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1 Introduction

For long distances beyond a certain characteristic scale 1/M , low-energy effective field theories
(EFTs) are utilized to describe physical processes and predict observables. In these scenarios,
ultra-violet (UV) effects manifest as tails shaped by higher-dimensional operators, which
are suppressed by 1/M . However, at short distances, UV effects intensify and become non-
negligible, raising a profound question: what is the allowable space of EFTs that ensure a
consistent UV completion, such as in quantum gravity? Particularly regarding completion to
quantum gravity, there are numerous intriguing conjectures and arguments, known as the
swampland program [1–4]. Examples include the weak gravity conjecture [5–7], the distance
conjecture [1, 8], and others. These are inspired by string theory and studies of black hole
physics, and they provide conceptual criteria for gaining insights into this question.

Even without the gravitational degree of freedom, this question remains profound and
warrants further investigation. It is known that EFTs without gravity can still be pathological.
Having oversized Wilson coefficients [9] or possessing the wrong sign for some EFT Wilson
coefficients [10] can violate causality.

The EFT bootstrap program has recently been developed to quantitatively and system-
atically explore this question, assuming the unitarity and causality of the underlying UV
theory above M , as well as Regge boundedness [11–16]. The strategy involves studying 2-to-2
scattering amplitudes in EFTs, denoted as MEFT, and then searching for the allowed space
of Wilson coefficients. Causality and Regge boundedness provide a bridge between the EFT
amplitudes MEFT and the underlying UV amplitudes, which is known as the dispersive sum
rules. Built upon dispersive sum rules, the unitarity can then be used to optimally carve
out the EFT space. This whole procedure is known as the dual bootstrap algorithm, as
it rigorously rules out disallowed values of Wilson coefficients. The dual EFT bootstrap
can also incorporate dynamical gravity [17–20], thereby providing sharp bounds on some of
the swampland conjectures [21, 22]. There are many relevant works utilizing this idea to
constrain EFTs and their UV completions, see, e.g., [23–48].

However, there is a weakness in the current version of the dual EFT bootstrap. Typically,
to optimize the EFT bounds, it is essential to ensure that we measure only a finite number
of Wilson coefficients in which we are interested. Meanwhile, the null constraints should be
employed [12–16]. These null constraints are constructed using crossing symmetry, a crucial
ingredient of quantum causality. They complement the original dispersive sum rules because
the latter are not fully crossing symmetric and thus lack important information. These
requirements are usually met using the improved sum rules [17], which subtract the forward
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limit expansions from the original sum rules. This subtraction ensures they measure only
those Wilson coefficients that saturate specific Regge boundedness. However, this procedure
can be vulnerable to loop effects since the forward limit scale might compete with the loop
expansions. This competition essentially hinders an efficient generalization that powerfully
constrains EFTs at the loop level (for exploration on this subject, see, e.g., [35, 49]). Even at
tree-level, this forward limit subtraction can sometimes complicate numerical exploration.

In this paper, we will explore the numerical usage of the crossing symmetric dispersive
sum rules [23, 50, 51], which automatically incorporate the crossing symmetry. In other
words, the null constraints are encoded in the crossing symmetric sum rules, and these sum
rules only retain a finite number of Wilson coefficients. We will show that this type of sum
rule is an optimized version of the “improved sum rules”, as it fulfills all the requirements that
the “improved sum rules” satisfy and it is free of any forward limit subtractions. Although
our discussions in this paper are limited to tree-level, we believe that the crossing symmetric
sum rules are an excellent playground for understanding the loop effects of EFT bounds.

There is a different approach termed the primal S-matrix bootstrap [52]. The primal
bootstrap is a powerful tool to constrain quantum field theories (QFT) non-perturbatively: it
is built upon an appropriate ansatz of the S-matrix designed to obey causality and directly
searches for optimal couplings under unitarity constraints. The term “primal” indicates that
this method is used to rule in allowed values of couplings. Although the S-matrix bootstrap
was proposed to constrain the dynamics of non-perturbative QFTs (with a large amount of
applications, see, .e.g., [53–62]), it can be easily adapted for studying EFTs, e.g., [63–65].
Some natural questions then arise: how do the resulting EFT bounds from the primal method
compare to those from the dual method? In what sense are the primal and dual bootstraps
dual to each other in the context of optimization theory? Regarding the first question,
intuitively, we expect that when both methods are applied to the same EFT with the same
assumptions, their resulting bounds should converge to each other, eventually leading to
the optimal constraints of EFTs. This convergence has indeed been observed in relevant
investigations for scalar EFTs [64]. For the second question, it has been recognized that
the primal bootstrap is the “primal problem” in optimization theory such as semidefinite
program (SDP) [66, 67], and therefore one can construct its optimization Lagrangian and
identify the “dual problem”. This “dual problem” should be the method one can construct
using the dispersive sum rules as the dual EFT bootstrap [68].

In this paper, we will show that the EFT bootstrap can indeed be formulated as an infinite-
dimensional SDP problem. This guarantees that the dual and primal bounds should converge
to each other, as long as the strong duality is satisfied [69]. The strong duality condition can
be translated to conditions of EFT bootstrap, which then indicates that we can extract UV
physics from the primal solutions under the guidance of the dual extremal functionals.

We then apply the EFT bootstrap with the crossing symmetric sum rules, now formulated
as an SDP, to the case study of large-N chiral perturbation theory (χPT). χPT is an EFT
that describes light meson physics, arising from chiral symmetry breaking in the low-energy
regime of quantum chromodynamics (QCD). Large-N χPT is the meson EFT that emerges
from large-N QCD [70], which generalizes the colour group to SU(N) with N → ∞ [71],
and provides a qualitative understanding of many aspects of hadron physics. The dual
EFT bootstrap program for large-N χPT was initiated in [44], and it is still under active
investigation [45, 47, 72]. One advantage of studying the large-N limit is that it retains
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only tree-level physics, where the dual EFT bootstrap is efficient. For finite N , such as
in real QCD, χPT may become strongly coupled around the threshold and therefore the
loop cannot be neglected. To our knowledge, in this case, only primal studies has been be
performed [63, 73]. On the other hand, the large-N limit is also expected to have a string
description [71], so it might provide rich “experiments” for understanding quantum gravity
and holography [74–76]. In this paper, we will study large-N χPT using both dual and
primal methods, and we observe excellent convergence. We also extract the physical spectrum
from our primal solutions and the dual functionals, not only confirming some understandings
from [44, 45], but also revealing some novel and hidden physics that seems to be accessible
only when using the primal method.

Typically, for O(p4) Wilson coefficients, a segment of the boundary corresponds precisely
to the Skyrme model [44]. However, as the Wilson coefficients increase beyond the kink [44, 45],
the Skyrme model is excluded. On the other hand, large-N QCD is known to have string
and holographic descriptions, such as the well-known Witten-Sakai-Sugimoto model [77–79],
which yields precisely the Skyrme model at low energy [78, 79]. It is intriguing to translate
the constraints on large-N χPT to see if there are any problems with holographic QCD
models. Not surprisingly, all known holographic QCD models produce the Skyrme model that
exists below the kink, and is thus consistent. However, these models have all been analyzed
only at the leading order as EFTs of gauge fields. We will show that including the higher
dimensional operators on the gravity side leads to a large-N χPT that deviates from the
Skyrme model, controlled by the bulk Wilson coefficients. This allows us to translate the
large-N χPT bounds to constrain the bulk EFTs of gauge fields on non-trivial backgrounds.

The rest of the paper is summarized as follows. In section 2, we review the basic ideas of
dispersive sum rules and provide the construction of crossing symmetric sum rules. After
reviewing the structures of amplitudes and the unitarity constraints, we focus on the positive
unitarity condition, explaining why the EFT bootstrap is an infinite-dimensional SDP and
how we can construct its Lagrangian formulation and derive physics from SDP duality. In
section 3, we review large-N χPT, including its Lagrangian, the flavour structure of the pion
amplitudes, and the partial waves and unitarity conditions. We then explicitly construct the
associated crossing symmetric dispersive sum rules and the primal S-matrix ansatz as our dual
problem setup and the primal problem setup, respectively. In section 4, we obtain the EFT
bounds using both the dual and primal algorithms and present the convergence between the
two methods. We also display the spectral density and S-matrix, which are numerically solved
using the primal methods for saturating certain EFT bounds. Using a simple sample bound,
we demonstrate that modifying the Regge behaviour of the primal ansatz does not alter the
resulting bounds, as long as it stays below the Regge boundedness assumption. As an ad hoc
approach, we incorporate the upper bound of unitarity to uniformly bound the O(p4) Wilson
coefficients in terms of the cut-off scale M , which does not contradict the large-N bound,
thereby confirming the consistency of the large-N limit. In section 5, we study holographic
QCD. We include the higher dimensional operators built from gauge fields and show that
holographic QCD with higher derivative terms produces the most general χPT Lagrangian at
order O(p4). We verify that the Witten-Sakai-Sugimoto model has no issues with the leading
string corrections. Afterwards, we translate the chiral EFT bounds to constrain the 5D EFT
with double gauge fields. We conclude the paper in section 6. Appendix A formulates other
EFT bootstrap scenarios as SDP; appendix B records the SU(Nf ) projectors that we used

– 3 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
2

−t

s

0 M2

−M2 − t

−→
−t M2

s

0

−M2 − t

Figure 1. The contour deformation leads to the sum rules given by eq. (2.3). The red branch cut
represents the UV branch cut, which is beyond our knowledge, while the blue branch cut represents the
low-energy cut contributed by loop effects in low-energy EFTs. The final contour relates low-energy
EFT data along the arcs to the discontinuity along the UV branch cuts.

to organize the pion amplitudes and partial waves; and appendix C provides more details
on the bootstrap Lagrangian for fixing one parameter and bounding another.

2 EFT bootstrap and SDP problem

2.1 Dispersive sum rules

2.1.1 Basic ideas

One essential component of EFT bootstrap is the dispersive sum rules. The strategy is to
design vanishing integral identities along a large circle at infinity in the complex s plane, e.g.,

Bk(p2) =
∮
∞

ds

4πi
M(s,−p2)

sk+1 ≡ 0 , k ≥ k0 ∈ Z , (2.1)

where k0 is the ceiling of the Regge spin J0 for UV amplitudes∣∣∣M(s, t)
∣∣∣
|s|→∞

∼ |s|J0 < |s|k0 , for fixed t < 0 . (2.2)

Causality is also assumed, which is thought to imply both the crossing symmetry and the
analyticity of the S-matrix in the complex s plane, except for poles and branch cuts in the
real axis (see [80, 81] for more details on the analyticity of the S-matrix). Analyticity allows
us to deform the contour of integral identities (2.1) towards the real axis, with a smaller arc
within the regime where low-energy EFTs remain valid (|s| < M2),1 as illustrated in figure 1.

This procedure establishes the dispersion relations (or dispersive sum rules) that relate
low-energy to high-energy physics

−Bk(p2)
∣∣∣
low arc

= Bk(p2)
∣∣∣
high

. (2.3)

1We consider EFTs in which the mass of the particles, m, is much smaller than M . Therefore, we treat the
scattering in EFTs as massless scattering, and ignore all the anomalous thresholds.
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This gives ∮
|s|<M2

ds

4πi
M(s,−p2)

sk+1 =
∫ ∞

M2

ds

2π
DiscM(s,−p2)

sk+1 + u-channel , (2.4)

where the discontinuity is defined by

Discf = f(s+ i0)− f(s− i0)
2i . (2.5)

On the other hand, crossing symmetry allows for the relationship between the u-channel
contribution and the s-channel contribution. Crossing symmetry enables us to modify and
improve the dispersive sum rules into a more convenient and powerful basis by subtracting
the null constraints [12]. For instance, it is demonstrated in [17] that improved spin-k sum
rules can be constructed by subtracting the forward-limit expansions of higher spin sum rules
(i.e., k′ > k). This method leaves only a finite number of Wilson coefficients with Regge
spin k in the low-energy measurement, which is exceptionally beneficial.2 For example, the
improved spin-2 sum rule for four-dimensional scalar EFT is given by [17]

Bimp
2 =

∮
∞

ds

4πi
( (2s−p2)
s2(s−p2)2M(s,−p2)− (4s−3p2)p4

s4(s−p2)2 M(s,0)− 2p6

s3(s2−p4)∂p2M(s,0)
)
≡ 0 ,

(2.6)

which at low-energy (tree-level) only measures gravity and Wilson coefficients of dimension-8
and dimension-10 operators3

Bimp
2
∣∣
low = 8πG

p2 + 2gdim8 + p2gdim10 . (2.7)

However, it is obvious that the construction of this improvement is heavily dependent on
details; see [19, 20] for more complicated scattering processes. In addition, the construction
relies on the forward-limit expansion, making the loop effects vulnerable. In this note,
we will instead use the crossing symmetric sum rules [23, 50, 51], which we will introduce
momentarily, to build causality (i.e., analyticity plus crossing symmetry) directly into the
dispersive sum rules.

2.1.2 Crossing symmetric sum rules

We review the crossing symmetric sum rules in this section.4 The essence lies in the analytic
and crossing-symmetric parameterization of the Mandelstam variables in terms of a complex
variable z and an auxiliary momentum p

s(z, p) = − 3p2z

1 + z + z2 , t(z, p) = s(z ξ, p) , u(z, p) = s(z ξ2, p) , (2.8)

2The Regge spin of a Wilson coefficient can be defined by the exponent of s in the fixed-t Regge limit of
the associated tree-level amplitude in EFTs. For example, for a higher-dimensional operator giving amplitudes
gsk in the fixed-t Regge limit, we say the Regge spin of g is k.

3Those operators contribute to low-energy amplitudes by (s2 + t2 + u2)gdim8 + stu gdim10 ⊂ M.
4We are grateful to Simon Caron-Huot for drawing our attention to this fantastic construction.
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where ξ = e2/3iπ and 0 < p2 ≤ M2/3. In terms of the complex z-plane, the Mandelstam
variables are geometrically symmetrical, with an angular difference of 2/3π from each other.
The Regge limit in this parametrization is associated with special points on the unit circle. For
example, the fixed-t Regge limit |s| → ∞ corresponds to z = ξ2; other channels follow similarly.
To build the crossing symmetric sum rules, it is necessary to study the full crossing symmetric
amplitudes and find the crossing symmetric kernel that can perform the sufficient subtractions
in the Regge limit. This kernel is easy to construct, from which we obtain the fixed-p identity

Bk(p2) =
∮

z=1,ξ,ξ2

dz

4πi Kk(z)Msym(z, p2) ≡ 0 , k ≥ k0 and k ∈ 2Z , (2.9)

where

Kk(z) = (−1)
k
2 31− 3k

2
(
z3 + 1

)
p−2kz−

3k
2 −1

(
1− z3

)k−1
. (2.10)

Note that the integration contour consists of small circles surrounding the Regge limit point.
The transformation of the integration variable to s yields

Bk(p2) =
∮

ds

4πi s
− 3k

2 −1
(
3p2 + 2s

) (
p2 + s

) k
2−1

Msym(s, p2) . (2.11)

Here, the Mandelstam variables t and u are parameterized in terms of s by

t = −
s
(
p2 + s−

√
s− 3p2

√
s+ p2

)
2(s+ p2) , u = −

s
(
p2 + s+

√
s− 3p2

√
s+ p2

)
2(s+ p2) . (2.12)

In order to deform the contour in (2.9) and obtain the sum rule, we must understand the
analyticity of Msym(z, p2) in terms of the complex variable z. We have three pieces of UV
branch cuts: s ≥M2, u ≥M2 for fixed-t; s ≥M2, t ≥M2 for fixed-u; and t ≥M2, u ≥M2 for
fixed-s. In the complex z plane, these branch cuts all reside on the unit circle and sandwich the
Regge limit points in the associated channels. The UV branch cuts are summarized as follows

• UV branch cuts

1. Fixed-t

s ≥M2 : 2π − cos−1(−1
2(1 + 3p2)) ≤ Arg z < 4π

3 ,

t ≥M2 : 4π
3 < Arg z ≤ 2π

3 + cos−1(−1
2(1 + 3p2)) ,

Regge point : Arg z = 4π
3 .

2. Fixed-u

s ≥M2 : 2π
3 < Arg z ≤ cos−1(−1

2(1 + 3p2)) ,

u ≥M2 : 4π
3 − cos−1(−1

2(1 + 3p2)) ≤ Arg z < 2π
3 ,

Regge point : Arg z = 2π
3 .
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fixed-s

fixed-u

fixed-t

0

∞ z

−→ fixed-s

fixed-u

fixed-t

0

∞ z

Figure 2. The analytic structures and the contour deformation for crossing symmetric sum rules.
The red branch cut represents the UV branch cut, and the blue branch cut represents the low-energy
cut contributed by loop effects in low-energy EFTs.

3. Fixed-s

t ≥M2 : 2π
3 − cos−1(−1

2(1 + 3p2)) ≤ Arg z < 0 ,

u ≥M2 : 0 < Arg z ≤ −2π
3 + cos−1(−1

2(1 + 3p2)) ,

Regge point : Arg z = 0 .

In this paper, we consider only the tree-level at low-energy. However, it is instructive to
analyze the low-energy analyticity when loops are present. A salient feature of the crossing
symmetric representation is its clear distinction between the UV branch cuts and the low-
energy branch cuts, which are not even connected. The low-energy branch cuts, such as
0 ≤ s < M2, extend from |z| = 0 to |z| = ∞ at three specific angles:

• Low-energy branch cuts

s > 0 : |z| ∈ (0,∞) ,Arg z = π ,

t > 0 : |z| ∈ (0,∞) ,Arg z = −π3 ,

u > 0 : |z| ∈ (0,∞) ,Arg z = π

3 .

It is important to note that at tree-level, the low-energy massless poles s = t = u = 0 are
all located on |z| = 0 and |z| = ∞.

We are now ready to deform the contour and build the sum rules, as shown in figure 2.
In this figure, the UV contour takes the discontinuities along the red UV branch cut, while
the low-energy contour is stretched both inwards and outwards from the unit circle.

We continue to have (2.3), and more specifically, it now yields∮
CIR

dz

4πi Kk(z)Msym(z, p2) =
∫ ∞

M2

ds

2πs
− 3k

2 −1
(
3p2 + 2s

) (
p2 + s

) k
2−1

DiscMsym(s, p2) .

(2.13)
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It is worth noting that we express the UV part in terms of s, which will be convenient
when performing the partial-wave expansion. The sum rule (2.13) is constructed to be
crossing symmetric, and it naturally subtracts all null constraints in a nonlinear manner.
Indeed, for example, the low-energy part for scalar EFT at tree-level is precisely the same
as in (2.7), as observed by [42], but we are not taking any forward-limit! We argue that
the crossing symmetric sum rule is a more natural and well-defined approach for addressing
low-energy loops.

2.1.3 Manipulate sum rules using functionals

To harness the powerful capabilities of dispersive sum rules, it is instructive to build functionals
that manipulate sum rules and measure the interesting couplings at low-energy

−
∑

k

Fk ◦B(p2)
∣∣∣
low arc

=
∑

k

Fk ◦Bk(p2)
∣∣∣
high

. (2.14)

To derive constraints on EFTs, one can the search for functionals that optimize quantities at
low-energy, subject to the unitarity that we will introduce later. Generally, we can define
the functionals by smearing the sum rules against wave functions

F ◦ f :=
∫ p2

max

0
dp2ψ(p2)f , (2.15)

where p2
max = M2 for (2.4), while p2

max = M2/3 for (2.13).
There are two kinds of functionals in the literature, which we call the forward-limit

functional and the impact parameter functional [17]. The forward-limit function is achieved by
taking the wave function ψ(p2) =∑

i ci∂
i
p2 , which then performs the forward-limit expansion;

on the other hand, the impact parameter functional measures the sum rules at small impact
parameter b ∼ 1/M .

• Forward-limit functional

ψ(p2) =
∑

i

ci∂
i
p2 → Fp2→0 ◦ f :=

∑
i

ci ∂
i
p2f . (2.16)

• Impact parameter functional
ψ(p2) has finite support in the momentum space and decays fast enough in the impact
parameter space ψ(b) :=

∫
dd−2p eib·pψ(p2); such functionals are usually chosen as5

ψ(p2) =
∑

i

ci p
i , i ∈ Z , (2.17)

as well as its variants for numerical benefits [17, 19, 20].

The forward-limit functional is much simpler and requires fewer computational resources,
therefore it is more often used in EFTs without graviton. However, this functional can be
singular at low-energy when dealing with graviton propagation due to the 1/t graviton pole

5It is worth noting that one has to pay attention when choosing the starting point of the polynomial pi0 ,
which controls the numerics in the large impact parameter regime b → ∞ [17].
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at low-energy. In contrast, the impact parameter functional would suppress the graviton
pole, making the gravitational low-energy behaviour well-defined under its action.6 In
addition, the impact parameter functional also provides a bonus for allowing one to weaken
the Regge boundedness assumption (2.2). The essential reason behind this bonus is that
smearing amplitudes against the fast decay wave function ψ(b) would suppress the higher
spin contributions at high energy, effectively enhancing the Regge behaviour under the
smearing [19] (see also [82] for a more evident proof).

In this paper, we do not include the graviton, therefore we will use the forward-limit
functional for quick convergence of numerics.

2.2 Low-energy amplitudes

It is worth noting that at this stage, the dispersive sum rules formally utilize the full amplitudes,
even along the low-energy arc. For low-energy part, since this arc is inside the EFT regime,
we may expect to replace the amplitudes there with EFT amplitudes. The simplest situation
is that the underlying theory is weakly coupled at low energy, where we can replace low-energy
amplitudes along the small arc with tree-level EFT amplitudes. These amplitudes contain
only simple poles, allowing us to evaluate the arc integral by picking up the residues of simple
poles. This is the simplest case that has been extensively studied. Generally, we have

MEFT(s, t;µ) +Mmatch(M2, µ) = M(s, t) , (2.18)

where the full amplitudes M(s, t) are expanded in a Taylor series in terms of 1/M . The EFT
amplitudes are computed using the effective Lagrangian, which is dependent on the scale
through logarithmic structures such as log(s/µ) and log(m2/µ). An additional matching piece
often appears because the order of Taylor expansions and the integrals do not commute, i.e.,

( ∫
ddxL

)∣∣∣
expansion

̸=
∫
ddxLeff . (2.19)

The matching piece contains terms like log(M2/µ). For simplicity, we often choose µ =M2,
which gives us a simpler relation

MEFT(s, t;µ =M2) = M(s, t) . (2.20)

Therefore, the dispersive sum rules measure the Wilson coefficients at scale µ = M2; it is
then necessary to apply the renormalization group equation to evolve Wilson coefficients
back to other scales.

In this paper, we will study the large-N chiral EFT, therefore the tree-level approximation
is sufficient.

6In 4D, the graviton pole is not completely resolved. Nevertheless, the divergence can be improved from
polynomial divergence to the logarithmic IR divergence log M/mIR using the functionals integrated from
m2

IR [17, 19]. This logarithmic IR divergence reflects the behaviour of the classical Newton potential. As a
consequence, the functional becomes ineffective beyond bmax ∼ 1/mIR, a region that we should simply discard.
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2.3 Unitarity constraints

How do we use (2.3) to constrain EFTs in terms of the UV amplitudes when the details
of the UV theory are absent? It is instructive to study amplitudes at high energy using
the partial wave expansion

M(s, t) = s
4−d

2
∑

ρ

2d+1(2π)d−1dimρ
VolSd−1 aρ(s)πρ

(
1 + 2t

s

)
, (2.21)

where ρ labels the irreducible representation of SO(d) and πρ is the associated partial
waves [20], and we slip off the indices of possible global symmetry.7 The unitarity then
implies a strong constraint on the partial wave coefficients

|1 + iaρ(s)|2 ≤ 1 . (2.22)

This nonlinear unitarity condition implies the positivity constraint

Disc aρ(s) ≥ 0 . (2.23)

This is the scenario that gives rise to the positivity bounds considered in the literature [11]. If
the couplings of the underlying theory are weak enough that the quadratic terms |aρ(s)|2 ≪
Disc aρ(s) can be ignored, then the positivity condition robustly constrains the low-energy
EFTs. However, it is important to understand that a weakly coupled EFT does not necessarily
mean its UV completion will also be weakly coupled. The essential condition is the existence
of a parametrically small but positive parameter 0 < g ≪ 1 in low-energy EFTs that can
be measured by dispersive sum rules. This leads us to

0 < g =
∑

ρ

∫ ∞

M2
dm2Yρ(m2)Disc aρ(m2) ≪ 1 , (2.24)

where Yρ(m2) is any appropriate function which is generated by functionals acting on partial
waves. This obviously shows that Disc aρ has to be parametrically small as g. In this case,
the optimal bounds on Wilson coefficients will be scaling with g. Gravitational EFTs studied
in [19, 20] (and their couplings to scalar and photon [21, 22, 84]) fall into this category, where
the parametrically small parameter is the Newton constant GN = 1/Md−2

pl ≪ 1/Md−2 ≪ 1;
large-N chiral EFT that will be studied in the following sections also falls into this category,
where the small parameter is the inverse of the pion decay constant 1/f2

π ∼ 1/N ≪ 1 [70]
(see section 3 for more details).

In other cases, the full unitarity (2.22) will be providing more stringent constraints on
low-energy EFTs, such as scalar EFTs studied in [64]. It turns out that the full unitarity (2.22)
can be linearized by formalizing it as a positive matrix [52]

|1 + iaρ(s)|2 ≤ 1 →
(
Disc aρ(s) Re aρ(s)
Re aρ(s) 2−Disc aρ(s)

)
⪰ 0 , (2.25)

where Re aρ(s) = 1/2
(
aρ(s+i0)+aρ(s−i0)

)
. It is then easy to see that for small Disc aρ(s) we

only need to consider the first diagonal element of this matrix; on the other hand, if Disc aρ(s)
7See [83] for excellent constructions of partial waves for arbitrary spin using the representation theory.
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is not necessary small but Re aρ(s) is small, we can also ignore the off-diagonal terms and
impose the linear constraint 0 ≤ Disc aρ(s) ≤ 2 (which is considered in, e.g., [48, 64, 85, 86]).

These discussions allow us to classify the scenarios of EFT bootstrap, which invoke
different unitarity conditions according to the basic assumptions (we follow the terminology
invented in [64])

I. Positivity

Disc aρ(s) ≥ 0 , ∃ g ∈ PEFT where 0 < g ≪ 1 and g ⊂ Bk(p2)
∣∣∣
low arc

.

II. Linear unitarity

0 ≤ Disc aρ(s) ≤ 2 , if
(
Re aρ(s)

)2 ≪ Disc aρ(s) .

III. Nonlinear unitarity (
Disc aρ(s) Re aρ(s)
Re aρ(s) 2−Disc aρ(s)

)
⪰ 0 .

From now on, for simplicity, we will denote the discontinuity as the imaginary part, using
the notation Disc → Im, when there is no confusion.

2.4 EFT bootstrap as infinite dimensional SDP

2.4.1 Semidefinite programming

Since the unitarity of the S-matrix can be expressed as a semidefinite matrix, carving out
the allowed space of EFTs can then be transformed into the semi-definite program (SDP),
subject to those unitarity constraints. In this section, we provide a crash course on SDP.
We will then show that EFT bootstrap is an infinite-dimensional SDP.

The SDP can be formulated as the following primal optimization procedure [69, 87]

• Primal problem

Minimize c · x over x ∈ RN ,

Subject to X :=
N∑

i=1
Aixi − C ⪰ 0 , X ∈ SK

BTx = b , b ∈ RP , B ∈ RP×N

In this algorithm, SK is the space of K ×K symmetric real matrices.
The primal S-matrix bootstrap [52], as applied to EFTs, falls into this problem with

infinite dimensions. For simplicity, we only consider the positivity constraint. We can
approximate the full amplitude (which is valid for both UV and low-energy EFT) by using
an infinite number of analytic but simpler functions Mi with the assumed analyticity and
Regge behaviour

M(s, t) =
∑
i=1

xi Mi(s, t) . (2.26)
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The positivity of the unitary condition now becomes∑
i=1

xi Im ai
ρ(s) ≥ 0 , for all allowed J ≥ 0 ∈ ρ and for all s ≥M2 with fixed t < 0 , (2.27)

where ai
ρ is the partial wave coefficients contributed by Mi. If we imagine that we put

Im aρ(s) at all values of s ≥M2 for all spins into an infinite-dimensional diagonal matrix, the
primal EFT bootstrap is, in principle, an infinite-dimensional primal problem with K,N = ∞
when taking C ≡ 0.8 Here, BTx = b is simply the normalization condition for fixing a
particular Wilson coefficient, and we can minimize the target Wilson coefficient by choosing
appropriate c. This is because any Wilson coefficient can be represented in terms of a linear
combination of xi by taking the low-energy limit of the full amplitudes. However, in practice,
we cannot reach N,K = ∞ in numerics. Instead, one takes a maximal value of Nmax, and
we also consider up to a certain Jmax, imposing unitarity for a finite but large number of
s-grids [52]. This truncation procedure gives a well-defined optimization, after which one
must extrapolate the bound [58, 59, 64].

Duality plays an important role in SDP. Typically, the primal problem has a dual
formulation, known as the dual problem

• Dual problem

Maximize Tr(CY ) + b · y over y ∈ RP andY ∈ SK ,

Subject to Tr(AiY ) +
P∑

j=1
Bijyj = ci , and Y ⪰ 0 .

We can easily construct the dual version for primal EFT bootstrap with positivity that we
described previously. The maximization target is b · y since we choose C ≡ 0, we then have∫ ∞

M2
ds
∑

ρ

Im ai
ρ(s)Yρ(s) +

∑
j

Bijyj = ci , Yρ(s) ≥ 0 , (2.28)

where we have already explicitly evaluated the trace by integrating over s ≥M2 and summing
over all spins in the irreducible representation. Note that in this language, we use Yρ(s)
to denote an infinite-dimensional matrix in which the diagonal elements take the values
of all s ≥ M2 and spins in ρ. What does (2.28) mean? It becomes clear if we dot (2.28)
into x, we find ∫ ∞

M2
ds
∑

ρ

Im aρ(s)Yρ(s) = c · x− b · y . (2.29)

In other words, the dual problem is to find a positive function Yρ(s) such that its average
against the spectral density can represent low-energy Wilson coefficients c · x, and we bound
c ·x by maximizing b · y according to the positivity. The dual problem (2.29) can obviously be
achieved by using the dispersive sum rules, which is precisely the dual bootstrap algorithm

8We can also formally think about C as |M||2/2, which is infinitesimally small in the positivity scenario.
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studied in [12]. In this algorithm, the function Yρ(s) can be constructed by acting the
functionals on the UV part of sum rules∑

k

Fk ◦Bk(p2)
∣∣∣
high

=
∫ ∞

M2
ds
∑

ρ

Im aρ(s)Yρ(s) . (2.30)

Other scenarios can also be formulated as SDPs, see [67, 68] and appendix A for further
discussions.

It is also natural to ask whether the primal and dual problems yield the same optimal
value for our target. This question can be answered by the duality theory in SDP, which
we will review in the following subsections.

2.4.2 The Lagrangian formulation, SDP duality and physical implications

SDP has the Lagrangian formulation, which manifests the logics of optimization. A SDP
is described by the following Lagrangian

L(x, y, Y ) = c · x− Tr(XY ) + (b−BTx) · y

= (Tr(CY ) + b · y
)
−

N∑
i=1

(
Tr(AiY ) +

P∑
j=1

Bijyj − ci

)
xi , (2.31)

where the first line is intended to manifest the primal problem, while the second line targets
the dual problem. Equality is achieved using the expression X =∑N

i=1Aixi − C along with
some basic algebra. It’s worth noting that we don’t use the subject identity, because we want
to emphasize that every component of SDP can be seen from the Lagrangian. Using this
Lagrangian, the primal problem can be formulated as [69]

P = min
x

(
sup
Y ⪰0

L(x, y, Y )
)
, for X ⪰ 0 , (2.32)

where we have used

sup
Y ⪰0

(
− Tr(XY )

)
=
{
0 , if X ⪰ 0 ,
∞ , otherwise . sup

Y ⪰0

(
(b−BTx) · y

)
=
{
0 , if b = BTx ,

∞ , otherwise .
(2.33)

The dual problem can then be constructed by interchanging the ordering of “minimize”
and “maximize”, namely

D = max
Y ⪰0

(
inf
x
L(x, y, Y )

)
. (2.34)

This indeed gives rise to the standard dual problem by noting

inf
x
L(x, y, Y ) =

{
Tr(CY ) + b · y , if Tr(AiY ) +∑P

j=1Bijyj − ci = 0 ,
∞ , otherwise . (2.35)

According to our previous discussions, we can then immediately traslate (2.31) to the
Lagrangian of positivity EFT bootstrap, built from any reasonable functionals acting on
the dispersive sum rules

LI = λF −F ◦B(p2) . (2.36)
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The first term is the dual objective, and the second term represents functionals acting on
sum rules for our targets, giving rise to (2.14). This Lagrangian is compact and is the guide
throughout this paper. To be more concrete, let’s say we want to minimize a Wilson coefficient
gF in terms of g0 > 0. We can simply expand F ◦ B(p2)

F ◦B(p2) = −gF + λF g0 +
∫ ∞

M2
ds
∑

ρ

Im aρ(s)Yρ(s) . (2.37)

We then have

LI = gF + λF (1− g0)−
∫ ∞

M2
ds
∑

ρ

Im aρ(s)Yρ(s) . (2.38)

We can now easily read off either the primal or dual algorithm. The primal problem is
straightforward to read; we fix g0 = 1 and then minimize gF subject to the positivity
Im aρ(s) ≥ 0. It is worth noting that setting g0 = 1 is not physical; this is a scaling trick to
deal with the numerics, and one can always set other values of g0. The physical result is
the lower bound of gF/g0; similarly, the solved Im aρ is also in the unit of g10. For the dual
problem, we maximize λF subject to F ◦B(p2) ≡ 0 with Yρ(s) ⪰ 0. Therefore, we have

gF − λFg0 =
∫ ∞

M2
ds
∑

ρ

Im aρ(s)Yρ(s) ≥ 0 → gF ≥ (max λF )g0 . (2.39)

This is precisely the dual algorithm proposed by [12].
A natural question arises: for the same bootstrap problem, do the primal and dual

methods yield the same constraints? This question can be answered using the duality theory
of SDP. In general, if we find feasible solutions for both the primal and dual problems,
we have weak duality, which states that the primal bound is always greater than the dual
bound, leading to a duality gap as follows

c · x−
(
Tr(CY )− b · y

)
= Tr(XY ) ≥ 0 . (2.40)

This is the reason the primal bound is always referred to as the rule-in bound, while the
dual bound is termed as the rule-out bound. To ensure the duality gap vanishes, we clearly
need XY ≡ 0 and the Slater’s condition X ≻ 0 or Y ≻ 0 [69]. This implies that a solution
to the problem must satisfy

X ≻ 0 , Y ≡ 0 , or Y ≻ 0 , X ≡ 0 . (2.41)

Physically, this condition is powerful. For example, numerical conformal bootstrap employs
Y ≡ 0 to identify the physical spectrum, a method known as the extremal functional
method [88, 89]. In terms of positivity EFT bootstrap, the second possible condition is
trivial, it simply provides a free field theory solution. The nontrivial physical implication
is then clearly

Im aρ(s) > 0 , Yρ(s) ≡ 0 . (2.42)

The first condition makes physical sense, as the spectral density has to be nonzero for
nontrivial physics. We can also use the second condition to locate the physical bound state or
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resonance above the cut-off [17, 44]. It is worth noting, however, that this is the most ideal
situation. As previously mentioned, in practice, it is not possible to treat EFT bootstrap as
an infinite dimensional SDP. Therefore, practically, we expect the duality gap is not zero
but will converge to zero as we increase the dimension of the problem. In this situation,
the weak duality can serve as a double check criteria, helping us diagnose any numerical
mistakes. Practical implementation of EFT bootstrap also complicates the task of solely
using Yρ(s) ≡ 0 to determine the physical points [44]. Nonetheless, we will demonstrate
later that the first condition from (2.42) with sufficiently small Yρ(s) can still be insightful
for extracting physical information.

Other scenarios of EFT bootstrap can be formulated similarly, we keep the discussions
in appendix A.

3 Large-N chiral perturbation theory

Starting from this section and in all subsequent sections, we will apply the EFT bootstrap
to large-N χPT. We are adopting the set-up presented in [44], where the dual algorithm
was employed.

Our innovations compared to [44, 45] are twofold. For the dual algorithm, we use the
crossing symmetric sum rules. As we previously indicated, these rules automatically incorpo-
rate all null constraints, making them more efficient and allowing us to easily explore higher
dimensional operator; additionally, we will establish the primal method and demonstrate
the convergence between the primal and dual approaches.

3.1 Chiral Lagrangian and low-energy amplitudes

We consider the chiral limit of large-N QCD (with SU(N) gauge group) [71], where the
fermionic sector possesses UL(Nf ) × UR(Nf ) chiral symmetry. Usually, there is an axial
anomaly which breaks the global symmetry by UL(Nf )×UR(Nf ) → SUL(Nf )× SUR(Nf )×
UV (1). However, the axial anomaly is suppressed by the large-N limit [90–92]. At low-energy,
we then have the spontaneous symmetry breaking pattern

UL(Nf )×UR(Nf ) → UV (Nf ) . (3.1)

This results in N2
f − 1 pseudo-Goldstone bosons (which are massless in the chiral limit) in the

adjoint representation of SU(Nf ). There is also a singlet meson that can mix with the gluon.
However, due to large-N understanding of the OZI rule, this mixing is suppressed by 1/N ,
making it the trivial U(1) part of U(Nf ). For Nf = 2, the adjoint representation contains
pions π; for Nf = 3, the adjoint representation contains pions π, kaons K and the eta η;
while the singlet is referred to as the eta prime η′. Nevertheless, we will show momentarily
(see also [44]) that the unitarity constraints are independent of Nf at the strict large-N limit.
We therefore follow [44] to refer to the Goldstone bosons to as the large-N pion.

We can formulate the large-N pion physics using the coset construction of

UL(Nf )×UR(Nf )/UV (Nf ) , (3.2)
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and then construct a non-linear sigma model by parameterizing the symmetry breaking
in terms of low-energy field

U = exp
[
2iΠ

aT a

fπ

]
, (3.3)

where fπ is the pion decay constant that scales as
√
N in the large-N limit. Here Πa denotes

the large-N pion. For example, for Nf = 3 we have

Π = 1√
2


η√
6 + 1√

2 π+ K+

π− η√
6 − 1√

2 K0

K− K0 −
√

2
3η

+ 1√
6
η′I , (3.4)

where I is a 3× 3 identity matrix. Then the chiral Lagrangian describing the EFT can be
constructed [93]. Up to p4 at large-N limit, it is generally given by [94]

LχPT =−f
2
π

4 Tr
[
∂µU

†∂µU
]
+l1Tr

[
(∂µU

†∂µU)2]+l2Tr[∂µU
†∂νU∂

µU †∂νU
]
+· · · . (3.5)

It is worth noting that we drop all sub-leading terms that are not single-trace because a flavor
trace comes from a quark loop and thus also acquires a color trace [94, 95]. This leaves us only
two independent Wilson coefficients. Interestingly, for finite N but Nf = 2, there are also just
two independent Wilson coefficients up to p4; while for finite N but Nf = 3, there are three
independent Wilson coefficients at this order. Since we only consider 2-to-2 pion scattering, we
then simply drop all background gauge fields (see [47] for dual bootstrap including background
gauge fields). At higher orders, it becomes quite challenging to enumerate a complete set of
higher-dimensional operators without redundancy, especially when identities exist that allow
trading one operator for another in Nf = 2, 3. However, using global symmetry and Bose
symmetry, one can easily write down tree-level amplitudes to any order in p.

It turns out to be useful to parametrize the amplitudes using the generators of U(Nf ) [96]

Mab
cd = 4

(
Tr
(
TaTbT

cT d)+Tr
(
TbTaT

dT c))M(s, t) + δabδ
cdM̂(s, t) + perm , (3.6)

where it is obvious M(s, t) = M(t, s),M̂(s, t) = M̂(t, s), making the Bose symmetry manifest.
At large-N limit, M̂(s, t) is trivially zero because it can only be contributed by non-planar
diagrams and is therefore suppressed (see, e.g., [96] for an explicit one-loop result). Using
the permutation symmetry, one can easily construct tree-level amplitudes at low-energy
up to any orders in p

Mlow(s, t) =
∞∑

m=1

[ m
2 ]∑

n=1
gmn(sm−ntn + sntm−n) , (3.7)

where we have removed p0 term as it is forbidden by the Adler’s zero [97]. The low-lying
identification with the Lagrangian is [44]

g10 = 1
2f2

π

, g20 = 2(l1 + 2l2)
f4

π

, g21 = 4l2
f4

π

. (3.8)
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3.2 Partial waves and unitarity

We now turn our attention to reviewing the partial waves of large-N pion scattering. This
can be understood by considering the amplitude Mab,

cd as a sum over the U(Nf ) irreducible
representations that label the ΠaΠb → X three-point vertices. Here, X represents the
intermediate states in the ΠaΠb → ΠcΠd scattering. Following the notation in [98], the
representation theory behind this physical picture is given by9

adj⊗ adj = 0⊕ adjS ⊕ adjA ⊕ ās⊕ s̄a⊕ s̄s⊕ āa . (3.9)

The multiplicity of 2 for the adjoint representation arises because the vertices can be either
symmetric or anti-symmetric in two legs. The resulting adjoint representation labels meson
states consisting of bilinear quarks (i.e., q̄q states) in the intermediate channel, while the
other representations label different exotic resonances. In addition to these global symmetries,
Πa behaves like a scalar, making the partial waves trivially correspond to the Legendre
polynomials, as in scalar scattering. Therefore, one has the following s-channel partial
wave decomposition [44]

Mab
cd(s|t, u) =

∑
R

(
PR)

ab
cd MR(s|t, u) , (3.10)

where

MR(s|t, u) = 16π
∑

J

(2J + 1) aRJ (s)PJ

(
1 + 2t

s

)
. (3.11)

Here, R denotes the irreducible representations in (3.9), and PR is the projector associated
with R. The crucial difference from the pure scalar case is that the Bose symmetry also
permutes the projector PR. The unitarity condition is then also straightforward

∣∣∣1 + iaRJ (s)
∣∣∣2 ≤ 1 . (3.12)

The projector associated with the adjoint representation can be easily constructed
because there are only two simple ΠaΠbXc vertices: either the structure constant fabc or
dabc := 2Tr

[
T aT b, T c

]
. The two associated projectors are therefore proportional to fabef ecd

and dabedecd. Other projectors are more intricate but can be constructed using the Casimir
operators and the relevant eigenvalues [98]. We document all projectors in appendix B. From
the permutation symmetry of the projectors, we can easily write down the spin selection
rules for (3.12)

0, adjS, s̄s, āa : even J , adjA, ās⊕ s̄a : odd J . (3.13)

To perform the EFT bootstrap, it is beneficial to explicitly know the relations between
the generator basis (3.6) and the basis from irreducible representations (3.10). This can be

9We factorize U(Nf ) as U(1) × SU(Nf ), and therefore denote adj = (0, adj). We then follow the flavour
structure analysis in [98] by treating the 0 component trivially.

– 17 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
2

readily achieved if we are aware of all the projectors, and we have

M0(s|t,u)=− 2
Nf

M(t,u)+
2(N2

f −1)
Nf

(
M(s, t)+M(s,u)

)
+M̂(t,u)+

N2
f

2
(
M̂(s, t)+M̂(s,u)

)
,

MadjS(s|t,u)=− 4
Nf

M(t,u)+
(N2

f −4)
Nf

(
M(s, t)+M(s,u)

)
+M̂(t,u)+ 1

2
(
M̂(s, t)+M̂(s,u)

)
,

MadjA(s|t,u)=Nf

(
M(s, t)−M(s,u)

)
+ 1

2
(
M̂(s, t)−M̂(s,u)

)
,

Ms̄s(s|t,u)=−Māa(s|t,u)= 2M(t,u)+M̂(t,u)+ 1
2
(
M̂(s,u)+M̂(s, t)

)
,

Mās⊕s̄a(s|t,u)= 1
2
(
M̂(s, t)−M̂(s,u)

)
. (3.14)

After we take M̂ = 0 due to the large-N limit, we can reproduce the relations outlined in [44].
Using these relations, we can easily translate the unitarity condition (3.12) into constraints
on partial wave coefficients of M(s, t),M(s, u) and M(t, u)

M(s, t)= 16π
∑

J

(2J+1)ast
J (s)PJ

(
1+2t

s

)
, M(s,u)= 16π

∑
J

(2J+1)asu
J (s)PJ

(
1+2t

s

)
,

M(t,u)= 16π
∑

evenJ

(2J+1)atu
J (s)PJ

(
1+2t

s

)
, (3.15)

where we have csu
J = (−1)Jcst

J . This aids in constructing both the dual and primal problems.
In the large-N limit, it suffices to use the positivity bootstrap (this will be justified in the
next subsection). Additionally, all exotic mesons are suppressed, and therefore Im cs̄s ≡ 0.
We then have [44]

Im ast
J (s) = Im asu

J (s) = Nf

4(N2
f − 1)Im a0(s) ≥ 0 , aadjS (s) =

N2
f − 4

2(N2
f − 1)a

0(s) , for even J ,

Im ast
J (s) = −Im asu

J (s) = 1
2Nf

Im aadjA(s) ≥ 0 , for odd J ,

Im atu(s) ≡ 0 . (3.16)

It is obvious that, in the large-N limit, the bootstrap constraints would be independent of
the number of flavours. However, other bootstrap scenarios depend on Nf .

3.3 Dual problem set-up

Let’s set up the dual problem for large-N pion scattering. The most crucial component is
the crossing symmetric dispersive sum rules. As we previously described, the construction of
these sum rules is universal. The theory-dependent inputs involve constructing the crossing
symmetric amplitudes and making assumptions about their Regge behaviour.

In QCD, the Regge intercept is at J0 ≃ 0.52 for both M(s, t) and M(s, u) [99, 100],
therefore k0 = 1. We follow [44] to assume that the assumption k0 = 1 remains valid after
taking the large-N limit. This improved Regge growth is usually assumed in QCD-like
theories and SMEFT to constrain the low dimensional operators [101–103].10

10We are grateful to Brando Bellazzini for pointing out the relevant references that we previously missed.
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It turns out that one can construct three independent crossing symmetric amplitudes [30]

M(1) = M(s, t) +M(t, u) +M(s, u) ,

M(2) = M(s, t)−M(s, u)
t− u

+ cyc perm ,

M(3) =
(M(s, t)−M(s, u)

t− u
− M(s, t)−M(t, u)

s− u

) 1
s− t

+ cyc perm . (3.17)

To construct well-defined crossing symmetric sum rules from these amplitudes, we need
to determine their Regge behaviors using the Regge boundedness of the building blocks
M(s, t). We find

k
(1)
0 = 1 , k

(2)
0 = k

(3)
0 = −1 . (3.18)

Thus, in terms of these symmetric amplitudes, the sum rules for M(2,3) are super-convergence
sum rules. The complete set of sum rules is therefore

B
(1)
k =

∮
z=1,ξ,ξ2

dz

4πiKk+1(z)M(1)(z,p2)≡ 0 , B
(2,3)
k =

∮
z=1,ξ,ξ2

dz

4πiKk−1(z)M(2,3)(z,p2)≡ 0 ,

(3.19)

where k = 1, 3, 5 · · · , denoting the Regge spin of the sum rules with respect to M(s, t). The
low-lying low-energy contributions from these sum rules are

−B1
∣∣∣
low

=
{
4g20 − 2g21 + 3p2(2g30 − g31), 3g10,−3(g20 − 2g21)

}
,

−B3
∣∣∣
low

=
{
(6g60 − 3 (g61 + g62 − 2g63)) p4 + (10g50 − 5g51 + g52) p2 + 2 (2g40 − g41 + g42) ,

3 (g40 + g41 − 2g42) p2 + 3g30,−3 (g50 − 2g51 + g52) p2 − 3 (g40 − 2g41 + 2g42)
}
.

(3.20)

As we noted, using these sum rules, we don’t need to construct the null constraints as
in [44, 45, 47]. At high energy, we have

B
(1)
k

∣∣∣
high

=
〈(

(−1)J+1
)
m−3k−5 (2m2+3p2)(m2+p2) k−1

2 PJ(x)
〉
,

B
(2)
k

∣∣∣
high

=
〈3m5−3k

(
((−1)J +1)

√
m2+p2

√
m2−3p2−(((−1)J−1)m2)−3((−1)J−1)p2

)
(m2+p2)

k−4
2

2
√

m2−3p2
PJ(x)

〉
,

B
(3)
k

∣∣∣
high

=
〈3m3−3k

(
−((−1)J +1)

√
m2+p2

√
m2−3p2+3(1−(−1)J)m2+3(1−(−1)J)p2

)
(m2+p2)

k−4
2

2
√

m2−3p2
PJ(x)

〉
,

(3.21)

where x =
(
(m2 − 3p2)/(m2 + p2)

)1/2. The average is defined by〈
· · ·
〉
= 8

∑
J

(2J + 1)
∫ ∞

M2
dm2 Im ast(m2)

(
· · ·
)
. (3.22)

We can now decide what bootstrap scenario that we should use. Let’s simply look at
B

(2)
1 , at leading order in p2 → 0, we have

1 ≫ g10 =
〈 1
m4

〉
> 0 . (3.23)
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This does not only prove the positivity of g10 [44], but it also satisfies the condition of using
only positivity, because g10 ∼ 1/f2

π ∼ 1/N ≪ 1. Therefore, we will focus on the positivity
bootstrap, with the exception of subsection 4.4. In subsection 4.4, we will employ the linear
unitarity bootstrap to verify that the large-N expansion is meaningful at the EFT level. We
use SDPB [87, 104] to implement the algorithm.

3.4 Primal problem set-up

Let’s now focus on the setup of the primal problem. The fundamental building block of the
primal problem is the S-matrix ansatz, which approximates the S-matrix [52]. To ensure that
we are indeed constructing a primal problem that is dual to the previously described dual
problem, this ansatz must satisfy the assumptions of analyticity and Regge boundedness.
Consequently, it has to validate all sum rules.

To ensure analyticity, we follow the approach in [52] to define a function using Mandelstam
variables

ρs = M −
√
M2 − s

M +
√
M2 − s

(3.24)

This function obviously has branch cut starting at s = M2. Then the ansatz can be
built by polynomials in (ρs, ρt, ρu) under the restrictions of Bose symmetry and momentum
conservation s + t + u = 0.

Let’s now use ρs,t,u to construct the ansatz for M(s, t), which is symmetric in s and t. It
is crucial not to overcount or miss any terms in the ansatz. Since the primary problem is to
determine the optimal coefficients of the ansatz terms, any redundancy or omission could
either produce unfaithful bounds or simply disrupt the numerical calculations. We start with
listing the generators of our ansatz that are symmetric in (s, t)

(ρsρt)a , (ρs + ρt)b . (3.25)

We do not need to consider ρa
u because the large-N limit suppresses the u-channel cut of

M(s, t), as previously reviewed. Typically, the relation s+ t+u ≡ 0 constrains the number of
independent polynomials at each order, starting from order 5, which need to be subtracted [52].
In our case, since there is no ρu available in M(s, t) in the large-N limit, the polynomials of
the form (s+ t+ u)× (· · · ) do not exist. Hence, polynomials constructed using the above
generators are independent. We can easily write down the ansatz11

M(s, t) = R(s, t)
2a+b=Nmax∑

a+b>0
αab (ρsρt)a(ρs + ρt)b , (3.26)

where the lowest order is 1 rather than 0 due to the Adler’s zero when expanding in s, t≪M2.
The overall function R(s, t, u) is for controlling the Regge behaviour of the amplitudes.
Because k0 = 1, for simplicity, we choose

R(s, t) = 1 . (3.27)
11It is worthing noting that this ansatz actually has maximal analyticity, which is stronger than the analytic

assumptions of the dispersive sum rules. Nevertheless, as we show below, the dual and primal bounds converge,
seemingly suggesting that the SDP set-up of the positivity EFT bootstrap does not use the maximal analyticity.
We are grateful to Miguel Correia for the discussions on this point.
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We can modify R(s, t) to exhibit a more refined Regge behaviour by specifying J0. However,
since the only ingredient needed for constructing the solutions of the positivity EFT bootstrap
comes from the sum rules, and these sum rules are sensitive to k0 rather than J0, it’s natural
to speculate that modifying R(s, t) won’t alter the resulting bounds as long as it grows at a
rate below sk0=1 at high energy. We will verify this point in subsection 4.3.

By expanding the ansatz (3.26) in the low-energy limit where s, t, u ≪ M2, we can
derive the low-energy tree-level amplitudes and establish a dictionary that translates Wilson
coefficients to αab. For example, the dictionary for low-lying coefficients is

g10 =
1
4α10 , g20 =

1
16(2α01+α02) , g30 =

1
64(5α01+4α02+α03) , g21 =

1
32(2α02+α10) .

(3.28)

We can then easily verify that every term in (3.26) satisfies the crossing symmetric sum rules.
The primal problem involves imposing the positivity condition (3.16) on the ansatz (3.26)

and solving for the coefficients αab by optimizing the targeted Wilson coefficients using
the dictionary like (3.28). The last technical question is how we read off the partial wave
coefficients from our ansatz (3.26)? We use the standard inversion formula12

aJ(s) =
23−2dπ1− d

2

Γ
(

d
2 − 1

) s d−4
2

∫ 1

−1
dx(1− x)

d−4
2 M(s, t)PJ(x) , x = 1 + 2t

s
. (3.29)

It is crucial to note that, although we only consider the imaginary part in the positivity
SDP Lagrangian, we can still solve the full S-matrix from the optimal primal solutions.
While it may seem that the primal method always provides more information than the dual,
this perception is mistaken. On the dual side, one can also rely on the extreme functional
to employ the analytic “rule-in” method, which enables the construction of a relevant UV
theory [12, 16, 44]. We use SDPB [87, 104] to implement the algorithm.

4 Dual bounds meet primal dounds

4.1 Simple linear bounds

4.1.1 “Trivial” positivity bounds

Let us start with positivity bounds of g10, g20 and g21. The Lagrangian, as explicitly written
down, are

L1 = g10 −
∫ ∞

M2
ds
∑

J

Im aJ(s)Y 1
J (s) , L2 = g20 + λ2(g10 − 1)−

∫ ∞

M2
ds
∑

J

Im aJ(s)Y 2
J (s) ,

L3 = g21 + λ3(g10 − 1)−
∫ ∞

M2
ds
∑

J

Im aJ(s)Y 3
J (s) . (4.1)

12This formula may explain why the primal bootstrap typically does not employ maximal analyticity, thus
converging to the dual one with weaker analyticity. For s ≥ M2, this formula solely relies on the physical
regime −M2 ≤ t < 0, making the resulting data sensitive only to the analyticity for t < 0. We, therefore,
propose examining the subtlety of ‘maximal analyticity vs. partial analyticity’ using the gravitational EFT. In
this context, unitarity must be demanded beyond integer spin, e.g., for J ∼ b

√
s at high energy [17, 19].
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Figure 3. The spectral density at J = 0 that saturates g̃21 = 0, where the S-matrix is approximated
by Nmax = 5 polynomial.

Using the crossing symmetric sum rules, it is easy to obtain the dual bounds, we have (3.23)
as well as

1
3
(
B

(1)
1 + 1

3B
(3)
1
)∣∣∣

p=0
→ g20 =

〈 1
m6

〉
> 0 ,

1
6
(
B

(1)
1 + 4

3B
(3)
1
)∣∣∣

p=0
→ g21 =

〈1− (−1)J

m6

〉
≥ 0 . (4.2)

The primal bounds for g10, g20 > 0 are also trivial to obtain, where the solutions are
all αab ≡ 0, since g10 = 0 or g20 = 0 would a trivial free theory. This is consistent with the
Slater ’s condition and the complementary condition previously reviewed: the dual functional
YJ(s) is strictly positive, therefore the strong duality gives Im aJ(s) ≡ 0.

The first nontrivial example is g21, since its dual functional YJ(s) can be zero for even
spins, suggesting that nontrivial UV amplitudes with only even spin particles exist. It turns
out that g21 ≥ 0 converges trivially for a low Nmax = 5 and a low Jmax, which we choose
to be Jmax = 60. A nontrivial S-matrix profile with J = 0 that saturates g21 = 0 can be
illustrated, as shown in figure 3. We observed that the spectral density for all higher spins is
zero. This preliminary study thus confirms the statement from [44] that the UV theory at
g̃21 = 0 is a scalar theory. However, we observe from figure 3 that the UV scalar spectral
density doesn’t show an extreme peak at certain points; instead, it presents a continuum.
This suggests that the UV theory is not a single scalar but a scalar theory with all possible
mass values where m ≥ M .

4.1.2 Upper bounds on g20/g10 and g21/g10

To bootstrap the upper bounds, we simply flip the overall sign of g20, g21 in the La-
grangians (4.1). The upper bound of g20 in the unit of g10 is also trivialized by the dual method

1
3
(
−B

(1)
1 +B

(2)
1 + 1

3B
(3)
1
)∣∣∣

p=0
→ g10 − g20 =

〈m2 −M2

m6

〉
≥ 0 → g̃2 = g20/g10M

2 ≤ 1 .

(4.3)
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Figure 4. We determined the upper primal bounds of g̃2 and g̃′2 by varying Nmax. These bounds
converge quickly to the dual bounds, which are represented by red lines, approaching from below as
guaranteed by the strong duality of SDP.

The upper bound of g̃′2 = 2g21/g10M
2, although it is not straightforward, it can still be

easily solved from the dual algorithm using SDPB [87]. Using the crossing symmetric sum
rules, we reproduced the result of [44]

g̃′2 ≤ 3.25889135 . (4.4)

These two bounds are nontrivial from the primal side, since low spin sampling and low
Nmax would give us trash, which does not extrapolate well to an infinite dimensional SDP. For
a more involved S-matrix bootstrap, which involves either linear unitarity or even complete
unitarity, the strategy is to fix Nmax and then increase Jmax so that one can extrapolate
the bounds to be valid for all J ; subsequently, one should vary Nmax and extrapolate the
bounds to Nmax = ∞ [58, 59]. However, for the positivity primal bootstrap, we find that we
can simply fix Jmax to a large value without doing the extrapolation. We choose Jmax = 60,
and we can see the nice convergence of bounds by varying Nmax from 5 to 25, as shown in
figure 4. When Nmax takes a small value, the approximation of the positivity EFT SDP is
not good. However, we still expect the weak duality to be valid. This is precisely why we see
that the primal upper bounds are always smaller than the dual upper bounds. Ultimately,
we find that Nmax = 25 is enough to conclude the strong duality, as the relative error of
primal bounds from the dual bounds is roughly ∼ 1%.

Now we can combine the dual and primal functionals to analyze the physical spectrum
that saturates bounds. For primal side, we simply use the solutions from Nmax = 25. The
crucial point to understand is that since we are still far from the actual infinite-dimensional
SDP, we cannot rely exclusively on either the dual functional or the primal solution to extract
physical information. The strategy is as follows: initially, examine the dual functional. If
the dual functional is precisely zero at a particular point, then we should trust the spectral
density from the primal solution at that point, irrespective of its magnitude size. Conversely,
if the dual functional is strictly positive and large, we would expect the corresponding primal
“spectrum” to be small. Ideally, this primal spectrum should be vanishingly small. If it’s not,
it should be small enough to be interpreted as a numerical artifact, and we should simply
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Figure 5. The spectral density at J = 0 that saturates g̃2 = 0. To generate this plot, we used a
polynomial order in S-matrix of Nmax = 25.

discard it. The most subtle situation arises when the dual functional is strictly positive
and small enough to be approximated as zero. In this case, we should estimate the gap
YJ (s)Im aJ (s) at that point. If the gap is sufficiently small, we can trust the primal spectrum;
otherwise, we discard the data. However, this is also difficult to implement. It is worth
noting that the dual functional is usually a polynomial of M2/s, and is small for sufficiently
high s numerically. It is challenging to numerically detect that a small number is a zero or
it is simply suppressed by 1/s. This suggests that the EFT bootstrap does not have sharp
implications in the deep UV, but a vague picture of the physics there can still be captured by
the primal solutions: for large s, we believe that it is reasonable to trust the primal spectrum
density, because we can always treat Yρ(s) there as zero with small errors.

• g̃2 = 1. From the dual functional (4.3), we see that YJ(s) can be zero only when
s =M2 and it is strictly positive for s > M2, which is robust against adding more functionals.
We indeed observe from the primal solution that there is a single peak around s =M2 for
J = 0, see figure 5; while Im aJ for J ≥ 1 is vanishing. Besides, we also checked that the other
Wilson coefficients at this point are g̃′2 = 0 and g̃3 = g30/g10M

4 ≃ 0.976 ∼ 1. This analysis
confirms that the UV theory with g̃2 = 1 corresponds to a single scalar theory with mass
m =M , as first pointed out by [44]. The relevant scalar mode with s0 Regge behaviour is

Mscalar(s, t) =
M2

2f2
π

(
s

M2 − s
+ t

M2 − t

)
. (4.5)

A comparison of this scalar amplitudes with our numerical solution is illustrated in figure 7(a).
Nevertheless, it is important to note that the plot in figure 7(a) is drawn for the global
region, which significantly suppresses the differences between the analytic and numerical
amplitudes. The largest difference between amplitudes obtained by the two methods occurs
at |s| → ∞ and t → 0, and is approximately 0.018.

• g̃′
2 ≃ 3.25889135. The associated dual functional is complicated, but we can neverthe-

less easily observe that it is strictly positive for J = 0 but it is zero for J > 0, s =M2. From
the primal side, we indeed observe that Im aJ=0, although not exactly zero, is parametrically
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Figure 6. The spectral density from J = 0 to J = 3 is solved using Nmax = 25 at g̃′2 ≃ 3.26.
The J = 0 spectral density is nonphysical, as it is of the order 10−5, which is parametrically small
compared to others. For higher J values, we have smaller spectral densities, serving as a reminder of
the low-spin dominance.

small as of order 10−5; in addition, J > 0 spectral density exhibits a sharp pump around
s = M2, which is, however, getting smaller and smaller for larger J . See figure 6 for an
illustration with J = 0, 1, 2, 3. In addition, we find that this point gives g̃2 ≃ 0.99 ∼ 1 and
g̃3 ≃ 0.97 ∼ 1. This analysis confirms the statement of [44] that the UV theory with g̃′2 ≃ 3.26
is a theory with J ≥ 1 and m = M . However, it is important to note that our “numerical
theory” is radically different from the su-model which also saturates g̃′2 ∼ 3.26 [44], because
the su-model has Regge behaviour s−1 while our ansatz grows like s0. We can modify the
su-model to describe a spin-1 theory with Regge behaviour s0

Msu−mod(s, t) =
M2

2(1− log 2)f2
π

[
s t

(M2 − s)(M2 − t) + (1− log 2)
( s

M2 − s
+ t

M2 − t

)]
.

(4.6)

We can then compare our numerical rule-in with this analytic rule-in in figure 7(b), where
the maximal difference is around 0.017

4.1.3 The Skyrme bound and a mysterious Regge trajectory

There is an interesting linear bound, giving rise to precisely the Skyrme model [105, 106], as
first noticed in [44]. This bound involves g21 and g20, and we can formulate it as

L = −g21 + λ(g20 − 1)−
∫ ∞

M2
ds
∑

J

Im aJ(s)YJ(s) . (4.7)
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Figure 7. (a) The real part of the amplitudes M(s, t) with g̃2 = 1 for several values of t. (b) The
real part of the amplitudes M(s, t) with g̃′2 ≃ 3.26 for several values of t. The solid lines are drawn
from the analytic rule-in amplitudes (4.5) and (4.6) respectively, while the dashed lines are drawn
from the primal solutions.

The bound is again trivial on the dual side, we have

B
(1)
1 (p = 0) → 4g20 − 2g21 =

〈2(1 + (−1)J)
s3

〉
≥ 0 → g̃′2 ≤ 4g̃2 . (4.8)

According to the previous experience, Nmax = 25 is good enough for us to perform a nice
primal algorithm. We then find that the primal bound is

g̃′2 ≲ 3.939 g̃2 , primal bound with Nmax = 25 . (4.9)

The error from the dual rigorous bound is around 1.54%.
Let’s now turn to analyze the physical spectrum of the Skyrme model. We observe that

the simple dual functional YJ(s) can be zero only for odd J , which seems to suggest that we
should discard all data with even spin in the primal solution. However, this conclusion is
not robust against expanding the space of the dual functionals. When using 126 functionals,
we can find that the dual functional is small at J = 0, s = M2 (around 10−3), while it is
strictly positive and not small close to s = M2 for other J . With this in mind, we can
examine the primal solution, and we find that the contributions from J ̸= 1 are relatively
smaller than those from J = 1. This behaviour can be described as the vector meson
dominance [107]. Specifically, for J = 1 we identify a sharp peak around m =M , which can
be interpreted as a vector ρ meson. There is also significant physics at higher energies: a
continuum with a resonant bump around m ≈ 7.4M and a width of roughly 12.6M , which
might be a numerical artifact when compared to the m = M peak. For other spins, we
should only trust the behaviour at sufficiently high s = m2, and we indeed observe dominate
resonances at energies m > 7M with a relatively wide width. It is important to note that
these resonances are stable upon increasing Nmax. Interestingly, if we consider M as the
mass of the ρ meson, approximately 770MeV, then the mass of all those heavy resonances
exceeds 4000MeV and thus would contain, e.g., a bottom quark. See figure 8 for an explicit
illustration for J = 0, 1, 2, 3.

We can extend our primal analysis up to J = 10 and find subsequent resonances. More
surprisingly, these resonances can be organized as an approximately linear Regge trajectory,13

13We are grateful to Gabriel Cuomo and Victor Rodriguez for suggesting this interesting exercise.
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Figure 8. The spectral density for J = 0, 1, 2, 3 is solved using Nmax = 25 on the Skryme line
g̃′2 = 4g̃2. The vector meson dominance is exhibited. For J = 1, there is a vector ρ meson with mass
around M and also other resonance around 7.4M that might be a numerical flaw; for other spins,
there are dominated resonances at energy s > 50M2.

as shown in figure 9. For higher J , we observe a significant deviation from the fitted Regge
trajectory. This deviation is likely due to poor numerical shooting. Unfortunately, we have no
clear explanation for this trajectory. It is possible that we should not take it from such high
energy behaviour of primal solutions, and as inferred by [44], those resonances are actually
pushed to infinity in the large-N limit. Refining the numerics to better understand this
Regge trajectory would be interesting in the future.

Now we can compare the numerical amplitude to the model proposed in [44]

M(UV)
spin−1 = M2

2f2
π

m2
∞

M2 + 3m2
∞

(
M2 + 2t
M2 − s

m2
∞

m2
∞ − t

+ M2 + 2s
M2 − t

m2
∞

m2
∞ − t

)
, (4.10)

where it reduces to a single ρ meson model in the limit m∞ → ∞. Our strategy of comparison
is to first solve m∞ for requiring the Regge limit of this analytic model equals the numerical
amplitude at fixed t and then compare the amplitudes with other energy. We take t = −1/10
and find that m∞

∣∣
t=−1/10 ≃ 14.7M , the comparison is displayed in figure 10. We observe

that although the extremely high energy limit is required to be the same, two amplitudes
become clearly distinguishable at s ∼ 15M2. The difference at large s but below |s| → ∞
is anticipated, because (4.10) is just a toy model with a single resonance m∞ to adjust,
while the primal solutions figure 8 contain more than one resonance, organized as a Regge
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Figure 9. The Regge trajectory is read off from the primal solutions. This trajectory can be fitted as
a linear line with minor errors.
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Figure 10. The comparison between the numerical amplitude from the primal solution with Nmax = 25
(blue) and the UV model (4.10) with m∞ ≃ 14.7M (yellow).

trajectory figure 9. We can also evaluate the Wilson coefficients that saturate the Skyrme
bound from our primal solution, g̃2 ≃ 0.364, g̃′2 ≃ 1.434, g̃3 ≃ 0.349, which are close to
what (4.10) predicts (1/3, 4/3, 1/3).

4.2 Exclusion plots

4.2.1 O(p4)

So far, we have only dealt with simple linear bounds. The power of the EFT bootstrap lies in its
ability to search for allowed spaces that involve multiple Wilson coefficients. These represent
nonlinear bounds, implying that the boundary is not a linear function. Let’s focus on the
space spanned by g̃′2 and g̃2 and reproduce the exclusion plot made using dual methods in [44].

Our strategy is to search in different directions in the g̃′2 − g̃2 plane. The corresponding
Lagrangian is

Lp4 =
(
cos(2πc)g20 + sin(2πc)g21

)
+ λ(g10 − 1)−

∫ ∞

M2
ds
∑

J

Im aJ(s)YJ(s) , (4.11)

– 28 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
2

Figure 11. The exclusion plot involves g̃2 and g̃′2, and compares the primal bounds to the dual bounds.
The red line represents the linear Skyrme bound and the black dot is the position of (1/3, 4/3) kink.

where c ∈ [0, 1). On the dual side, this corresponds to fixing the objective and varying the
normalization condition; while on the primal side, this precisely means fixing the normalization
to g10 = 1 and bounding different linear combinations of g20 and g21. There is another
approach, different from these angle-searching methods. In this approach, one can fix a
particular value of one parameter, for example, g20/g10, and search for the upper and lower
bounds of another parameter g21/g10 [12]. While this method is typically as efficient as the
previous one on the dual side, it complicates the search on the primal side. This is because it
fixes two parameters, g20 and g10, making the positive matrices degenerate. Consequently,
an additional transformation is needed to generate a valid positivity input. Nevertheless,
near the corner, it is aways better to adopt the “fixing-parameter” method rather than the
“angle-searching”. We leave the details of “fixing-parameter” methods in appendix C.

By sampling a sufficient number of c values (roughly 100 points) and few “fixing-parameter”
points near the corner, we can make a sufficiently nice exclusion plot using both dual and
primal methods (where we choose Nmax = 25). The plot is displayed in figure 11, where the
dashed black boundary is drawn using the dual method, coinciding with the findings in [44];
on the other hand, the solid boundary is derived from the primal method. We find that the
primal bounds efficiently converge to the dual bounds. To generate the dual bounds, we use
126 functionals that are constructed from the crossing symmetric sum rules B1, B3, B5.14

We observe from figure 11 that the Skyrme line represents only a small segment of the
entire boundary. The point where the bounds begin to deviate from the Skyrme model is
referred to as a “kink” in [44]. Nontrivial physics is anticipated at this kink [44, 109]. Further
studies suggest that the kink is located at the point (g̃2, g̃

′
2) = (1/3, 4/3) [45], which is ruled-in

14In the completion stage of this paper, [108] appeared and showed that assuming Im atu = 0 in complex
scalar yields the same bound as the large-N pion bounds.
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g̃2 g̃′2
0.001 0.004
0.005 0.020
0.020 0.080
0.120 0.480
0.250 1.000
0.260 1.039
0.333 1.332
0.390 1.577

Table 1. Few boundary points with small g̃2, obtained using the dual methods.

by the analytic model (4.10) with m∞ → ∞. We present several points on the boundary in
figure 11, retaining three digits after the decimal, as shown in table 1. We note that around
g̃2 ≃ 0.26, the value of g̃′2 is already slightly smaller than what the Skyrme bound predicts,
which is, however, likely to be numerical error. Therefore, using our dual numerical results
does not provide sensible way to clearly pinpoint the position of the kink.

4.2.2 O(p6)

For O(p6), we consider a similar Lagrangian but for g30, g31

Lp6 =
(
cos(2πc)g30 + sin(2πc)g31

)
+ λ(g10 − 1)−

∫ ∞

M2
ds
∑

J

Im aJ(s)YJ(s) . (4.12)

Following the same strategy as noted previously, we can create the exclusion plot for g̃3 =
g30M

4/g10 and g̃′3 = g31M
4/g10. There is a good convergence between the primal and dual

methods, as seen in figure 12.
Some comments are in order. Interestingly, we find that the linear upper bound of g̃3

and g̃′3 is the same as in g̃2 and g̃′2. This is because that the corner can still be analytically
ruled in by (4.6). and we also have the Skyrme-like linear bound g̃′3 ≤ 4g̃3. However, it is
obvious from figure 12 that the whole allowed region is much smaller than the region enclosed
by the linear bounds, even though there is no clear kink. In this case, the nonlinearity
largely shrinks the allowed space of EFT. The same phenomenon was also observed in
gravitational EFT [19, 26, 86].

4.3 Is the positivity primal bootstrap sensitive to the Regge behaviour?

In this subsection, we aim to address the question of whether the Regge behaviour in the primal
ansatz affects the primal bounds. The answer should be “No” for the positivity bootstrap,
as long as the Regge behaviour is below k0 = 1 ensuring that our dual set-up remains valid.
This is confirmed by the duality between the dual and primal methods: the dual bounds are
only sensitive to k0, which provides all sum rules. Therefore, the primal bounds should not
depend on the specifics of the Regge behaviour of the amplitudes, as long as their growth
rate is below k0. However, if the Regge behaviour of the primal ansatz reaches k0 or exceeds
it, it cannot measure and provide bounds on the Wilson coefficients with Regge spin k0.
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Figure 12. The exclusion plot involves g̃3 and g̃′3, with comparison of the primal bounds to the dual
bounds. The red line represents the linear Skyrme-like bound g̃′3 ≤ 4g̃3.

Figure 13. The primal upper bound of g̃′2 from the primal ansatz with different Regge behaviour sJ0 .

Our strategy is to choose R(s, t) in the ansatz (4.1) as

R(s, t) =
(
(1 +

√
1− s)(1 +

√
1− t)

)2J0
. (4.13)

For J0 = 0, we recover the case that we have been studying. In general, this factor modifies the
dictionary that relates the ansatz parameters αab to the low-energy Wilson coefficients, but it
preserves the analyticity and grows as sJ0 in the Regge limit. We will study the primal upper
bound of g̃′2, which can be measured by B1 sum rules and is sufficiently nontrivial. We will
vary J0 by taking several values: J0 = (0, 0.5, 0.75, 1, 1.1) and observe how the primal bounds
change accordingly. This exploration is displayed in figure 13 below. In figure 13, we present
only the results for J0 = (0, 0.5, 0.75), and it’s clear that they all converge to the dual rigorous
bound at sufficiently large Nmax. For J0 = 1, 1.1, as expected, we do not obtain any bounds.
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4.4 An ad hoc: primally confirming the large-N assumption

So far, we have been considering the constraints of the large-N χPT, as suggested in [44].
As previously noted, we assume the large-N limit from IR to UV; therefore, the positivity
bootstrap is sufficient and strongly constraining. In this way, we can bound the Wilson
coefficients in terms of g10 = 1/(2f2

π) ∼ 1/N . Nevertheless, it is essential to question whether
this assumption is justified from a low-energy point of view. In other words, do the large-N
bounds fall into the allowed regime of a more complete unitary region like linear unitarity?

This question may seem trivial, since there is no doubt that the spectral density scaling as
1/N falls into the linear unitarity Im aJ ∼ 1/N ≪ 2. Indeed, this simple argument trivializes
the linear bound: the large-N limit yields bounds that scale in g10, i.e., g ≤ O(1)g10/M

dim−2,
which are significantly stronger than the bounds provided by linear unitarity, g ≤ O(1)/Mdim,
because g10 ≪ 1/M2. However, it is important to emphasize that this straightforward
argument and power counting do not obviously work for nonlinear bounds. The dimensional
analysis can only infer that the large-N exclusion plot resides in the near-zero corner in the
linear unitarity plot, however, its boundary may bend outside of the region of the linear
unitarity exclusion plot. This concern arises due to results of [64, 85], where it turns out
that the boundary of the linear unitarity bounds is more curved and is sandwiched between
the linear bounds.

Our strategy to justify the large-N bound involves using the linear unitarity bootstrap
for pion amplitudes, whose structures remain constrained by the large-N limit. We employ
only the primal method. For the dual method that incorporates the upper bound of unitarity,
see [12, 48, 85, 86]. For a recent systematic numerical algorithm on the dual side, refer to [48].15

For simplicity, we take Nf = 2, then (3.16) indicates that the unitarity constraints are

0 ≤ Im aeven J(s) ≤
1
3 , 0 ≤ Im aodd J(s) ≤

1
2 . (4.14)

Follow appendix A, we then consider the following SDP Lagrangian

Lup =
(
cos(2πc)g20+sin(2πc)g21

)
−
∫ ∞

M2
ds
∑

J

ImaJ(s)YJ(s)

−
∫ ∞

M2
ds

∑
evenJ

(1
2−ImaJ(s)

)
ỸJ(s)−

∫ ∞

M2
ds
∑

oddJ

(1
3−ImaJ(s)

)
ỸJ(s) . (4.15)

In this case, we physically “normalize” the free theory part S = 1 + iT . Although in this
case, the numerical convergence is more slow, we find that Nmax = 25 and Jmax = 60 still
suffice for our purpose. By searching different values of c, we found figure 14, where we
define ĝ′2 = 2g21M

4 and ĝ2 = g20M
4.

From figure 14, we can confirm that the linear bounds are indeed consistent with the
large-N bounds as long as N ∼ O(10). Nevertheless, we do observe dangerous regions. The
first dangerous region is around ĝ2 ∼ 2.7, where there is a sharp kink, and the boundary
shrinks away from the vertical line. In contrast, the large-N bounds in figure 11 do not
exhibit this shrinking. To resolve this danger, we need to require

f2
π ≥ 0.19M2 . (4.16)

15Interestingly, although the method in [48] has a dual spirit, i.e., using the dispersion relation, the numerical
algorithm seems to differ from SDP.
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Figure 14. The exclusion plot for ĝ2 and ĝ′2 from the primal linear unitarity bootstrap.The red line
still represents the linear Skyrme bound ĝ′2 ≤ 4ĝ2.

The second danger is the Skyrme line. In this plot, the lower boundary behaves similarly to
the large-N plot: it first coincides with the Skyrme bound and then bends inward. Therefore,
the position of the “Skyrme kink” in figure 14 must be larger than the one in the large-N
case. Fortunately, the kink in figure 11 is around ĝ′2 ∼ 11.6, for which the condition (4.16)
easily resolves the danger. Since (4.16) can be easily satisfied in the large-N limit where
f2

π ∼ N → ∞, we thus confirm that assuming the large-N limit at low energy is valid without
paradox. Besides, we emphasize that this exercise also shows that the unitarity can be used to
bound the decay constant in terms of the EFT scale M . Indeed, we can set an EFT bootstrap
to directly constrain the decay constant fπ which deserves further exploration for finite N χPT

5 Constrain holographic QCD models

Large-N QCD enjoys holographic descriptions, which utilize the dual gravity theory to
capture the salient properties of QCD, such as hadrons, in the strong coupling limit. One
famous example of these models is known as the Witten-Sakai-Sugimoto model [77–79], which
can be constructed from string theory. Such models can also be built from low-energy EFTs
of gauge fields with gravitational couplings [110–116], where the fits to the experimental data
of hadrons, glueballs, and so on have been extensively studied (see e.g., [117, 118] for brief
reviews). Typically, at low energy, the holographic models can also give rise to the χPT
Lagrangian with Wilson coefficients mapping to parameters on the gravity side [78, 79, 111–
116]. Therefore, we expect that the bounds on large-N χPT can be translated into constraints
on those holographic QCD models, carving out the allowed space of EFTs for gauge theories
that can be consistently UV completed with gravity.

However, to our knowledge, all holographic QCD models so far only include TrF 2 term
when deriving the χPT, giving rise to the Skryme model at order O(p4). The essential reason
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is that higher derivative terms are relatively small, like suppressed by the string scale [78, 79].
Therefore, one can always adjust the fundamental parameters so that the Wilson coefficients
live on the boundary of the exclusion plot 11 below the kink. Nevertheless, although the
higher derivative terms only give small corrections, these small corrections may still deform
the Wilson coefficients outside of the allowed region in figure 11. In this section, we will
show that higher derivative terms TrF 3 and TrF 4 cause the low-energy theory deviate from
the Skyrme model.16 Therefore, requiring the consistency with figure 11 puts constraints
on the higher derivative couplings.

5.1 Chiral Lagrangian from holographic QCD

5.1.1 Bulk theory and the power counting

We now move to derive the chiral Lagrangian from 5D EFT of SUL(Nf )× SUR(Nf ) gauge
fields. We consider the following effective action with the background field ḡ

Seff =
∑

i=L,R

1
g2

YM

∫
d5x

√
−ḡ φ(x)

(
− 1
2TrF

2
i +

igH

3 TrF (3)
i +α1

4 TrF 4
i +

α2
4 TrF (4)

i

)
, (5.1)

where

TrF 2 = Tr
(
FABF

AB
)
, TrF (3) = Tr

(
FA

B[FB
C , FC

A]
)
,

TrF 4 = Tr
(
FABF

ABFCDF
CD
)
, TrF (4) = Tr

(
FA

BFB
CFC

DFD
A
)
. (5.2)

All A,B, · · · refer to the five dimensional indices, and all indices so far are contracted by
the background field ḡAB and a background dilaton φ

ds2 = ḡABdX
AdXB = b(z)2dz2 + a(z)2ηµνx

µxν , z ∈ [zUV, zIR] , (5.3)

where we put an UV Randall-Sundrum (RS) bane [122, 123] at zUV and an IR RS brane
at zIR. For Anti de-Sitter (AdS) space, the UV brane is served as the boundary of AdS.
Nevertheless, throughout this subsection, we consider a(z), b(z) and φ to be arbitrary. Their
precise forms satisfy the equations of motion for both the gravity sector and the matter
sectors (such as dilaton associated with φ [78, 79, 124]). However, we treat the flavour gauge
fields as probes [78, 79]. Appropriate boundary conditions are imposed on both the UV
brane at zUV → 0 and the IR brane zIR to obtain the background solution (5.3). We ignore
fluctuations from the graviton and other matters, as they are irrelevant for our purposes.

How should we think about the EFT power counting of (5.1) without a top-down picture
like string theory? The bulk gauge fields are expected to correspond to conserved currents in
QCD. Hence, we then have Jµa

L and Jµa
R , which can be constructed by quark bilinear operators

Jµa = qγµT aq̄; their conservation precisely reflects the global chiral symmetry. From large-N
counting, we know that we usually scale such quark bilinear operators by 1/

√
N to normalize

the two-point function [71]; this corresponds to scaling A by gYM to normalize the kinematic
term, suggesting gYM ∼ 1/

√
N in (5.1). Moreover, the Wilson coefficients gH , αi should be

16Similarly, there exists a top-down D3 − D̄5 − D̄7 construction of thermal QCD [119], which, as including
the R4 term, was shown to give rise to the chiral Lagrangian beyond the Skryme model and compatible with
the phenomenological data [120, 121].
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suppressed by some EFT cut-off Λ, which could be the mass of higher spin particles or the
string states (it’s important to distinguish it from the χPT EFT cut-off M for the moment).
However, due to the presence of gYM, there are different possible consistent schemes of power
counting for gH and αi, as long as their sizes don’t grow beyond ⟨F ⟩#. For instance, we
can have gH ∼ 1/Λ2, αi ∼ 1/Λ4; or we can have gH ∼ g2

YM/Λ, αi ∼ g2
YM/Λ2, both of which

are then suppressed by the large-N limit. The idea is then to use the EFT constraints to
decide the correct size of those Wilson coefficients. It’s important to note that we actually
ignore some double trace terms like

(
TrF 2)2, because Tr maps to the trace in χPT, and

coefficients of double-trace operators in large-N χPT are 1/N suppressed, for general Nf .
Therefore, we conclude for Nf > 3, without doing anything, that the Wilson coefficient
of 1/g2

YM
(
TrF 2)2 must scale at least as g2

YM/Λ2! Indeed, in the Witten-Sakai-Sugimoto
model from the D4-D8-D̄8 intersection, the effective action is the dilaton-Born-Infeld (DBI)
action [78], which still has only a single trace when generalized to the non-Abelian case [125].

5.1.2 Routine to obtain the chiral Lagrangian

We follow the strategy of [115] that uses the IR boundary condition to break the chiral
symmetry

ALµ(zIR)−ARµ(zIR) = 0 , FLµz(zIR) + FRµz(zIR) = 0 . (5.4)

This implies that the chiral symmetry breaks to its vector subgroup at IR. For convenience,
we regroup the gauge group by its vector component and axial component

Vµ = 1
2(ALµ +ARµ) , Aµ = 1

2(ALµ −ARµ) . (5.5)

It turns out that one can define a Wilson line stretch from the IR point into the bulk

U = P
{
e

i
∫ z

zIR
dzALz

e
−i
∫ z

zIR
dzARz

}
, (5.6)

which has the property of the pion field under the gauge transformation U → gRUg
−1
L , and

thus it corresponds to U in χPT at the UV point. For simplicity, we choose the gauge
ARz ≡ 0, and use U to gauge away ALz using the gauge fixing prescription of [78, 114, 115].
This procedure allows us to define the following boundary condition

IR : ∂zVµ(x, zIR) = 0 , Aµ(x, zIR) = 0 ,

UV : , Vµ(x, zUV) = Aµ(x, zUV) =
i

2U∂µU
† . (5.7)

To obtain an effective action, one can solve the bulk gauge fields with respect to these
boundary conditions, and then substitute the solutions back to have the on-shell action. For
simplicity, in this paper, we only focus on those terms up to O(p4), therefore we can simply
solve the equation of motion at leading order [115]

Vµ(x, z) = Vµ(x, zIR) + · · · , Aµ(x, z) = fA(z)Aµ(x, zIR) + · · · , (5.8)

where · · · refer to those terms contributing to higher orders like O(p6), and one has

fA(z) = cA

∫ zIR

z
dξ

b(ξ)
a(ξ)2φ(ξ) , fA(zUV) = 1 . (5.9)
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It is then straightforward to obtain the chiral Lagrangian (3.5), where the pion decay constant
fπ and other Wilson coefficients are given by

l1 =
1

16g2
YM

∫ zIR

zUV
dz

φ(z)
(
−4b(z)2gH

(
fA(z)2−1

)
f ′

A(z)2−2b(z)4 (fA(z)2−1
)2+(2α1+α2)f ′

A(z)4)
b(z)3 ,

l2 =
1

8g2
YM

∫ zIR

zUV
dz

φ(z)
(
fA(z)2−1

)(
b(z)2 (fA(z)2−1

)
+2gHf ′

A(z)2)
b(z) ,

f2
π = 2

g2
YM

∫ zIR

zUV
dz

a(z)φ(z)f ′
A(z)2

b(z) . (5.10)

5.2 Bounds for different models

5.2.1 Witten-Sakai-Sugimoto model is healthy

The Witten-Sakai-Sugimoto model, constructed from the D4-D8-D̄8 brane configuration
in type IIA string theory, is considered a top-down model and is expected to be robust.
Therefore, before imposing constraints on more general bottom-up models like (5.1), we aim
to verify the health of the Witten-Sakai-Sugimoto model from a low-energy perspective.

The essential idea is to start with the D8 brane embedded in the D4 configuration

ds2
D8 = 2

3(1 + z2) 5
6

(
dz2 + (1 + z2)

4
3 ηµνdx

µdxν + 9
4(1 + z2)dΩ2

4
)
, z ∈ (−∞,∞) ,

eϕ =
√

2
3

4
√
z2 + 1gs , F4 = dC3 = 2πN

Vol4
ϵ4 , (5.11)

on which we have the DBI action17

S = − 1
(2π)8ℓ9s

∫
d9x

√
−g e−ϕ

(
− Tr

{
det
[
gMN − 2iπα′FMN

]}) 1
2
. (5.12)

Since we have the complete picture from the string theory, we can easily keep track of the power
counting (where we keep the leading KK tower mass to be MKK = 1 for simplicity) [78, 79]

α′ = ℓ2s = 9
2λ , gs = λ

3
2

3
√
2Nπ

, λ = g2
YM,cN . (5.13)

λ is the ’t Hooft coupling, where gYM,c is the Yang-Mills coupling for the colour sector on D4
brane. The weakly-coupled supergravity regime is only valid for λ → ∞, N → ∞.

To map this model to our bottom-up EFT (5.1), we cut the brane in half for z ∈ (−∞, 0)
and introduce an additional gauge field to compensate for the contribution from the other
half, where zUV = −∞ and zIR = 0. We find

φ = 9
√
3(1 + z2) 1

12

4
√
2

, a(z) =
√

2
3(1 + z2)

1
4 , b(z) =

√
2
3

(1 + z2)5/12 , g2
YM = 486π3

λN
.

(5.14)

17Our convention of gauge field is different from [78, 79]: F here
µν = ∂µAν −∂νAµ − i[Aµ, Aν ], F there

µν = ∂µAν −
∂νAµ + [Aµ, Aν ].
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Besides, expanding in α′ yields [125]

gH = 0 , α1 = −π2(α′)2 , α2 = 4π2(α′)2 . (5.15)

Using the dictionary (5.10), we find

f2
π = λN

54π4 , l1 = −f2
π

(
0.122985− 4.62298

λ2

)
, l2 = 0.122985f2

π . (5.16)

At the leading order when λ→ ∞, we reproduce the results of [78, 79]. We can immediately
see that the string correction causes the Wilson coefficients to deviate from the Skyrme model.
To compare with the large-N χPT bound, we should examine g̃′2 and g̃2

g̃2 = 0.491942 M2

M2
KK

+ 18.4919M2

λ2M2
KK

, g̃′2 = 1.96777 M2

M2
KK

. (5.17)

At leading order, this is constrained to be below the kink for M2 ≤ 0.68M2
KK . Indeed, the

KK spectroscopy analysis suggests that the ρ mass is M2
ρ = 0.67M2

KK ! The string correction
then pushes g̃′2 and g̃2 upwards from the boundary, ensuring they still fall within the allowed
region of figure 11. We thus conclude that, even when including the leading string correction,
we do not identify problems with the Witten-Sakai-Sugimoto model.

5.2.2 Flat and AdS hard wall models

Now we move to constrain two known holographic QCD models with φ = 1. We focus on
two models, one is constructed in the flat space as RS scenario [110], another is the hard
wall model [114] constructed in AdS. They are both clearly explained in [114]. We believe
that our discussions can be generalized to other holographic QCD models (with possible
modifications on how the chiral symmetry is breaking), like the soft wall models, where the
dilaton φ is nontrivially turned out [124, 126–128].

• Flat space scenario [110]
For this model, we consider

a(z) = b(z) = φ(z) = 1 , z ∈ (0, zIR] , (5.18)

where we fix the UV brane to be zUV = 0, and zIR ∼ 1/ΛQCD. We have

f2
π = 2

g2
YMzIR

, l1 = 15α+ 40gHz
2
IR − 16z4

IR
240g2

YMz
3
IR

, l2 = 2z2
IR − 5gH

30g2
YMzIR

,

g̃2 = π2 (15α− 40gHz
2
IR + 16z4

IR
)

480z4
IR

, g̃′2 = 1
15π

2
(
2− 5gH

z2
IR

)
, (5.19)

where we have used M2 ∼ M2
ρ = π2/(4z2

IR) [110]. Besides, we denote 2α1 + α2 = α,
which is the unique combination appears. We can easily observe some simple linear
bounds

g̃′2 > 0 → g̃H = gH

z2
IR

≤ 2
5 , g̃2 ≥ 1

4 g̃
′
2 → α̃ = α

z4
IR

≥ 0 . (5.20)

A more complete exclusion plot is depicted in figure 15(a), which looks like a thin river.
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Figure 15. (a) The bounds on holographic QCD supported by the model in flat space [110] (b) The
bounds on holographic QCD from hard wall model in AdS [114]. All plots are still extending like a
thin river.

• Hard wall in AdS [114]

For this model, we consider

a(z) = b(z) = R2
AdS
z2 , φ(z) = 1 , z ∈ (0, zIR] . (5.21)

We obtain

f2
π = 4RAdS

g2
YMz

2
IR
, l1 = 24α+ 40R2

AdSgH − 11R4
AdS

192R3
AdSg

2
YM

, l2 = 11R2
AdS − 40gH

192RAdSg2
YM

,

g̃2 = −1.20483gH

R2
AdS

+ 0.722898α
R4

AdS
+ 0.331328 , g̃′2 = 1.32531 − 4.81932gH

R2
AdS

, (5.22)

where we have used M2 ∼M2
ρ ∼ 5.78/z2

IR [114]. Interestingly, in general we have two
parameters zIR and RAdS, but the resulting bounds suggest that 1/RAdS rather than
1/zIR is the cut-off for bulk EFT. We have similar simple bounds

g̃′2 > 0 → ĝH = gH

R2
AdS

≤ 11
40 , g̃2 ≥ 1

4 g̃
′
2 → α̂ = α

R4
AdS

≥ 0 . (5.23)

The exclusion plot figure 15(b) also shows a thin river.

It is important to note that the dictionary provides bounds uniformly scaled by zIR
or RAdS, both of which are the IR scales in QCD. From naive dimensional analysis, we
expect them to be bounded by the bulk“string” scale Λ. This either means that this method
yields bounds that are too weak, or that the IR RS branes disrupt the naive dimensional
analysis. On the other hand, we found that even though we identify RAdS with zIR, we
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can’t reproduce the flat-space scenario from the AdS one, which suggests a breakdown of
the flat-space limit of causality bounds [18]. It would be interesting to explore all these
points in the future for a better understanding.

6 Summary

We reviewed the EFT bootstrap, especially for the positivity scenario. We demonstrated
that the EFT bootstrap is essentially an infinite-dimensional SDP, where the optimization
Lagrangian can be formulated. We built the dual problem of the EFT bootstrap using the
crossing symmetric dispersive sum rules, which embrace the crossing symmetry without
the IR danger, and thus it serves as a better version of the improved sum rules. For the
primal problem of the EFT bootstrap, we adapted the S-matrix primal ansatz and optimized
the target Wilson coefficients.

We then applied the EFT bootstrap program to large-N χPT, which is a low-energy
pion EFT from the chiral symmetry breaking of large-N QCD. Due to the large-N limit,
the positivity EFT bootstrap is sufficiently strong to carve out the allowed EFT space. Our
dual bounds match with earlier literature [44, 45], and we demonstrated that the primal
bounds are also converging to the dual rigorous bounds. This is consistent with the strong
duality of SDP. We then focused on some converged bounds and used the primal solutions
to extract the physical spectrum and S-matrix that saturate those bounds. By doing this,
we confirmed some of the analytic rule-in amplitudes studied in [44, 45]. Interestingly, for
the Skyrme bound, we also observed a mysterious heavy Regge trajectory, which seems to
suggest meta-stable exotic states with heavy quarks. In addition, we showed that the Regge
behaviour of the primal ansatz does not affect the bounds, if it stays below the assumed
Regge boundedness. This is consistent with SDP, as the dual problem is only sensitive to the
Regge boundedness rather than the explicit Regge behaviour. Eventually, we incorporated
the upper bound of the unitarity, i.e., the linear unitarity EFT bootstrap to confirm that
the large-N limit is consistent.

In the end, we considered the holographic QCD models, which are EFTs of gauge fields
in 5D and correspond to large-N QCD in 4D. Typically, we included the higher derivative
terms in the bulk and showed that they give rise to the general chiral Lagrangian up to O(p4).
We demonstrated that the Witten-Sakai-Sugimoto model with string corrections gives rise
to a large-N χPT within the allowed EFT region. Besides, for bottom-up models like the
flat-space RS model and AdS hard-wall model, we translated the large-N χPT to constrain
the higher derivative couplings of TrF 3 and TrF 4 terms.

There are several aspects that deserve further investigations. From formal aspect, it
would be interesting to build more precise relation between different methods for EFT and
S-matrix bootstrap, include the SDP we reviewed, the moment problem [16, 85, 86], geometric
function [28], iterative algorithm [129, 130] and machine learning approach [131]. Focusing
on the SDP perspective, typically, we state that the crossing symmetric sum rules are the
more natural tools to understand the loop effects on the EFT bounds, since they are free
of forward-limit issues. It is then interesting to make this statement concrete by using
the crossing symmetric sum rules to study the scalar EFT, χPT and other EFTs, with
one and even two loop effects, trying to make the results of [35, 49, 132] sharp. For this
exploration, it is also important to understand the primal-dual convergence when there
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are loops and the nonlinear unitarity is utilized. For example, we can apply the nonlinear
unitarity bootstrap to real χPT like [63, 73], and if the primal bounds and dual bounds
converge, we can then probably extract the real QCD physics in the UV. Such analysis
may also be extended to other important EFTs, like the standard model EFT [48, 133–136],
gravitational EFT [19, 20, 43, 86, 137, 138], QCD string EFT [55], etc., helping us gain more
information about their low-energy space as well as their possible UV completions.

Particularly for large-N χPT, it remains puzzling to us that the Skyrme model is
problematic above the kink, since the Skyrme model is a good phenomenological model for
understanding many aspects of nuclear physics, e.g., [139, 140]. It would be interesting to
understand, microscopically, how the Skyrme model goes wrong above the kink. A possible
route is to study the pion-nuclei scattering, which can be described as pion fluctuations
around the Skyrmion [141, 142] (which are solitons of the Skyrme model and serve as the
baryon [143, 144]), and to detect if there are any causality violations like time advance [9].
Besides, it is also interesting to understand where our constraints on holographic QCD
models come from in the bulk. The constraints may again arise from classical causality, and
techniques from [137, 138, 145–147] would then be useful. This investigation may also be
generalized to other RS scenarios, which provide the standard model EFTs.
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A EFT bootstrap as SDP: more

In this appendix, we formulate the linear unitarity bootstrap and the nonlinear unitarity
bootstrap as SDP.

A.1 Linear unitarity

For linear unitarity bootstrap, we write the Lagrangian as follows

Lg = −F ◦B(p2)− 2(1− S + iT )
∫ ∞

M2

∑
ρ

Y (2)
ρ (s) ,

F ◦B(p2) = −g +
∫ ∞

M2
ds
∑

ρ

Im aρ(s)
(
Y (1)

ρ (s)− Y (2)
ρ (s)

)
. (A.1)

– 40 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
2

This SDP reads

Primal:

Minimize g , Subject to 0 ≤ Im aρ(s) ≤ 2 , Sfree = 1 . (A.2)

Dual:

Maximize − 2
∫ ∞

M2

∑
ρ

Y (2)
ρ (s) , Subject to Y (i)

ρ (s) ⪰ 0 . (A.3)

A.2 Nonlinear unitarity

The nonlinear unitarity bootstrap is more subtle. From primal side, we have further re-
quirement for real part of aρ(s), however, such object does not appear in our dispersive
sum rule. Nevertheless, one can shift the dispersion relation to finite |s0| > M , we then
have, for example for spin-2 sum rule

B2(s0, p
2) =

∮
ds

4πi
2s+ t

(s0 − s)2(s0 + s+ t)2 = 0 →

B2(s0, p
2)
∣∣∣
low arc

+ M(s0, t)−M(u0, t) + (2s0 + t)∂s0M(s0, t)
2s0 + t

+B2(s0, p
2)
∣∣∣
high

= 0 .

(A.4)

We can then invert M(s0, t) to have aρ(s), which is expressed in terms of complicated integral
over low-energy contributions and UV part of the sum rules; schematically, we may have

Re aρ(s) ∼ −i Im aρ(s) +
∫ ∞

M2
ds1

∫
ds2Yρ(s1, s2)Im aρ(s) + low energy contribution . (A.5)

This type of relation can be used to build the functionals acting on Re aρ(s) by functionals
acting on Im aρ(s) with double integrals. We then can write down the Lagrangian for
nonlinear unitarity

Lg = −F ◦B(p2)− 2(1− S + iT )
∫ ∞

M2

∑
ρ

Y 22
ρ (s)− 2

∫ ∞

M2
ds
∑

ρ

Re aρ(s)Y 12
ρ (s) ,

F ◦B(p2) = −g +
∫ ∞

M2
ds
∑

ρ

Im aρ(s)
(
Y 11

ρ (s)− Y 22
ρ (s)

)
. (A.6)

In this Lagrangian, Y 11 and Y 22 can be constructed using the standard dispersive sum
rules, while Y 12

ρ (s) can only realized using intricate operations like (A.4) and (A.5) and
contain double integral.

This SDP then reads

Primal:

Minimize g , Subject to S =
(
Im aρ(s) Re aρ(s)
Re aρ(s) 2− Im aρ(s)

)
⪰ 0 . (A.7)
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Dual:

Maximize − 2
( ∫ ∞

M2

∑
ρ

Y 22
ρ (s) +

∫ ∞

M2

∑
ρ

Re aρ(s)Y 12
ρ (s)

)
, Subject to

Y =
(
Y 11

ρ (s) Y 12
ρ (s)

Y 12
ρ (s) Y 22

ρ (s)

)
⪰ 0 . (A.8)

Unfortunately, a more concrete dual example of this type of bootstrap is beyond the
scope of this paper. We refer the readers to relevant discussions in [29]. It would be
interesting to explicitly realize the dual algorithm we propose here and compare with other
dual algorithm in the future [29].

B Projectors of irreducible representation in SU(Nf)

In this appendix, we record all the projectors of irreducible representation in SU(Nf ) [98]
that we used to organize the pion amplitudes.

P 0
abcd =

1
2Nf

δabδcd , P
adjA
abcd =− 1

Nf
fabef ecd , P

adjS
abcd = Nf

N2
f −4dabedecd ,

P ās⊕s̄a
abcd =−1

2
(
δacδbd−δadδbd

)
− 1

Nf
fabefecd ,

P s̄s
abcd =

Nf +2
4Nf

(
δacδbd+δadδbc

)
− Nf +2

2Nf (Nf +1)δabδcd−
Nf +4

4(Nf +2)dabedecd+
1
4
(
dabedecd+dcbedead

)
,

P āa
abcd =

Nf −2
4Nf

(
δacδbd+δadδbc

)
+ Nf −2

2Nf (Nf −1)δabδcd+
Nf −4

4(Nf −2)dabedecd−
1
4
(
dabedecd+dcbedead

)
.

(B.1)

C Fixing-parameter method

In this appendix, we explain the “fixing-parameter” method for nonlinearly bounding two
Wilson coefficients, as a complementary of “angle-searching” method that was described
in the main text.

The Lagrangian of “fixing-parameter method” is

L = g1 + λ1(g0 − 1) + λ2(g2 − g∗2)−
∫ ∞

M2
ds
∑

J

Im aJ(s)YJ(s) . (C.1)

The interpretation is that we fix g2 = g∗2 and bound g1 in the unit of g0. From dual method,
this corresponds to having

F ◦B(p2)
∣∣∣
low

= −g1 − λ1g0 − λ2g2 , maximize λ1 + λ2g
∗
2 , (C.2)

which is precisely the fixing-parameter dual method used in [36]. On the primal side, however,
the implementation is a bit subtle. g0 = 1 is the normalization condition in the primal
algorithm, then how should we address g2 = g∗2? Recall that any Wilson coefficients are linear
combinations of the coefficients in primal ansatz that we aim to solve, this indicates that
g2 = g∗2 put more constraints on the primal ansatz. Effectively, the primal ansatz is then

– 42 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
2

degenerate and the coefficients there are no longer all independent. The strategy is to make
an matrix R to reduce the anstaz to independent subspace so that

R · g2 = g∗2 R · g0 , (C.3)

where we understand g2 and g0 as vectors spanned by the primal ansatz. Thus we can
play with the effective Lagrangian

L = R · g1 + λ(R · g0 − 1)−
∫ ∞

M2
ds
∑

J

Im
(
R · aJ(s)

)
YJ(s) . (C.4)
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