϕ2 − ϕ1). (2.3)

So,

mD0(ϕ2) = mD0(ϕ1)e−
√

9
8 (ϕ2−ϕ1), Tstring(ϕ2) = Tstring(ϕ1)e

2√
8

(ϕ2−ϕ1)
. (2.4)

In this case, the Sharpened Distance Conjecture follows from the Stringy SWGC. To see this,
suppose we take the ϕ2 ≫ ϕ1 limit. Then the D0-brane masses become exponentially light,
providing a decompactification KK tower. If we instead take the ϕ2 ≪ ϕ1 limit, the string
becomes exponentially weakly coupled, and we get an exponentially light tower of string
oscillation modes satisfying the Sharpened Distance Conjecture bound.

One might hope that the Tower SWGC, and not just the Stringy SWGC, applies here
and that it also implies the Sharpened Distance Conjecture. However, the Tower SWGC
holding everywhere in this example requires string oscillators in strongly-coupled regimes.
This is subtle since such oscillators are non-BPS. Nevertheless, let us momentarily suppose
such towers exist and that their dependence on the moduli is given by

mosc ∼
√

Tstring. (2.5)

With these assumptions, the Tower SWGC is satisfied everywhere in moduli space, since the
α-vectors of these oscillators and the D0 branes generate the requisite convex hull. Also,
with these assumptions, the Tower SWGC implies the Sharpened Distance Conjecture, due

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
1
2
2

to an argument similar to the argument above where the Stringy SWGC was used to imply
the Sharpened Distance Conjecture.

There is another interesting consequence from assuming (2.5), and hence the Tower
SWGC, in this example. If we go in strong coupling regimes, the oscillators become heavy.
If we go in weak coupling regimes, the D0 branes become heavy. More precisely, the Tower
SWGC suggests that every infinite distance limit is not only accompanied with a tower of
light particles, but also with a tower of heavy particles that become exponentially heavy,
with masses scaling with

m(ϕ) ∼ eα||ϕ1,ϕ2||, (2.6)

where α ≥ 1/
√

d − 2.
Before moving on to higher dimensional moduli spaces, I re-emphasize that in strong-

coupling regimes, it is not clear whether (2.5) holds, and thus whether the Tower SWGC
follows from the Stringy SWGC. This will be the subject of future work. In this paper, we will
content ourselves with sometimes using only the Stringy SWGC and not the Tower SWGC,
as we have done in this 10d IIA string theory example. This approach will again have to
be taken in the 10d IIB string theory example. Fortunately, in the 9d, 8d, 7d, 6d, 5d, 4d
(and possibly 3d) maximal supergravity cases, the Tower SWGC is actually satisfied by BPS
particles [23]. My 9d maximal supergravity analysis in section 6, as well as my analysis in 9d
half-maximal supergravity in section 7, will not rely on the Stringy SWGC.

Let us next consider higher-dimensional moduli spaces. It is tempting to extrapolate the
above reasoning and claim that the Tower SWGC implies the Sharpened Distance Conjecture
for such moduli spaces, but this is not true without further assumptions. For instance, the
moduli space of M-theory on T 2 is three-dimensional and the α-vectors depend on the moduli
and slide, invalidating the above approach taken for the 10d IIA case.

Nevertheless, the situation simplifies considerably if we consider only the radion-radion
slice of the moduli space of M-theory on a two-torus, as depicted in figure 2. In this example,
the α-vectors on the vertices of this triangle are from 1/2 BPS particles and do not change as
we move around the radion-radion slice of moduli space. If one travels in any infinite distance
limit in radion-radion moduli space, the Tower SWGC implies the Sharpened Distance
Conjecture. In this example, one must be careful to only move in the radion-radion plane
and not vary the axion — that is, one must be careful to change the radii of the cycles
of the torus without changing the shape of the torus. As we will see later, the 1/2 BPS
states in this example can have moduli-dependent α-vectors if we change the angle between
the two torus cycles.

The 10d IIA example and the radion-radion slice of M-theory on T 2 inspire a toy version
of the Tower SWGC that implies the Sharpened Distance Conjecture. Consider the following
toy version of the Tower SWGC where the α-vectors are held constant and do not slide
as one moves around the moduli space:

Toy Conjecture 1 (Non-Sliding Tower SWGC). The Tower SWGC is satisfied for a
moduli space with globally flat coordinates and the α-vectors that generate the convex hull are
moduli-independent.

– 9 –
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αKK

αKK αKK

αstring αstring

αρ1

αρ2

Figure 2. Radion-radion components of M-theory on T 2.

This toy example is interesting because it applies to some examples, implies the Sharpened
Distance Conjecture, and also implies the existence of heavy towers in asymptotic limits
in the moduli space.

Let us see explicitly how this toy conjecture implies the Sharpened Distance Conjecture.
Suppose we have two points ϕ1 and ϕ2, and suppose that γ is a geodesic connecting these
points. Then the non-sliding Tower SWGC implies that there is a particle tower with an
α-vector such that its projection along the geodesic γ satisfies α∥ ≥ 1/

√
d − 2. If this tower

has a characteristic mass m1 at the point ϕ1, then the characteristic mass at the point ϕ2
is bounded by the characteristic mass at ϕ1 by

log m2
m1

=
∫ ϕ2

ϕ1
(∇ log m) · dl = −

∫ ϕ2

ϕ1
α∥dl ≤ − 1√

d − 2
||ϕ2, ϕ1||,

⇒ m2 ≤ m1e
− 1√

d−2 ||ϕ2,ϕ1||,

(2.7)

thus implying the Sharpened Distance Conjecture in this geodesic. If this tower has a
tower spacing of a KK tower, i.e. mn ∼ n, then this tower behaves like a KK tower in a
decompactification limit.

One can also consider a similar toy version of the Stringy SWGC:

Toy Conjecture 2 (Non-Sliding Stringy SWGC). The Stringy SWGC is satisfied for a
moduli space with globally flat coordinates and the α-vectors that generate the convex hull are
moduli-independent.

The Sharpened Distance Conjecture is also a consequence of the Non-Sliding Stringy
SWGC. For the case where there is a particle tower along the geodesic, the argument above
from the Non-Sliding Tower SWGC implies the Sharpened Distance Conjecture. For the
case where instead there is just a string with an α-vector aligned with the geodesic, then an
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analogous argument implies that the tension at ϕ2 is bounded by the tension at ϕ1 by

T2 ≤ T1e
− 2√

d−2 ||ϕ2,ϕ1||. (2.8)

If ϕ2 and ϕ1 are sufficiently separated, then T2 is low-tension, and there is a light tower
of oscillators with characteristic mass equal to the square root of the tension, and this
results in the characteristic mass of this tower having an exponential scaling that satisfies
the Sharpened Distance Conjecture.

The Non-Sliding Tower SWGC inspires conjectures about heavy towers. If we have the
Non-Sliding Tower SWGC, then there is a formula analogous to (2.7) but with a different
sign in the exponent. This is because along geodesics the convex hull condition implies that
there are towers with α-vectors that are anti-aligned with the geodesic, as opposed to the
light towers that have aligned α-vectors. That is, the convex hull condition of the Non-Sliding
Tower SWGC implies that there exist towers with α∥ ≤ −1/

√
d − 2, thus implying that

there exist towers also with relations

log mb

ma
=
∫ b

a
(∇ log m) · dl = −

∫ b

a
α∥dl ≥ 1√

d − 2
||b, a||, (2.9)

⇒ mb ≥ mae
1√

d−2 ||b,a||
. (2.10)

Such heavy towers also potentially follow from the Non-Sliding Stringy SWGC, where
the towers are related to oscillators of the high-tension strings, but these towers will be
investigated more thoroughly in future work.

These toy conjectures are not true in general. Almost all moduli spaces are curved7 and
so these spaces do not have globally flat coordinates, and global flatness is required to be
able to discuss the convex hull of α-vectors globally. Also, in many examples the α-vectors
are moduli-dependent and slide. However, sometimes carefully obtained submanifolds of
moduli space and slices of convex hulls of α-vectors satisfy this toy conjecture. A partial
classification of such non-sliding examples on flat moduli spaces/slices will appear in [49].

3 How the Tower SWGC can fail to imply the Distance Conjecture

If the α-vectors in the Tower SWGC are moduli-dependent and slide, the Distance Conjecture
is not implied by the Tower SWGC. To see this, suppose that the Tower SWGC is satisfied
by some set of α-vectors at each point in moduli space. As we move along a geodesic to an
infinite distance limit, it may be the case that the α-vectors are sometimes aligned with this
infinite distance limit, but at other times not aligned. At each point in moduli space, the
Tower SWGC can be satisfied, but the Distance Conjecture is not necessarily implied.

Sliding of α-vectors is very common. It has been observed both in maximal supergrav-
ity [23] and also in 9d theories with 16 supercharges [24]. This sliding even happens with
1/2 BPS states [23]. In the papers [23, 24], sliding is observed in two different contexts. In
the maximal supergravity context [23], axions play a heavy role in the sliding. In the 16
supercharge case [24], the sliding also occurs during a decompactification to a running solution.

7The only flat moduli spaces that I know of either occur in one-dimensional moduli spaces, such as the
moduli space of IIA string theory in 10d, or on carefully obtained submanifolds of moduli space.
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One can see the sliding in maximal supergravity most easily by studying 10d IIB string
theory. In 10d IIB string theory, the α-vectors for (p, q)-strings slide around depending on
the location in the moduli space. Additionally, in the M-theory on T 2 case, the α-vectors
for BPS states densely populate a cone [23], and all of the states on the boundary of this
cone, with the exception of the states at the tip, slide around depending on the location
on the moduli space. Thus, even in these maximal supergravity examples, the connection
between the Tower SWGC and the Distance Conjecture is nontrivial.

In 9d theories with 16 supercharges, there can also be sliding from a decompactification
to a running solution effect studied in depth in [24]. In this case, there is sliding in this limit
in precisely a way so that the Emergent String Conjecture is satisfied.

There is another possibility that does not involve sliding where the Tower SWGC can fail
to imply the Distance Conjecture. The Tower SWGC does not imply the Distance Conjecture
if the towers whose α-vectors allow for the Tower SWGC do not exist everywhere in the
moduli space. In the 9d maximal supergravity example studied in this paper, the towers and
strings required are BPS states and thus do exist everywhere in moduli space, so this is not
an issue for those examples. But this is a possible issue for the 10d maximal supergravity
and 9d half-maximal supergravity examples of this paper. In this paper, I focus primarily
on either BPS states or non-BPS states in asymptotic limits of moduli space where the
states can be trusted to exist and be stable.

4 New conjectures

In this section I discuss several conjectures that simultaneously imply the Tower SWGC and
the Sharpened Distance Conjecture. These conjectures are general enough to apply to cases
where the moduli spaces are not flat and the α-vectors slide.

To make progress, it is useful to precisely define infinite distance geodesics and infinite
distance limits.

Definition 3 (Infinite Distance Geodesic). Let ϕ be an arbitrary point in moduli space and
let γ be a geodesic parameterized by the unit-speed parameter t such that γ(t = 0) = ϕ. The
geodesic γ is an infinite distance geodesic if for any N > 0 there exists a T > 0 such that for
all t ≥ T , the length of the shortest path connecting ϕ and γ(t) is greater than N .

An infinite distance limit P∞ can be defined using the following equivalence relation
between infinite distance geodesics.

Definition 4 (Infinite Distance Limit). Two infinite-distance geodesics γ1 and γ2 are said
to give the same infinite distance limit P∞ if for every ϵ > 0 there exists a T > 0 such that
for any t ≥ T , the distance between γ1(t) and the closest point on γ2 is less than ϵ and the
distance between γ2(t) and the closest point on γ1 is less than ϵ.

Following [37], it is useful to rephrase the Sharpened Distance Conjecture in terms of
infinite distance limits, geodesics, and α-vectors for particle-towers.

Weak Tower Alignment Conjecture. Consider an arbitrary point ϕ in the moduli space
and an arbitrary infinite distance geodesic γ passing through ϕ. Then there exists a tower
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with an α-vector such that its projection along the geodesic satisfies

α∥ ≥ 1/
√

d − 2, (4.1)

provided that one is sufficiently far down the geodesic.

This conjecture does not specify how far one has to go down the geodesic to encounter the
tower with α∥ ≥ 1/

√
d − 2. The conjecture only states that eventually a tower exists with

this property, as this is all that is needed for the Sharpened Distance Conjecture. This
conjecture is slightly stronger than the Sharpened Distance Conjecture, as the Weak Tower
Alignment Conjecture requires that, at some point along the geodesic, there exists a tower
that aligns with that geodesic everywhere between that point an the infinite-distance limit,
but the Sharpened Distance Conjecture could be satisfied by various different towers at
different points along the infinite-distance geodesic.

Maximal supergravity examples motivate a much stronger version of the Sharpened
Distance Conjecture:

Tower Alignment Conjecture. Consider an arbitrary infinite distance geodesic γ. Then
there exists a tower with an α-vector such that its projection along the geodesic satisfies, at
all points along the geodesic,

α∥ ≥ 1/
√

d − 2. (4.2)

This differs from the Weak Tower Alignment Conjecture in that the towers are immediately
aligned with the geodesics. However, it is possible that this conjecture is too strong. For
instance it implies that there exist heavy towers as one backtracks along the geodesic, and
these towers might not be BPS. Nevertheless, it is still possible that the Tower Alignment
Conjecture still holds, and in this paper I find examples where it does hold.

At first, it may be some surprise that α-vectors align with geodesics, especially in the
bulk of moduli space. However, for α-vectors of constant length the flows of such α-vectors
are in fact geodesics, as proven in [50]. We will see throughout this paper various examples
where α-vectors have constant length, and hence the α-vectors align with geodesics. In these
cases, the logarithms of the masses are distance functions.

The Tower Alignment Conjecture does not imply the Tower SWGC, but it implies the
Weak Tower Alignment Conjecture and the Sharpened Distance Conjecture. This is because
the α∥ condition, following the discussion around equation (1.12), implies that there are
light towers as one goes far enough down the geodesic. To obtain the Tower SWGC, there
needs to be an additional ingredient.

In order to bridge the gap and obtain the Tower SWGC, I propose the following conjecture
about the dense nature of infinite-distance geodesics:

Dense Direction Conjecture. Consider an arbitrary point ϕ in the moduli space, and all
geodesics passing through ϕ that go to infinite distance limits. The set of directions of these
geodesics at ϕ is dense in the set of all directions in the tangent space at ϕ.

This conjecture concerns only the geodesics of the moduli space, and it is independent of
the particle and string spectra.
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Remarkably, when the Dense Direction and the Tower Alignment Conjectures are
simultaneously true, then the Tower SWGC and the Sharpened Distance Conjecture both
follow as consequences! This is a major result of this paper, and the later sections are devoted
to shining light on examples where this occurs.

There are other related conjectures that frequently arise in the examples considered
in this paper.

First, the examples studied in this paper motivate a conjecture about heavy towers
that accompany infinite-distance limits:

Heavy Towers Conjecture. Fixing a point ϕ1 in the moduli space, the theory at a suffi-
ciently far away point ϕ2 in the moduli space has an infinite tower of heavy particles, with
characteristic mass scaling as

m ∼ e|α|||ϕ1,ϕ2||, as ||ϕ1, ϕ2|| → ∞, (4.3)

where ||ϕ1, ϕ2|| is the length of the shortest geodesic in M connecting ϕ1 and ϕ2, and
|α| ≥ 1/

√
d − 2.

This conjecture implies that under any infinite distance limit, there exists a tower that
becomes exponentially heavy. This conjecture holds when the non-sliding Tower SWGC
holds (see section 2), because in that case the convex hull nature of the non-sliding Tower
SWGC implies a differential equation for towers whose α-vectors are anti-aligned with infinite
distance limits. Remarkably, the Heavy Towers Conjecture seems to hold for the cases
considered in this paper where α-vectors do slide, up to issues with oscillators of high-tension
strings which will be the subject of future work.

It is also interesting to strengthen the Weak Tower Alignment Conjecture, but not all the
way to the Tower Alignment Conjecture, by specifying the locations on the geodesics when the
towers align in terms of the moduli-dependent species scale of [51] and the masses of the towers:

Light Tower Alignment Conjecture. Consider an arbitrary point ϕ in the moduli space
and an arbitrary infinite distance geodesic γ passing through ϕ. Then there exists a tower
with an α-vector such that its projection along the geodesic satisfies

α∥ ≥ 1/
√

d − 2, (4.4)

provided that the aligned towers are lighter than the species scale.

This conjecture is stronger than the Weak Tower Alignment Conjecture but weaker than the
Tower Alignment Conjecture. Additionally, it connects the Tower Alignment with the species
scale, and possibly the Desert Points [52, 53]. It is also possible that the conjectures of [22]
could be connected with this conjecture. This is the subject of future work.

On the other hand, one can also conjecture a statement even stronger than the Tower
Alignment Conjecture:

Strong Tower Alignment Conjecture. For any pair of points ϕ1 and ϕ2, and an infinite
distance geodesic γ1 passing through ϕ1, there exists a geodesic γ2 passing through ϕ2 going to
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the same infinite distance limit as γ1 such that there is a single tower satisfying α∥ ≥ 1/
√

d − 2
everywhere along both γ1 and γ2.

While this conjecture holds in 9d and 10d maximal supergravity, it is not yet known to
what extent this conjecture holds in the moduli space of 16 supercharge theories. While
the Dense Direction Conjecture and Tower Alignment Conjecture imply the Tower SWGC
and the Sharpened Distance Conjecture, it is possible that the Strong Tower Alignment
Conjecture implies stronger statements.

In the maximal and half-maximal supergravity examples, I also find the following
conjecture holds.

Gradient Flow Convergence Conjecture. The gradient flows of the logarithms of masses
of towers converge to geodesics.

In maximal supergravity examples, the gradient flows immediately align with geodesics, as
will be demonstrated. Also, in half-maximal supergravity examples studied in this paper, the
α-vectors restricted on the dilaton-radion plane do not immediately give geodesics, though
they eventually tend to geodesics.

It is possible that the α-vectors of some subset of particles or branes, perhaps the BPS
particles and branes, always point immediately along geodesics. If possible, this might allow
one to use the spectrum to distinguish infinite-distance geodesics from other geodesics that
do not go to infinite distance limits.

5 IIB in 10d

In this section, I examine how the above conjectures hold in 10d IIB string theory.
In IIB string theory in 10d, the moduli space is non-flat and the particles come from

(p, q)-string oscillators. The (p, q)-strings have α-vectors of length 1/
√

d − 2 each. However,
the α-vectors of these (p, q)-strings are moduli-dependent and just barely manage to align
everywhere with non-straight infinite-distance geodesics. This provides a highly nontrivial
testing ground for the conjectures in section 4.

In this example, the Dense Directions Conjecture holds, and for each infinite distance
geodesic there is a (p, q)-string whose α-vector aligns everywhere with the geodesic. This
implies the Stringy SWGC and the Sharpened Distance Conjecture. If one also assumes
that the (p, q)-strings have oscillator towers with masses that scale with the square roots
of the tensions, then the Tower Alignment Conjecture, Tower SWGC, and Heavy Tower
Conjecture hold as well.

5.1 Geodesics

In IIB string theory, the moduli space is the upper half-plane quotiented by the action of
SL(2,Z). We can restrict our attention to the “keyhole region” fundamental-domain, which is

M10d IIB =
{

z = x + iy | x ∈ [−1/2, 1/2], x2 + y2 ≥ 1
}

. (5.1)

This region is depicted in figure 3.
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Figure 3. Fundamental domain of IIB string theory in 10d.

As can be seen from the effective action (stated later in equation (5.10)) the metric on
this space is that of the Poincaré half plane,

ds2 = dx2 + dy2

y2 . (5.2)

Using the definition of infinite distance limits from section 4, this metric allows for only one
unique infinite distance limit in the fundamental domain. This limit occurs with y → ∞.

To see whether the conjectures from section 4 hold in this case, we need to first obtain
all of the geodesics that go to y → ∞. This at first seems complicated because, in general,
geodesics can pass through an edge of the fundamental domain, reappear on another edge
(due to the identifications of edges), and have this process repeat several times until eventually
the geodesic is a vertical geodesic that goes to y → ∞.

These infinite distance geodesics are easier to analyze in the Poincaré upper-half plane
covering space than in the fundamental domain. To proceed, there are two facts to note.

1. The geodesics on the Poincaré half-plane are circles whose centers are on the real axis.
This includes vertical lines, as these can be thought of circles whose centers are on the
real axis at x = ±∞.

2. The rational points Q = m/n on the x-axis are the points on the Poincaré half-plane
that are identified with y → ∞ in the fundamental domain.

For an arbitrary point z = x + iy in the fundamental domain, there is a one-to-one mapping
between infinite-distance geodesics in the fundamental domain passing through z and circles
in the Poincaré half-plane that are centered on the x-axis, pass through z, and pass through
rational points (or x = ±∞) on the x-axis. In particular, for any infinite-distance limit
geodesic in the fundamental domain, until this geodesic crosses one of the boundaries of
the fundamental domain, it coincides with a circle in the Poincaré half-plane that ends on
a rational point.8 This is demonstrated in figure 4.

8There are other geodesics that pass through z, corresponding to circles who vertically pass through
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Figure 4. Example of an infinite-distance geodesic that starts at τ = 0.3 + 1.5i and goes to the point
−1 on the upper-half-plane covering space.

In practice, these “rational circles” in the Poincaré half-plane are easier to deal with than
the geodesics in the fundamental domain, so we will perform our analysis in the upper-half
plane, instead of in the fundamental domain.

Suppose we start at a point τ = τ1 + iτ2 in the fundamental domain and we are interested
in the geodesic circle that passes through both τ and the rational point Q on the x-axis.
The points z = x + iy on the circle satisfy

(x − c)2 + y2 = r2. (5.3)

So, if the circle is to pass through the point τ , then

(τ1 − c)2 + τ2
2 = r2, (5.4)

and if the circle is to also pass through the rational point Q on the x-axis, then

(Q − c)2 = r2. (5.5)

For the circle to pass through τ and Q, then the center and radius of this circle must be

c = τ2
1 + τ2

2 − Q2

2τ1 − 2Q
, r = (Q − τ1)2 + τ2

2
2|Q − τ1|

. (5.6)

All infinite-distance geodesics are described by circles of this type.
The Dense Direction Conjecture is satisfied. To see this, consider an arbitrary point τ in

the fundamental domain. Consider the set of all geodesic circles that pass through τ and go
through rational points on the x-axis. This set of circles passes through the point τ in a set
of directions that is dense in the set of all directions in the tangent space at τ . See figure 5.

the x-axis at an real point. While these are geodesics, only the circles who pass through the x-axis are
infinite-distance limits, since it is only the rational points that map to y → ∞ by the orbits of SL(2,Z). The
circles who pass through only irrational points correspond to geodesics in the fundamental domain that spiral
forever without ever becoming vertical and asymptoting to y → ∞.
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Figure 5. Denseness of geodesics. These are some infinite distance geodesics that pass through
τ = .3 + 1.5i and go to infinite distance limits (i.e., these geodesics end on rational points on the
x-axis). These geodesics pass through the point τ in a set of directions that is dense in the set of all
directions in the tangent space at τ .

5.2 α-vectors of (p, q)-strings

The (p, q)-string has tension, using for instance (14.1.9) of [54],

τ(p,q) = l−2
0

√
eΦ(p + C0q)2 + e−Φq2 = l−2

0
|p + τq|
√

τ2
(5.7)

where

τ = C0 + ie−Φ. (5.8)

Let us assume9 that the oscillators of (p, q)-strings have masses that scale with the square
root of the tension,

m(p,q) ∼
√

τ(p,q). (5.9)

To compute the α-vectors, we canonically normalize the moduli. This can be obtained
by studying the effective action in Einstein frame, which is

SIIB = 1
2κ2

10

∫
d10x

√
−G

(
R − ∂τ̄∂τ

2τ2
2

)
. (5.10)

The canonically normalized moduli are, in appropriate Planck units, thus

τ̂ = τ1 + iτ2√
2 ⟨τ2⟩

. (5.11)

9As was discussed in section 1, in this section we are technically verifying only the Stringy SWGC as a
proxy for the Tower SWGC. The Stringy SWGC does not need this assumption about the oscillators scaling
with the square root of the tension.
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Figure 6. α-vectors for some (p, q)-strings at τ = i. If all (p, q)-string α-vectors had been included,
they would densely populate the circle of radius 1/

√
7.

With respect to this modulus, then the α-vectors are

α⃗(p,q) = (−∂τ̂1 log m(p,q),−∂τ̂2 log m(p,q)). (5.12)

Explicitly, the α-vectors, with respect to canonically normalized moduli, are

α⃗ = (ατ̂1 , ατ̂2), ατ̂1 = qτ2(p + τ1q)√
2|p + τq|2

, ατ̂2 = q2τ2
2 − (p + τ1q)2
√

8|p + τq|2
, (5.13)

and these all have length

|α⃗| = 1√
8

= 1√
d − 2

. (5.14)

At each point τ in moduli space, there exists countably infinite set of α-vectors in the
tangent space Tτ (M) at τ . These vectors densely populate a circle of radius 1/

√
d − 2 (see

figure 6). Also, each (p, q)-string has an associated α-vector field (see figure 7).
From figure 7, one can see a remarkable one-to-one correspondence between infinite-

distance geodesics and α-vectors! First, for every infinite-distance geodesic going through the
point τ , there is single (p, q)-string whose α-vector is aligned with that geodesic. Second, (p, q)-
string α-vector field generates a vector flow, and any such flow is an infinite-distance geodesic10

(when extended over all of the Poincaré half plane) that goes to the point −p/q on the x-axis.
The SL(2,Z)-duality of IIB string theory provides a perspective on this correspondence.

The oscillators of fundamental strings have α-vectors that point in the vertical direction.
However, all of the other infinite-distance geodesics and (p, q) strings are SL(2,Z)-duality
orbits of these fundamental strings. This explains this correspondence.

10In fact, the fact that such a flow is a geodesic is a consequence of the α-vector having constant length.
Whenever an α-vector has constant length, the vector flow solution is a geodesic, as proven in [50].
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Figure 7. α-vector field for (1, 1) strings on the entire Poincaré upper-half plane. The blue line is an
infinite-distance geodesic going to the point −1 on the x-axis. Note that this infinite distance geodesic
is an integral curve of the α-vector field.

5.3 Testing the conjectures

Consider an arbitrary geodesic going through the rational point Q on the x-axis and the
arbitrary point z = x + iy in the upper-half-plane. A (p, q)-string α is perpendicular to
this circle if and only if

0 = α⃗ · ((x − c)x̂ + yŷ) ∝ p

q
+ Q. (5.15)

So, the (p, q)-string has an α-vector whose flow generates translation to the infinite distance
point −p/q on the real axis of the Poincaré half-plane.

For each (p, q)-string, the α-vector field is parallel to every infinite-distance geodesic that
goes to the rational point −p/q on the x-axis. See figure 8.

The Strong Tower Alignment Conjecture also holds. The α-vector field of the (p, q)-string
oscillators is always parallel to any geodesic that goes to the rational point −p/q, and the
projections of the (p, q)-string α-vectors along any such geodesic is precisely α∥ = 1/

√
d − 2,

thus satisfying the Strong Tower Alignment Conjecture.
There are several other interesting things to note. In a particular infinite distance limit,

there is precisely only one emergent string at a time. Also, in these infinite distance limits,
all of the other strings acquire large tensions. Thus, their oscillations become the heavy
towers of the Heavy Towers Conjecture.

While there are infinitely many infinite distance geodesics passing through each point
in moduli space, the directions of these geodesics on the tangent plane are actually a set of
measure zero. This is because the set of directions at each point include all angles between
0 and 2π, which is an uncountable set, but the geodesics to infinite distance limits are a
countable subset, and thus they have measure zero.
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Figure 8. α-vectors for (1, 1), (−1, 1), (0, 1) and (1, 0) strings are parallel to geodesics going to −1,
1, 0, and i∞.

6 32 supercharges in 9d

In this section, I explicitly demonstrate that the conjectures of section 4 hold for IIB string
theory on a circle, which is equivalent to M-theory on a two-torus and also to IIA string
theory on a circle. This demonstration does not rely on the Stringy SWGC as a proxy for
the Tower SWGC because in this case the 1/2 BPS particles generate the Tower SWGC.

6.1 Geodesics

In d = 9 dimensional maximal supergravity, there are three moduli, all originating from the
eleven-dimensional graviton coming from M-theory on T 2. To determine their couplings, we
reduce the D = 11 dimensional Einstein-Hilbert action

S = 1
2κ2

11

∫
d11x

√
−g(11)R[g(11)], (6.1)

with the ansatz

ds2
D = ∥g∥−

1
d−2 gµνdxµdxν + gmndymdyn, (6.2)

where m, n index the D − d = 2 compact directions, µ, ν index the d noncompact directions,
ym ∼= ym + 2πR, and ∥g∥ = det gmn. It is convenient to decompose gmn in terms of volume
and shape parameters U and τ = τ1 + iτ2, where

gmn = eU 1
τ2

(
1 τ1
τ1 |τ |2

)
. (6.3)

Here, the moduli space is a product manifold, where the modulus U controls the volume
of the two-torus, and the shape parameters τ = τ1 + iτ2 control the shape of the two torus
and are the same moduli axio-dilaton moduli from IIB string theory in 10d. With this, the
Einstein-moduli sector of the dimensionally reduced action is

S9 = 1
2κ2

9

∫
d9x

√
−g

(
R− 9

14(∂U)2 − (∂τ1)2 + (∂τ2)2

2τ2
2

)
. (6.4)
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The moduli space for U is flat, whereas the moduli space for τ has the same Poincaré
half-plane metric as in the 10d IIB string theory case.

All of the infinite distance geodesics can be described by the three following classes:

1. U → ±∞.

2. The imaginary part of τ approaches i∞, or τ approaches a rational point on the x-axis
of the half-plane covering space.

3. A combination of the two above limits.

All infinite distance geodesics are given by two-parameters θ and Q, where θ ∈ [0, π] and
Q is a rational number. The geodesics of unit speed are parametrized by t and given by

γθ,Q(t) = (cos θ t, sin θ γQ(t)), (6.5)

where γQ(t) is the unit-speed geodesic discussed in the 10d IIB case that ends on rational
points Q on the x-axis of the Poincaré half-plane.

6.2 α-vectors

Working in modified nine-dimensional Planck units where 2κ2
9 = (2π)6 for convenience, the

1/4 BPS particles have masses

mp,q,w = |p + τq|
√

τ2R
e−

9
14 U + R4/3|w|e

6
7 U , (6.6)

where p, q ∈ Z are the Kaluza-Klein charges and w ∈ Z is the M2 brane winding charge.
These particles are 1/2 BPS when either w = 0 or p = q = 0.

At a particular point in moduli space, the canonically normalized moduli are

ϕ̂a = (Û , τ̂1, τ̂2) =
(√

9
14U,

τ1√
2⟨τ2⟩

,
τ2√
2⟨τ2⟩

)
, (6.7)

where ⟨τ2⟩ is the vacuum expectation value of τ2 at the point in question. In this orthonor-
malized bases, the α-vectors for the 1/4 BPS particles are

αÛ = −
4√τ2e

3U
2 R7/3|w| − 3|p + τq|

√
14
(
|p + τq| + √

τ2e
3U
2 R7/3|w|

) , (6.8a)

ατ̂1 = −
√

2qτ2(p + τ1q)
|p + τq|

(
|p + τq| + √

τ2e
3U
2 R7/3|w|

) , (6.8b)

ατ̂2 = − q2τ2
2 − (p + τ1q)2

√
2|p + τq|

(
|p + τq| + √

τ2e
3U
2 R7/3|w|

) . (6.8c)

As illustrated in figures 9 and 10, these α-vectors densely populate a cone. At the tip
of the cone lie the 1/2 BPS states with p = q = 0 and w ̸= 0, corresponding to an M2
brane wrapped w times on T 2:

α⃗winding
9 =

(
−
√

8
7 , 0, 0

)
. (6.9)
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Figure 9. Some 1/4 BPS α-vectors from M-theory on T 2. Here, the 1/4 BPS vectors α⃗ run over the
values w ∈ {0, 1, 2}, and p, q ∈ {−25, . . . , 25}.

The base of the cone is populated by the 1/2 BPS Kaluza-Klein modes with w = 0 but
nonzero p or q:

α⃗KK
9 ∈

{( 3√
14

, ατ1 , ατ2

)
∈ R3 : α2

τ1 + α2
τ2 = 1

2

}
. (6.10)

The remaining 1/4 BPS states lie along the cone somewhere between its tip and circular base.
From this example, we see that the convex hull generated by the 1/2 BPS states contains
the convex hull generated by the 1/4 BPS states.

The purely winding α⃗winding
9 -vectors are a distance

√
8/7 from the origin, and so too are

the Kaluza-Klein α⃗KK
9 -vectors. Thus, the points on the cone closest to the origin lie on a

circle halfway between the tip of the cone and the circular base of the cone.

6.3 Testing the conjectures

The projection α∥ of an α-vector along an infinite distance geodesic γθ,Q(t) is given by

α∥ = α⃗ · γ̇θ,Q(t). (6.11)

For fully wrapped M2-branes with no KK-momenta, the α-vectors are given by (6.9),
and the projection of such vectors along an infinite distance geodesic γθ,Q(t) is given by

αwinding
∥ = α⃗winding · γ̇θ,Q(t) = −

√
8
7 cos θ (6.12)
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Figure 10. Closure of the convex hull of α-vectors of M-theory on T 2.

For (p, q)-KK modes with no winding charge, the α-vectors are given by (6.10), which is

αKK
Û

= 3√
14

, (6.13a)

αKK
τ̂1 = −

√
2qτ2(p + τ1q)
|p + τq|2

, (6.13b)

αKK
τ̂2 = −q2τ2

2 − (p + τ1q)2
√

2|p + τq|2
. (6.13c)

It is convenient to relate the τ components of these α-vectors to the 10d IIB α-vectors for
(p, q)-strings given by equation (5.13). This results in

(αKK
τ̂1 , αKK

τ̂1 )9d
II = 2α⃗10d

IIB . (6.14)

Thus, the 9d (p, q)-KK mode is given by

α⃗9d KK
p,q =

( 3√
14

, 2α⃗9d KK
p,q

)
. (6.15)

For each geodesic γθ,Q(t), it suffices to consider the (p, q) KK modes such that p/q = ±Q.
The projection of the α-vectors for these modes satisfy

αKK
∥ = α⃗9d KK

p,q · γ̇θ,±p/q(t) = 3√
14

cos θ ∓ 1√
2

sin θ. (6.16)

These projections allow us to test the conjectures of section 4. There are three different
regimes of θ ∈ [0, π] to consider in this test. For the different regimes of θ, the following
conditions hold everywhere along the geodesics:
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1. θ ≤ arctan
√

7: in this case, the (p, q) KK modes with −p/q = Q have αKK
∥ > 1/

√
7,

and the winding modes have αwinding
∥ ≤ −1/

√
7, thus satisfying the Tower Alignment

and Heavy Tower Conjectures.

2. arctan
√

7 ≤ θ ≤ π − arctan
√

7: in this case, the (p, q) KK modes with −p/q = Q have
αKK
∥ ≥ 1/

√
7, and (p, q) KK modes with p/q = Q have αKK

∥ ≤ −1/
√

7, thus satisfying
the Tower Alignment and Heavy Tower Conjectures.

3. π − arctan
√

7 ≤ θ: in this case, winding modes have αwinding
∥ ≥ 1/

√
7 and the (p, q)

KK modes with p/q = Q have αKK
∥ < −1/

√
7, thus satisfying the Tower Alignment and

Heavy Tower Conjectures.

Thus, along all of these geodesics, the Tower Alignment and Heavy Tower Conjectures hold
from the 1/2 BPS states!

7 16 supercharges in 9d

The examples considered above have maximal supergravity, and so it is interesting to see to
what extent the proposals of section 4 apply to half-maximal supergravity cases. While it
is possible that all of the proposals apply to half-maximal supergravity cases, testing this
fully is beyond the scope of this paper and left to future work. Nevertheless, in this section
we investigate some tests of the conjectures of section 4.

The maximal supergravity cases have some major differences from the half-maximal
supergravity cases. In the maximal supergravity cases studied above, the Stringy SWGC is
satisfied by BPS states, and in 9d and in lower dimensions the Tower SWGC is satisfied by
BPS particles. Meanwhile, in 9d theories with 16 supercharges, the Tower SWGC (and also
Stringy SWGC) convex hulls are not entirely generated by BPS states [24]. As demonstrated
in [24], the non-BPS states involved in generating the Tower SWGC have α-vectors that
vary with the location in the moduli space, and as a result the shape of the convex hull of
α-vectors depends on the location in the moduli space. This is a feature that does not occur
in maximal supergravity, where the shape of the convex hull does not change depending on
the location in the moduli space. As studied in [24], this shape deformation in half-maximal
supergravity is connected with decompactification to a running solution. Hence, even limited
tests of these 9d half-maximal supergravity theories greatly expand the scope of plausibility
of the conjectures of section 4.

In this section, I perform limited tests11 of the conjectures from section 4 in asymptotic
limits. This is because the non-BPS generators of the Tower SWGC hull are difficult to study
when not in asymptotic limits. Additionally, in these 9d half-maximal supergravity cases,
the moduli spaces are high-dimensional, and in this section I consider only the submanifold
of moduli space involving just the dilaton and the radion of the 9d theory. Understanding
the role of the many axions will be the work of a future paper.

In this section, we consider the 9d theories that come from circle-compactifying either
SO(32) or E8 × E8 10d heterotic theories with all of the Wilson lines turned off.

11Many of the tests, or similar tests, also occur in [24], so the reader should consult that reference for more
details, discussions, and nontrivial calculations. See also [55, 56] for more details. I will quote some important
results from [24] and discuss how they agree with the conjectures of section 4.
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7.1 Geodesics

Let us focus on the dilaton-radion, or ϕ − ρ, submanifold of the moduli space. There are
several different kinds of infinite distance limits. As was shown in [24], the two-dimensional
radion-dilaton submanifold of moduli space is a flat plane. As a consequence, any ray in the
radion-dilaton plane is a geodesic to an infinite distance limits. This is true for both the SO(32)
and E8 × E8 cases. Thus, for the dilaton-radion plane, the Dense Direction Conjecture holds.

It is convenient to express the flat dilaton-radion moduli on the x − y plane such that
y → −∞ with x held constant is the emergent heterotic string limit. In what follows, I refer
to y → −∞ limits as the “weak coupling limit” of heterotic string theory. Strong coupling
limits, where I or I′ string theory are relevant, occur with y → ∞. These are differentiated
by the SO(32) and E8 × E8 cases, as discussed in [24].

In this document, the primary focus is on the strong coupling cases (where y goes
to infinity), since in these cases there is decompactification to a running solution and the
convex hull of α-vectors in the Stringy SWGC is limit-dependent, and the conjectures in this
case have been already studied in [24]. I demonstrate that the proposals of section 4 pass
some tests in the strong coupling regimes. The weak coupling cases also have interesting
phenomena, but will be primarily the focus of future research.

7.2 α-vectors

In this case, I focus on three types of particles: two 1/2 BPS states and the non-BPS KK
modes of I′ string theory.

In both SO(32) and E8 × E8 heterotic string theory in 9d, there are two 1/2 BPS particles.
These are the KK modes and the winding modes. For both of these 1/2 BPS particles, the
moduli-dependence of the masses of these states remains the same [24], and thus the α-vectors
are constant. Their moduli dependence, using the x and y moduli, are given by

mw,h ∼ e
1√
7

y+x
, mKK,h ∼ e

1√
7

y−x
. (7.1)

In the strong coupling limits of heterotic string theory, when y → ∞, there are also
non-BPS KK modes from I′ string theory. These masses were explicitly computed in [24] for
both the SO(32) and E8 × E8 cases. The masses scale with the x and y moduli as

m
SO(32)
KK,I′ ∼ (e2x + 1)3/2 + (e2x − 1)3/2

3e4x + 1 e
3
2 x− 5

2
√

7
y
, (7.2a)

mE8×E8
KK,I′ ∼ e

− 5
2
√

7
y− 1

2 x
(
1 + e−2x

)−1
. (7.2b)

In these cases, the α-vectors in the x − y bases are

α⃗w,h =
(
−1,− 1√

7

)
, α⃗KK,h =

(
−1,

1√
7

)
,

α⃗
SO(32)
KK,I′ =

(
−3

2

[ 2√
1 − e−4x

+ 1
]−1

,
5

2
√

7

)
, (7.3)

α⃗E8×E8
KK,I′ =

(
−1

2 + tanh x,
5

2
√

7

)
.
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1/2 BPS 1/2 BPS

Sliding

αx

αy

(a) SO(32)

1/2 BPS 1/2 BPS

Sliding

αx

αy

(b) E8 × E8

Figure 11. The sliding of the I′ KK modes in the SO(32) and E8 × E8 cases. The red dots are the I′

KK modes that slide, and they slide along the blue line. The green dots are the 1/2 BPS states.

For the SO(32) case, (αSO(32)
KK,I′ )x is a monotonic function of x, with sliding occurring from

αKK,I′
x = 0 at x = 0 to αKK,I′

x = −1
2 at x = ∞. Similarly, for the E8 × E8 case, there is

analogous sliding, but reflected across the x-axis. See figure 11.
When x is not held constant and y and x simultaneously grow linearly, these I′ KK towers

slide in such a way so that emergent string limits are not obstructed in the SO(32) case [24].

7.3 Testing the conjectures

Let us first examine strong-coupling limits. When x is held constant and y goes to ∞, then
the I′ KK modes provide light towers. In such limits the α-vectors of the I′ KK modes have

α∥ = α⃗ · ŷ > 1/
√

d − 2 (7.4)

Meanwhile, if y and x simultaneously grow linearly, the I′ KK mode α-vectors slide so that
the type I (or I′) string theory oscillators provide the necessary light towers for the emergent
string limits, and for these geodesics

α∥ ≥ 1/
√

d − 2. (7.5)

In these strong-coupling limits, several conjectures are satisfied. For instance, the above
equations imply that the Sharpened Distance Conjecture is satisfied as one travels along
geodesics into strong coupling. Also, the Weak Tower Alignment Conjecture, and possibly
also the Light Tower Alignment Conjecture, hold. Additionally, in these limits, the α-vectors
of (7.4) contain the ball of radius 1/

√
d − 2, and thus the Tower SWGC is satisfied. Finally,

the Heavy Tower Conjecture is satisfied in these limits because the 1/2 BPS states become
heavy as their α-vectors are sufficiently anti-aligned with these rays and satisfy

|α1/2 BPS
∥ | ≥ 1/

√
d − 2. (7.6)
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Meanwhile, for geodesics going to weak-coupling limits, some things are also quickly
apparent. For instance, the 1/2 BPS towers become light in these limits, as their α-vectors
in (7.4) have projections α∥ ≥ 1/

√
d − 2 along rays pointing in strong-coupling directions.

This results in the Sharpened Distance Conjecture, as well as the Weak Tower Alignment
Conjecture, and possibly also the Light Tower Alignment Conjecture.

Absent an understanding of heavy non-BPS states, it is difficult to fully test all of the
conjectures from section 4. For instance, it is difficult to test to what extent the Tower
Alignment Conjecture holds, because this requires non-BPS towers to align everywhere along
the geodesics, and because geodesics here are straight lines, this conjecture needs that these
non-BPS towers exist and align in both strong and weak coupling regimes. But here we have
investigated these non-BPS towers only in regimes where they are light, thus testing only
the Weak (and possibly Light) Tower Alignment Conjecture. These heavy towers are also
necessary for testing the Tower SWGC in regimes where there is weak coupling. It is possible
that such towers do exist, but it is not yet clear whether they do.

Though not considered in this example in this paper, it is interesting to consider geodesics
where the axions vary as well. One might worry that the Tower Alignment Conjecture implies
that there exist towers that violate emergent string limits by becoming lighter than emergent
string towers.12 To understand such a concern, consider two different geodesics that go to
the same emergent string limit. Suppose that one of these geodesics, γ1, is the geodesic
that goes the direct route, and the fundamental string oscillators have α-vectors parallel to
γ1. However, suppose that another distinct geodesic γ2 goes indirectly to the same infinite
distance limit by winding around the axionic directions. The Tower Alignment Conjecture
says that there is a tower with a projection along γ2 satisfying α∥ ≥ 1/

√
d − 2. Since γ2 is

going to the same infinite distance limit, one might worry that this second tower becomes
exponentially lighter than the direct fundamental string oscillator tower, since one might
worry that this second tower travels an infinitely longer distance to get to the same infinite
distance limit because of the winding.

It is likely that the resolution to this puzzle is that the different geodesics that go to the
same emergent string limit differ by only a finite amount of length. This is because the moduli
spaces involving these axionic directions are not flat, and a story similar to the IIB in 10d case
likely applies here. As in the 10d IIB case, inequivalent infinite-distance geodesics likely only
pass through the axionic cycles a few times before becoming parallel to direct infinite-distance
geodesics. Thus, the Tower Alignment Conjecture likely does not contradict the Emergent
String Conjecture in this example. Demonstrating this explicitly is the subject of future work.

8 Conclusions and future directions

In this paper, I have examined in examples how both the Tower SWGC and the Sharpened
Distance Conjecture are both true but do not imply each other. My investigation has
focused in particular on cases where the moduli spaces are not flat and the α-vectors have
moduli-dependence. I have found that the Tower SWGC and Sharpened Distance Conjecture
follow from conjectures about dense infinite-distance geodesics and α-vectors that align with
these geodesics. I have also found other related conjectures.

12I thank Alek Bedroya for drawing attention to this possibility.

– 28 –



J
H
E
P
0
1
(
2
0
2
4
)
1
2
2

Motivated by maximal supergravity examples, I have found evidence for and discussed
connections between the following five conjectures:

1. Dense Direction Conjecture.

2. Tower Alignment Conjecture.

3. Tower Scalar Weak Gravity Conjecture.

4. Stringy Scalar Weak Gravity Conjecture.

5. Heavy Tower Conjecture.

In particular, I have discussed how Tower SWGC and Sharpened Distance Conjecture follow
from the Dense Direction and Tower Alignment Conjectures simultaneously holding. I have
also discussed how the Heavy Tower Conjecture can be viewed as a natural consequence
of the Tower SWGC. I have also discussed possible strengthened and weakened versions
of conjectures, and in particular I have in 10d cases used the Stringy SWGC as a proxy
for the Tower SWGC.

It is not yet clear to what extent the conjectures of this paper apply beyond maximal
supergravity. In section 7, I performed limited tests of these conjectures in half-maximal
supergravity. Fuller tests require an understanding of non-BPS states that are heavy or
in strongly-coupled regimes. Additionally, my 9d half-maximal supergravity tests did not
involve axions, as I studied only the radion-dilaton submanifold of moduli space. It would be
very beneficial to study in-depth how the Emergent String Conjecture, Sharpened Distance
Conjecture, and Tower SWGC are satisfied in 9d theories with half-maximal supergravity.

In 10d maximal supergravity, I have tested the Stringy SWGC as a proxy for the Tower
SWGC, and I have acted as if string oscillator towers exist and scale with the square roots
of tensions of strings, even in non-perturbative regimes. When the strings in the Stringy
SWGC oscillate with towers that scale with the square roots of tensions of the strings, then
the Tower SWGC follows from the Stringy SWGC. But it is not clear how strongly-coupled
strings oscillate, as perturbative string theory does not describe non-perturbative oscillations
and potentially a semiclassical analysis is needed.

It might be interesting to study further the Stringy SWGC, and perhaps the Stringy
SWGC can and should be generalized to a Membrane SWGC. A Membrane SWGC is
potentially a necessary ingredient for the SWGC to be preserved under dimensional reduction,
as the SWGC under dimensional reduction must involve branes and is still not yet fully
understood. Also, often membranes are BPS, so they are under control and their α-vectors
can be studied everywhere in the moduli space. It is possible that there are many more things
to say about α-vectors for BPS membranes. Perhaps α-vectors for BPS membranes could be
used to locally distinguish geodesics that go to infinite distance limits from those that do not.

The Tower SWGC and the Tower Alignment Conjecture might be too strong, because they
often require heavy (and possibly unstable) towers. If the Tower Alignment Conjecture is false,
possibly only the Light or Weak Tower Alignment Conjectures hold. But, unlike the Tower
Alignment Conjecture, the Light and Weak Tower Alignment Conjectures do not combine
with the Dense Direction Conjecture to imply the Tower SWGC. It would be beneficial to
obtain more evidence for, or against, the Tower SWGC and Tower Alignment Conjecture.
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I have discussed how the Dense Direction Conjecture and Tower Alignment Conjecture
imply the Sharpened Distance Conjecture and Tower SWGC, but the Emergent String
Conjecture is not implied by my conjectures. It would be very interesting if somehow these
conjectures could be strengthened so that the Emergent String Conjecture is implied. For
instance, one might insist that, in the Tower Alignment Conjecture, towers that are not
string oscillators have a KK-like tower spacing with masses mn ∼ n. This would result in
some properties, but not necessarily all, of decompactification limits. A similar statement
might be able to be made about emergent string limits. It would be interesting if these
sorts of statements could be strengthened to imply the Emergent String Conjecture. This
could be done by exploring in depth how emergent string limits arise in the simple examples
considered in this paper.

It would be interesting to investigate the proposals with moduli spaces with boundaries.
If the boundaries of these moduli spaces have reflexive boundary conditions, then the Dense
Direction Conjecture could still apply in those examples.

It is possible that the conjectures of this paper apply to moduli spaces of quantum
field theories. Perhaps Swampland conjectures similar to the Distance Conjecture, Tower
SWGC, the Dense Direction Conjecture, and the Tower Alignment Conjecture also apply
to such theories.13

In this paper, the examples studied have been without potentials. Gradient flows of
potentials have been connected14 with geodesics in [59], so it is possible that α-vectors and
potentials are related. Perhaps some α-vectors will be found to align with valleys of potentials.

The conjectures of this paper might nontrivially combine15 with the moduli-dependent
species scale and the Desert Regions of [51–53]. For instance, in [22] Rudelius proposed
placing upper bounds on the lightest towers at each point in moduli space, and in examples
he used the Desert Region to find these bounds. The Tower SWGC, together with properties
of geodesics, might be able to shed light on these proposals. There is also the upcoming work
of [60] that connects the species scale with α-vectors and the Tower SWGC.

The convex hulls of α-vectors often involve rotations of polytopes. These polytopes often
have interesting rules governing the sizes and shapes of their facets, and a partial list of rules,
along with a partial classification of the resulting polytopes, will appear in [49]. But much
about these shapes remains mysterious. Are these convex hulls related to deep mathematical
questions? What rules fully classify these shapes?

Much remains to be understood about α vectors. They have played a prominent role in
this paper, and they connect many Swampland Conjectures. For instance, the preservation
of the Tower SWGC under dimensional reduction needs membranes and likely16 the Weak
Gravity Conjecture [61], thus potentially unifying several concepts. It is likely that α-vectors
will be used to construct grand and powerful conjectures that unify and sharpen many
Swampland Conjectures.

13For a related paper, see [32].
14See also [57, 58].
15Already, the Light Tower Alignment Conjecture makes specific references to the moduli-dependent species

scale.
16The conditions necessary for the preservation of the Tower SWGC under dimensional reduction are still

not yet fully understood.
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