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1 Introduction

Over the past decade, quantum extremal surfaces (QESs) have come to play a central role in
our understanding of quantum gravity and holography. The QES prescription [1–4] relates
the von Neumann entropy of a boundary, or boundary subregion, B in AdS/CFT to the
generalized entropy

Sgen(γmin) = Area(γ)
4G + Sbulk(γmin) (1.1)

of a surface γmin homologous to B. Here γ denotes a codimension-two bulk surface, Area(γ)
is its classical area, G is Newton’s constant, and Sbulk(γ) is the von Neumann entropy of
bulk quantum fields on one side of the surface γ. The particular surface γmin that appears
in (1.1) is required to be quantum extremal — i.e. a critical point of the functional (1.1)
with respect to small perturbations in the location of γmin. If multiple QESs (homologous
to a given boundary region) exist, γmin is the minimal Sgen such surface. A closely related
idea is the notion of entanglement wedge reconstruction [5–9], or subregion-subregion duality,
which roughly identifies the exterior of this minimal QES — the so-called entanglement
wedge — with the bulk information that can be reconstructed from the state ρB on B and
the algebra of operators on B [10].1

1For subtleties and qualifications regarding the meaning and regime of validity of the QES prescription and
entanglement wedge reconstruction, see [11–15].

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
3

Figure 1. A spatial slice of a Python’s lunch geometry. The boundary theory lives on a copy of the
asymptotic boundary on the right. Figure reproduced from our previous work [16].

In the last few years it has become clear that other “nonminimal” quantum extremal
surfaces also play a crucial role in controlling the flow of information through the bulk-
to-boundary map. In particular, the Python’s lunch conjecture [16–18] proposes that the
complexity of reconstructing information within the entanglement wedge is exponential in the
difference between the generalized entropies of two spacelike-separated nonminimal QESs
γaptz and γmain:

C ∼ exp
[1

2 (Sgen(γmain) − Sgen(γaptz))
]

(1.2)

As shown schematically in figure 1, these two QESs always have qualitatively different quasi-
local properties. Specifically, the surface γaptz, known as the appetizer surface, is always
a local minimum of the generalized entropy on some partial Cauchy slice. We will more
generally call any QES for which this quasi-local condition is true a “throat”. The minimal
QES is also always a throat — indeed it is easy to construct continuous families of spacetimes
where phase transitions exchange the minimal QES γmin and the appetizer γaptz. However,
the QES γmain, which always has larger generalized entropy than γaptz, is never a throat:
there always exist local perturbations of γmain, within any Cauchy slice, which decrease its
generalized entropy. Instead, it is a qualitatively distinct type of QES, that we call a bulge.

Much of the intuition behind the role of QESs in holography (and in particular for the
Python’s lunch conjecture) comes from tensor network toy models, which have provided
valuable insights into AdS/CFT (see e.g. [19–21]). In a tensor network version of a Python’s
lunch (shown in figure 2), the tensor network map from γmain to γaptz features a large amount
of postselection. As a result, the map from γmin to γaptz, which must be inverted in order to
reconstruct the bulk behind γaptz, is expected to have very high complexity. Indeed, the best
known algorithm for such an inversion is Grover search [22], which has a complexity that is
exponential in the amount of postselection. Since the amount of postselection in a tensor
network is proportional to Sgen(γmain)−Sgen(γthroat), (1.2) follows from the assumption that a)
no algorithm faster than Grover search exists and b) that the gravitational bulk-to-boundary
map has the same complexity as the analogous tensor network.
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Figure 2. A tensor network representation of the python’s lunch. The black dots are bulk legs, and
the increase and decrease in the total bond dimension of the shown cuts introduces post-selection
into the bulk-to-boundary map, from the bulk legs to the left of γmin to CFTR. According to the
Python’s lunch conjecture, this results in an exponential enhancement in the map’s complexity. Figure
reproduced from our previous work [16].

An unfortunate feature of tensor networks as toy models of AdS/CFT is that they
only describe an analogue of a single spatial slice rather than a fully covariant spacetime.
Consequently, the emergence of bulk dynamical time in AdS/CFT remains deeply mysterious,
with no clear information-theoretic interpretation. However, so long as all of the QESs
homologous to a particular (complete) boundary B are achronally-separated from one another,
it is possible to find a Cauchy slice that contains all of those QESs simultaneously. Such
Cauchy slices give a fairly direct analogue of a tensor network setup, as originally noted
by [19]. This achronal separation is often assumed in the literature — implicitly or otherwise

— and occurs in many, or even most, situations of interest. In fact, to the authors’ knowledge,
no explicit examples of timelike-separated QESs homologous to the same boundary B have
so far appeared in the literature.2 However there is also no known general principle (such
as the quantum focusing conjecture [24]) that rules out such configurations.

In this paper, we demonstrate by explicit construction that timelike-separated QESs
homologous to the same boundary connected component B do in fact exist. Our constructions
of timelike-separated QESs have both the two qualitatively different types of QESs that
appear in the Python’s Lunch: “throats”, which are locally minimally on some Cauchy slice
and “bulges”, which are not. Surprisingly, our constructions always feature a third type of
QES, which we call a “bounce”. Heuristically, unlike both bulges and throats, bounces are
locally minimal rather than maximal in time. Familiar examples of bounces are the bifurcation
surface in de Sitter space and the inner bifurcation surface of a Kerr-Newman black hole
(including the more symmetric situation of a Reissner-Nordstrom black hole). Bounces have
so far not played a prominent role in AdS/CFT; e.g. the inner horizon of an AdS-Reissner-
Nordstrom black hole is generally regarded as unphysical because it lies on a Cauchy horizon
and is therefore not contained in the Wheeler-de Witt patch of any boundary slice.

Since bounces appear in all of our explicit examples of timelike-separated bulges and
throats, it is tempting to suggest that bounces are always present in spacetimes with timelike-

2One construction of multiple classical extremal surfaces anchored to a single boundary subregion that are
not achronally separated from one another involves geodesics that wind around black holes in three spacetime
dimensions [23]. However such surfaces are not individually achronal, which is a necessary condition for a
surface to have well-defined generalized entropy, and hence to be potentially quantum extremal.
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Figure 3. A schematic representation of our JT solutions with time-like separated extremal surfaces
homologous to the right (or the left) boundary. Both solutions contain a time-symmetric slice Σ with
a bounce QES in the middle.

separated extremal surfaces. We show that this is true classically in spherically symmetric
spacetimes; whether it is always true more generally is an interesting open question.

To be concrete, we construct time symmetric two-sided initial data for JT gravity
minimally coupled to a massive scalar. Our initial data slices have three extremal surfaces:
two throats on either side of a bounce (the slices are Z2-symmetric about the bounce) and
asymptote to the usual two-sided black hole in pure JT. The resulting domain of dependence
has two bulges or two throats in the past and future of the bounce depending on the choice
of profile for the dilaton; the spacetime is illustrated in figure 3. As semiclassical Lorentzian
solutions, these spacetimes are well behaved.

The existence of such solutions poses a puzzle for our current, tensor-network-inspired
understanding of the bulk-to-boundary map. In particular, the most general proposed version
of the Python’s lunch conjecture assumes that all of the QESs homologous to B are spacelike-
separated. We therefore propose a further refinement of the Python’s lunch conjecture that is
valid for completely general spacetimes, including those with timelike-separated QESs. This
refined formula is compatible with earlier versions of the conjecture, and suggests necessary
ingredients for constructing analogues of tensor networks in spacetimes where the natural
tensor network picture fails to accurately represent bulk reconstruction.

An interesting feature of our refined conjecture is that, for spacetimes with time-reflection
symmetry, the surfaces γmain and γaptz, which together compute the complexity of recon-
struction, do not necessarily lie within the time-reflection symmetric slice. By contrast,
the minimal QES γmin does always lie within the time-reflection symmetric slice. It has
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traditionally been assumed that, for spacetimes with time reflection symmetry, the Cauchy
slice most analogous to a tensor network is the time-reflection symmetric slice; our refined
conjecture suggests that this is not the case.

The outline of the paper is as follows. In section 2 we state our assumptions, give a
rigorous definition of bounces, bulges, and throats, and prove a number of useful properties
of these surfaces. We focus especially on a distinguished class of QESs, which we term ‘outer-
minimal QESs’; these are particularly physically significant for motivating our newly refined
Python’s Lunch proposal. Section 3 presents our explicit examples of timelike-separated
QESs. In section 4 we motivate and state our refined Python’s Lunch proposal. The appendix
is dedicated to technical details omitted from section 3.1.

2 Bounces, bulges, and throats

In this section, we give a natural classification of QESs into bounces, bulges, and throats
based on their quasi-local properties. We then prove that a QES found by the maximin
procedure is a throat while a QES found by the maximinimax procedure is a bulge. At
the end of this section, we defined a distinguished class of throats — outer-minimal QESs

— and discuss their relevant physical properties, which will turn out to be useful for the
refined python’s lunch conjecture in section 4.

Assumptions: before we begin, let us first state some basic assumptions about our setup
and set some basic terminology and notation:

• The spacetime M is always asymptotically AdS and causally well-behaved. We also
assume that the domain of dependence of any compact region is compact in time; this
rules out e.g. de Sitter-type asymptotic infinities.

• By a surface γ we mean an achronal codimension-two embedded submanifold in the
spacetime manifold M. In this paper, we will further restrict surfaces to be homologous
to some fixed boundary (partial) Cauchy slice B. Let H be a spacelike homology slice
of γ. Then the outer wedge [25] of γ, denoted by WO[γ], is the domain of dependence
D(H).

• Given a wedge W = D(H) for some partial Cauchy slice H, we denote by W ′ the
complement wedge defined by D(Hc), where H ∪Hc is a Cauchy slice for the entire
spacetime.

• Given a surface γ, we define outwards (pointing towards B) orthogonal null vector fields
ka and ℓa on it, which are respectively future and past directed and satisfy kaℓa = 1.

• By a quantum extremal surface (QES) of B, we will mean a surface which is a stationary
point of the generalized entropy functional

Area
4G + Sren[ρout] (2.1)

and is homologous to B. Here G is the renormalized Newton’s constant and Sren[ρout]
denotes the renormalized von Neumann entropy of the quantum fields on the partial
Cauchy slice bounded by γ and B.
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• Quantum Expansion: given a surface γ, we choose coordinates (u, v, yi) on the normal
bundle Nγ such that the induced metric on Nγ takes the form

ds2 = dudv + hij(y)dyidyj (2.2)

where yi are coordinates on γ and kµ = (∂v)µ and ℓµ = (∂u)µ are null vectors orthogonal
to γ. The quantum expansions of the surface γ are given by [24]:3

Θ(v)(γ; y) = 1√
h

δSgen
δV (y) (2.3)

Θ(u)(γ; y) = 1√
h

δSgen
δU(y) . (2.4)

For an extremal surface, we have Θ(v)(γ; y) = Θ(u)(γ; y) = 0 everywhere.

• Small deformations of extremal surfaces: we can identify the bundle Nγ with a small
neighbourhood of γ via the exponential map expε : Nγ → M. Given p ∈ γ and
orthogonal tangent vector W ∈ Npγ, we have

expε(p,W ) = λp,W (ε) (2.5)

where λp,W (ε) is the unique affine geodesic satisfying λp,W (0) = p and λ̇p,W (0) = W ,
and ε is a formal small parameter. A local deformation of γ can then be specified by a
section v = V (yi) and u = U(yi) of Nγ. At first order in ε, the quantum expansions of
the deformed surface are given by:

δΘ(v)(U, V ; y) = ε√
h

[∫
dy′

δSgen
δV (y)δV (y′)V (y′) +

∫
dy′

δSgen
δV (y)δU(y′)U(y′)

]
δΘ(u)(U, V ; y) = ε√

h

[∫
dy′

δSgen
δU(y)δV (y′)V (y′) +

∫
dy′

δSgen
δU(y)δU(y′)U(y′)

]
. (2.6)

• We assume the quantum focusing conjecture (QFC) [24], which states that for any
surface γ:

δ

δV (y)Θ(v)(U = 0, V ; y) ≤ 0 (2.7)

The same relation holds with V replaced by U .
Note that assuming the weaker, restricted quantum focusing conjecture [26] which
demands δΘ(v)/δV ≤ 0 at points on the surface where Θ(v) = 0 suffices for our purposes.
This weaker conjecture was made and proved in holographic braneworld theories in [26].

• Lastly, we assume a genericity condition: for any QES γ considered in this paper,
eq. (2.7) for both U and V directions is not saturated everywhere on γ. Starting from
any spacetime that does not satisfy the genericity condition on some QESs of interest,
we expect that an arbitrarily small perturbation can induce genericity on the QESs.

3The original definition of the quantum expansion included additional factor of 4G for consistency with
the classical expansions. We drop that here to make other formulas cleaner. Geometrically, the functional
derivative of Sgen is a section of the conormal bundle N∗γ. (Θv, Θu) is a section of Nγ that can be identified
with this functional derivative via the inner product on sections of Nγ induced by (2.2).
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We now proceed to give a precise definition of the three different classes of QESs. If γ
is a QES, then by definition, δSgen/δV = δSgen/δU = 0 at U = V = 0. To classify QESs,
we therefore consider the second functional derivatives appearing in (2.6). We will begin
with the warm-up case of transverse symmetric QESs — e.g. spherical symmetric QESs
in spherically symmetric spacetimes.

2.1 The transverse symmetric case

By considering only transverse symmetric deformations we can construct a function Sgen(u, v)
and effectively reduce the classification of QESs to its stationary points. Given a transverse-
symmetric deformation

W :=
(
u

v

)
, (2.8)

we can define a Hessian-type 2 × 2 matrix:

L̂ =
(
∂u∂vSgen ∂2

vSgen
∂2
uSgen ∂u∂vSgen

)∣∣∣∣∣
u=v=0

(2.9)

such that (
δΘv

δΘu

)
= εL̂W, (2.10)

The (pseudo-)inner product on spherically symmetric deformations induced by (2.2) is

⟨W1,W2⟩ := u∗1v2 + v∗1u2. (2.11)

In terms of this inner product, the change in generalized entropy created by the deformation is

δSgen = ε2

2 ⟨W, L̂W ⟩. (2.12)

The matrix L̂ always has two real eigenvalues; the smaller eigenvector is always spacelike,
while the larger eigenvector is timelike. To see this, first note that, by the quantum focussing
conjecture, L̂ always has nonpositive off-diagonal terms, ∂2

vSgen ≤ 0 and ∂2
uSgen ≤ 0; generi-

cally these terms are strictly negative. We can therefore apply the Perron-Forbenius theorem
to ∂u∂vSgen − L̂ to conclude that L̂ has a spacelike real eigenvector with real eigenvalue
λ1 ≤ ∂u∂vSgen. The remaining eigenvalue must then be λ2 = 2∂u∂vSgen − λ1 ≥ λ1 so that
tr[L̂] = 2∂u∂vSgen. Since L̂ and λ2 are both real, the corresponding eigenvector must be real
and hence, again by the Perron-Frobenius theorem, it must be timelike.

This result leads to the following natural definition of the three categories of QESs
(under assumption of transverse symmetry):

• A throat is a QES with both positive eigenvalues;

• A bulge is a QES such that the spacelike and timelike eigenvectors have negative and
positive eigenvalues respectively;

• A bounce is a QES with both negative eigenvalues.

– 7 –



J
H
E
P
0
1
(
2
0
2
4
)
0
3
3

Since we cannot have a spacelike and a timelike eigenvector with positive and negative eigen-
value respectively, this classification is exhaustive.4 In particular, throats are distinguished by
the Hessian having positive smallest eigenvalue; as we shall describe below this distinguishing
property has a particularly natural generalization to QESs without transverse symmetry.

A spacelike eigenvector with positive eigenvalue means that perturbations in that direction
increase Sgen at second order. By contrast, because timelike vectors have negative norm, a
positive timelike eigenvector means that timelike perturbations decrease Sgen. As a result,
throats are minima of Sgen in space and maxima in time; bulges are maxima in both space
and time; and bounces are maxima in space and minima in time.

2.2 The general case

We would like to generalize the above categorization to general situations without transverse
symmetry. This can be achieved with the following definitions:

Definition 1. A QES γ is a throat if there exists a (partial) Cauchy slice containing γ in
its interior on which there are no surfaces homologous to γ with smaller generalized entropy.

Definition 2. A QES γ is a bounce if, given any (partial) Cauchy slice Σ containing
γ, there exists a continuous 1-parameter family of (partial) Cauchy slices Σ(η), where
Σ(η = 0) = Σ, with a continuous family of stationary surfaces γ(η) ⊂ Σ(η) such that γ(0) = γ

and Sgen(γ(η)) > Sgen(γ) for any η ̸= 0.

Definition 3. A bulge is a QES which is neither a throat, nor a bounce.

It is easy to see that these definitions reduce to the transverse symmetric definitions
given above. However there is also an equivalent general definition of a throat QES that is a
more direct generalization of the transverse symmetric definition.

The natural generalization of (2.9) is the linear operator that maps an infinitesimal
deformation

W (y) :=
(

U(y)
V (y)

)
(2.13)

of the QES to the quantum expansions of the deformed surface:

L̂γW (y) = 1
ε

(
δΘv(y)
δΘu(y))

)
(2.14)

=

D̂+U(yi) +
∫
dy′ δ2Sren

δU(y)δU(y′) |off-diagU(y′) +
∫
dy′ δΘv(y)

δV (y′) V (y′)

D̂−V (y) +
∫
dy′ δ2Sren

δU(y)δV (y′) |off-diagV (y′) +
∫
dy′ δΘu(y)

δU(y′) U(y′)


where the derivatives are evaluated at γ and Sren is the renormalized entropy. Here,

δSren
δU(y)δV (y′) = S′′

vuδ
d−1(y − y′) + δSren

δU(y)δV (y′)

∣∣∣∣
off-diag

(2.15)

4Here we are ignoring the possibility that one or both of the eigenvalues are zero.
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where Svu is defined as the coefficient of the delta function piece of the l.h.s. . Finally,

D̂± = 1
4G

[
−∇2 ∓ χi∇i +Rµνk

µℓν − R

2

]
+ S′′

vu (2.16)

where Rµν is the spacetime Ricci tensor and χi = kµ∇iℓµ is the twist. The classical limit, i.e.
G→ 0, of L̂γ was studied in [27] (See also [28, 29]). The second line of (2.14) follows directly
from plugging (2.1) into (2.6) and evaluating the classical piece explicitly. The quantum
contributions to the semiclassical operator L̂γ (henceforth referred to as the quantum stability
operator) cannot be ignored as the quantum and classical terms can in principle be of the
same order. By strong subadditivity, we have

δ2Sren
δV (y)U(y′) |off-diag ≤ 0, (2.17)

while
δΘv(y)
δV (y′) ≤ 0 (2.18)

by quantum focusing.
The (pseudo-)inner product on deformations W (y) induced by (2.2) is

⟨W1,W2⟩ :=
∫
γ
dy

√
h [U1(y)∗V2(y) + V1(y)∗U2(y)] . (2.19)

The change in generalized entropy is given by

δSgen = ε2

2 ⟨W, L̂γW ⟩γ , (2.20)

in close analogy with (2.12).
L̂γ satisfies the following theorem:

Theorem 1. The operator L̂γ in eq. (2.14) with boundary conditions δU |∂γ = δV |∂γ = 0 has a
real eigenvalue λ (called its principal eigenvalue) which is smaller than or equal to the real part
of all other eigenvalues. Furthermore, the corresponding eigenvector W (y) = (U(y), V (y)),a
vector field in the normal bundle of γ, satisfies U(y), V (y) ≥ 0 everywhere and hence describes
an outwards achronal deformation of γ.

Proof sketch. Consider the operator L̂γ + C for real constant

C > sup
γ

(−4G
∫
dy′

δ2Sren
δV (y)U(y′) |off-diag −

∫
dy′

δΘv(y)
δV (y′) −Rµνk

µℓν +R/2 − 4GS′′
uv

)
.

(2.21)
The existence of a supremum is obvious for compact γ, and for non-compact γ, we expect
that the asymptotic AdS boundary conditions guarantee its existence. As we are working at a
physics level of rigor, we will assume (without proof) the existence, uniqueness and regularity
of the solution to the equation

(L̂γ + C)
(

U(y)
V (y)

)
=
(
f(y)
g(y)

)
with smooth functions f(y), g(y) on γ and boundary conditions U |∂γ = V |∂γ = 0.5

5In the absence of quantum terms, the above assumptions are standard facts about elliptic partial differential
equations.
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We first show that when f(y), g(y) > 0 we have U(y), V (y) > 0 everywhere on γ − ∂γ.
We prove this by contradiction. Suppose infγ V ≥ infγ U = Umin < 0 (the proof for
infγ V ≤ infγ U is identical). Since we have U |∂γ = V |∂γ = 0, the infinum must be achieved
at some point ymin in the interior of γ. We then have

0 < f(ymin) = D̂+U |y=ymin + 4G
∫
dy′

δ2Sren
δV (ymin)U(y′) |off-diagU(y′) +

∫
dy′

δΘv(ymin)
δV (y′) V (y′)

+ CU(ymin) ≤ D̂+U(ymin) + Umin

[
4G

∫
dy′

δ2Sren
δV (ymin)U(y′) |off-diag +

∫
dy′

δΘv(ymin)
δV (y′) + C

]
.

(2.22)

In the second inequality we used (2.17) and (2.17). Finally, we note that

D̂+U |ymin ≤
[
Rµνk

µℓν − R

2 + 4GS′′
uv

]
U(ymin) (2.23)

since the first-derivative term in D̂+U |ymin must be zero and the second derivative term
nonpositive at ymin. Consequently, the right hand side of (2.22) for sufficiently large positive
C is negative, giving our desired contradiction.

From this, the result about the principal eigenvalue is obtained by applying the Krein-
Rutman theorem (KR). KR states that a compact linear operator T on a Banach space X
which maps any non-zero element of a closed cone K ⊂ X (i.e., a topologically closed subset
of X closed under addition and multiplication by non-negative scalars) into the interior K,
necessarily has a unique real positive eigenvalue, larger than the complex norm of any other
eigenvalue, and whose corresponding eigenvector belongs to the interior of K. See [30] for a
proof of KR.

Taking K to be the space of pairs of positive functions (f(y), g(y)) (with appropriate
smoothness conditions6), we see that (L̂γ + C)−1 satisfies the conditions of KR.7

Since (L̂γ + C)−1 is compact, it (and hence also L̂γ) has completely discrete spectrum.
Define the inner product8

(W1,W2) :=
∫
γ
dy

√
h [U1(y)∗U2(y) + V1(y)∗V2(y)] . (2.24)

Since, for any W , the contribution to (W, L̂γW ) from the second-derivative terms in L̂γ is
always nonnegative, the contribution from first derivative terms is always purely imaginary,
and the zero-derivative terms are bounded, we find that Re[(W, L̂γW )]/(W,W ) is bounded
from below.

It follows that there exists an eigenvalue of L̂γ with smallest real part; let λ be that
eigenvalue. Then, for sufficiently large C, (λ + C)−1 is the eigenvalue of (L̂γ + C)−1 with

6We will not worry about exactly which Sobolev space is most appropriate to work with here.
7The existence and compactness of (L̂γ +C)−1 follows from the assumed existence, uniqueness and regularity

of the solution U, V for any (f, g) ∈ L2(γ) ⊕ L2(γ). For noncompact surfaces γ, you also have to worry about
the details of the boundary conditions: asymptotically AdS boundary conditions do not spoil the compactness
of (L̂γ + C)−1 for the same reason that the Laplacian on hyperbolic space (unlike in flat space!) has discrete
spectrum.

8Unlike the pseudo-inner product ⟨W1, W2⟩γ defined in (2.19), (W1, W2) is a true, positive semi-definite
inner product.
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largest magnitude. KR then implies that λ is real and that the corresponding eigenvector for
L̂γ is real and spacelike.

From here on, when discussing a particular QES γ, we will denote by λ and W its
corresponding principal eigenvalue and eigenvector.

Corollary 1. Assuming the genericity condition, the principal eigenvector W = (U, V )
satisfies U(y), V (y) > 0 everywhere in the interior of γ and hence describes a spacelike
deformation.

Proof. Suppose U(y0) = 0 for some y0 in the interior of γ and there exists y′ such that
V (y′) > 0. We have

0 = λU(y0) = Θv(y0)

= D̂+U |y=y0 + 4G
∫
dy′

δ2Sren
δV (y0)U(y′) |off-diagU(y′) +

∫
dy′

δΘv(y0)
δV (y′) V (y′)

< D̂+U |y=y0 , (2.25)

where the inequality follows from (2.17) and (2.18) together with the fact that U, V ≥ 0
everywhere. It is strict by the genericity condition and the assumption that V (y′) > 0 for
some y′. But

D̂+U |y=y0 = −∇2U(y0) ≤ 0 (2.26)

since U ≥ 0 and U(y0) = 0. This gives our desired contradiction. An identical argument
rules out the case where V (y0) = 0 for some y0 in the interior of γ and U(y′) > 0 for some
y′. Since the principal eigenvector W is by definition nonzero, it follows that U(y), V (y) > 0
everywhere in the interior of γ.

Theorem 2. The quantum stability operator of a throat γ has a non-negative principal
eigenvalue, i.e. λ ≥ 0.

Proof. Suppose λ < 0. Then, for small enough ε, expε(W ) is quantum anti-normal by (2.14)
and Sgen(expε(W )) < Sgen(γ) by (2.20). Let Σ be a partial Cauchy slice containing γ. Let
γ′ = ∂WO[expγ(ϵXa)] ∩ Σ. By the QFC, Sgen(γ′) ≤ Sgen(expε(W )): so γ′ is a surface in Σ
homologous to γ with smaller Sgen than γ. It follows that whenever λ < 0 the QES γ cannot
be a throat.

If the converse of the statement of this theorem were true, it would furnish an alternative
definition of a throat. In fact, the converse indeed holds for a generic class of QESs which
we term nondegenerate:

Definition 4. A QES γ is called isolated if there exists a tubular neighborhood of γ which
does not completely contain another QES homologous to the same boundary region. We call
an isolated QES with principal eigenvalue λ ̸= 0 a nondegenerate QES.
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We expect that most QESs of interest are either nondegenerate or can be made nonde-
generate with an arbitrarily small perturbation. An example of a QES which is not isolated
is the bifurcation surface of pure de-Sitter spacetime, since continuous spatial rotations
(which do not preserve the static patch) deform the QES into a neighboring QES. A small
perturbation at the time-symmetric slice of global de-Sitter can break this symmetry and
create a nondegenerate QES.

As part of the next subsection, we prove that a nondegenerate QES with λ > 0 is a
throat, providing an alternative definition of a (nondegenerate) throat.

2.3 Maximin and maximinimax

Though QESs can be defined as stationary points of the Sgen functional, useful independent
definitions, which make it easier to prove certain properties (e.g. existence) have been given
in the literature. The definitions on which we focus are the maximin and maximinimax
procedures [17, 31–33] which identify a certain surface through a search algorithm in a globally
hyperbolic region of spacetime. Here we review the maximin and maximinimax procedures
and prove that they find throats and bulges respectively.

Definition 5. (From [31–33]) Let γ1 and γ2 be spacelike-separated surfaces homologous to a
boundary region B, and with non-positive null quantum expansions towards each other, we
define another QES maximin(γ1, γ2) as follows: let W indicate the wedge between γ1 and γ2
(i.e., the domain of dependence of a compact partial Cauchy slices with boundary γ1 ∪ γ2).
Then maximin(γ1, γ2) is the surface which achieves the following maximinimization:

max
{C}

min
{γC}

Sgen(γ) (2.27)

where {C} indicates the set of all Cauchy slices of W, and {γC} indicates the set of all surfaces
homologous to γ1 (or equivalently, γ2) on a given C. We further demand that the maximin
surface satisfies the following stability condition: under any infinitesimal deformation of the
surface γ and a maximin slice C ⊃ γ to a deformed surface γ′ and slice C ′ ⊃ γ′ such that
γ′ remains stationary within C ′, we have Sgen(γ′) ≤ Sgen(γ). A slight variant of this where
instead of γ1 and γ2, we have a boundary region B and a homologous surface γ1 is defined in
the obvious analogous way with W = WO[γ] and is denoted by maximin (γ1, B).

As in earlier work, we will assume without rigorous proof that stable maximin surfaces
always exist. In [17, 31–34], it was argued that the quantum expansion conditions on γ1
and γ2 ensure that maximin(γ1, γ2) is a QES contained in W (similarly, if the null quantum
expansions of γ1 towards B is non-positive, then maximin (γ1, B) is a QES).

For a thorough discussion of (quantum) maximin, including arguments in favor of the
existence of maximin surfaces, see [31–33].

Definition 6. (From [17]) Given two spacelike-separated throats γ1 and γ2, homologous to the
boundary region B, another QES homologous to B, denoted by maximinimax(γ1, γ2), located in
the wedge W between them (i.e., the domain of dependence of a compact partial Cauchy slices
with boundary γ1∪γ2) is defined as the surface achieving the following maximinimaximization:

max
{C}

min
{fC}

max
0≤η≤1

Sgen(f−1
C (η)) (2.28)
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where {C} denotes the set of all partial Cauchy slices of W, and {fC} indicates the set
of all sweep-outs of C, i.e. smooth nondegenerate functions fC : C → [0, 1], and such that
fC(γ1) = 0 and fC(γ2) = 19 We further demand that the maximinimax surface satisfies
the following stability condition: under any infinitesimal deformation of the surface γ and
a minimax slice C ⊃ γ to a deformed surface γ′ and slice C ′ ⊃ γ′ such that γ′ remains
stationary within C ′, we have Sgen(γ′) ≤ Sgen(γ).

We will assume without rigorous proof that stable maximinimax surfaces always exist.
In [17], it was argued that a maximinimax is a QES in the interior of W. Note that the
restriction to compact in time D(H) for compact H is important here, since otherwise the
bulge may run off to an asymptotic region.

Theorem 3. A maximin QES is a throat.

Proof. The minimization step in the quantum maximin procedure ensures that there exists a
partial Cauchy slice on which γ minimizes Sgen, i.e. γ is a throat.

We are now able to prove the theorem adertised in the previous subsection.

Theorem 4. A nondegenerate QES γ with λ > 0 is maximin(γ1, γ2) for some pair of surfaces
γ1, γ2.

Proof. Let W be the principal eigenvector of L̂γ and define γ+ = expε(W ) and γ− =
expε(−W ). Since the principal eigenvector W is spacelike, for small enough ϵ > 0 there
exists a partial Cauchy slice Σ̃ containing γ such that ∂Σ̃ = γ+ ∪ γ−. λ > 0 implies that
Θv(γ+) > 0, Θu(γ+) > 0,Θk(γ−) < 0 and Θℓ(γ−) < 0. Therefore, a restricted maximin
process in D(Σ̃) returns a QES γ′. Since ϵ can be made arbitrarily small, the assumption
that γ is isolated implies that γ = γ′. Therefore, γ is maximin.

When restricting to nondegenerate QESs, the results of theorems 2, 3, and 4 can be
summarized in the following triality:

Nondegenerate Throat Nondegenerate QES
with λ > 0

Nondegenerate maximin QES

Thm 2

Thm
4Thm

3

We will now shift gears to discuss the properties of bulges and bounces.

9Intuitively, the level sets of f define a foliation of Σ.
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Theorem 5. A nondegenerate maximinimax QES γ is a bulge.

Proof. Let Σ be a minimax slice of γ. We first show that γ is not a throat. Suppose there
exists a partial Cauchy slice Σ̃ on which γ is a minimum Sgen surface. By deforming Σ to
locally align with Σ̃ in a neighborhood of γ, we conclude that the minimax surface on the
deformed slice has a larger Sgen than γ, so γ cannot be maximinimax. Therefore, γ is not a
throat.

We will now show that γ is not a bounce. The defining property of a bounce would imply
that a deformation of the minimax slice leads to a slice with a stationary surface γ′ such
that Sgen(γ′) > Sgen(γ). This would contradict the stability requirement of a maximinimax
surface (see Definition 6). Therefore, γ is not a bounce. We conclude that γ is a bulge.

We have seen that a nondegenerate throat is equivalent to a nondegenerate QES with
λ > 0. The following two theorems state the principal eigenvalue properties of bulges
and bounces.

Theorem 6. A nondegenerate bulge has a negative principle eigenvalue.

Proof. A nondegenerate bulge is in particular not a nondegenerate throat. Therefore, by the
triality established above, λ < 0.

A similar result can be proven for a nondegenerate bounce:

Theorem 7. A nondegenerate bounce γ has a negative principle eigenvalue, i.e. λ < 0.

Proof. Suppose λ > 0. By the construction in the proof of Thm. 4, we conclude that γ is
maximin. Suppose Σ is a maximin slice. Then, by the defining property of a bounce, a small
deformation of Σ, called Σ′, exists containing a stationary surface with Sgen larger than that
of γ. Since this is the unique stationary surface on Σ′, this contradicts the stability condition
of maximin. Therefore, λ < 0.

In particular, a nondegenerate bounce cannot be a throat by Theorem 2. Considering
the definitions of a throat, bulge, and a bounce, an obvious implication is the following:

Corollary 2. A nondegenerate QES is (exclusively) either a throat, a bulge, or a bounce.

2.4 Outer-minimal QESs

We have hithero focused on local properties of QESs. In this section, we identify a class of
particularly significant QESs based on a global property which will turn out to be critical for
our discussion of reconstruction complexity in section 4. While the focus on this particular
class of QESs may not prima facie appear particularly well-motivated, ‘outer minimality’ is a
property that in an intuitive sense controls the constriction of information flow from bulk
to boundary: we will indeed find that an analysis of these surfaces is a sine qua non for a
reformulated Python’s Lunch. We therefore dedicate some time to studying their properties
prior to proposing the new Python’s Lunch prescription.

Definition 7. A throat γ is outer minimal if there is no other QES with smaller generalized
entropy that is contained in WO[γ].
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It is natural to ask how this definition is related to previous notions of quasi-minimal
QESs. While this reformulation is more convenient for our purposes, it turns out that our
outer-minimal QESs are in fact identical to [27]’s ‘minimar’ surfaces and [15]’s ‘(vN-)accessible’
surfaces when the latter two categories are quantum extremal.10

Lemma 1. An outer-minimal QES γ is a throat.

Proof. Suppose γ is not a throat. Then, by Thm. 3, it cannot be maximin. Therefore, a
restricted maximin procedure in WO[γ] would find a QES with smaller Sgen in the interior of
WO[γ].

Examples of outer-minimal QESs include the minimal QES and the outermost QES
γouter.11 We will now show that an outer-minimal QESs homologous to B will necessarily
be contained in the entanglement wedge of B, i.e., the outer wedge of the minimal QES
homologous to B. First, a precursor Lemma follows:

Lemma 2. Let γa and γb be quantum extremal surfaces homologous to the same boundary
region B. Then there exist QESs γc ⊆ WO[γa] ∩WO[γb] and γd such that γa, γb ⊆ WO[γd]
such that

Sgen(γc) + Sgen(γd) ≤ Sgen(γa) + Sgen(γb). (2.29)

Proof. Throughout this proof, we will relax the definition of a surface, allowing it to contain
null segments. Suppose γa and γb can be contained in a single Cauchy slice Σ and further
that γa ∩ γb does not contain a co-dimension two spacelike piece. Define partial Cauchy slices
A = WO[γa] ∩ Σ and B = WO[γb] ∩ Σ. Then, C = A ∩ B and D = A ∪ B are also partial
Cauchy slices. Furthermore, it is easy to see that Sgen(∂C)+Sgen(∂D) ≤ Sgen(∂A)+Sgen(∂B).
To see this, note that the area terms on both sides of the inequality agree (except that the
left-hand side excludes pieces where A and B touch but do not intersect) and the entropy
terms obey the inequality by strong subadditivity, i.e. S(C) + S(D) ≤ S(A) + S(B).

Now, consider the general case where γa and γb may not live on a single Cauchy slice. Let
γ̃a be the surface obtained evolving the portions of γa to the future (past) of γb along outward
past (future)-directed null geodesics orthogonally fired from γa until they intersect WO[γb],
and let γ̃b be obtained by evolving the portions of γb to the future (past) of γa along inward
future (past)-directed null geodesics orthogonally fired from γb until they intersect WO[γa]′.
By the QFC, Sgen(γ̃a) + Sgen(γ̃b) ≤ Sgen(γa) + Sgen(γb). By construction, WO[γ̃a]∩WO[γ̃b] =
WO[γa]∩WO[γb] and (WO[γ̃a]′ ∩WO[γ̃b]′)′ = (WO[γa]′ ∩WO[γb]′)′, but there exists a Cauchy
slice Σ that contains both γ̃a and γ̃b. Therefore, Sgen(∂C) + Sgen(∂D) ≤ Sgen(γa) + Sgen(γb)
where C = A ∩B, D = A ∪B, with A = WO[γ̃a] ∩ Σ and B = WO[γ̃b] ∩ Σ. By construction,
∂C and ∂D are quantum anti-normal and normal respectively. As proved in [16, 18], this
implies the existence of a QES γc ⊂ WO[γa] ∩WO[γb] and γd ⊂ (WO[γa]′ ∩WO[γb]′)′ such
that Sgen(γc) ≤ Sgen(∂C) and Sgen(γd) ≤ Sgen(∂D). Putting everything together, we have
Sgen(γc) + Sgen(γd) ≤ Sgen(γa) + Sgen(γb).

10At least one of the authors of [27] feels that our terminology, at least for the specific case when the minimar
surface is quantum extremal, is an improvement.

11The outermost QES is a QES which is fully contained in the outer wedge of every other QES in the
entanglement wedge; such a QES always exists [18].
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Theorem 8. Let γa be an outer-minimal QES homologous to some boundary region B. Then
γa lives in the entanglement wedge of B.

Proof. Let γb be the minimal QES and let γc and γd be defined according to the construction
of Lemma 2. In particular, γa, γb, γc, and γd are all homologous to B. By the outer-
minimal property of γa, we have Sgen(γc) > Sgen(γa). By the inequlaity proved in Lemma 2,
Sgen(γd) < Sgen(γd) contradicting that γb is the minimal QES.

As we will see in section 3, QESs homologous to the same boundary region may be
timelike-separated from each other. This makes it particularly interesting that outer-minimal
QESs are necessarily not timelike-separated from the minimal QES. This relation between the
outer-minimal and minimal QES motivates an alternate definition of an outer-minimal QES:

Theorem 9. Let γ be a QES of a boundary region B and WO[γ] the corresponding outer
wedge. Then γ is outer minimal if and only if for all semiclassical spacetimes (M ′, g′, |ψ′⟩)
that are identical to (M, g, |ψ⟩) on WO[γ], the entanglement wedge of B contains γ.

Proof. It follows directly from Theorem 8 that an outer-minimal QES γ homologous to B lies
in the entanglement wedge of B in (M ′, g′, |ψ′⟩). Conversely, suppose γ is not outer minimal.
We can construct a spacetime (M ′, g′, |ψ′⟩) by gluing WO[γ] to its CPT conjugate across
γ [25, 27]. Let γ′ be the minimal Sgen surface in WO[γ]. Then, (M ′, g′, |ψ′⟩) contains the
CPT conjugate of γ′, called γ′′ such that γ ⊂ WO[γ′′]. By a slight change of (M ′, g′, |ψ′⟩)
in WO[γ]′ we can arrange for a Sgen(γ′′) < Sgen(γ′), while maintaining that γ ⊂ WO[γ′′]. It
then cannot be the case that the entanglement wedge of B contains γ.

Theorem 9 suggests that all operators in WO[γ] can be reconstructed from B by someone
knowing only about WO[γ] if and only if γ is outer minimal. Indeed, the ‘only if’ direction
here follows directly from combining Theorem 9 with standard facts about entanglement
wedge reconstruction [7]: we cannot reconstruct operators knowing only about WO[γ] if those
operators are not even guaranteed to be in the entanglement wedge. On the other hand, to
show the ‘only if’ direction, and prove that such reconstructions are possible whenever γ
is outerminimal, we will need to take advantage of the following boundary density matrix
associated to γ.

Definition 8. Given an outer-minimal QES γ homologous to boundary region B, define the
boundary density matrix ργB associated to it via the CPT-conjugation protocol of [25]: let
W̃O[γ] be the CPT-conjugate of WO[γ]. A Cauchy slice of each wedge can be glued at γ to
construct a complete Cauchy slice whose domain of dependence is the full asymptotically AdS
spacetime with boundary which is two copies of B. The corresponding CFT state restricted to
B, then defines ργB.

Crucially, the density matrix ργB depends only on the bulk state restricted to WO(γ),
and not on the bulk state, or even the spacetime geometry outside WO(γ). In the special
case where γ is the minimal QES, ργB is simply the boundary density matrix in the existing
state. Then standard boundary reconstruction formulae [8, 9, 35, 36] can be used to construct
boundary duals of local bulk operators in the entanglement wedge of B, i.e. WO[γ]. It is
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an easy exercise to show that when γ is a more general outer-minimal QES, if we replace
the boundary density matrix with ργB in e.g. modular flow reconstructions [8] or Petz map
reconstructions [9, 35, 36], we can construct boundary duals to bulk operators localized to
WO[γ] that depend only on WO[γ].

3 Construction of timelike-separated extremal surfaces

In this section, we will explicitly construct spacetime solutions with timelike-separated bulges
and throats in JT gravity with a minimally coupled massive scalar field. All of our examples
feature a bounce between the timelike-separated bulges or throats. For simplicity, we work
in the classical limit where, in particular, Sgen = A/4G.

3.1 Time-like separated bulges

In this subsection we construct time-like separated bulges. Though our explicit solutions are
in JT gravity (or equivalently, in a higher dimensional near-extremal Reissner-Nordstrom
black hole), the idea behind the construction is general and can in principle be implemented
in other (e.g. higher dimensional) gravitating systems. We construct a single time-symmetric
Cauchy slice Σ, with two asymptotically AdS boundaries, containing three extremal surfaces
γ1, γ2, and γ3 (ordered from left to right) homologous to one of the boundaries. Each
boundary has a corresponding outermost extremal surface which (by a simple restricted
maximin argument) always lies on the time-symmetric slice. Consequently, γ1 and γ3 are the
outermost extremal surfaces of the left and right boundaries respectively (and are therefore
throats). Let H13 be the portion of Σ between γ1 and γ3. Then, maximinimax within D(H13)
guarantees the existence of a bulge.12 Now, suppose γ2 is a bounce. Then, the D(H13)
maximinimax along with the time-symmetry of Σ implies the existence of at least two bulge
extremal surfaces which are timelike-separated from each other.

In the remainder of this subsection, we demonstrate an explicit example of such a Σ
in JT gravity minimally coupled to a massive scalar field.

We work with the AdS2 metric in the following coordinates (hereafter, we use units
where the radius of curvature is unity)

ds2 = −(1 + x2)dt2 + (1 + x2)−1dx2. (3.1)

The equations of motion for JT gravity coupled to a massive scalar field are given by

−∇µ∇νϕ+ gµν∇2ϕ− gµνϕ = κ Tµν , (3.2)

where ϕ is the dilaton, κ = 8πG, and Tµν is the matter stress energy tensor given by

Tµν = ∇µψ∇νψ − 1
2gµν(m

2ψ2 + ∇σψ∇σψ), (3.3)

12This assumes that maximinimax in D(H13) does not run off to asymptotic infinity in the time directions.
This could happen for instance in a spacetime where one glues a portion of de Sitter-Schwarzschild spacetime
behind the horizons of two AdS-Schwarzschild spacetimes [37]. However, we expect (an expectation which is
realized in our explicit construction below) a spacetime where D(H13) contains no asymptotic region.
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Figure 4. The profile of ϕ on the slice Σ (t = 0 axis) shows three extremal surfaces, at x = 0 and
x ≈ ±2.

and where the scalar field’s equation of motion is

∇2ψ +m2ψ = 0. (3.4)

For simplicity, we will construct a solution which is reflection-symmetric across γ2 (where we
set x = 0). Furthermore, we pick ψ = 0 in the exteriors of the outermost extremal surfaces,
i.e. to the left of γ1 and to the right of γ3. The task is then to construct a solution of H13
which satisfies the constraint equation:13

ϕ− x∂xϕ− (1 + x2)∂2
xϕ = κ

2
(
m2ψ2 + (1 + x2)(∂xψ)2

)
, (3.5)

and such that ϕ2 is a bounce and ϕ|γ1 > 0 and ψ|γ1 = 0 (by reflection symmetry, ϕ|γ3 > 0
and ψ|γ3 = 0). Then, by gluing γ1 and γ3 to exteriors of a vacuum JT solution we can
complete the initial data. The vacuum solution is

ϕ = ϕh
√

1 + x2 cos t, (3.6)

where we set ϕh = ϕ|γ1 and glue the x > 0 part of the this solution to the right of γ3 and
the x < 0 piece to the left of γ1.

The only remaining challenge is to build a H13 with a bounce. Here, a bounce means
∂2
t ϕ|γ2 > 0. From the xx component of eq. (3.2), we have

∂2
t ϕ(t, x = 0)|t=0 = κ

2m
2ψ(t = 0, x = 0)2 − ϕ(t = 0, x = 0). (3.7)

We choose a profile of ψ which is constant in an interval around x = 0 and linearly decreases
to zero at γ1 and γ3:

ψ =


ψ0, |x| ≤ x0,

ψ0 − a|x− x0|, x0 < |x| ≤ x0 + ψ0
a ,

0, x > x1.

(3.8)

13Both the tt and tx components of eq. (3.2) are constraints, but the tx component is automatically satisfied
for time-symmetric initial data.
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Figure 5. By evolving the dilaton off of the time-symmetric initial data, we explicitly find bulges on
the x = 0 axis at times t ≈ ±0.06.

We can pick ϕ(t = 0, x = 0) freely, and let the constraint equation (3.5) fix ϕ(t = 0, x).
For the following choice of parameters, the solution will have the desired throats with an
exterior given by the vacuum solution (3.6).

κ = 0.01,
m = 100,
ψ0 = 50,
ϕ(t = 0, x = 0) = 100,
a = 600.

(3.9)

Figure 4 shows the resulting profiles of ϕ on Σ.
We can explicitly check the existence of the bulges by evolving the data in D(H13). We do

so by numerically solving for the solution off of the t = 0 slice. Since the equations are linear,
we can also solve analytically the solution for ψ using the appropriate Green’s functions,
and use that to solve for the value of ϕ off of the t = 0 slice. We do so in appendix A and
find perfect agreement with the results here.

The result is shown in figure 5 where at x = 0 and t ≈ 0.06 we have bulge extremal
surfaces. We can confirm that the surface is a bulge because ∂2

t ϕ < 0 and ∂2
xϕ < 0 at the

surface. We schematically depict the entire solution in figure 6.

3.2 Timelike-separated throats

The strategy here is again to provide complete initial data on a time-symmetric and reflection
symmetric (across x = 0) slice Σ with two asymptotically AdS2 boundary conditions of
the fields. The implementation in this case is more brute-force. We will construct a time
interval data, on {x = 0,−t0 < t < t0}, such that at the boundaries of the interval we have
throat extremal surfaces. By time symmetry, this means at t = x = 0 we will have another
extremal surface which is a bounce. We will then take advantage of the simplicity of the
two-dimensional setup to evolve this data sideways to construct a domain of dependence
with a time-symmetric spatial slice Σ′ (see figure 8). The rest of the task is then to complete
Σ′ into full initial data on both sides with AdS2 asymptotics. We do not generate the
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Figure 6. A Penrose diagram of our JT gravity plus massive scalar solution with timelike separated
bulges. The precise location of the singularity (which in JT gravity plus matter is just a region where
the dilaton diverges to negative infinity) is shown schematically and not derived explicitly. A Cauchy
slice Σ with time-symmetric data is prepared containing a bounce (γ2), two throats (γ1 and γ3), and
two asymptotic AdS regions. By maximinimax and time-symmetry, D(H13) contains at least two
bulges (shown in orange) that are time-like separated from each other.

complete Cauchy evolution of this initial data; nevertheless we may still immediately make
some conclusions about the location of other extremal surfaces. Specifically, as illustrated
in figure 8, there must exist four bulges away from the x = 0 slice as a consequence of
maximinimax between one of the timelike-separated throats and one of the outer throats.

Explicitly, we choose the following profile for the time interval:

ψ(t) = ψ0

(
2 + t− 2

a
log

(
1 + eat

2

))
(3.10)

with a=0.5 and further 
κ = 0.01,
m = 10,
ψ0 = 50.

(3.11)

We then demand that ϕ solves the xx component of its equation of motion on the time interval:

−ϕ(t) − ∂2
t ϕ(t) = 1

2κ
(
−m2ψ(t)2 + (∂tψ(t))2

)
(3.12)

such that ∂tϕ(t, x = 0)|t=t0 = ∂tϕ(t, x = 0)|t=0 = 0 for t0 = 0.15. The resulting ϕ(t, x = 0)
profile is depicted in figure 7. We can directly compute ∂2

xϕ at t = t0 using the dilaton
equations of motion and confirm that the extremal surfaces at x = 0, t = ±t0 are indeed
throats, whereas the positive ∂2

t ϕ|t=x=0 implies that the t = x = 0 extremal surface is a
bounce. We then numerically evolve this data “sideways”to derive the spatial initial data on
Σ′ from which evolves to this solution. The ϕ and ψ profiles are plotted in figure 9.

Next, to complete Σ′, to a full initial data set with AdS2 asymptotics, we extend the
ψ data with a linearly decreasing profile from the boundary of Σ′ until we reach zero past
which we fully turn off ψ. The constrains eq. (3.5) then fixes the corresponding ϕ. Figure 9
depicts the corresponding profiles on the t = 0 slice. The linear growth of ϕ is the asympotic
region guarantees AdS2 asymptotics.
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Figure 7. The profile of ϕ on the x = 0 axis with t ∈ [−t0, t0] shows three extremal surfaces, at
t = −t0, t = 0, and t = t0.

Figure 8. A schematic Penrose diagram of our JT gravity plus massive scalar solution with timelike
separated throats. First, we prepare data on the timelike interval from −t0 to t0 (shown in brown),
with two throats on each end and a bounce (shown in blue) in the middle. The data is then evolved
side ways to obtain data on Σ′, which we then complete to a full Cauchy slice Σ with two asymptotic
AdS boundary. Then, it is manifest that the spacetime arising from Σ contains two time-like separated
throats. In addition, there are four bulges (shown in orange) as a consequence of a maximinimax
procedure between the throats at t = ±t0 and ones at t = 0.
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1000
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Figure 9. The profile of ϕ at t = 0 shows three classical extremal surface at x = 0 and x ≈ ±7
connected to an asymptotic region. The asymptotic region is characterized by a linearly growing ϕ.
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3.3 Remarks

Given the above examples, timelike-separated QESs of different types are allowed, and we find
it highly plausible timelike-separation between any kind of QESs can be realized. An intriguing
feature of the above solutions is the presence of a bounce in the region I+(γ1)∩ I−(γ2) where
γ1 and γ2 are the early and late throat/bulge surfaces respectively. In fact, in the classical
limit with spherical symmetry it is easy to show that I+(γ1) ∩ I−(γ2), if non-empty, always
contains a bounce if γ1 and γ2 are bulges or throats (not necessarily the same type). Since
the problem is effectively 2d in this case, we can simply reverse time and space in the region
between γ1 and γ2 and apply a standard restricted maximin procedure. The outcome will be
a bounce extremal surface (in the original spacetime). It is tempting to speculate whether
more generally, time-like separated bulges and/or throats imply the existence of a bounce
QES, but we leave this to future work.

It would be interesting to find the boundary states dual to the bulk geometries presented
here. Since our constructions are Lorentzian, they do not explicitly reveal asymptotic boundary
conditions (Euclidean or complex) which would result in these bulk solutions. When such
boundary conditions are known, they provide an explicit realization of the boundary state
dual to the bulk solution. Various such solutions are discussed in the literature (see [38]
for example), but to our knowledge these solutions only contain spacelike separated bulges
and throats.

4 A refined Python’s lunch proposal

Having established the existence of timelike-separated QESs, we need to understand their role
in controlling information flow in the bulk-to-boundary map. The QES prescription [4] and
entanglement wedge reconstruction [7] as usually stated can accommodate timelike-separated
QESs without any issue. However, the same cannot be said for the Python’s lunch conjecture.

In its original formulation [17], the Python’s lunch conjecture assumed an entanglement
wedge that contained only two throats. These two throats are necessarily a) the minimal QES
γmin (for consistency with later notation we shall also call this the dessert surface γdessert)
and b) the outermost QES (we shall call this the appetizer surface γaptz). There always
exists at least one additional QES in the entanglement wedge that is not a throat, namely
maximinimax(γmin, γaptz). We shall call this surface γmain to complete the culinary theme; in
previous work it was normally called the bulge surface. The wedge WO[γdessert] ∩W ′

O[γaptz]
is the eponymous Python’s lunch.

The Python’s Lunch conjecture for spacetimes with two throats [17]: the com-
plexity C of reconstructing bulk operators in the lunch WO[γdessert] ∩W ′

O[γaptz] using only
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the boundary state on B is14

logC = 1
2(Sgen(γmain) − Sgen(γaptz)) +O(1). (4.1)

This conjecture was generalized in [16] to situations with a set of nested, spacelike-
separated bulges and throats, with a bulge sandwiched between each pair of throats and vice
versa. To state this version of the conjecture, we first recall from section 2.4 that operators
outside of an outer-minimal QES γdessert can be reconstructed by someone knowing only
about WO[γdessert]. This suggests that only QESs contained within WO[γdessert] should be
relevant to the reconstruction complexity of operators in WO[γdessert]. Since all the QESs
are assumed to be nested, we can label the extremal surfaces within WO[γdessert := γ0] by
γi for i > 0 such that

WO[γi] ⊆WO[γj ]

whenever i > j. For this version of the conjecture, we also assume that there exists a single
Cauchy slice Σ, containing all the extremal surfaces γi, such that Σ is simultaneously a
maximal Cauchy slice for all relevant maximin or maximinimax constructions. The slice
Σ can be thought of as the gravitational analogue of a tensor network. (As with all other
assumptions, the assumption of the existence of the slice Σ will be removed in the fully
general prescription we propose in section 4.1.)

The Python’s Lunch conjecture for multiple spacelike-separated extremal sur-
faces [16]: the restricted complexity C of decoding bulk operators that lie outside the
outer-minimal QES γdessert (but not outside any outer-minimal QES γj for j > 0) satisfies

logC = max
j>i:

[1
2(Sgen(γi) − Sgen(γj))

]
+O(1) = 1

2(Sgen(γmain) − Sgen(γaptz)) +O(1), (4.2)

where γmain and γaptz are defined as the surfaces in which the maximum is attained.
Since a bulge always has larger generalized entropy than the neighboring throats, and a

throat smaller generalized entropy than the neighbouring bulges, the surface γmain is always
a bulge and the surface γaptz is always a throat. In fact, if we know one of γaptz and γmain,
the other can be found by a maximinimax or maximin prescription respectively:

Lemma 3. It is always the case that γaptz = maximin(γmain, B).

Proof. By standard arguments, the maximin surface is the QES in the exterior of γmain with
smallest generalized entropy. But this is exactly the surface γaptz found by maximizing over
j in (4.2).

Lemma 4. It is always the case that γmain = maximinimax(γdessert, γaptz).
14Here, and in all other versions of the Python’s lunch conjecture, we are assuming that the spacetime

volume/action is O(1). Wormholes with parametrically large volume, for example, have a complexity that
grows linearly with their volume, even in the absence of a Python’s lunch [39, 40]. However unless the
wormhole is exponentially long, such effects are subleading compared to the contribution to the reconstruction
complexity from a Python’s lunch.
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Proof. Since the maximinimax surface is always a bulge QES, it must trivially be γk for
some odd k with 0 < k < j. To prove that it is the surface γi in that range with largest
generalized entropy, we show by induction that (subject to the asssumptions above) the
maximinimax surface between two throats γa and γb with a < b is the intermediate QES γc
with largest generalized entropy. The base case where b = a+ 2 is trivial. Now assume that
the result holds whenever b− a < n. For b− a = n, let γd be the maximinimax surface and
let Sgen(γd) < Sgen(γc). By the symmetry of the problem, it is sufficient to check the case
where c < d.

Let γe be the smallest generalized entropy QES with c < e < d. By construction, there
exists a foliation γ(t) of the Cauchy slice Σ defined above from γa to γd with Sgen(γ(t)) ≤
Sgen(γd) everywhere. We define a new foliation γ̃(t) from γa to γe by WO[γ̃(t)] = (WO[γ̃(t)]′∩
W0[γe]′)′. Similarly, the foliation ≈

γ(t) from γe to γd is defined by WO[≈γ(t)] = WO[≈γ(t)]∩W0[γe].
By strong subadditivity, we have

Sgen[γ(t)] + Sgen[γe] ≥ Sgen[γ̃(t)] + Sgen[≈γ(t)]. (4.3)

But, by assumption, γe is minimal in Σ between γe and γd and so Sgen[≈γ(t)] ≥ Sgen[γe]. It
follows that for all t, we have

Sgen[γ̃(t)] ≤ Sgen[γ(t)] ≤ Sgen[γd]. (4.4)

Since by assumption Σ is a maximinimax slice between γa and γe, the existence of the foliation
γ̃(t) means that γc cannot be maximinimax between γa and γe. But this gives us our desired
contradiction since e− a < n.

4.1 A conjecture

The original Python’s lunch conjecture [17] and the generalization from [16] were both
primarily justified by an appeal to tensor network toy models. Such models, however, are only
analogous to a single Cauchy slice of a holographic spacetime and hence cannot contain any
analogue of two timelike-separated extremal surfaces. If we want to construct a completely
general version of the Python’s lunch conjecture in light of our results in the previous section,
the only remaining tools that we have to guide us are general covariance and consistency with
the previous conjectures in their domains of validity. There does appear to be one particularly
natural conjecture consistent with these requirements, which we describe below. As we shall
see, it has the nice properties that logC continues to be determined by the difference between
the generalized entropies of a bulge γmain and a throat γaptz, and that γaptz can be found
from γmain, and γmain from γaptz, by maximin and maximinimax prescriptions respectively.

A general Python’s Lunch conjecture: the restricted complexity C of decoding a bulk
operator at a point p is given by:

logC = min
γ0

max
γ1

[Sgen(maximinimax(γ0, γ1)) − Sgen(γ1)] + O(1) (4.5)

= [Sgen(γmain) − Sgen(γaptz)] + O(1). (4.6)
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Here the minimization is over outer-minimal QESs γ0 such that p ∈WO[γ0], and the mini-
mizing surface is γdessert. The maximization is over QESs γ1 ⊆WO[γ0], and the maximizing
surface is γaptz. Finally the surface γmain = maximinimax(γdessert, γaptz).

By construction, the surface γmain is maximinimax between γdessert and γaptz. What is
not immediately obvious, but is vitally important for consistency with the intuition of tensor
networks, is that γaptz is maximin in the exterior of γmain. In fact the proof that this is indeed
always the case is somewhat involved, so we will break it down into a few lemmas.

Lemma 5. There does not exist a QES γext ⊆WO[γaptz] such that Sgen(γext) ≤ Sgen(γaptz).

Proof. Suppose there exists such a QES γext. Without loss of generality we may assume that
γext is maximin between γaptz and B. To show a contradiction, we need to show that the size
of the lunch between γdessert and γext is larger than that between γdessert and γext i.e. that

Sgen(maximinimax(γdessert,γext)) − Sgen(γext)
?
>

Sgen(maximinimax(γdessert, γaptz)) − Sgen(γaptz). (4.7)

To do so we pick a particular Cauchy slice Σ and choose a minmax foliation γ(t) of that slice
between γdessert and γext. For any t, we must have

Sgen(γ(t)) ≤ Sgen(maximinimax(γdessert, γext)). (4.8)

Let us take Σ to be the union of a maximinimax partial Cauchy slice between γdessert
and γaptz and a partial Cauchy slice between γaptz and γext on which γext is minimal. We
then define two new foliations γ̃(t) and ≈

γ(t) by WO[γ̃(t)] = (WO[γ(t)]′ ∩WO[γaptz]′)′ and
WO[≈γ(t)] = WO[γ(t)] ∩WO[γaptz] respectively. The surfaces γ̃(t) foliate between γdessert and
γaptz in a maximinimax slice. Hence there must exist t with

Sgen(γ̃(t)) ≥ Sgen(maximinimax(γdessert, γaptz). (4.9)

On the other hand, for all t, ≈
γ(t) is contained in a partial Cauchy slice within which γext has

minimal generalized entropy. So

Sgen(≈γ(t)) ≥ Sgen(γext), (4.10)

with equality only when γ(t) = γext. But by strong subadditivity we have for all t

Sgen(γ(t)) + Sgen(γaptz) ≥ Sgen(γ̃(t)) + Sgen(≈γ(t)). (4.11)

Substituting the inequalities (4.8), (4.9) and (4.10) into (4.11) gives exactly the inequality (4.7)
that we needed to show to prove our desired contradiction.

Lemma 6. There does not exist a QES γext ⊆WO[γaptz]′∩WO[γdessert] such that Sgen(γext) <
Sgen(γaptz).

Proof. We construct a Cauchy slice Σ for WO[γaptz]′ ∩WO[γdessert] that maximizes

min
γ(t)

[ASgen(γ(tmax)) +BSgen(γmin)] . (4.12)
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Here A and B are positive constants, tmax maximizes Sgen(γ(t)) and γmin ⊆WO[γ(tmax) ∩ Σ
has minimal Sgen among all surfaces in Σ in the exterior of γ(tmax).

It follows immediately from the definition that γmin = maximin(γ(tmax), γaptz). Moreover,
when the ratio A/B is sufficiently large, the surface γ(tmax) must approach the maximinimax
surface γmain. By standard arguments, since γ(tmax) and γaptz are extremal, the surface
γmin is the smallest extremal surface between them. Hence γmin and γaptz are distinct and
Sgen(γmin) < Sgen(γaptz) if and only if there exists a QES γext satisfying the conditions above.
We assume this is the case and prove a contradiction .

Let γ(t) be a minmax foliation of Σ (maximized at tmax) between γdessert and γaptz and let
γ̃(t) and ≈

γ(t) be defined respectively by WO[γ̃(t)] = (WO[γ(t)]′ ∩WO[γmin]′)′ and WO[≈γ(t)] =
WO[γ(t)] ∩WO[γmin]. For t ≤ tmax, we have ≈

γ(t) = γmin, and hence Sgen(≈γ(t)) < Sgen(γmain).
For t > tmax, we have

Sgen(γ(t)) + Sgen(γmin) ≥ Sgen(γ̃(t)) + Sgen(≈γ(t)) (4.13)

by strong subadditivity. Since Sgen(γ̃(t)) ≥ Sgen(γmin) and Sgen(γ(t)) < Sgen(γmain) for
t > tmax, we again obtain Sgen(≈γ(t)) < Sgen(γmain).

Now suppose the minmax surface between γdessert and γmin in Σ had generalized entropy
strictly smaller than Sgen(γmain). We could then combine a minmax foliation between
γdessert and γmin with ≈

γ(t) to obtain a foliation of Σ between γdessert and γaptz with maximal
generalized entropy strictly smaller than Sgen(γmain), contradicting the definition of γmain.
But, on the other hand, if the minmax surface between γdessert and γmin has generalized
entropy at least as large as Sgen(γmain), then

Sgen(maximinimax(γdessert, γmin)) − Sgen(γmin) > (4.14)
Sgen(maximinimax(γdessert, γaptz)) − Sgen(γaptz), (4.15)

which contradicts the maximality of γaptz in (4.5) if Sgen(γmin) < Sgen(γaptz).

Theorem 10. The surface γaptz is maximin between γmain and B.

Proof. The surface γaptz is maximin if there exists no smaller QES in WO[γmain]. By Lemma 2,
if there exists a QES γext ⊂WO[γmain] with Sgen(γext) < Sgen(γaptz) then there must also exist
a QES γ′ext satisfying the same condition with either γ′ext ⊆ WO[γaptz] or γaptz ⊆ WO[γ′ext].
Both possibilities are ruled out by the preceding lemmas.

Corollary 3. The surface γaptz is outer minimal (and therefore a throat).

Corollary 4. The fully general Python’s lunch prescription reduces to the prescription for
multiple spacelike-separated extremal surfaces when all QESs are spacelike-separated and
nested and a Cauchy slice Σ with appropriate properties exists.

Since the true Python’s lunch requires a somewhat complicated procedure to compute,
the following simpler definition can be helpful
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Definition 1. The full-course Python’s lunch is defined by setting γdessert to be the minimal
QES γmin and γaptz to be the outermost QES γouter. Its size is given by

Sgen(γmain) − Sgen(γouter), (4.16)

where γmain = maximinimax(γmin, γouter).

Corollary 5. Assuming the minimal QES is isolated, the size of the Python’s lunch for a
point p in a sufficiently small neighbourhood of γmin (but within the entanglement wedge) is
lower bounded by the size of the full-course Python’s lunch.

4.2 Where is the tensor network?

The general Python’s Lunch proposal above is satisfyingly clean and has a number of additional
nice features as we have just described. However it also leads to some somewhat surprising
conclusions about the relationship between tensor network (TN) models and quantum gravity.
In general, the holographic duality requires the existence of a linear map from the bulk Hilbert
space to the boundary Hilbert space. Though this map in general has not yet been derived ab
initio, TN toy models have very successfully reproduced features of the map that are expected
from basic gravitational path integral computations, e.g., the path integral derivation of
the QES prescription [3, 36, 41–43]. These setups construct a TN which represents the
spatial geometry of a given bulk slice and asymptotes to the boundary slice of choice. For
generic time-dependent spacetimes, it is not always obvious which Cauchy slice is meant to
be analogous to a TN description of the boundary state. It cannot be any Cauchy slice, at
least if we want the logarithm of the dimension of a cut through the tensor network to be
proportional to the generalized entropy of the corresponding surface. In fact, consistency
with the QES prescription requires suggests that the “TN slice” be a maximin slice, with
the minimal QES the minimal generalized entropy surface within the slice. Consistency with
the Python’s lunch conjecture constrains any candidate “TN slice” even further, forcing it to
include γdessert, γmain and γaptz. Indeed, in a spacetime where all the QESs homologous to a
given region B are spacelike, it is natural to think of the TN slice as containing all of the
QESs, as was assumed in the version of the Python’s lunch proposed in [16].

However, in the presence of timelike-separated QESs, no Cauchy slice can contain every
QES of a given boundary (or boundary region). Our fully general Python’s lunch conjecture
suggests that a hypothetical TN slice should definitely contain γdessert, γmain and γaptz, along
with the minimal QES. Since all of these extremal surfaces are spacelike separated, this is
certainly possible. However different bulk operators (corresponding to bulk points p) will
in general have different surfaces γdessert, γmain and γaptz. And there is no reason that all
of those surfaces need to lie within the same Cauchy slice.

Issues with finding a consistent “tensor network slice” in time-dependent spacetimes are
not new: they show up even when merely demanding consistency with the QES prescription
once one considers multiple overlapping boundary regions. However, such issues were
previously thought to be avoided in static or time-reflection symmetric spacetimes. In those
case, it prima facie appears obvious that “TN slice” should be the time-reflection symmetric
Cauchy slice. All minimal QESs for all time-reflection symmetric boundary regions are
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contained in this slice. And in fact if all QESs were supposed to be spacelike-separated, then
they would have to be contained in the time-reflection symmetric slice (otherwise they would
be timelike-separated from their image under the time reflection symmetry). So, naively,
the Python’s lunch conjecture for spacelike-separated surface is still completely consistent
with a TN describing the time-reflection symmetric slice.

However, here we come up against the examples of section 3: time-reflection symmetric
slices that nevertheless do not contain the QESs relevant for the general Python’s Lunch
conjecture proposed above. We appear to have found a clash between two principles supported
by numerous evidence from AdS/CFT: first, the maximin prescription and its various
descendants as the identifiers of relevant QESs in generic spacetimes, and two, modeling the
bulk-to-boundary map as a tensor network whenever the bulk has time reflection symmetry.
If the former is correct, then all of the previous insights about tensor networks in AdS/CFT
appear to be suspect — which is highly surprising given the significant progress derived from
them. If the latter is correct, then it is possible that the reconstruction complexity is much
smaller than suggested by a maximin-supported proposal: implementing Grover search on the
much-smaller bounce in between two bulges will need to undo significantly less postselection.

Given the stark difference between these conclusions, a first principles derivation of bulk
reconstruction complexity is desirable. We conclude by offering a concrete approach towards
that end, whose implementation is left to future work. In the python’s lunch proposal,
the source of complexity is the post-selection happening in the TN bulk-to-boundary map
as demonstrated by the Sgen drop between the relevant bulge and throat in the geometry.
Therefore, one way to check the python’s lunch proposal is via a direct gravitational com-
putation of the correct amount of post-selection in the bulk-to-boundary map. Indeed, this
post-selection imprints itself in the small overlaps in the inner product of boundary states
dual to orthogonal bulk states. One can calculate such overlaps (or, more precisely, their
norm-squared average) using the gravitational path integral. Doing so will bypass the TN
picture — which we argued is not reliable — and let gravity itself determine the salient
features of the bulk-to-boundary map such as its complexity.
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A Obtaining the solution of section 3.1 using Green’s function

This is particularly simple for the scalar field using AdS2 Greens functions. here we use
AdS2 coordinates

ds2 = 1
cos2 ρ

(−dτ2 + dρ2), (A.1)

where t = τ and x = tan(ρ).
We will find the retarded Green’s function:

(□−m2)GR(x, x′) = 1√
−g

δ(2)(x− x′) (A.2)

Using the following ansatz:

GR(x, x′) = fR(σ(x;x′))θ(τ − τ ′)θ(τ − τ ′ − |ρ− ρ′|) (A.3)

with:

σ(τ, ρ; τ ′, ρ′) = cos(τ − τ ′) − sin ρ sin ρ′
cos ρ cos ρ′ (A.4)

Plugging into eq. (A.2), we get:

(σ2 − 1)f ′′R + 2σf ′R − ∆(∆ − 1)fR = 0 (A.5)

where ∆ = 1/2 +
√

1/4 +m2R2. The solution is given by a Legendre function. Putting
everything together we get:

GR = −1
2P∆−1(σ)θ(τ − τ ′)θ(τ − τ ′ − |ρ− ρ′|) (A.6)

Given some initial time symmetric conditions ψ0(τ = 0, ρ) and ∂τψ0(τ, ρ)|τ=0 = 0, for
τ > 0 we have:

ψ(τ,ρ= 0) =−1
2

∫ ∞

−∞
dρ′ ψ0(0,ρ′)

(
P ′

∆−1(σ) sin(τ)
cosρcosρ′ θ(τ−|ρ−ρ′|)+P∆−1(σ)δ(τ−|ρ−ρ′|)

)
(A.7)

and

σ(τ, ρ; τ ′, ρ′) = cos(τ − τ ′) − sin ρ sin ρ′
cos ρ cos ρ′ (A.8)

We can now use the following dilaton equation of motion to find the dilaton profile along
the ρ = 0 line.

ϕ(τ, ρ = 0) + ∂2
τϕ(τ, ρ = 0) = κ

2
(
m2ψ(τ, ρ = 0)2 − (∂τψ(τ, ρ = 0))2

)
(A.9)

The resulting value of ϕ(t, x = 0) is plotted in figure 10 below, in agreement with figure 5.
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Figure 10. Analytic solution to the dilaton profile on the x = 0 axis for the construction of section 3.1.
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