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1 Introduction

The gravitational memory effect measures the net relative displacement between asymptotic
detectors induced by the passage of gravitational waves [1–7]. More recently, in the context of
high energy physics, it was shown that the memory effect can equivalently be understood as the
leading soft graviton theorem in particle scattering amplitudes, as well as a vacuum transition
between two inequivalent vacua in asymptotically flat spacetimes [8] (see [9] for a review).

In a complementary series of developments, ’t Hooft proposed that incoming and outgoing
modes near black hole horizons obey a set of commutation relations [10] and used these to
evaluate a universal contribution to the black hole S-matrix. This takes the simple form
of a phase shift and is directly related to the time delay acquired by a particle crossing a
shockwave. The same contribution was later shown to be reproduced by resumming an infinity
of graviton exchanges in the eikonal/high-energy limit of any 2-to-2 gravitational scattering
process [11–14]. These results triggered a fruitful, ongoing program of understanding black
holes from shockwave dynamics [15–24]. More recently, the ’t Hooft commutation relations
were utilized in a proposal for how quantum gravitational fluctuations could be observed
in table-top interferometers [25–27].

A priori, the gravitational memory effect and the time delay experienced by a particle
propagating in a shockwave background appear to be very different physical phenomena.
Indeed, through its relation with the soft theorems, the gravitational memory qualifies as an
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infrared effect, while the time delay is revealed in the high-energy limit of scattering processes
and therefore more naturally associated with the ultraviolet. The goal of this paper is to
provide evidence that the two effects are nevertheless closely related. In particular, we find
a diffeomorphism that relates a family of shockwave metrics to a family of Bondi metrics
exhibiting a leading order memory effect. Restricting to the linearized theory is sufficient
to establish this relation. This allows us to identify the shockwave variables appearing in
the ’t Hooft commutation relations with the soft and Goldstone1 variables [28] parametrizing
the gravitational phase space of asymptotically flat spacetimes. We show that the ’t Hooft
commutation relations then follow directly from the commutation relations of the soft modes.

More specifically we consider a shockwave background in four spacetime dimensions.
Such shocks have been previously studied in a variety of contexts [10, 20, 29–32], and are
solutions to the Einstein field equations with a delta function source. We will focus on the
radial shock sourced by a radially expanding shell of massless particles.2 The spherical shock
reduces to the more familiar planar shock for two points with small transverse separation
on the celestial sphere.

In the context of Schwarzschild horizons, ’t Hooft argued that quantum mechanically
there is an inherent uncertainty between the locations of ingoing and outgoing modes of
Hawking particles [10, 33]. Here the ingoing probe particle experiences a shift X+ due to
the shockwave generated by an outgoing particle with momentum P +, while the outgoing
shockwave similarly experiences a shift X− due to the ingoing probe particle’s momentum
P −. This uncertainty is expressed by a nontrivial commutation relation between ingoing and
outgoing modes, as shown in figure 1, which takes the form

[P−(z, z̄), X−(z′, z̄′)] = −iγzz̄δ(2)(z − z′) . (1.1)

Note that, due to index raising and lowering conventions of lightcone coordinates, these
commutation relations imply that P + is conjugate to X−; the ingoing and outgoing conjugate
pairs in figure 1 are accordingly shown in colored pairs.

It has been previously suggested that the commutation relation (1.1) applies near generic
horizons [13, 25, 26]. In this paper, we will show that (1.1) is equivalent to the canonical
commutation relations of soft modes in four-dimensional asymptotically flat spacetimes. To
establish this equivalence, we show that a linearized Bondi metric having a leading memory
effect can be obtained by a diffeomorphism from a shockwave solution to the linearized
Einstein’s equations sourced by T M

uu ∝ δ(u − u0). The equations of motion then imply a
relation between the shockwave momentum P + and the soft graviton mode N , namely

P−(z, z̄) = 1
32πGN

□(□ + 2)N(z, z̄) , (1.2)

where □ is the transverse Laplacian (to be defined explicitly later). Physically, N measures
the gravitational memory effect [8]. We therefore establish a relation between the time delay
acquired by a probe propagating in the shockwave background and the gravitational memory

1In this paper, we will interchangeably refer to these jointly as soft variables, modes, or operators.
2As indicated in many places in the literature, e.g. [30], the spherical shock cannot be sourced by a

single particle.
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Figure 1. We depict the spherical shockwave spacetime in lightcone coordinates x− = t − r = u and
x+ = t + r = u + 2r. The particle (or rather, shell of particles) generating the shockwave, depicted in
red, is localized at x− = x−

0 and z = z0 (the transverse directions are suppressed). The probe particle
crossing the shockwave experiences a null shift X+ that is related to the shockwave momentum P +.
The shockwave also experiences a X− shift due to the momentum P − of the probe.

effect encapsulated concretely in the memory mode N(z, z̄).3 We also find that the shockwave
metric enjoys a supertranslation symmetry, which allows for shifts in X− to be traded for shifts
of the Goldstone mode C parametrizing the memory metric, thereby allowing us to identify

X− = −C(z, z̄) . (1.3)

Given the identifications (1.2) and (1.3), we can immediately demonstrate that the commuta-
tion relation between soft and Goldstone operators, given by [28]

□z(□z + 2)
[
C(z, z̄), N(z′, z̄′)

]
= −32πiGN γzz̄δ(2)(z − z′) , (1.4)

implies the ’t Hooft commutation relation (1.1) between P− and X−. Had we considered
an ingoing shockwave instead of an outgoing one, we would have established the ’t Hooft
commutation relation between P+ and X+.

This equivalence has far-reaching consequences. The ’t Hooft commutation relations
in flat space were the foundation of a derivation in [26], which demonstrated that metric
perturbations due to quantum effects are related to fluctuations of the modular Hamiltonian
K in the vacuum state of an empty causal diamond, recovering the well-known area law
⟨K⟩ = ⟨∆K2⟩ = A

4GN
, where A is the area of the bifurcate horizon of the causal diamond.

3Note that our analysis focuses on a spherical shockwave background rather than a planar shockwave
background, and is therefore not in contradiction with the results of [34], where the “memory effect” for a
planar shock is shown to vanish.

– 3 –



J
H
E
P
0
1
(
2
0
2
4
)
0
0
6

We view our results as evidence that such modular relations can indeed be applied to light-
sheet horizons in flat space, and that modular fluctuations are related to soft effects in
celestial holography (related directions were explored in [35]). These modular fluctuations, in
turn, are at the center of a proposal of detectably large spacetime fluctuations in quantum
gravity [25, 36, 37]. Thus, our work opens new directions in utilizing gravitational memory
to study observational signatures of quantum gravity.

The organization of this paper is as follows. In section 2.1, we give a quick overview
of a spherical shockwave solution, and show how by taking an appropriate limit we recover
the more familiar Aichelburg-Sexl planar shockwave solution. In section 2.2, we review the
derivation of the memory effect in asymptotically flat spacetimes and its relation to asymptotic
symmetries. In section 2.3, we discuss a class of Bondi metrics with relaxed fall-off conditions
in the large r limit. In section 3, we demonstrate that under a diffeomorphism, the shockwave
metric considered in section 2.1 is transformed into a metric that agrees with the Bondi metric
up to overleading contact terms. This allows us to determine in section 3.2 that the standard
asymptotically flat memory metric is obtained via the same diffeomorphism from a shockwave
solution to the linearized Einstein equations with a delta function perturbation turned on.
The symplectic form of this new shockwave metric agrees with that of the standard memory
metric subject to an identification between the shockwave and memory variables. This allows
us to determine in section 3.3 how the soft graviton mode N and the Goldstone mode C are
respectively related to the momentum P + and position X− of the outgoing shockwave and
establish the ’t Hooft commutation relations from the commutators of N(z, z̄) and C(z, z̄).
Finally, we make some concluding remarks and speculate on future directions in section 4.

2 Preliminaries

In this section, we give a brief overview of the background material necessary for our
analysis. We begin by discussing some basics of shockwave metrics and reviewing the ’t
Hooft commutation relations in section 2.1. In section 2.2, we review the relation between
supertranslations and the memory effect in the Bondi gauge. Finally, in section 2.3, we
introduce a class of metrics obeying slightly weaker boundary conditions compared to
asymptotically flat metrics and hence containing the shockwave backgrounds.

2.1 Shockwaves and the ’t Hooft commutation relation

An energetic massless particle in Minkowski spacetime sources a gravitational field referred
to as an impulsive wave or a shockwave.4 Such solutions were first found by Aichelburg and
Sexl [29] and later studied by Dray and ’t Hooft in the context of an ultra-boosted particle,
e.g. one moving along the horizon of a black hole [30].

Here, we consider a shockwave metric in retarded spherical coordinates Xµ = (u, r, xA),
where u = t − r and xA = (z, z̄) are the stereographic coordinates on the sphere. This
describes an outward propagating spherical shock, and is given by

ds2 = −du2 − 2du dr + 2r2γzz̄dz dz̄ + α(z, z̄)δ(u − u0)︸ ︷︷ ︸
huu

du2 , (2.1)

4Impulsive waves are different from shockwaves in that they do not require a non-vanishing energy-
momentum source, but the terminologies are often used interchangeably. See also [38, 39].
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where γzz̄ = 2
(1+zz̄)2 is the metric on the unit sphere, and DA is the covariant derivative

with respect to the transverse space metric γAB . Note that α(z, z̄) has dimensions of length.
We will throughout this paper adopt the convention where lowercase Greek letters µ, ν, . . .

are spacetime indices, and uppercase Latin letters A, B, . . . are transverse spatial indices.
This metric describes a gravitational shockwave exiting future null infinity I

+ at retarded
time u = u0.

To ensure that the metric (2.1) obeys the Einstein equations, the function α(z, z̄) is
necessarily constrained. The only non-vanishing components of the Ricci tensor are

Ruu = − 1
2r2□huu − 1

r
∂uhuu ,

Rzz̄ = Rz̄z = γzz̄huu ,

(2.2)

where □ ≡ DADA is the transverse Laplacian, and the Ricci scalar is

R = 2huu

r2 . (2.3)

Therefore, the Einstein equations, given by

Rµν − 1
2gµνR = 8πGN T M

µν , (2.4)

have only two nonzero components, which are(
− 1

2r2□ − 1
r

∂u + 1
r2

)
huu − h2

uu

r2 = 8πGN T M
uu ,

huu

r2 = 8πGN T M
ur .

(2.5)

Writing

T M
µν =

∞∑
n=2

T M(n)
µν

rn , (2.6)

and substituting huu from (2.1) into (2.5), we conclude that the metric (2.1) is a solution
to the Einstein equations with a matter source

(□ − 2) α(z, z̄)δ(u − u0) + O(δ′, δ2) = −16πGN T M(2)
uu ,

α(z, z̄)δ(u − u0) = 8πGN T M(2)
ur ,

(2.7)

where O(δ′, δ2) indicates terms that are proportional to δ(u − u0)2 and δ′(u − u0). We will be
mainly interested in linearized solutions, in which case quadratic terms in the delta functions
can be ignored.5 As for δ′(u − u0), we argue that such terms integrate to zero on any definite
u interval,6 and hence will not contribute to the total energy given by the u integral of

5Alternatively, the quadratic terms correspond to a gravitational contribution to the stress tensor and may
be accounted for by redefining the right-hand side of (2.7).

6There is a subtlety if the integration endpoint involves exactly u = u0, but this is a set of measure zero
and we will ignore it.

– 5 –



J
H
E
P
0
1
(
2
0
2
4
)
0
0
6

T M
uu . It is straightforward to show that ∇µT M

µν = 0, so the stress tensor is conserved. In
section 3.2 we will introduce a closely related shockwave solution to the linearized Einstein
equations with vanishing T M(2)

ur .
We now briefly discuss how to obtain the familiar Aichelburg-Sexl planar shock studied

in [29] from the metric (2.1). To this end, we want to zoom into a particular patch of
the celestial sphere by taking z, z̄ ≪ 1 (in this region γzz̄ → 2). If we then introduce the
lightcone coordinates (x−, x+) and transverse coordinate (x1, x2), related to the retarded
coordinates in (2.1) via

x− = u , x+ = u + 2r , x1 = r(z + z̄) , x2 = −ir(z − z̄) , (2.8)

the metric becomes

ds2 = −dx−dx+ + dx2
1 + dx2

2 + α

(
x1
r

,
x2
r

)
δ(x− − x−

0 )(dx−)2 + O(z, z̄) , (2.9)

where O(z, z̄) indicates terms that are higher order in z, z̄ and r = 1
2(x+ − x−). We

recognize (2.9) as the Aichelburg-Sexl planar shock, which satisfies the Einstein equation

□⊥α

(
x1
r

,
x2
r

)
δ(x− − x−

0 ) = −16πGN T M
−− , (2.10)

where □⊥ is the transverse Laplacian in the x1, x2 coordinates.
We conclude this subsection with a brief review of the ’t Hooft commutation relations

proposed to capture quantum dynamics of particles scattering near black hole horizons. We
will largely follow the presentation given in section 11 of [10]. Recall the lightcone coordinates
(x−, x+), which are related to the retarded Bondi coordinates (u, r) in (2.1) by (2.8). In
these coordinates, the shockwave metric (2.1) takes the form

ds2 = −dx−dx+ + (x+ − x−)2

2 γzz̄dzdz̄ + α(z, z̄)δ(x− − x−
0 )(dx−)2 , (2.11)

which falls into the class of metrics analyzed in [30]. However, whereas the analysis in [30] was
done in a Schwarzschild black hole background, we emphasize that no black hole is present in
our setup. We expect our analysis to apply to any sufficiently large causal diamonds with
metrics that admit a large r expansion of the form (2.26) near the boundary [25, 26, 36, 37, 40–
44]. Note that

x± = −1
2x∓ , p± = −1

2p∓ . (2.12)

Substituting (2.11) into the Einstein equations, we find the −− component to be7

□α(z, z̄)δ(x− − x−
0 ) = −16πGN T

M(2)
−− . (2.13)

7We have dropped terms ∼ δ
2
, δ

′ as in (2.7). Notice also that (2.13) superficially resembles the planar
Einstein equations (2.10), even though we are still in spherical coordinates. Indeed, comparing with (2.7), we
see that the shift to the Laplacian drops out when we write the Einstein equations in lightcone coordinates.
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To solve for α, let us define the Green’s function for the transverse Laplacian8

□G(z − z′) = 2γzz̄δ(2)(z − z′) =⇒ G(z − z′) = 1
2π

log |z − z′|2 . (2.14)

It is clear then from (2.13) that a generic matter distribution in the transverse directions
with stress tensor

T
M(2)
−− (x−, z, z̄) = p−(z, z̄)δ(x− − x−

0 ) (2.15)

leads to a shockwave profile

α(z, z̄) = −8πGN

∫
d2z′ γz

′
z̄

′ G(z − z′)p−(z′, z̄′)

= 4πGN

∫
d2z′ γz

′
z̄

′ G(z − z′)p+(z′, z̄′) ,
(2.16)

where we used (2.12) to switch p− to p+. For a single source particle of constant outgoing
momentum p−, we have p−(z, z̄) = p−δ(2)(z − z0).

In the presence of the shock (2.16), a probe particle propagating along the future horizon
(or equivalently along x−) will acquire a time delay δx+ for x− > x−

0 :

x+
(
x− > x−

0 , z, z̄
)

= x+
(
x− < x−

0 , z, z̄
)

+ δx+ . (2.17)

This setup is illustrated in figure 1. The magnitude of the time delay is determined by the
wave equation in the shockwave background (2.11), and is given by [11]

δx+ = α(z, z̄) . (2.18)

The propagation of this particle in the shockwave background is therefore characterized
by the phase shift

⟨out|in⟩ ∝ exp
{

i

∫
d2z γzz̄ δx+(z, z̄)p+(z, z̄)

}
= exp

{
−2πiGN

∫
d2z γzz̄

∫
d2z′ γz

′
z̄

′ p+(z′, z̄′)G(z − z′)p−(z, z̄)
}

,

(2.19)

where in the second line we substituted δx+ in terms of p+(z, z̄) according to (2.16) and (2.18).
Thus far, all the equations we derived above follow from the classical equations of motion.

By (2.18), we have a relation between δx+ and p+, and there is no classical shift of the
shockwave position x−. However, in the special case where the shockwave is sourced by
a point particle, (2.19) may be regarded as the high-energy limit of a 2-to-2 scattering
amplitude [11, 45–47]. As such, it is clear that one would arrive at the same result (2.19)
by changing reference frame, or equivalently, by exchanging the roles of the source and
probe particles. The metric in this case takes the same form as in (2.11) with x+ ↔ x−,
namely a shock located at x+ = x+

0 , and the propagating particle in this new background
will acquire a shift

δx−(z) = 4πGN

∫
d2z′ γz

′
z̄

′ G(z − z′)p−(z′) , (2.20)

paralleling (2.16).
8We normalized the Green’s function so that in the planar limit □G(z − z

′) → δ
(2)(z − z

′) since γzz̄ → 2.
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This motivated ’t Hooft to promote p±, δx± to operators P ±, X± and postulate the
commutation relations

[P ±(z),X±(z′)] = −iγzz̄δ(2)(z−z′) , [P ±(z),P ±(z′)] = [X±(z),X±(z′)] = 0 , (2.21)

where we have suppressed the dependence of all operators on z̄ for clarity. These commutation
relations can then be used to recover the phase shift (2.19), which we review in appendix A.
Remarkably, we will later show in section 3.3 that P− = −1

2P + is directly related to the
leading gravitational memory operator [8, 48, 49], while X− = −2X+ will be identified with
the Goldstone operator involved in discussions of infrared divergences [50–55].

2.2 Asymptotically flat metrics and gravitational memory

In this subsection, we review the standard framework used to describe gravitational radiation
from isolated sources in spacetime [8]. We will assume that observers are located at a
relative distance much larger than the extent of the sources, where spacetime is approximated
by Minkowski space with metric g(0)

µν . Gravitational radiation is characterized by linear
perturbations hµν around this flat background, so that

gµν = g(0)
µν + hµν . (2.22)

As appropriate for the propagation of outgoing gravitational waves, we will as in the shockwave
case adopt retarded spherical coordinates Xµ = (u, r, xA). A convenient gauge that the
metric can be expressed in is the Bondi gauge [56, 57], which is defined to obey the condition

gµν∂µu ∂νu = gµν∂µu ∂νxA = 0 =⇒ grr = grA = 0 , (2.23)

as well as the determinant condition [58]

∂r det
(

gAB

r2

)
= 0 . (2.24)

Physically these correspond to requiring the normal vectors ∂µu to be null and the angular
coordinates to be constant along null rays, or equivalently that gravitational waves propagate
along the radial direction and have spherical wavefronts.

At large r, the perturbations hµν admit expansions of the form9

hµν =
∞∑

n=−1

h(n)
µν

rn , (2.25)

with the fall-offs of each component determined by the choice of boundary conditions. Solving
the asymptotic radial Einstein equations subject to the standard fall-offs proposed in [56, 57]
(for a review see [9] and references therein) leads to the metric for an asymptotically flat
spacetime near future null infinity I

+

ds2 = −du2 − 2du dr + 2r2γzz̄dz dz̄

+ 2mB(u, z, z̄)
r

du2 +
(
rCzz(u, z, z̄)dz2 + c.c.

)
+

(
DzCzz(u, z, z̄)du dz + c.c.

)
+ · · · .

(2.26)
9This expansion may include additional logarithmic terms [59–61], which will not play a role here.
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Here mB is the Bondi mass aspect (note that, despite its label as a mass, it has dimensions
of length, effectively having absorbed a factor of GN ), and · · · denote subleading corrections
in the large r expansion. The gravitational radiation is characterized by the news tensor,
related to the shear Czz by

Nzz(u, z, z̄) = ∂uCzz(u, z, z̄) . (2.27)

Therefore, spacetimes that can be written in the form of (2.26) are often referred to as
radiative spacetimes, and if Nzz = 0 then the metric describes a vacuum spacetime. Note
from (2.27) that Nzz = 0 does not imply the vanishing of Czz. In particular, imposing
Nzz = mB = 0, we obtain from the uz component of the vacuum Einstein equations that

Cvac
zz = −2D2

zC(z, z̄) . (2.28)

As such, vacuum spacetimes are parametrized by an arbitrary function C(z, z̄) on the sphere.
This variable is known as the Goldstone mode canonically conjugate to the zero mode of the
news tensor or the soft graviton mode [9], as we will review below. Moreover, these different
vacua are related by large diffeomorphisms called supertranslations.

Further imposing the constraint equations, broadly defined to be all the remaining
Einstein equations, order by order in a large r expansion provides relations between mB and
Czz, and also among further subleading metric components. For example, at O(r−2) the
uu component of the Einstein equations takes the form

∂umB = 1
4

(
D2

zN zz + D2
z̄N z̄z̄

)
− Tuu , (2.29)

where the stress tensor Tuu (by convention dimensionless here) is defined to be

Tuu ≡ 1
4NzzN zz + 4πGN T M(2)

uu , (2.30)

with T M(2)
uu being the coefficient of the r−2 component of the matter stress tensor defined

in (2.6). Consider now the ℓ = 0, 1 spherical harmonic modes of Nzz. Recalling Yℓ=0 ∝ 1
and Yℓ=1 ∝

(
z̄

1+zz̄ , 1−zz̄
1+zz̄ , z

1+zz̄

)
, it is easy to see that

D2
AYℓ=0,1 = 0 . (2.31)

Thus, the linear terms in N zz and N z̄z̄ drop out for the ℓ = 0, 1 modes, which means ∂umB

cannot generically vanish unless T M
uu fails to satisfy positive energy conditions in the ℓ = 0, 1

modes. Nevertheless, we will henceforth assume this, and leave the inclusion of a nontrivial
Bondi mass for future work.

The asymptotic symmetries of asymptotically flat spacetimes are the transformations
that preserve the form of the metric (2.26) and are known as the BMS symmetries [56, 57].
A particular subset of BMS symmetries are the supertranslations, which are parametrized by
a function f(z, z̄) on the celestial sphere and are generated by the vector fields

ξ = f∂u + DzDzf∂r − 1
r

DAf∂A . (2.32)
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Under a diffeomorphism parametrized by vector ξ, the coordinates and metric transform
according to

δxµ = −ξµ , δgµν = Lξgµν = 2∇(µξν) , (2.33)

where we are using ∇µ as opposed to DA for spacetime covariant derivatives, and symmetrizing
indices by the convention v(awb) = 1

2(vawb + vbwa). Explicitly, under a supertranslation
the coordinates shift via

u → u − f , r → r − DzDzf , xA → xA + 1
r

DAf , (2.34)

and the shear Czz and news Nzz transform as [9, 62]

LξCzz = fNzz − 2D2
zf , LξNzz = f∂uNzz . (2.35)

The first equation in (2.35) implies that supertranslations act non-trivially on vacua
parametrized by (2.28), namely

C(z, z̄) → C(z, z̄) + f(z, z̄) . (2.36)

Gravitational flux characterized by Nzz ̸= 0 for u ∈ [ui, uf ] generally induces transitions
between the early and late vacua at u < ui and u > uf . In particular, because this is no longer
a vacuum spacetime, we do not expect (2.28) to hold, and the shear Czz is now a function
of u. A sharp probe of this is the gravitational memory effect [1–8], where gravitational
radiation induces a net relative transverse displacement in the trajectories of nearby detectors
or probe particles. This displacement is directly related to the change in the shear between
times ui and uf before and after the gravitational pulse, given by

∆Czz ≡ Czz(uf = ∞, z, z̄) − Czz(ui = −∞, z, z̄) =
∫ ∞

−∞
du Nzz(u, z, z̄) ≡ D2

zN(z, z̄) ,

(2.37)
where we can view the last equality as the definition of the field N(z, z̄). Note that N(z, z̄)
is directly related to the zero mode of the news and can be shown to correspond to the
leading soft graviton mode upon quantization [28]. We can determine N(z, z̄) by integrating
the constraint (2.29), so that

(γzz̄)2

4
(
D2

zD2
z̄ + D2

z̄D2
z

)
N(z, z̄) = ∆mB +

∫ ∞

−∞
du Tuu . (2.38)

For the special case of a delta function localized stress tensor Tuu ∝ δ(u−u0) and mB = 0, we
have Nzz ∝ δ(u − u0) by (2.29), which in turn implies by applying (2.37) over an integration
from −∞ to u that

Czz(u, z, z̄) = D2
zN(z, z̄)Θ(u − u0) − 2D2

zC(z, z̄) , (2.39)

where Θ(x) is the unit step function. Here N(z, z̄) is determined in terms of the flux by (2.38),
and C(z, z̄) can be viewed as an initial condition, related to the vacuum Cvac

zz by (2.28). We
emphasize that, according to (2.36), supertranslations induce shifts in C(z, z̄) while leaving
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N(z, z̄) invariant. On the other hand, the vacuum transition between early and late times
induced by flux is itself parametrized by a supertranslation in the sense that

Czz(uf , z, z̄) = Czz(ui, z, z̄) + D2
zN(z, z̄) . (2.40)

Consequently, one can regard supertranslations as relating physically inequivalent config-
urations [8].

Solutions analogous to (2.39) in QED were discussed in [63]. Choosing C(z, z̄) and
N(z, z̄) such that they diagonalize boosts towards a point (z0, z̄0) on the celestial sphere
yields solutions related to the conformally soft wavefunctions in celestial holography [51, 64, 65].
As argued in [28], the phase space of gravity in asymptotically flat spacetimes has to be
augmented by N(z, z̄) and C(z, z̄). Upon quantization, the former correspond to insertions of
soft gravitons while the latter are key constituents of the gravitational dressings [52–55]. As
we review below, N(z, z̄) and C(z, z̄) are also canonically conjugate to one another [28, 51].
Consequently, the role of the gravitational dressings is to supply the asymptotic states with
the amount of soft charge (related to soft gravitons) necessary to ensure that the net large
gauge charge is conserved in any scattering process [50, 63].

The commutator between the fields C(z, z̄) and N(z, z̄) was first worked out in [28]
by starting from the canonical commutation relations in gravity given by (also see ap-
pendix C) [66, 67]{

Cz̄z̄(u, z, z̄), Nww(u′, w, w̄)
}

= 16πGN γzz̄δ(u − u′)δ(2)(z − w) , (2.41)

and then imposing suitable boundary conditions. Note that from (2.28) and (2.39), it is
clear that

lim
u→−∞

Czz(u, z, z̄) = −2D2
zC(z, z̄) = Cvac

zz (z, z̄) . (2.42)

As a result (quantum commutators [·, ·] are identified with the Dirac brackets i{·, ·}),

[N(w, w̄), C(z, z̄)] = 8iGN S log |z − w|2 , (2.43)

where S = (z−w)(z̄−w̄)
(1+zz̄)(1+ww̄) and we used the identities

D2
w

(
S log |z − w|2

)
= S

(z − w)2 ,

D2
z̄D2

w

(
S log |z − w|2

)
= πγzz̄δ2(z − w) .

(2.44)

In the planar limit, the sphere is flattened to a plane (γzz̄ → 2) and S → |z − w|2. Con-
sequently, (2.43) simply becomes

[N(w, w̄), C(z, z̄)] = 8iGN |z − w|2 log |z − w|2 . (2.45)

2.3 Relaxing the boundary conditions

In this short subsection, we introduce a class of metrics obeying (2.23) and (2.24), but with huu

allowed to be finite in the large r limit. Notice that this class of metrics contains the shockwave
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metric (2.1), and it is more general than metrics obeying the fall-off conditions (2.26), where
huu ∼ O(r−1). These generalized boundary conditions, as well as a partial gauge fixing
where (2.24) is not imposed and (2.25) is allowed to include logarithmic corrections, were
extensively studied in [61].

Metrics obeying (2.23) take the form

ds2 = e2β V

r
du2 − 2e2βdudr + gAB

(
dxA − UAdu

) (
dxB − UBdu

)
, (2.46)

where in particular V , UA and β are allowed to obey weaker fall-offs at large r than those
specified by (2.26) in a way consistent with the Einstein equations. Before imposing the
determinant condition (2.24), such metrics enjoy an enhanced diffeomorphism invariance
parametrized by

ξ = F∂u + ξr∂r − 1
r

DAF∂A + · · · , (2.47)

where F = F (u, z, z̄) and ξr is an arbitrary function of (u, r, z, z̄), and · · · indicate subleading
terms in the large r expansion.

Imposing the determinant condition (2.24) fixes ξr in terms of F , namely

Lξgzz̄ = 0 =⇒ r2Dzξz̄ + r2Dz̄ξz + 2rγzz̄ξr = 0

=⇒ ξr = −r

2DAξA = 1
2□F .

(2.48)

Substituting this back into (2.47), we see that a generic diffeomorphism preserving (2.46)
is parametrized by a single function F , given by

ξ = F∂u + 1
2□F∂r − 1

r
DAF∂A + · · · . (2.49)

Notice that we recover (2.34), but with f promoted to a function F that may depend on
u, due to not having demanded the vanishing of O(r0) component of huu. In this case, the
vector fields (2.49) have non-vanishing divergence ∇ · ξ = ∂uF ̸= 0, which implies that the
associated diffeomorphisms will in general change the trace h = hµ

µ. The diffeomorphism
considered in the next section falls into this class.10

3 Relating shockwaves to gravitational memory

In this section we establish an equivalence on the future null horizon away from u = u0
between a shockwave metric closely related to (2.1) and Bondi metrics of the form (2.26)
with Czz given by (2.39). In particular, we first demonstrate in section 3.1 that there exists a
diffeomorphism parametrized by (2.49) that relates the shockwave metric (2.1) to a metric
that resembles (2.26) up to contact terms. This diffeomorphism provides a relation between
N(z, z̄) in (2.39) and the shock profile α(z, z̄). Both metrics are shown in appendix C to have
vanishing symplectic form, suggesting the diffemorphism is “small.” In section 3.2, the same

10Alternatively, one can demand the trace to be preserved, and this forces one to relax the determinant
condition (2.48), which was the route taken in [61].
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diffeomorphism is shown to relate another shockwave metric to the Bondi metric (2.26). Both
metrics now have non-vanishing symplectic forms that agree, subject to the identification
between the shockwave and memory variables α and N . In section 3.3 we show that the
canonical commutation relation between the Goldstone and soft graviton modes C and N

implies the ’t Hooft commutation relation (2.21). This extends the analysis of ’t Hooft near
a Schwarzschild horizon to null horizons at large r.

3.1 The diffeomorphism

In this subsection, we show that (2.1) is diffeomorphic to a metric that satisfies the gauge
conditions (2.23) and (2.24) and where the shear takes the form (2.39). Recall that under
a diffeomorphism parametrized by vector field ξ, the metric transforms linearly via (2.33).
Requiring that this transformation eliminates the huu component of the metric (2.1), we find

0 = huu + 2∇uξu =⇒ ∂uξu = −1
2α(z, z̄)δ(u − u0)

=⇒ ξu = −1
2α(z, z̄)Θ(u − u0) + g(z, z̄) ,

(3.1)

where g(z, z̄) is an arbitrary function on the sphere. It is easy to see that

ξu = −ξu − ξr , ξr = −ξu , ξz = r2γzz̄ξz̄ . (3.2)

Together with the requirement (2.49) that Bondi gauge is preserved under the diffeomorphism,
F (u, z, z̄) is determined in terms of the shock profile α(z, z̄) and g(z, z̄) to be

− ξu − ξr = −1
2α(z, z̄)Θ(u − u0) + g(z, z̄)

=⇒ (□ + 2)F (u, z, z̄) = α(z, z̄)Θ(u − u0) − 2g(z, z̄) .
(3.3)

We show in appendix B that diffeomorphisms parametrized by (2.49)

ξ = F ∂u + 1
2□F ∂r − 1

r
DAF ∂A , (3.4)

with F (u, z, z̄) defined by (3.3), transform the shockwave metric (2.1) to a form closely related
to the Bondi metric introduced in (2.26), namely

ds2 = −du2 − 2 du dr + 2r2γzz̄ dz dz̄

+
(
rCzz(u, z, z̄) dz2 + DzCzz(u, z, z̄) du dz + c.c.

)
+ N(z, z̄)δ(u − u0) du dr +

(
r∂zN(z, z̄)δ(u − u0) du dz + c.c.

)
.

(3.5)

Here Czz takes the form (2.39), and from (B.9) we see that N(z, z̄) is determined by the
shockwave background to be

−1
2(□ + 2)N(z, z̄) = α(z, z̄) , (3.6)

and C(z, z̄) is related to the integration constant g(z, z̄) of the vector field in (3.1) via

−1
2(□ + 2)C(z, z̄) = g(z, z̄) . (3.7)
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Notice that (3.5) differs from the usual Bondi metric (2.26) by terms proportional to delta
functions, given in the last line of (3.5). As described in section 2.3, (3.4) transforms the
shockwave metric (2.1), which is traceless, to one with a nonzero trace, specifically hur ̸= 0.
The O(r) component of huz is then necessarily nonzero to ensure that the Einstein equations
are obeyed.

We conclude this subsection with a comment on the physical interpretation of diffeo-
morphisms parametrized by (3.4). Both the time-dependent and the time-independent
components of the vector fields preserve the relaxed Bondi boundary conditions where
huu = O(1). The time-independent component preserves the asymptotically flat large-r
fall-offs in (2.26) while modifying the boundary value of the vacuum shear (2.28), and is
considered a large gauge transformation. As such, for g ̸= 0, (2.1) and (3.5) describe different
theories. One could arrive at (3.5) without performing a large gauge transformation (3.7) by
considering a shockwave metric in an arbitrary Minkowski vacuum. This can be achieved
by turning on Cvac

zz in (2.1), as we shall see in section 3.2.
On the other hand, the time-dependent component violates the asymptotically flat

boundary conditions at large r and is therefore not typically included in the asymptotic
symmetry group of asymptotically flat spacetimes. Analogous gauge transformations are
known to trade Coulombic for soft/memory degrees of freedom in gauge theories [68–70],
where they were classified as residual gauge transformations. Indeed, we show in appendix C
that the symplectic form of (3.5) vanishes subject to (3.6), and hence remains invariant under
such time-dependent diffeomorphisms. We leave a complete understanding of time-dependent
diffeomorphisms and their associated charges (if any) to future work.

3.2 Modifying the shockwave metric

The analysis in the previous section allows us to easily connect the standard asymptotically
flat memory metric (2.26) with mB = 0 to a shockwave metric closely related to (2.1). This
can be achieved by subtracting the delta function contact terms from (3.5), which leads us
to consider a shockwave metric of the form

ds2 = −du2 − 2 du dr + 2r2γzz̄ dz dz̄ + α(z, z̄)δ(u − u0)du2

− N(z, z̄)δ(u − u0) du dr −
(
r∂zN(z, z̄)δ(u − u0) du dz + c.c.

)
+

(
rCvac

zz (z, z̄) dz2 + DzCvac
zz (z, z̄) du dz + c.c.

)
,

(3.8)

where Cvac
zz = −2D2

zC is defined in (2.28). The first line is precisely the spherical shockwave
metric (2.1). Note that (3.8) differs from (2.1) both by the choice of Minkowski vacuum and
by having a non-vanishing trace hur ̸= 0. Allowing the trace to be non-vanishing implies
the Einstein’s equations are obeyed without a ur-component of the matter stress tensor
(see (3.10) below). The trace will be removed by the diffeomorphism generated by (3.4)
with F given by (3.3).

Indeed, because the diffeomorphism generated by the vector field ξ (3.4) is linear, the
metric we obtain after applying the (linearized) diffeomorphism parametrized by ξ generating
a small gauge transformation is precisely

ds2 = −du2 − 2 du dr + 2r2γzz̄ dz dz̄

+
(
rCzz(u, z, z̄) dz2 + DzCzz(u, z, z̄) du dz + c.c.

)
,

(3.9)
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where Czz is defined in (2.39), and we used the identifications (3.6) and (3.7) with g(z, z̄) = 0
to ensure that ξ is generating a small gauge transformation. We refer to this metric as a
memory metric, which are Bondi metrics with nonzero memory mode N(z, z̄). It is clear this
metric is exactly of the form (2.26), which means the commutation relation (2.43) holds.

Evaluating Einstein’s equations for (3.8) and using (3.6), the only nontrivial equations are

□α(z, z̄)δ(u − u0) + O(δ′) = −16πGN T M(2)
uu , T M(2)

ur = 0 . (3.10)

Thus we see that as in ’t Hooft’s original planar shockwave analysis, the ur-component
of Einstein’s equation vanishes. Furthermore, integrating the uu-component of Einstein’s
equation yields

P−(z, z̄) ≡
∫ u

−∞
du′ T M(2)

uu (u′, z, z̄) = − 1
16πGN

□α(z, z̄) , (3.11)

for u > u0. This is precisely the momentum operator defined in ’t Hooft’s original analysis,
given in (A.3).

3.3 From soft to ’t Hooft commutation relations

In this subsection, we demonstrate that (2.21) is in fact implied by the canonical commutation
relations (2.43) obeyed by C(z, z̄) and N(z, z̄). Since the metric (3.8) is diffeomorphic to the
Bondi metric (2.26), the canonical commutation relations (2.43) remain unchanged.

First, note that by substituting (3.6) into (3.11), we are able to immediately express
P− in terms of N(z, z̄) for x− > x−

0 , namely

P−(z, z̄) = 1
32πGN

□(□ + 2)N(z, z̄) . (3.12)

This result is not as surprising as it may seem. Under our diffeomorphism, the stress
tensor T M

−− remains the same to linear order, while the Coulombic degrees of freedom of the
shockwave metric are effectively shifted into radiative ones, as one can see by comparing the
−− components of the Einstein equations (2.13) and (2.38). As such, the relation between
P− and N in (3.12) could have been directly deduced from the equations of motion before
and after the diffeomorphism. A completely analogous relation between the Coulombic and
memory degrees of freedom in the high-energy limit of QCD was pointed out in [71].

To identify the shockwave variable associated to the Goldstone C(z, z̄), note that dif-
feomorphisms with non-vanishing g(z, z̄) in (3.7), and hence C(z, z̄), change the boundary
vacuum configuration. The metric (3.8) generalizes the shockwave metrics considered by
’t Hooft by allowing for Cvac

zz ̸= 0. However, one can revert to the configuration originally
considered by ’t Hooft with Cvac

zz = 0 by a supertranslation (2.47) with F = C(z, z̄) acting on
coordinates while keeping the metric fixed.11 In particular, recalling from (2.8) that x− = u,
by (2.34) x− transforms by the simple shift

x− → x− − C . (3.13)
11Note that the metric is left invariant by both shifts of coordinates and the metric according to (2.33).
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Promoting this field-dependent coordinate shift to an operator, we are led to write δx− = X−,
suggesting the identification of the ’t Hooft variable X− with the Goldstone mode C via

X−(z, z̄) = −C(z, z̄) , (3.14)

up to a field-independent variable. Note that the relative sign in this identification is consistent
with the action of supertranslations (2.34) and (2.36) on X− and C, respectively.

Finally, since N is proportional to the transverse momentum mode P− via (3.12), we
see that the commutator between C and N (2.43) implies a nontrivial commutation relation
between P− and X−, which for x− > x−

0 is given by

[P−(z, z̄), X−(z′, z̄′)] = − 1
32πGN

□z(□z + 2)
[
N(z, z̄), C(z′, z̄′)

]
= − i

4π
□z(□z + 2)

(
S log |z − z′|2

)
= −iγzz̄δ(2)(z − z′) .

(3.15)

This exactly reproduces the ’t Hooft commutation relation (2.21). We could have obtained
the ’t Hooft commutation relation involving P+ and X+ had we begun with an ingoing
shockwave localized at x+ = x+

0 rather than an outgoing shockwave.
We can recast the commutation relation (3.15) into a more symmetric form. Recalling

the classical equations of motion (2.16) and (2.18) and promoting them to operator equations,
we have

X+(z, z̄) = 4πGN

∫
d2z′ γz

′
z̄

′ G(z − z′)P +(z′, z̄′)

= −8πGN

∫
d2z′ γz

′
z̄

′ G(z − z′)P−(z′, z̄′) ,
(3.16)

where G(z − z′) is the Green’s function for the transverse Laplacian given in (2.14). Sub-
stituting this relation between X+ and P− in (3.15), we obtain

[X+(z, z̄), X−(z′, z̄′)] = 8πiGN G(z − z′) . (3.17)

This reflects an uncertainty in the X−, X+ coordinates of the shockwave and probe respectively
in the quantum theory.

4 Discussion

In this paper, we established a relation between the time delay acquired by a particle
propagating in a shockwave background and the gravitational memory effect. This implies
that the memory mode, or equivalently the leading soft graviton mode, is related to the
shockwave momentum introduced by ’t Hooft in the context of scattering near a black hole
horizon. Moreover, the canonically conjugate operator he postulated to correspond to the
location of the black hole horizon may be identified with the Goldstone mode. Therefore, we
are able to reinterpret the ’t Hooft commutation relations as a simple consequence of the
algebra of boundary operators derived from the covariant phase space formalism applied to
asymptotically flat spacetimes. In particular, no black hole horizon needed to be present in
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our analysis. This was foreseen in [25, 26] through the application of the ’t Hooft commutation
relations to a generic horizon of a causal diamond in flat space.

It is interesting to interpret this result from the perspective of soft gravitons. It is
well-known that the memory effect can be thought of as a vacuum transition [8], and this is
associated with the production of soft gravitons. Here we see that this effect is directly related
to the classical time delay of a particle crossing a shock, which is constrained by causality to be
positive [72, 73]. By (2.16), (2.18), and (3.12), this should translate directly into a constraint
on the memory effect (see [74] for a statement along these lines), and it would be interesting
to further explore the implications of this relation. Moreover, the uncertainty in the location
of the shockwave is tied to the Goldstone mode canonically conjugate to the soft graviton.
Goldstone modes have previously been shown to appear in gravitational dressings [50, 52–55],
suggesting a relation between shocks and coherent clouds of gravitons. However, this relation
remains quite mysterious to us, and we hope to return to it in future work.

Throughout this paper we restricted our analysis to the semiclassical regime: gravitational
memory is a classical effect and we are only implementing canonical quantization. However,
one can promote the stress tensor to a quantum operator. This implies that the matter
stress tensor can have non-zero fluctuations even in the vacuum where the expectation value
vanishes. That is, the two-point function of T M

µν is nonzero while the one-point vanishes,
and this may correspond to nontrivial two-point functions involving the soft graviton and
Goldstone modes N and C, respectively [49, 52, 75, 76].

Our results suggest that we may be able to probe quantum gravity by measuring the
memory effect sourced by quantum fluctuations of spacetime rather than classical gravitational
waves. This is the essence of the proposal to detect observable effects in quantum gravity in [25–
27, 36, 37, 44, 77, 78]. Of course, to have any observable effects from the quantum metric
fluctuations, it is not enough for a single shockwave to be sourced by quantum fluctuations.
Rather, the memory effect must accumulate sufficiently, over multiple quantum shocks, in
order to be observable. Furthermore, to truly tie our results to an observational signature,
we need to connect the time delay in the shockwave geometry and transverse displacement
associated with the gravitational memory effect with a gauge invariant observable as measured
by an interferometer. An idea for how this could happen was at the heart of the proposals
in [25, 27]. Nevertheless, by treating shockwaves as a gravitational memory effect, we open
up additional directions to understand the infrared behavior of shockwave geometries, and
we leave this study for future work.
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A The ’t Hooft black hole S-matrix

In this appendix, we review ’t Hooft’s argument for obtaining the phase shift (2.19) given
the commutation relations (2.21). For notational simplicity we label all fields by just z

instead of z, z̄.
One can transition between eigenstates |P +⟩, |X+⟩ of canonically conjugate variables

P + and X+ via the Fourier transform

|{X+(z)}⟩ = N
∫

DP + exp
{

−i

∫
d2z′γz

′
z̄

′P +(z′)X+(z′)
}

|{P +(z)}⟩ , (A.1)

where {X+(z)} is shorthand for the formal product of |X+(z)⟩ for all z (and likewise for
{P +(z)}), N a normalization constant, and we have normalized the states |{P +(z)}⟩ so that

⟨{P +(z)}|{P ′+(z)}⟩ = N ′ ∏
z

δ
(
P +(z) − P ′+(z)

)
, (A.2)

where N ′ is another normalization constant. By (2.15) and (2.16), the momentum operator
is related to the stress tensor via

P−(z) ≡
∫ x

−

−∞
dy− T

M(2)
−− (y−, z) = − 1

16πGN
□α(z) , (A.3)

for x− > x−
0 . Therefore (A.1) and (A.2) imply that for some different normalization con-

stant N ′′

⟨{X+(z)}|{P +(z)}⟩ = N ′′ exp
{

i

∫
d2z′ γz

′
z̄

′P +(z′)X+(z′)
}

. (A.4)

Finally, comparing with (2.19), we see that we recover the phase shift (2.19) if we identify
|in⟩ ∼ |{P +(z)}⟩, |out⟩ ∼ |{X+(z)}⟩, and

X+(z) = −2πGN

∫
d2z′ γz

′
z̄

′G(z − z′)P −(z′)

=⇒ X−(z) = 4πGN

∫
d2z′ γz

′
z̄

′G(z − z′)P −(z′) ,
(A.5)

which corresponds precisely to (2.20). This is the time delay acquired by the source when
propagating in the background of the probe. As such the commutation relations (2.21)
capture the quantum uncertainty in the positions of the source and probe introduced by
their scattering [10].

B Diffeomorphism transforming the shockwave metric

In this appendix, we apply the diffeomorphism generated by ξ from (2.49) with F given
in (3.3) to the shockwave metric (2.1), and show that we recover the metric (3.5). For
convenience, we record here that the vector generating the diffeomorphism is

ξ = F ∂u + 1
2□F ∂r − 1

r
DAF ∂A ,

(□ + 2)F (u, z, z̄) = α(z, z̄)Θ(u − u0) − 2g(z, z̄) .
(B.1)
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Using (3.2), we get

ξu = −1
2(□ + 2)F , ξr = −F , ξz = −r∂zF . (B.2)

Recall we chose F to obey (B.1) such that we eliminate the huu component in the shockwave
metric (2.1). We now work out how the rest of the components transform. Recalling

δξgµν = ∇µξν + ∇νξµ , (B.3)

and that the nonzero Christofel symbols of the unperturbed metric are

Γz
rz = 1

r
, Γz

zz = − 2z̄

1 + zz̄
, Γu

zz̄ = rγzz̄ , Γr
zz̄ = −rγzz̄ , (B.4)

we get

δξgur = −∂uF ,

δξguz = −r∂u∂zF − 1
2∂z(□ + 2)F ,

δξgrz = 0 ,

δξgzz = −2rD2
zF ,

δξgzz̄ = 0 .

(B.5)

In particular, after performing the diffeomorphism, we have

Þhzz ≡ rCzz = δgzz = −2rD2
zF =⇒ Czz = −2D2

zF . (B.6)

Comparing with (2.39) , which is

Czz(u, z, z̄) = D2
zN(z, z̄)Θ(u − u0) − 2D2

zC(z, z̄) , (B.7)

we can identify

F (u, z, z̄) = −1
2N(z, z̄)Θ(u − u0) + C(z, z̄) . (B.8)

Acting on both sides of this expression with □ + 2, we can derive from (B.1) that

α(z, z̄) = −1
2(□ + 2)N(z, z̄) , g(z, z̄) = −1

2(□ + 2)C(z, z̄) . (B.9)

Finally, we observe that we can rewrite (B.5) in terms of C and N using (B.8), such that

δξgur = 1
2N(z, z̄)δ(u − u0) ,

δξguz = r

2∂zN(z, z̄)δ(u − u0) + 1
4∂z(□ + 2)N(z, z̄)Θ(u − u0) − 1

2∂z(□ + 2)C(z, z̄)

= r

2∂zN(z, z̄)δ(u − u0) + 1
2DzCzz(u, z, z̄) ,

δξgrz = 0 ,

δξgzz = rD2
z

(
N(z, z̄)Θ(u − u0) − 2C(z, z̄)

)
= rCzz(u, z, z̄) ,

δξgzz̄ = 0 .

(B.10)
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In terms of these fields, the resulting metric is

ds2 = −du2 − 2 du dr + 2r2γzz̄ dz dz̄

+
(
rCzz(u, z, z̄) dz2 + c.c.

)
+

(
DzCzz(u, z, z̄) du dz + c.c.

)
+ N(z, z̄)δ(u − u0) du dr +

(
r∂zN(z, z̄)δ(u − u0) du dz + c.c.

)
,

(B.11)

which is precisely (3.5).
Finally, we briefly comment on another metric that is diffeomorphic to the shockwave

metric (2.1). Consider a diffeomorphism generated by the vector

χ = α(z, z̄)
2 Θ(u − u0)∂r . (B.12)

Using (3.2), this means

χu = −α(z, z̄)
2 Θ(u − u0) , χr = 0 , χz = 0 . (B.13)

Performing the diffeomorphism on (2.1), we obtain the metric

ds2 = −du2 − 2du dr + 2r2γzz̄

(
1 − 2

r
χu(u, z, z̄)

)
dz dz̄

+ 2
(
∂zχu(u, z, z̄) du dz + c.c.

)
.

(B.14)

In the limit where r → ∞, this reduces precisely to the metric studied in [26].

C Symplectic form of transformed metric

In this appendix, we compute the symplectic form of the transformed shockwave metric
given in (B.11), namely

ds2 = −du2 − 2 du dr + 2r2γzz̄ dz dz̄

+
(
rCzz(u, z, z̄) dz2 + c.c.

)
+

(
DzCzz(u, z, z̄) du dz + c.c.

)
+ σ(u, z, z̄) du dr +

(
r∂zσ(u, z, z̄) du dz + c.c.

)
,

(C.1)

where

σ(u, z, z̄) ≡ N(z, z̄)δ(u − u0) . (C.2)

Following [79–82], the symplectic form for a metric in linearized gravity is given by (we
denote h ≡ hµ

µ)

ΩΣ[δ1h,δ2h] = 1
16πGN

∫
Σ

√
−gωµ dΣµ ,

ωµ = 1
2δ2h∇µδ1h+δ2hνρ∇νδ1hµρ− 1

2δ2h∇νδ1hµν − 1
2δ2hνρ∇µδ1hνρ

− 1
2δ2hµρ∇ρδ1h−(1 ↔ 2) ,

(C.3)
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where ωµ is the symplectic current, Σ a Cauchy slice, dΣµ the volume 3-form labeled by
its orthogonal vector xµ, and δhµν ≡ gµσgνρδhσρ. For the case we are interested in, we
want to take the Cauchy slice Σ to be I

+, which is defined as the u + 2r = v0 hyperplane
with v0 → ∞. This means that nµ = (1

2 , 1, 0, 0), or equivalently that the normal vector
is nµ = (−1, 1

2 , 0, 0). The relevant components of the symplectic current are therefore ωu

and ωr. It is straightforward to show that ωu = O(r−3) and hence its contribution to the
symplectic form vanishes in the limit r → ∞. We are left with evaluating ωr.

To this end, we start by computing the nonzero components of the linearized metric

hur = 1
2σ , hzz = rCzz , huz = r

2Dzσ + 1
2DzCzz . (C.4)

Since
√

−g = r2γzz̄, we will be interested in the terms of ωr that fall off slower than r−3.
Keeping only terms quadratic in h, we first focus on the terms in ωr that could lead to
divergences when multiplying

√
−g. We find

lim
r→∞

√
−gωr

∣∣∣
div terms

= −γzz̄

[
r

4DAδ2σDAδ1σ + r

4δ2σDADAδ1σ + rδ2σδ1σ

]
− (1 ↔ 2) .

(C.5)

Upon integration by parts over the z, z̄ coordinates and antisymmetrization, this term
drops out.

We conclude that the divergent terms cancel out and the symplectic form in the large
r limit reduces to

lim
r→∞

√
−gωr = −γzz̄

[1
2DAδ2σDBδ1CBA + 1

2δ2CBADBDAδ1σ + 1
4δ2σDADBδ1CAB

+ 1
4DAδ2CABDBδ1σ − 1

2δ2CAB∂uδ1CAB

]
− (1 ↔ 2) .

(C.6)

Note that after integration by parts and dropping total derivatives on the sphere, the first
four terms simplify and we are left with

lim
r→∞

√
−gωr = −1

2γzz̄(
δ1Czzδ2Nz̄z̄ + δ1Cz̄z̄δ2Nzz

)
+ 1

2γzz̄
(
δ1CzzD2

z̄δ2σ + δ1Cz̄z̄D2
zδ2σ

)
− (1 ↔ 2) .

(C.7)

Defining
N̂AB ≡ NAB − DADBσ , (C.8)

the symplectic form becomes

Ω
I

+ [δ1h, δ2h] = 1
16πGN

∫
I

+

√
−gωrnr du dz dz̄

= − 1
32πGN

∫
I

+

[
γzz̄(

δ1Czzδ2N̂z̄z̄ + δ1Cz̄z̄δ2N̂zz

− δ1N̂z̄z̄δ2Czz − δ1N̂zzδ2Cz̄z̄

)]
du dz dz̄

= − 1
16πGN

∫
I

+

[
γzz̄(

δ1Czzδ2N̂z̄z̄ − δ2Czzδ1N̂z̄z̄

)]
du dz dz̄ + · · · ,

(C.9)
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where we integrated by parts to obtain the last equality, and · · · denote additional boundary
terms. From this we can immediately read off the Poisson bracket involving the bulk degrees
of freedom to be{

Cz̄z̄(u, z, z̄), N̂ww(u′, w, w̄)
}

= 16πGN γzz̄δ(u − u′)δ(2)(z − w) . (C.10)

For σ = 0, this agrees with (2.41) as expected. For σ given in (C.2), which was obtained
from the shockwave metric (2.1) via the diffeomorphism constructed in section 3.1 and NAB

entirely “soft”, i.e. associated with the shear in (2.39), the symplectic form (C.9) vanishes.
This is consistent with the vanishing of the symplectic form for shockwave metrics of the
form (2.1), which can be straightforwardly verified.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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