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1 Introduction

Recent developments in studies of global symmetries have led to a deeper understanding
of nonperturbartive aspects of quantum field theories(QFTs).

One of the most important results in this line is the use of higher-form symmetries [1]
(see also refs. [2–12]). p-form symmetry is characterized by a symmetry generator whose
support is given by a manifold of codimension p+ 1, and which measures a charge carried
by p-dimensional extended objects. Such symmetries have been applied to many contexts
of quantum field theories, see e.g. [13–29]. It may occur that transformation of a certain
rank induces that of a different rank in a nontrivial manner. Such a mathematical struc-
ture is referred to as higher-group structure. For instance, 2-group structure [30] involves
0-form and 1-form symmetries, where the action of the 0-form symmetry generator on the
1-form symmetry generator gives rise to another 1-form symmetry generator. For a recent
development of higher-group structure in the QFT context, see e.g. [11, 31–52]. Mathe-
matical formulation of higher-group structure is made by means of an extension of group
to higher-category, see [53] for a review.

It has become clear that axion systems in four dimensions serve as a QFT model
that encodes the physical and mathematical structures of higher-group in a simple but
nontrivial manner. In particular, the papers [54, 55] show that the massless axion and
Maxwell system exhibits a 3-group structure. When the axion and photon is massive,
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it enhances to a 4-group structure [56]. The higher-group structure in axion-Yang-Mills
theories is discussed in [57]. The physical interpretation of the higher-group structures
can be given via the Witten effect [58] and the anomalous Hall effect for the axion. Here,
the Witten effect for the axion means that an axionic domain wall enclosing a magnetic
monopole has an electric charge [59], and the anomalous Hall effect implies that there is
an induced current when we add an electric field around an axionic string [60–62]. The
purpose of this paper is to explore the higher-group structures of axion electrodynamics
by extending it to a generic 2n-dimensional spacetime.

Higher-group structures can be efficiently described in the presence of the background
gauge fields coupled with the higher-form symmetry currents [38]. In [55], the 3-group
structure is realized as a Green-Schwarz(GS)-type transformation [63] of the background
gauge fields that are associated with Chern-Weil(CW) symmetry [48, 50]. The CW cur-
rent is trivial in that the current conservation is satisfied by Bianchi identities, but plays
a key role in understanding the 3-group structure. In fact, the background gauging of
the symmetries associated with equations of motion(EoMs) for the axion and photon must
require the simultaneous background gauging of CW symmetries with GS transformations
enforced in order to preserve the gauge invariance of the axion and photon. It is then nat-
ural to expect that higher-dimensional axion electrodynamics exhibits enhanced algebraic
structure compared to four dimensions, because it admits a larger number of CW currents.

In this paper, we study the higher-group structure of axion electrodynamics in 2n
dimensions. The higher group is organized by the CW symmetries and the higher-form
symmetries associated to the equation of motion. The 1-, 2-, · · · , (2n−2)-form CW symme-
tries in the 2n-dimensional axion electrodynamics must be gauged with the corresponding
background gauge fields required to make a GS-type transformation in order to remove a
quantum inconsistency due to operator-valued ambiguities when we gauge the higher-form
symmetries based on the equations of motion. In particular, the 2n = 6 case is analyzed
most intensively. It is found that a new algebraic structure emerges such that it contains
the 3-group structure of the 2n = 4 case as a substructure with a trinary operation among
three symmetry generators encoded in it.

The organization of this paper is as follows. Section 2 gives the action of the 2n-
dimensional axion and Maxwell theory and then derives the global symmetries of the sys-
tem. It is found they are divided into two classes, one containing the symmetries whose
current is conserved by the equations of motion(EoMs) and the other composed of the CW
symmetry. In section 2.2, we introduce the background gauge fields for the global sym-
metries, and derive the GS-type transformation laws for the CW symmetry gauge fields.
They are the manifestation of higher-group structure that contains the 3-group as a sub-
structure. Section 3 focuses on the 2n = 6 case. Using the GS transformation laws derived
in section 2.2, we compute some correlation functions among the symmetry generators of
the 6-dimensional axion electrodynamics. Section 5 is devoted to a conclusion and discus-
sion. In appendix A, we review a method developed in [54] for computing the correlation
functions of the symmetry generators.
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2 2n-dimensional axion electrodynamics

The action of axion electrodynamics in 2n dimensions is given by

S = −
∫
M2n

(
v2

2 |dφ|
2 + 1

2e2 |da|
2 − N

(2π)nn!φ (da)n
)
. (2.1)

Here, φ is an axion field with the 2π periodicity φ ∼ φ + 2π and a = aµdx
µ an U(1)

1-form gauge field with the Dirac quantization
∫
S da ∈ 2πZ for a closed 2-dimensional

subspace S. N is quantized to be integer when M2n is a spin manifold. We use the
notation of differential forms. The symbol d denotes the exterior derivative, and ∧ is the
wedge product. The kinetic term of a p-form field X is written in terms of |X |2 = X ∧
?X = 1

p!X
µ1...µpXµ1...µpd

2nx with ? being the Hodge star. We sometimes abbreviate wedge
products da ∧ · · · ∧ da︸ ︷︷ ︸

n

to (da)n. v is a dimensionful parameter of mass dimension n − 1

and e the U(1) gauge coupling constant. For simplicity, we set v = 1 and e = 1 hereafter.

2.1 Symmetries

In this subsection, we find out the global symmetries of the action (2.1). As shown below, it
possesses higher-form symmetries of any integer ranks, which are divided into two classes.
One contains EoM-based discrete symmetries and the other consists of CW symmetries.

EoM-based global symmetries. The EoMs of φ and a read

d ? dφ = − N

(2π)nn! (da)n , d ? da = N

(2π)n(n− 1)!dφ ∧ (da)n−1 . (2.2)

The EoM of φ leads to the 0-form symmetry current

j
[0]
EoM = − ? dφ− N

(2π)nn!a ∧ (da)n−1 . (2.3)

This defines the discrete 0-form symmetry Z[0]
N . To see this, we note that the symmetry gen-

erator, which is given by exponentiating the current integrated over a (2n−1)-dimensional
manifold, is gauge invariant if the rotation angle is ZN -valued:

U
[0]
EoM

(
D2n−1,

2πm
N

)
= e

2iπm
N

∫
D2n−1

j
[0]
EoM , (2.4)

with m ∈ Z. Here, D2n−1 is a (2n− 1)-dimensional closed subspace.
The EoM of the photon gives the current

j
[1]
EoM = ?da− N

(2π)n(n− 1)!φ(da)n−1 . (2.5)

The Noether charge is obtained by integrating the current over a (2n−2)-dimensional man-
ifold D2n−2 and generates the discrete 1-form symmetry Z[1]

N with the symmetry generator
given by

U
[1]
EoM

(
D2n−2,

2πm
N

)
= e

2iπm
N

∫
D2n−2

j
[1]
EoM . (2.6)
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Chern-Weil symmetries. The Chern-Weil symmetry currents are conserved because
of the Bianchi identities. The model (2.1) has 2n CW currents, which generate (−1)-, 0-,
· · · , (2n − 2)-form U(1) symmetries. For an integer r with 0 ≤ r ≤ n − 1, the 2r-form
symmetry current is given by

j
[2r]
CW = 1

(2π)n−r(n− r − 1)! dφ ∧ (da)n−r−1 . (2.7)

Also the (2r − 1)-form symmetry current is given by

j
[2r−1]
CW = 1

(2π)n−r(n− r)! (da)n−r . (2.8)

These yield the higher-form U(1) symmetry generator of rank k = 0, 1, 2, · · · , 2n− 2

U
[k]
CW(D2n−k−1, γ) = e

iγ
∫
D2n−k−1

j
[k]
CW , (2.9)

with γ ∈ R/2πZ.

2.2 Background gauging and ’t Hooft anomaly

Here, we gauge the higher-form symmetries by coupling the currents found in the previous
subsection to background gauge fields. As found in [55], gauging Z[0]

N and Z[1]
N causes

an operator-valued ambiguity, which states that the gauged action depends on how it is
extended to an extra dimension in order to make it gauge invariant. This problem is
resolved by requiring that the background gauge fields for the CW symmetries transform
under the Z[0]

N and Z[1]
N transformations in an appropriate manner. The cancellation of the

operator-valued ambiguity in the presence of background gauge fields results in a ’t Hooft
anomaly. This is an anomalous phase of the partition function that depends only on the
background gauge fields so that no cancellation of the ’t Hooft anomaly is required.

We first gauge Z[1]
N , which acts on the photon field as

a→ a+ Λ1 . (2.10)

with Λ1 being a 1-form gauge transformation function. We consider a background ZN
gauge field given by a set of 2- and 1-forms (B2, B1) with NB2 = dB1, which transform as

B2 → B2 + dΛ1 , B1 → B1 +NΛ1 . (2.11)

Here, B1 is normalized as
∫
S dB1 ∈ 2πZ for a 2-dimensional closed surface S. Then, da

in the action (2.1) should be replaced with da − B2 in order to ensure that the action is
gauge invariant. The gauged action is in conflict with the periodicity of the axion field
φ → φ + 2π, however. This problem can be rephrased as an ambiguity of how to extend
the action in the partition function defined on M2n to the action defined on an artificial
(2n+ 1)-dimensional manifold ΩM2n with ∂ΩM2n =M2n:

N

(2π)nn!

∫
M2n

φ(da−B2)n = N

(2π)nn!

∫
ΩM2n

dφ ∧ (da−B2)n mod 2π. (2.12)
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Hereafter, we omit writing “mod 2π” for simplicity. For the purpose of computing the
difference of the actions that arises from two choices of (2n+1)-manifolds ΩM2n and Ω′M2n

,
we define a closed manifold Z2n+1 = ΩM2n t Ω′M2n

and evaluate the gauged topological
action on it. Here, Ω′M2n

is Ω′M2n
with an opposite orientation. By expanding it as

N

(2π)nn!

∫
ΩM2n

dφ∧ (da−B2)n = N

(2π)n
n∑
k=0

(−1)n−k

k!(n− k)!

∫
ΩM2n

dφ∧ (da)k ∧ (B2)n−k (2.13)

only the 0th and 1st order terms in B2 take values in 2πZ because of the normalization
condition N

∫
B2 ∈ 2πZ. The operator-valued ambiguities originate from the rest of the

terms that are nonlinear in B2.
We now show that the quantum ambiguities can be eliminated by adding the local

counterterms
n−1∑
r=1

∫
ΩM2n

j
[2r]
CW
∣∣
da→da−B2

∧ Y2r+2 (2.14)

=
n−2∑
k=0

∫
ΩM2n

dφ ∧ (da)k ∧
n−k−1∑
r=1

(−1)n−k−r

(2π)n−rk!(n− k − r − 1)!(B2)n−r−k−1 ∧ Y2r+2 .

The replacement da → da − B2 should be made in order to keep the counterterm term
invariant under the Z[1]

N gauge transformation. It is interesting to note that no replacement
is necessary for the four-dimensional axion-Maxwell system because the quantum ambigui-
ties for the 2n = 4 case that involve the axion field are independent of da. This is manifest
also upon setting n = 2 in (2.14). Y2r+2 is a (2r + 2)-form field strength of the form
Y2r+2 = dX2r+1 + α2r+2. X2r+1 is the background CW gauge field that couples minimally
with the current j[2r]

CW with the normalization condition given by
∫
dX2r+1 ∈ 2πZ. α2r+2 is

fixed by requiring that the local counter terms cancel the operator-valued ambiguities from
the gauged topological term. To see this, we note that adding (2.14) to the topological
term (2.12) gives the integrand

n−2∑
k=0

1
(2π)k+1 k! dφ ∧ (da)k

∧
[
2πN (−1)n−k

(2π)n−k (n− k)! (B2)n−k

−
n−k−1∑
r=1

(−1)n−k−r−1

(2π)n−k−r−1 (n− k − r − 1)! (B2)n−k−r−1 ∧ Y2r+2

]

+ N

(2π)n
n∑

k=n−1

(−1)n−k

k!(n− k)!dφ ∧ (da)k ∧ (B2)n−k. (2.15)

The operator-valued ambiguities can be cancelled by requiring

2πN (−1)n−k

(2π)n−k (n− k)! (B2)n−k −
n−k−1∑
r=1

(−1)n−k−r−1

(2π)n−k−r−1 (n− k − r − 1)! (B2)n−k−r−1 ∧ Y2r+2

= −dX2(n−k)−1 , (2.16)
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for k = 0, 1, 2, · · · , n − 2. This allows us to fix α2r+2 completely. We start examining
the cancellation condition from the k = n − 2 case to obtain α4 = N

4π (B2)2. The rest of
α2r+2 can be worked out by solving the cancellation conditions for k = n− 3, n− 4, · · · , 0
recursively. As clear from the sample computation of α4, all α2r+2 are written in terms of
B2. Naively, this implies that Y2r+2 is not Z[1]

N gauge invariant so that the local counter
terms break the Z[1]

N gauge invariance. It is restored by requiring that X2r+1 transform
under Z[1]

N in such a manner that Y2r+2 is kept gauge invariant. This is the reason for why
the GS-type transformation must be imposed for X2r+1.

Furthermore, we gauge Z[0]
N , which acts on the axion as a shift:

φ→ φ+ Λ0 . (2.17)

The Z[0]
N background gauge field is defined by a pair of 1- and 0-form fields (A1, A0) with

NA1 = dA0, and the Z[0]
N gauge transformation acts as

A1 → A1 + dΛ0 , A0 → A0 +NΛ0 . (2.18)

Here, A0 is normalized as
∫
C dA0 ∈ 2πZ for a closed 1-dimensional subspace C. The Z[0]

N

gauge invariant action is obtained by replacing dφ with the covariant derivative dφ − A1.
Then, (2.15) together with (2.16) leads to the linear term in A1:

1
2π A1 ∧ dX2n−1 +

n−2∑
k=1

1
(2π)k+1 k! A1 ∧ (da)k ∧ dX2(n−k)−1

+ N

(2π)n (n− 1)! A1 ∧ (da)n−1 ∧B2 −
N

(2π)n n! A1 ∧ (da)n . (2.19)

It is clear that the second and the third terms are responsible for another quantum am-
biguity. The first term is written only by the background field, resulting in an ’t Hooft
anomaly. This ambiguity can be canceled by further adding the counterterms

n−1∑
r=1

j
[2r−1]
CW

∣∣
da→da−B2

∧ Y2r+1

=
n−1∑
r=1

(−1)n−r

(2π)n−r (n− r)! (B2)n−r ∧ Y2r+1

+
n−1∑
k=1

1
(2π)k k! (da)k ∧

n−k∑
r=1

(−1)n−k−r

(2π)n−k−r (n− k − r)! (B2)n−k−r ∧ Y2r+1 , (2.20)

where Y2r+1 = dX2r + α2r+1 with the normalization condition given by
∫
dX2r+1 ∈ 2πZ.

Adding it to (2.19) cancels the ambiguity by requiring that α2r+1 obey

dX2 = N

2π A1 ∧B2 + Y3 , (2.21)

dX2(n−k) = 1
2π A1 ∧ dX2(n−k)−1 +

n−k∑
r=1

(−1)n−k−r

(2π)n−k−r (n− k − r)! (B2)n−k−r ∧ Y2r+1 , (2.22)
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for k = 1, 2, · · · , n − 2. Eq. (2.21) determines α3 and (2.22) can be solved recursively as
before to fix the rest of α2r+1. For instance, the condition for k = n−2 is solved by setting

α5 = − 1
2π A1 ∧ dX3 + 1

2π B2 ∧
(
dX2 −

N

2π A1 ∧B2

)
. (2.23)

It is found that α2r+1 is not gauge invariant either. The counterterm (2.20) is left gauge
invariant by requiring that X2r make a GS-type transformation under Z[0]

N and Z[1]
N in such

a manner that Y2r+1 becomes a gauge invariant field strength.
To summarize, the gauge invariant action with no operator-valued ambiguity is given by

S′=−
∫
M2n

(1
2 |dφ−A1|2 + 1

2 |da−B2|2
)

(2.24)

+ N

(2π)nn!

∫
ΩM2n

(dφ−A1)∧(da−B2)n+
2n−2∑
r=1

∫
ΩM2n

j
[r]
CW

∣∣∣
dφ→dφ−A1,da→da−B2

∧Yr+2 .

This might depend on the choice of ΩM2n , which is used to rewrite Chern-Simons(CS)
terms in a gauge invariant manner. The difference of the actions for two choices of ΩM2n

is manifested as a ’t Hooft anomaly. More concretely, we define the compact (2n + 1)-
dimensional manifold Z2n+1 such that Z2n+1 = Ω(1)

M2n
∪Ω(2)

M2n
, where Ω(1)

M2n
and Ω(2)

M2n
are

glued together at the common boundary ∂Ω(1)
M2n

= ∂Ω(2)
M2n

= M2n. Then, the ’t Hooft
anomaly is given by a phase

exp i
∫
Z2n+1

[
1

2πA1 ∧ dX2n−1 +
n−1∑
r=1

(−1)n−r

(2π)n−r (n− r)! (B2)n−r ∧ Y2r+1

]
. (2.25)

Here, the integrand comes from the terms in (2.24) that depend only on the background
gauge field. If Z2n+1 is taken to be a mapping torus that interpolates between two M2n,
each of which is endowed with background gauge fields related to each other via a gauge
transformation, the phase (2.25) leads to an anomalous phase associated with the gauge
transformation.

The explicit form of the ’t Hooft anomaly for the n = 3 case is given in the next
section.

3 The n = 3 case

In this section, we make a detailed analysis of axion electrodynamics in six dimensions.
This is in parallel with that made in [54, 55] for the 2n = 4 case.

The action in the absence of the background gauge field reads

S6d = −
∫
M6

(1
2 |dφ|

2 + 1
2 |da|

2 − N

48π3φ (da)3
)
. (3.1)

Here, we briefly discuss the Witten effect induced on an axionic domain wall and the
anomalous Hall effect by an axionic vortex. A more rigorous analysis will be given later.
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The EoMs for φ and a are given in component by

∂2φ = − N

384π2 ε
µνρσαβFµνFρσFαβ , (3.2)

∂µF
µν = N

64π2 ε
νρσταβ(∂ρφ)FστFαβ . (3.3)

Assuming that Fµν is static, the EoM (3.3) for ν = 0 gives

∂iF
i0 = N

64π2 ε
0ijklm(∂iφ)FjkFlm ,

with i, j, k, · · · being the indices for the spatial directions. By turning on a domain wall
configuration for φ together with a magnetic flux over the spatial direction of the domain
wall, the r.h.s. serves as an electric charge density induced on the domain wall. This is the
Witten effect.

The EoM (3.3) for ν = m becomes

∂nF
nm = − N

64π2 ε
0ijklm(∂iφ)F0jFkl .

We give a vortex configuration to φ, which appears as an axionic 3-brane. In addition, we
turn on an electric field and a magnetic flux on the 3-brane world volume so that the r.h.s.
is nonvanishing. Then, the resultant source term serves as an electric current that flows
towards the 3-brane, which is normal to the electric field direction.

The symmetries and the corresponding currents coupled minimally with the back-
ground gauge fields are listed as

Generator Group Current Gauge field
U

[0]
EoM ZN j

[0]
EoM = − ? dφ− N

48π3a ∧ da ∧ da A1

U
[1]
EoM ZN j

[1]
EoM = ?da− N

16π3φ ∧ da ∧ da B2

U
[1]
CW U(1) j

[1]
CW = 1

8π2da ∧ da BCW
2

U
[2]
CW U(1) j

[2]
CW = 1

4π2dφ ∧ da C3

U
[3]
CW U(1) j

[3]
CW = 1

2πda D4

U
[4]
CW U(1) j

[4]
CW = 1

2πdφ E5

Here, the gauge invariant field strengths Y3, Y4, Y5, Y6 are renamed as G3, H4, I5, J6 respec-
tively:

G3 = dBCW
2 − N

2πA1 ∧B2, (3.4)

H4 = dC3 + N

4πB2 ∧B2, (3.5)

I5 = dD4 −
1

2πA1 ∧ dC3 + 1
2πB2 ∧ dBCW

2 − N

4π2A1 ∧B2 ∧B2, (3.6)

J6 = dE5 + 1
2πB2 ∧ dC3 + N

12π2B2 ∧B2 ∧B2, (3.7)
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As seen before, the gauge fields make a GS transformation in such a manner that these are
left invariant under the Z[0]

N and Z[1]
N gauge transformations:

BCW
2 → BCW

2 + dΛCW
1 − N

2π (A1 + dΛ0) ∧ Λ1 + N

2πB2 ∧ Λ0 , (3.8)

C3 → C3 + dΛ2 −
N

4π (B2 + dΛ1) ∧ Λ1 −
N

4πB2 ∧ Λ1 , (3.9)

D4 → D4 + dΛ3 −
1

2πdΛ0 ∧ C3 −
1

2πdΛ1 ∧BCW
2

− N

4π2 Λ0 ∧B2 ∧ dΛ1 + N

8π2 (A1 + dΛ0) ∧ Λ1 ∧ dΛ1 , (3.10)

E5 → E5 + dΛ4 −
N

8π2B2 ∧ (B2 + dΛ1) ∧ Λ1 −
N

12π2dΛ1 ∧ dΛ1 ∧ Λ1

− 1
2πdΛ1 ∧ C3 + N

8π2 (B2 + dΛ1)2 ∧ Λ1 . (3.11)

We remark that there are two non-trivial structures which are specific in the 6d axion-
Maxwell system in contrast to the 4d axion-Maxwell system [54, 55]. One is that fusion of
EoM-based global symmetries and CW global symmetries lead to another CW symmetry
of higher rank. This is manifested as the terms A1 ∧ dC3, B2 ∧ dBCW

2 and B2 ∧ dC3
appearing in the gauge invariant field strengths I5 and J6, or dΛ0 ∧ C3, dΛ1 ∧ BCW

2 and
dΛ1 ∧C3 in the gauge transformation laws for D4 and E5. The other is that the CW field
strengths and gauge transformation laws contain cubic terms of the gauge fields or the gauge
transformation parameters. More explicitly, see the terms A1 ∧B2 ∧B2 and B2 ∧B2 ∧B2
in I5 and J6 respectively, or the gauge transformation laws in (3.10) and (3.11).

The partition function of the 6d axion-Maxwell system, which is a functional of the
background gauge fields, is given by

Z[A1, B2, B
CW
2 , C3, D4, E5] =

∫
DφDa exp i

[
S6d + Smin +

∫
ΩM6

L7

]
, (3.12)

with

Smin =
∫
M6

(
j

[0]
EoM∧A1+j[1]

EoM∧B2+j[1]
CW∧B

CW
2 +j[2]

CW∧C3+j[3]
CW∧D4+j[4]

CW∧E5
)
, (3.13)

L7 = N

16π3A1∧(B2)3− 1
8π2 (B2)2∧dBCW

2 + 1
4π2A1∧B2∧dC3−

1
2πB2∧dD4

+ 1
2πA1∧dE5 . (3.14)

Here, the ’t Hooft anomaly for n = 3 is determined by the difference of (3.14) due to two
choices of ΩM6 , see (2.25). The seagull terms proportional to |B2|2 and |A1|2 are omitted
for simplicity because these are irrelevant to the rest of the discussions in this paper.

3.1 Charged objects

Here, we discuss what are objects charged under the global symmetries we found before,
and then compute the charges explicitly. In [54, 55], these are obtained by computing
correlation functions involving charged objects and symmetry generators. This method is
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reviewed in the appendix A. In this paper, we give an alternative prescription based on
a systematic use of the background gauge fields. It is found that the global charges are
worked out from the ’t Hooft anomaly.

3.1.1 EoM-based symmetries

We first identify charged objects under the EoM-based global symmetries Z[0]
N and Z[1]

N .
Z[0]
N acts on φ as a shift so that the associated charged object is given by a local operator

I(Pdefect, q) ≡ eiqφ(Pdefect). Here, Pdefect is a point in the spacetime M6 on which the local
operator is localized with q ∈ Z being the Z[0]

N charge. Using

eiqφ(Pdefect) = e2πiq
∫
j

[4]
CW∧δ5(ΩPdefect ) ,

the local operator arises by turning on E5 = 2πqδ5(ΩP). Here, the delta function δp(DD−p)
with the support DD−p being a submanifold of codimension p is defined to satisfy∫

MD

J (D−p) ∧ δp(DD−p) ≡
∫
DD−p

J (D−p) ,

for any (D − p)-form J (D−p). Use of the Stokes theorem yields δp(DD−p) =
(−1)D−p−1dδp−1(ΩDD−p) with ∂ΩDD−p = DD−p.

We now argue that the 0-form symmetry generator U [0]
EoM(V, 2πn/N), which is sup-

ported on a codimension-one manifold V, acts on I(Pdefect, q) nontrivially. This is done
by defining the correlation functions

〈
U

[0]
EoM

(
V, 2πn

N

)
I (Pdefect, q)

〉
and 〈I (Pdefect, q)〉 from

the partition function (3.12) in the presence of the appropriate background gauge fields
and then relating them with each other via the ’t Hooft anomaly. We define the corre-
lator

〈
U

[0]
EoM

(
V, 2πn

N

)
I (Pdefect, q)

〉
by inserting A1 = 2πn

N δ1(V) and E5 = 2πqδ5(ΩPdefect)
into (3.12):〈

U
[0]
EoM

(
V, 2πn

N

)
I (Pdefect, q)

〉
≡ Z

[2πn
N

δ1(V), 0, 0, 0, 0, 2πqδ5(ΩPdefect)
]
. (3.15)

Note that A1 = 2πn
N δ1(V) leads to a codimension-1 defect, which is referred to as an

axionic domain wall. The relation between the axionic domain wall and U
[0]
EoM

(
V, 2πn

N

)
will be important later. We next make a gauge transformation to gauge away A1, which
amounts to eliminating U [0]

EoM

(
V, 2πn

N

)
. It follows from (3.8)–(3.11) that this induces no

CW gauge fields. Then, there remains only E5, in the presence of which the partition
function defines 〈I (Pdefect, q)〉:

〈I (Pdefect, q)〉 ≡ Z[0, 0, 0, 0, 0, 2πqδ5(ΩPdefect)] . (3.16)

Finally, we evaluate the ’t Hooft anomaly associated with the gauge transformation. As
discussed in (2.25) and (3.14), it is obtained by integrating L7 over a mapping 7-torus T7
of topologyM6 × S1, where Sn denotes a n-dimensional sphere. Let A1 and E5 be an lift
of the background gauge field A1 and E5 respectively to T7 such that

A1 = (1− τ)A1 , E5 = E5 , (3.17)
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with τ ∈ [0, 1] being the coordinate of S1. It is easy to find that

exp
(
i

∫
T7
L7

)
= exp

(
i

2π

∫
T7
A1 ∧ dE5

)
= exp

(2πiqn
N

∫
M6

δ1(V) ∧ δ5(ΩPdefect)
)
. (3.18)

The resultant phase factor measures the linking number between V and Pdefect. We thus
find that 〈

U
[0]
EoM

(
V, 2πn

N

)
I (Pdefect, q)

〉
= e

2πiqn
N

Link(V,Pdefect) 〈I (Pdefect, q)〉 . (3.19)

The EoM-based 1-form symmetry Z[1]
N acts on a as a shift and gives rise to a nontrivial

transformation for the Wilson loop W(Ldefect, q) = e
iq
∫
Ldefect

a. By noting

e
iq
∫
Ldefect

a = e2πiq
∫
j

[3]
CW∧δ4(ΩLdefect ) , (3.20)

the Wilson loop operator is realized by turning on D4 = 2πqδ4(ΩLdefect). The par-
tition function with B2 = 2πm

N δ1(W) and D4 = 2πqδ4(ΩLdefect) defines the correlator〈
U

[1]
EoM

(
W, 2πm

N

)
W (Ldefect, q)

〉
. By gauging away B2 and evaluating the associated ’t

Hooft anomaly, we obtain〈
U

[1]
EoM

(
W,

2πm
N

)
W (Ldefect, q)

〉
= e

2πiqm
N

Link(W,Ldefect) 〈W (Ldefect, q)〉 . (3.21)

3.1.2 Chern-Weil symmetries

Here, we argue that the charged objects for the Chern-Weil symmetries are composed of
axionic vortices and monopoles.

We first consider the 4-form symmetry generator U
[4]
CW(L, α) with L being a 1-

dimensional support. As the corresponding CW current is given by dφ/(2π), the charged
operator is realized by an axionic vortex, which is equivalent to turning on A1 such that∮

S1
A1,defect = 2πq . (3.22)

This defines the surface operator V(Wdefect, q) with Wdefect being a codimension-2 sup-
port. This is also interpreted as an axionic 3-brane. We verify that the U [4]

CW charge of
V(Wdefect, q) is computed by evaluating the ’t Hooft anomaly in (3.14). The correlator〈
U

[4]
CW (L, α) V(Wdefect, q)

〉
is defined from the partition function with A = A1,defect and

E5 = αδ5(L):

Z[A1,defect, 0, 0, 0, 0, αδ5(L)] =
〈
U

[4]
CW (L, α) V(Wdefect, q)

〉
. (3.23)

By making a gauge transformation to turn off A1,defect, we find

Z[A1,defect, 0, 0, 0, 0, αδ5(L)] = eiαqLink(Wdefect,L) Z[0, 0, 0, 0, 0, αδ5(L)] . (3.24)

Here, the phase factor in the r.h.s. follows from the ’t Hooft anomaly, which is computed
by constructing a mapping 7-torus associated with the gauge transformation under consid-
eration. As the partition function in the r.h.s. gives the one-point function of V(Wdefect, q),
we obtain

〈U [4]
CW (L, α) V(Wdefect, q)〉 = eiαqLink(Wdefect,L) 〈V(Wdefect, q)〉 . (3.25)
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Figure 1. V(Wdefect, q) as an axionic 3-brane carrying the U [4]
CW charge.

Figure 2. ’t Hooft surface operator T(Cdefect, q) carrying the U [3]
CW charge.

Next, we discuss the 3-form symmetry generator U [3]
CW(S, β), which is supported on

a codimension-4 manifold S. As the corresponding CW current is da/(2π), the charged
object is a monopole. This is realized by turning on the background gauge field∮

S2
B2,defect = 2πq , (3.26)

and defines a codimension-3 surface operator T(Cdefect, q) with Cdefect being the worldvol-
ume. We call it an ’t Hooft surface. The U(1)[3] charge of the ’t Hooft surface is computed
from the ’t Hooft anomaly. For this purpose, we define the correlator of U [3]

CW(S, β) and
T(Cdefect, q) as the partition function in the presence of B2,defect and D4 = βδ4(S):

Z[0, B2,defect, 0, 0, D4 = βδ4(S), 0] = 〈U [3]
CW (S, β) T(Cdefect, q)〉 . (3.27)

By gauging away D4 and evaluating the associated ’t Hooft anomaly, we obtain

〈U [3]
CW (S, β) T(Cdefect, q)〉 = eiβqLink(Cdefect,S)Z[0, B2,defect, 0, 0, 0, 0]

= eiβqLink(Cdefect,S)〈T(Cdefect, q)〉 . (3.28)

The charged operator for the 2-form symmetry U(1)[2] has a 2-dimensional worldvol-
ume and is composed of an ’t Hooft surface and an axionic 3-brane wrapped around it,
because the corresponding CW current is given by dφ ∧ da/(2π)2. A typical configuration
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Figure 3. VT(Sdefect, q) carrying the U [2]
CW charge.

of the charged operator is listed below. Here, r and ϑ are the polar coordinates of the
2-dimensional plane transverse to the axionic 3-brane.

t x y z r ϑ

V (Wdefect, qφ) ◦ ◦ ◦ ◦
T (Cdefect, qa) ◦ ◦ ◦

This is realized by turning on the background gauge fields A1 and B2 as

A1,defect = qφdϑ , B2,defect = 2πqaδ(x)δ(y)θ(r − ε)dx ∧ dy , (3.29)

where ε > 0 is a regulator that is sent to zero eventually. It then follows that∫
A1,defect ∧B2,defect = 4π2q , q = qφqa . (3.30)

We define this configuration as an operator VT(Sdefect, q) with a 2-dimensional support
Sdefect given by R2 3 (t, z) and q being the U(1)[2] charge. Eq. (3.30) is generalized to cases
where ’t Hooft surfaces and axionic 3-branes are linked with each other on a slice with
constant values of (t, z).

The symmetry generator U [2]
CW(L, γ) that measures the charge of VT(Sdefect, q) is ob-

tained by setting C3 = γδ3(L), where L is a 3-dimensional surface that surrounds Sdefect.
This is verified by computing the correlation function of U [2]

CW(L, γ) and VT(Sdefect, q) fol-
lowing the same procedure as before:〈

U
[2]
CW (L, γ) VT(Sdefect, q)

〉
= eiγqLink(Sdefect,L)〈VT(Sdefect, q)〉 . (3.31)

Finally, we consider the CW 1-form symmetry U(1)[1] and charged operators for it. By
definition, these have a 1-dimensional support, and are composed of two ’t Hooft surfaces
because the CW 1-form symmetry current is given by (da)2/(2π)2. A typical configuration
for the charged operator is shown below:

t x y r ϑ ϕ

T (Cdefect, q) ◦ ◦ ◦
T (C′defect, q

′) ◦ ◦ ◦
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Figure 4. TT(LCW
defect, q) carrying the U [1]

CW charge.

Here, (r, ϑ, ϕ) are the spherical coordinates of R3, which is transverse to Cdefect. This
configuration is realized by

B2,defect = q

2 sinϑdϑdφ+ 2πq′δ(x)δ(y)θ(r − ε)dxdy , (3.32)

and define the operator TT(LCW
defect, q

′′) with the 1-dimensional support LCW
defect equal to

R 3 t and q′′ being the U(1)[1] charge evaluated from∫
B2,defect ∧B2,defect = 8π2q′′ , q′′ = qq′ . (3.33)

The symmetry generator U [1]
CW (W, ξ) for measuring TT(LCW

defect, q
′′) is realized by turning on

BCW
2 = ξδ2(W) with ξ being the U(1)[1] rotation angle andW a 4-dimensional support that

surrounds LCW
defect. As before, the charge of TT(LCW

defect, q) results from a ’t Hooft anomaly
associated with a gauge transformation for removing BCW

2 :〈
U

[1]
CW (W, ξ) TT(LCW

defect, q)
〉

= eiξqLink(LCW
defect,W)〈TT(LCW

defect, q)〉 . (3.34)

3.2 Correlation functions of symmetry generators

In this subsection, we work out the identities among correlation function of the symmetry
generators for the purpose of understanding the higher-group structures and their physical
interpretation in the 6d axion-Maxwell system. A key ingredient in this analysis is the GS
transformation laws for the CW gauge fields (3.8), (3.9), (3.10), (3.11). Part of the results
given below is an extension of those obtained in [54, 55] for the 4d axion-Maxwell system.

3.2.1 Correlation functions of two EoM-based symmetry generators

We start discussing

Z

[2πn
N

δ1(V), 2πm
N

δ2(W), 0, 0, 0, 0
]

=
〈
U

[0]
EoM

(
V, 2πn

N

)
U

[1]
EoM

(
W,

2πm
N

)〉
(3.35)

with A1 = 2πn
N δ1(V) and B2 = 2πm

N δ2(W). We make a gauge transformation to gauge away
B2:

B2 → B2 + dΛ1 = 0 , Λ1 = 2πm
N

δ1(ΩW) . (3.36)
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Note that this gauge transformation induces the CW gauge field BCW
2

BCW
2 → BCW

2 − N

2πA1 ∧ Λ1 = −2mn
N

δ1(V) ∧ δ1(ΩW) , (3.37)

because of (3.8). It is easy to show that no ’t Hooft anomaly arises from the gauge
transformation so that

Z

[2πn
N

δ1(V), 2πm
N

δ2(W), 0, 0, 0, 0
]

= Z

[2πn
N

δ1(V), 0,−2πmn
N

δ1(V) ∧ δ1(ΩW), 0, 0, 0
]
.

(3.38)
Therefore,〈

U
[0]
EoM

(
V, 2πn

N

)
U

[1]
EoM

(
W,

2πm
N

)〉
=
〈
U

[0]
EoM

(
V, 2πn

N

)
U

[1]
CW

(
V ∩ ΩW ,−

2πmn
N

)〉
.

(3.39)
The physical meaning of this relation becomes clearer by inserting the operator

TT(LCW
defect, q) into (3.39). Using (3.34), we obtain〈

U
[0]
EoM

(
V, 2πn

N

)
U

[1]
EoM

(
W,

2πm
N

)
TT(LCW

defect, q)
〉

= e−i
2πmnq
N

Link(LCW
defect,V∩ΩW )

〈
U

[0]
EoM

(
V, 2πn

N

)
TT(LCW

defect, q)
〉
. (3.40)

As discussed in [54, 55], this can be interpreted as the Witten effect [58] induced on an
axion domain wall. As a typical realization of (3.40), we consider

t x y r ϑ ϕ

T (Cdefect1, q1) ◦ ◦ ◦
T (Cdefect2, q2) ◦ S2

U
[0]
EoM

(
V, 2πn

N

)
◦ ◦ ◦ S2

U
[1]
EoM

(
W, 2πm

N

)
◦ ◦ S2

Here, TT(LCW
defect, q) with q = q1q2 is composed of the two ’t Hooft surfaces as seen in

figure 4. A plot of this configuration at t = 0, where U [1]
EoM

(
W, 2πm

N

)
is localized, is

shown in figure 5. A magnetic field emanating from magnetic monopoles on the ’t Hooft
surfaces goes through U [0]

EoM

(
V, 2πn

N

)
, which is regarded as an axionic domain wall with the

worldvolume given by V. The phase factor appearing in (3.40) implies the existence of an
electric source induced on V, because U [1]

EoM

(
W, 2πm

N

)
is designed to measure an electric

flux emanating from V.
As a second example, we focus on the correlation function

〈U [1]
EoM(W1,

2πm1
N )U [1]

EoM(W2,
2πm2
N )〉. This is obtained by turning on B2 =

2πm1
N δ2(W1) + 2πm2

N δ2(W2). Gauging away the second term in B2 to remove
U

[1]
EoM

(
W2,

2πm1
N

)
and then using the GS transformation law (3.9) gives〈

U
[1]
EoM

(
W1,

2πm1
N

)
U

[1]
EoM

(
W2,

2πm2
N

)〉
=
〈
U

[1]
EoM

(
W1,

2πm1
N

)
U

[2]
CW

(
W1 ∩ ΩW2 ,−

2πm1m2
N

)〉
. (3.41)
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Figure 5. Witten effect on an axionic domain wall.

We now argue that this can be interpreted as an anomalous Hall effect in 6 dimensions.
For this purpose, it is more convenient to insert the operator VT(Sdefect, q) into (3.41). By
noting that VT(Sdefect, q) is charged under U [2]

CW, we find〈
U

[1]
EoM

(
W1,

2πm1
N

)
U

[1]
EoM

(
W2,

2πm2
N

)
VT(Sdefect, q)

〉
= e−i

2πm1m2q
N

Link(Sdefect,W1∩ΩW2 )
〈
U

[1]
EoM

(
W1,

2πm1
N

)
VT(Sdefect, q)

〉
. (3.42)

A typical configuration for realizing the l.h.s. of (3.42) is given below:

t x y z r ϑ

V (Wdefect, qφ) ◦ ◦ ◦ ◦
T (Cdefect, qa) ◦ ◦ S1

U
[1]
EoM

(
W1,

2πm1
N

)
◦ ◦ T 2

U
[1]
EoM

(
W2,

2πm2
N

)
◦ ◦ ◦ S1

with a section with t = x = y = 0 plotted in figure 6. Here, (r, ϑ) is the polar coordinates of
the 2-dimensional plane transverse to the z-direction. W2 is depicted as concentric circles
that sandwich W1.

With this setup, the phase factor appearing in the r.h.s. of (3.42) is identified with a
magnetic flux along the ϑ-direction that is measured by U [1]

EoM

(
W2,

2πm
N

)
. The magnetic

flux is interpreted to emanate from an electric current induced along the α-cycle of the
2-torus W1. This is a manifestation of the anomalous Hall effect in 6 dimensions. In fact,
we note that U [1]

EoM

(
W1,

2πm
N

)
is realized by turning on a background electric field along

the normal direction to W1, which is perpendicular to that of the induced current.
As found in [54, 55], the correlation function (3.41) is regarded as the Peiffer lifting of

a 3-group. This implies that the 6d axion electrodynamics possesses the 3-group structure
as in d = 4. In the next subsubsection, we make a further computation of correlation
functions to gain a stringent support that the 6d axion electrodynamics encodes a higher-
group structure with the 3-group realized as a substructure.
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Figure 6. Anomalous Hall effect in 6d.

3.2.2 Correlation functions of symmetry generators of higher ranks

Here, we discuss correlation functions involving the symmetry generators that are absent
for d = 4.

We first turn on A1 = 2πn
N δ1(V), C3 = αδ3(C), which leads to the correlation function

〈
U

[0]
EoM

(
V, 2πn

N

)
U

[2]
CW (C, α)

〉
. (3.43)

By gauging away A1 and using the GS transformation law (3.10), we find

〈
U

[0]
EoM

(
V, 2πn

N

)
U

[2]
CW (C, α)

〉
=
〈
U

[2]
CW (C, α)U [3]

CW

(
V ∩ C, αn

N

)〉
. (3.44)

As another example where the action of a symmetry generator of a lower rank gives rise
to U [3]

CW, we find

〈
U

[1]
EoM

(
W,

2πm
N

)
U

[1]
CW

(
WCW, β

)〉
=
〈
U

[1]
CW

(
WCW, β

)
U

[3]
CW

(
W ∩WCW,

βm

N

)〉
.

(3.45)
Here, the l.h.s. is defined by the partition function in the presence of B2 =
2πm
N δ1(W), BCW

2 = βδ1(WCW), while the r.h.s. is obtained by gauging away B2 and then
using the GS transformation law in (3.10). It is verified that the action of U [1]

EoM on U [2]
CW

gives rise to the 4-form symmetry generator:

〈
U

[1]
EoM

(
W,

2πm
N

)
U

[2]
CW (C, γ)

〉
=
〈
U

[2]
CW (C, γ)U [4]

CW

(
W ∩ C, γn

N

)〉
, (3.46)

which is obtained by using the GS gauge transformation law in (3.11).
We next discuss correlation functions of three symmetry generators of lower ranks.

As a first example, we turn on A1 = 2πn
N δ1(V), B2 = 2πm1

N δ2(W1) + 2πm2
N δ2(W2) to define

the 3-point function of U [0]
EoM and U

[1]
EoM. By gauging away both A1 and B2, the 3-point
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function becomes a correlation function involving U [3]
CW:〈

U
[0]
EoM

(
V, 2πn

N

)
U

[1]
EoM

(
W1,

2πm1
N

)
U

[1]
EoM

(
W2,

2πm2
N

)〉
=
〈
U

[1]
CW

(
V ∩ ΩW1 ,

2πnm1
N

)
U

[1]
CW

(
V ∩ ΩW2 ,−

2πnm2
N

)
× U [2]

CW

(
W1 ∩ ΩW2 ,−

2πm1m2
N

)
U

[3]
CW

(
W1 ∩W2 ∩ ΩV ,−

4πnm1m2
N2

)〉
. (3.47)

Furthermore, turning on B2 = 2πm1
N δ2(W1) + 2πm2

N δ2(W2) + 2πm3
N δ2(W3) and then gauging

it away gives a correlation function involving U [4]
CW:〈

U
[1]
EoM

(
W1,

2πm1
N

)
U

[1]
EoM

(
W2,

2πm2
N

)
U

[1]
EoM

(
W3,

2πm3
N

)〉
=
〈
U

[2]
CW

(
W1∩ΩW2 ,−

2πm1m2
N

)
U

[2]
CW

(
W2∩ΩW3 ,−

2πm2m3
N

)
U

[2]
CW

(
W3∩ΩW1 ,−

2πm3m1
N

)
×U [4]

CW

(
W1∩W2∩ΩW3 ,−

4πm1m2m3
N2

)〉
. (3.48)

These results are regarded as a manifestation of the algebraic structures that are pecu-
liar to the 6d axion-Maxwell theory. In particular, it follows from the last two computations
that the higher-group structure in this theory should be equipped with a trinary operation
among three symmetry generators. It is worthwhile to emphaze that no analogous result is
found for the d = 4 case, which contains up to the binary operation among the symmetry
generators.

4 Conclusion and discussion

In this paper, we discuss higher-dimensional axion electrodynamics for the purpose of
exploring a higher-group structure encoded in it by generalizing the results in [54, 55].

We first discuss how the operator-valued ambiguities that arise from gauging EoM-
based global symmetries are canceled. This is achieved by gauging (2n − 2) Chern-Weil
symmetries simultaneously. It is crucial that the CW gauge fields make a Green-Schwarz
transformation under the EoM-based symmetry transformation in order to guarantee gauge
invariance of the resultant theory.

The main focus of this paper is on the 6d axion-Maxwell system. We give the explicit
form of the GS transformation of the four CW gauge fields. We also determine the ’t
Hooft anomaly due to an ambiguity of how to extend the system to a 7d spacetime. We
next compute correlation functions of the symmetry generators by employing the fact that
any configuration of the symmetry generators and charged operators is constructed by
turning on the background gauge fields appropriately. The correlation functions of two
configurations are equal to each other up to a ’t Hooft anomaly if they are mapped to each
another by a gauge transformation. On top of correlation functions that have been obtained
already in [54, 55], we work out a new class of correlation functions that are peculiar to the
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d = 6 case. These results suggest that the 6d axion-Maxwell system possesses a higher-
group structure such that the 3-group structure found in the 4d axion-Maxwell system is
encoded as a substructure. Furthermore, it is natural to expect that the possible higher-
group structure should admit a trinary operation, an algebraic structure involving three
symmetry generators, as discussed in section 3.2.2.

More generally, the axion-Maxwell system in d = 2n dimensions is expected to possess
a higher-group structure with a substructure identical to that of the d = 2n − 2 axion-
Maxwell system. This is because all the CW gauge field strengths for the d = 2n− 2 case
are included in those for the d = 2n case. Furthermore, the higher-group structure for the
d = 2n case, if exists, should admit an n-ary operation among n symmetry generators. To
see this, we note that the d = 2n axion-Maxwell system has the (2n − 2)-form symmetry
with the CW current dφ/(2π), and it couples to a (2n−1)-form CW gauge field. The gauge
invariant 2n-form field strength contains a term proportional to (B2)n. This implies that
two correlation functions, one with a single insertion of the symmetry generator U [2n−2]

CW and
the other with n insertions of U [1]

EoM, are related with each other as found in (3.48) for n = 3.
In this paper, we have not attempted to formulate rigorously the mathematical struc-

ture of the higher-group symmetry that underlies the higher-dimensional axion-Maxwell
systems. We leave it for future work.
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A Alternative method of computing correlation functions

In section 3.2, correlation functions are computed using a network of background gauge
fields and gauge transformations acting on it. Here, we review an alternative way that is
developed in [54] for the 4d axion-Maxwell system.

Let S[φ, a] be the action (2.1). Shifting the axion and the Maxwell field by the back-
ground gauge fields Φ0 and Π1, respectively, we find

S[φ,a]+
∫
M2n

dj
[0]
EoM∧Φ0 =S[φ−Φ0,a]+ 1

2

∫
M2n

dΦ0∧?dΦ0 , (A.1)

S[φ,a]+
∫
M2n

dj
[1]
EoM∧Π1 =S[φ,a+Π1]+ N

(2π)n
n∑
r=2

1
(n−r)!r!dφ(da)n−r∧(dΠ1)r−1∧Π1

+ 1
2

∫
M2n

dΠ1∧?dΠ1 . (A.2)

These results play a key role in the computations made below.
As a sample computation, we discuss the correlation function of U [0]

EoM(V, 2πn
N ) and

U
[1]
CW(W, 2πm

N ) for the n = 3 case. Noting that U [0]
EoM(V, 2πn

N ) is rewritten as

U
[0]
EoM

(
V, 2πn

N

)
= exp

(2π
N

∫
V
j

[0]
EoM

)
= exp

(2π
N

∫
M6

dj
[0]
EoM ∧ δ0(ΩV)

)
, (A.3)
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it follows from (A.1) with Φ0 = (2π/N) δ0(ΩV) that〈
U

[0]
EoM

(
V, 2πn

N

)
U

[1]
EoM

(
W,

2πm
N

)〉
= N

∫
D[φ, a]eiS[φ− 2πn

N
δ0(ΩV ),a]+ 2πim

N

∫
W j

[1]
EoM . (A.4)

By shifting φ→ φ′ = φ− 2πn
N δ0(ΩV), we obtain〈

U
[0]
EoM

(
V,2πn

N

)
U

[1]
EoM

(
W,

2πm
N

)〉
=N

∫
D[φ′,a]eiS[φ′,a]+ 2πim

N

∫
Wj

[1]
EoM−

inm
4πN

∫
Wda∧daδ0(ΩV )

=
〈
U

[1]
EoM

(
W,

2πm
N

)
U

[1]
CW

(
W∩ΩV ,−

2πnm
N

)〉
, (A.5)

because j[1]
EoM gets shifted under the shift. This coincides with (3.39).

The rest of the correlations computed in this paper can be reproduced following the
same way as discussed in this appendix.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[2] C.D. Batista and Z. Nussinov, Generalized Elitzur’s theorem and dimensional reduction,
Phys. Rev. B 72 (2005) 045137 [cond-mat/0410599] [INSPIRE].

[3] T. Pantev and E. Sharpe, GLSM’s for gerbes (and other toric stacks), Adv. Theor. Math.
Phys. 10 (2006) 77 [hep-th/0502053] [INSPIRE].

[4] T. Pantev and E. Sharpe, String compactifications on Calabi-Yau stacks, Nucl. Phys. B 733
(2006) 233 [hep-th/0502044] [INSPIRE].

[5] Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for topological quantum order,
Proc. Nat. Acad. Sci. 106 (2009) 16944 [cond-mat/0605316] [INSPIRE].

[6] Z. Nussinov and G. Ortiz, Autocorrelations and thermal fragility of anyonic loops in
topologically quantum ordered systems, Phys. Rev. B 77 (2008) 064302.

[7] Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals Phys.
324 (2009) 977 [cond-mat/0702377] [INSPIRE].

[8] Z. Nussinov, G. Ortiz and E. Cobanera, Effective and exact holographies from symmetries
and dualities, Annals Phys. 327 (2012) 2491 [arXiv:1110.2179] [INSPIRE].

[9] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D
83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[10] J. Distler and E. Sharpe, Quantization of Fayet-Iliopoulos parameters in supergravity, Phys.
Rev. D 83 (2011) 085010 [arXiv:1008.0419] [INSPIRE].

[11] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories,
arXiv:1309.4721 [INSPIRE].

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/literature/1334564
https://doi.org/10.1103/PhysRevB.72.045137
https://arxiv.org/abs/cond-mat/0410599
https://inspirehep.net/literature/667375
https://doi.org/10.4310/ATMP.2006.v10.n1.a4
https://doi.org/10.4310/ATMP.2006.v10.n1.a4
https://arxiv.org/abs/hep-th/0502053
https://inspirehep.net/literature/676180
https://doi.org/10.1016/j.nuclphysb.2005.10.035
https://doi.org/10.1016/j.nuclphysb.2005.10.035
https://arxiv.org/abs/hep-th/0502044
https://inspirehep.net/literature/676120
https://doi.org/10.1073/pnas.0803726105
https://arxiv.org/abs/cond-mat/0605316
https://inspirehep.net/literature/1323486
https://doi.org/10.1103/physrevb.77.064302
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1016/j.aop.2008.11.002
https://arxiv.org/abs/cond-mat/0702377
https://inspirehep.net/literature/819208
https://doi.org/10.1016/j.aop.2012.07.001
https://arxiv.org/abs/1110.2179
https://inspirehep.net/literature/939488
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://inspirehep.net/literature/880647
https://doi.org/10.1103/PhysRevD.83.085010
https://doi.org/10.1103/PhysRevD.83.085010
https://arxiv.org/abs/1008.0419
https://inspirehep.net/literature/864290
https://arxiv.org/abs/1309.4721
https://inspirehep.net/literature/1254598


J
H
E
P
0
1
(
2
0
2
3
)
1
5
0

[12] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001
[arXiv:1401.0740] [INSPIRE].

[13] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal, and
temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[14] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls, and
dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

[15] Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP
12 (2017) 056 [arXiv:1710.08923] [INSPIRE].

[16] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram
of massless ZN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].

[17] Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs models
and persistent order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].

[18] Y. Hirono and Y. Tanizaki, Quark-hadron continuity beyond the Ginzburg-Landau paradigm,
Phys. Rev. Lett. 122 (2019) 212001 [arXiv:1811.10608] [INSPIRE].

[19] Y. Hirono and Y. Tanizaki, Effective gauge theories of superfluidity with topological order,
JHEP 07 (2019) 062 [arXiv:1904.08570] [INSPIRE].

[20] Y. Hidaka, Y. Hirono, M. Nitta, Y. Tanizaki and R. Yokokura, Topological order in the
color-flavor locked phase of a (3 + 1)-dimensional U(N) gauge-Higgs system, Phys. Rev. D
100 (2019) 125016 [arXiv:1903.06389] [INSPIRE].

[21] M.M. Anber and E. Poppitz, On the baryon-color-flavor (BCF) anomaly in vector-like
theories, JHEP 11 (2019) 063 [arXiv:1909.09027] [INSPIRE].

[22] T. Misumi, Y. Tanizaki and M. Ünsal, Fractional θ angle, ’t Hooft anomaly, and quantum
instantons in charge-q multi-flavor Schwinger model, JHEP 07 (2019) 018
[arXiv:1905.05781] [INSPIRE].

[23] Y. Hidaka, M. Nitta and R. Yokokura, Emergent discrete 3-form symmetry and domain
walls, Phys. Lett. B 803 (2020) 135290 [arXiv:1912.02782] [INSPIRE].

[24] M.M. Anber and E. Poppitz, Deconfinement on axion domain walls, JHEP 03 (2020) 124
[arXiv:2001.03631] [INSPIRE].

[25] M.M. Anber and E. Poppitz, Generalized ’t Hooft anomalies on non-spin manifolds, JHEP
04 (2020) 097 [arXiv:2002.02037] [INSPIRE].

[26] Y. Hidaka, Y. Hirono and R. Yokokura, Counting Nambu-Goldstone modes of higher-form
global symmetries, Phys. Rev. Lett. 126 (2021) 071601 [arXiv:2007.15901] [INSPIRE].

[27] N. Yamamoto and R. Yokokura, Topological mass generation in gapless systems, Phys. Rev.
D 104 (2021) 025010 [arXiv:2009.07621] [INSPIRE].

[28] T. Furusawa and M. Hongo, Global anomaly matching in the higher-dimensional CPN−1

model, Phys. Rev. B 101 (2020) 155113 [arXiv:2001.07373] [INSPIRE].

[29] N. Yamamoto and R. Yokokura, Unstable Nambu-Goldstone modes, Phys. Rev. D 106 (2022)
105004 [arXiv:2203.02727] [INSPIRE].

[30] J.C. Baez and A.D. Lauda, Higher-dimensional algebra V: 2-groups, Theor. Appl. Categ. 12
(2004) 423 [math/0307200].

– 21 –

https://doi.org/10.1007/JHEP04(2014)001
https://arxiv.org/abs/1401.0740
https://inspirehep.net/literature/1276138
https://doi.org/10.1007/JHEP05(2017)091
https://arxiv.org/abs/1703.00501
https://inspirehep.net/literature/1515698
https://doi.org/10.1007/JHEP01(2018)110
https://arxiv.org/abs/1708.06806
https://inspirehep.net/literature/1618363
https://doi.org/10.1007/JHEP12(2017)056
https://doi.org/10.1007/JHEP12(2017)056
https://arxiv.org/abs/1710.08923
https://inspirehep.net/literature/1632455
https://doi.org/10.1103/PhysRevD.97.054012
https://arxiv.org/abs/1711.10487
https://inspirehep.net/literature/1639445
https://doi.org/10.21468/SciPostPhys.6.1.003
https://arxiv.org/abs/1705.04786
https://inspirehep.net/literature/1599597
https://doi.org/10.1103/PhysRevLett.122.212001
https://arxiv.org/abs/1811.10608
https://inspirehep.net/literature/1705384
https://doi.org/10.1007/JHEP07(2019)062
https://arxiv.org/abs/1904.08570
https://inspirehep.net/literature/1730334
https://doi.org/10.1103/PhysRevD.100.125016
https://doi.org/10.1103/PhysRevD.100.125016
https://arxiv.org/abs/1903.06389
https://inspirehep.net/literature/1725189
https://doi.org/10.1007/JHEP11(2019)063
https://arxiv.org/abs/1909.09027
https://inspirehep.net/literature/1755073
https://doi.org/10.1007/JHEP07(2019)018
https://arxiv.org/abs/1905.05781
https://inspirehep.net/literature/1735142
https://doi.org/10.1016/j.physletb.2020.135290
https://arxiv.org/abs/1912.02782
https://inspirehep.net/literature/1768680
https://doi.org/10.1007/JHEP03(2020)124
https://arxiv.org/abs/2001.03631
https://inspirehep.net/literature/1775236
https://doi.org/10.1007/JHEP04(2020)097
https://doi.org/10.1007/JHEP04(2020)097
https://arxiv.org/abs/2002.02037
https://inspirehep.net/literature/1778883
https://doi.org/10.1103/PhysRevLett.126.071601
https://arxiv.org/abs/2007.15901
https://inspirehep.net/literature/1809717
https://doi.org/10.1103/PhysRevD.104.025010
https://doi.org/10.1103/PhysRevD.104.025010
https://arxiv.org/abs/2009.07621
https://inspirehep.net/literature/1817505
https://doi.org/10.1103/PhysRevB.101.155113
https://arxiv.org/abs/2001.07373
https://inspirehep.net/literature/1776682
https://doi.org/10.1103/PhysRevD.106.105004
https://doi.org/10.1103/PhysRevD.106.105004
https://arxiv.org/abs/2203.02727
https://inspirehep.net/literature/2047274
https://arxiv.org/abs/math/0307200


J
H
E
P
0
1
(
2
0
2
3
)
1
5
0

[31] A. Kapustin and R. Thorngren, Topological field theory on a lattice, discrete theta-angles and
confinement, Adv. Theor. Math. Phys. 18 (2014) 1233 [arXiv:1308.2926] [INSPIRE].

[32] E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys. 63 (2015) 659
[arXiv:1508.04770] [INSPIRE].

[33] L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string
net constructions of fermionic phases of matter, JHEP 04 (2017) 096 [arXiv:1605.01640]
[INSPIRE].

[34] A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and
bosonization, JHEP 10 (2017) 080 [arXiv:1701.08264] [INSPIRE].

[35] Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8 (2020) 015 [arXiv:1712.09542]
[INSPIRE].

[36] R.C. de Almeida, J.P. Ibieta-Jimenez, J.L. Espiro and P. Teotonio-Sobrinho, Topological
order from a cohomological and higher gauge theory perspective, arXiv:1711.04186
[INSPIRE].

[37] F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies,
JHEP 03 (2019) 118 [arXiv:1803.09336] [INSPIRE].

[38] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries,
JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

[39] C. Delcamp and A. Tiwari, From gauge to higher gauge models of topological phases, JHEP
10 (2018) 049 [arXiv:1802.10104] [INSPIRE].

[40] X.-G. Wen, Emergent anomalous higher symmetries from topological order and from
dynamical electromagnetic field in condensed matter systems, Phys. Rev. B 99 (2019) 205139
[arXiv:1812.02517] [INSPIRE].

[41] C. Delcamp and A. Tiwari, On 2-form gauge models of topological phases, JHEP 05 (2019)
064 [arXiv:1901.02249] [INSPIRE].

[42] R. Thorngren, Topological quantum field theory, symmetry breaking, and finite gauge theory
in 3 + 1D, Phys. Rev. B 101 (2020) 245160 [arXiv:2001.11938] [INSPIRE].

[43] C. Cordova, T.T. Dumitrescu and K. Intriligator, 2-group global symmetries and anomalies in
six-dimensional quantum field theories, JHEP 04 (2021) 252 [arXiv:2009.00138] [INSPIRE].

[44] P.-S. Hsin and A. Turzillo, Symmetry-enriched quantum spin liquids in (3 + 1)d, JHEP 09
(2020) 022 [arXiv:1904.11550] [INSPIRE].

[45] P.-S. Hsin and H.T. Lam, Discrete theta angles, symmetries and anomalies, SciPost Phys. 10
(2021) 032 [arXiv:2007.05915] [INSPIRE].

[46] S. Gukov, P.-S. Hsin and D. Pei, Generalized global symmetries of T [M ] theories. Part I,
JHEP 04 (2021) 232 [arXiv:2010.15890] [INSPIRE].

[47] N. Iqbal and N. Poovuttikul, 2-group global symmetries, hydrodynamics and holography,
arXiv:2010.00320 [INSPIRE].

[48] T. Brauner, Field theories with higher-group symmetry from composite currents, JHEP 04
(2021) 045 [arXiv:2012.00051] [INSPIRE].

[49] O. DeWolfe and K. Higginbotham, Generalized symmetries and 2-groups via electromagnetic
duality in AdS/CFT, Phys. Rev. D 103 (2021) 026011 [arXiv:2010.06594] [INSPIRE].

– 22 –

https://doi.org/10.4310/ATMP.2014.v18.n5.a4
https://arxiv.org/abs/1308.2926
https://inspirehep.net/literature/1247704
https://doi.org/10.1002/prop.201500048
https://arxiv.org/abs/1508.04770
https://inspirehep.net/literature/1388750
https://doi.org/10.1007/JHEP04(2017)096
https://arxiv.org/abs/1605.01640
https://inspirehep.net/literature/1455906
https://doi.org/10.1007/JHEP10(2017)080
https://arxiv.org/abs/1701.08264
https://inspirehep.net/literature/1511348
https://doi.org/10.21468/SciPostPhys.8.1.015
https://arxiv.org/abs/1712.09542
https://inspirehep.net/literature/1645295
https://arxiv.org/abs/1711.04186
https://inspirehep.net/literature/1638646
https://doi.org/10.1007/JHEP03(2019)118
https://arxiv.org/abs/1803.09336
https://inspirehep.net/literature/1664368
https://doi.org/10.1007/JHEP02(2019)184
https://arxiv.org/abs/1802.04790
https://inspirehep.net/literature/1654854
https://doi.org/10.1007/JHEP10(2018)049
https://doi.org/10.1007/JHEP10(2018)049
https://arxiv.org/abs/1802.10104
https://inspirehep.net/literature/1657932
https://doi.org/10.1103/PhysRevB.99.205139
https://arxiv.org/abs/1812.02517
https://inspirehep.net/literature/1707515
https://doi.org/10.1007/JHEP05(2019)064
https://doi.org/10.1007/JHEP05(2019)064
https://arxiv.org/abs/1901.02249
https://inspirehep.net/literature/1712746
https://doi.org/10.1103/PhysRevB.101.245160
https://arxiv.org/abs/2001.11938
https://inspirehep.net/literature/1778135
https://doi.org/10.1007/JHEP04(2021)252
https://arxiv.org/abs/2009.00138
https://inspirehep.net/literature/1814347
https://doi.org/10.1007/JHEP09(2020)022
https://doi.org/10.1007/JHEP09(2020)022
https://arxiv.org/abs/1904.11550
https://inspirehep.net/literature/1731574
https://doi.org/10.21468/SciPostPhys.10.2.032
https://doi.org/10.21468/SciPostPhys.10.2.032
https://arxiv.org/abs/2007.05915
https://inspirehep.net/literature/1806596
https://doi.org/10.1007/JHEP04(2021)232
https://arxiv.org/abs/2010.15890
https://inspirehep.net/literature/1827339
https://arxiv.org/abs/2010.00320
https://inspirehep.net/literature/1820600
https://doi.org/10.1007/JHEP04(2021)045
https://doi.org/10.1007/JHEP04(2021)045
https://arxiv.org/abs/2012.00051
https://inspirehep.net/literature/1834262
https://doi.org/10.1103/PhysRevD.103.026011
https://arxiv.org/abs/2010.06594
https://inspirehep.net/literature/1822770


J
H
E
P
0
1
(
2
0
2
3
)
1
5
0

[50] B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius and I. Valenzuela,
Chern-Weil global symmetries and how quantum gravity avoids them, JHEP 11 (2021) 053
[arXiv:2012.00009] [INSPIRE].

[51] F. Apruzzi, S. Schafer-Nameki, L. Bhardwaj and J. Oh, The global form of flavor symmetries
and 2-group symmetries in 5d SCFTs, SciPost Phys. 13 (2022) 024 [arXiv:2105.08724]
[INSPIRE].

[52] L. Bhardwaj, 2-group symmetries in class S, SciPost Phys. 12 (2022) 152
[arXiv:2107.06816] [INSPIRE].

[53] J.C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Rel. Grav. 43 (2011)
2335 [arXiv:1003.4485] [INSPIRE].

[54] Y. Hidaka, M. Nitta and R. Yokokura, Higher-form symmetries and 3-group in axion
electrodynamics, Phys. Lett. B 808 (2020) 135672 [arXiv:2006.12532] [INSPIRE].

[55] Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in
axion electrodynamics, JHEP 01 (2021) 173 [arXiv:2009.14368] [INSPIRE].

[56] Y. Hidaka, M. Nitta and R. Yokokura, Global 4-group symmetry and ’t Hooft anomalies in
topological axion electrodynamics, PTEP 2022 (2022) 04A109 [arXiv:2108.12564]
[INSPIRE].

[57] T.D. Brennan and C. Cordova, Axions, higher-groups, and emergent symmetry, JHEP 02
(2022) 145 [arXiv:2011.09600] [INSPIRE].

[58] E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

[59] P. Sikivie, On the interaction of magnetic monopoles with axionic domain walls, Phys. Lett.
B 137 (1984) 353 [INSPIRE].

[60] X.-L. Qi, T. Hughes and S.-C. Zhang, Topological field theory of time-reversal invariant
insulators, Phys. Rev. B 78 (2008) 195424 [arXiv:0802.3537] [INSPIRE].

[61] J.C.Y. Teo and C.L. Kane, Topological defects and gapless modes in insulators and
superconductors, Phys. Rev. B 82 (2010) 115120 [arXiv:1006.0690] [INSPIRE].

[62] Z. Wang and S.-C. Zhang, Chiral anomaly, charge density waves, and axion strings from
Weyl semimetals, Phys. Rev. B 87 (2013) 161107 [arXiv:1207.5234] [INSPIRE].

[63] M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory
and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP11(2021)053
https://arxiv.org/abs/2012.00009
https://inspirehep.net/literature/1834242
https://doi.org/10.21468/SciPostPhys.13.2.024
https://arxiv.org/abs/2105.08724
https://inspirehep.net/literature/1864154
https://doi.org/10.21468/SciPostPhys.12.5.152
https://arxiv.org/abs/2107.06816
https://inspirehep.net/literature/1883946
https://doi.org/10.1007/s10714-010-1070-9
https://doi.org/10.1007/s10714-010-1070-9
https://arxiv.org/abs/1003.4485
https://inspirehep.net/literature/849715
https://doi.org/10.1016/j.physletb.2020.135672
https://arxiv.org/abs/2006.12532
https://inspirehep.net/literature/1802537
https://doi.org/10.1007/JHEP01(2021)173
https://arxiv.org/abs/2009.14368
https://inspirehep.net/literature/1820337
https://doi.org/10.1093/ptep/ptab150
https://arxiv.org/abs/2108.12564
https://inspirehep.net/literature/1913614
https://doi.org/10.1007/JHEP02(2022)145
https://doi.org/10.1007/JHEP02(2022)145
https://arxiv.org/abs/2011.09600
https://inspirehep.net/literature/1831379
https://doi.org/10.1016/0370-2693(79)90838-4
https://inspirehep.net/literature/142191
https://doi.org/10.1016/0370-2693(84)91731-3
https://doi.org/10.1016/0370-2693(84)91731-3
https://inspirehep.net/literature/14326
https://doi.org/10.1103/PhysRevB.78.195424
https://arxiv.org/abs/0802.3537
https://inspirehep.net/literature/780249
https://doi.org/10.1103/PhysRevB.82.115120
https://arxiv.org/abs/1006.0690
https://inspirehep.net/literature/857390
https://doi.org/10.1103/PhysRevB.87.161107
https://arxiv.org/abs/1207.5234
https://inspirehep.net/literature/1123523
https://doi.org/10.1016/0370-2693(84)91565-X
https://inspirehep.net/literature/15583

	Introduction
	2n-dimensional axion electrodynamics
	Symmetries
	Background gauging and 't Hooft anomaly

	The n=3 case
	Charged objects
	EoM-based symmetries
	Chern-Weil symmetries

	Correlation functions of symmetry generators
	Correlation functions of two EoM-based symmetry generators
	Correlation functions of symmetry generators of higher ranks


	Conclusion and discussion
	Alternative method of computing correlation functions



