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1 Introduction

The origin of hierarchical fermion masses and flavor mixing parameters is a long-standing
puzzle of particle physics, and flavor symmetry has been extensively studied as a guiding
principle to understand the flavor puzzle, see refs. [1–4] for review on this topic. The modu-
lar invariance as flavor symmetry was recently proposed to provide a promising framework
to address the flavor structure of SM. The Yukawa couplings are constrained to be modular
forms of level N which are holomorphic functions of the complex modulus τ , and the flavor
symmetry could be uniquely broken down by the vacuum expectation value of τ . The
modular flavor symmetry allows to construct predictive flavor models characterized by a
small number of Lagrangian parameters, and it is remarkable that all higher-dimensional
operators in the superpotential are unambiguously determined in the limit of unbroken
supersymmetry (SUSY).

The model construction is based the inhomogeneous finite modular groups ΓN ≡
Γ̄/Γ̄(N) [5] or homogeneous finite modular groups Γ′N ≡ Γ/Γ(N) [6]. For finite mod-
ular groups of small order, many lepton and quark mass models have been constructed
and discussed, for example Γ2 ∼= S3 [7, 8], Γ3 ∼= A4 [5, 7–27], Γ4 ∼= S4 [16, 28–36],
Γ5 ∼= A5 [33, 37, 38], Γ7 ∼= PSL(2,Z7) [39], Γ′3 ∼= T ′ [6, 40, 41], Γ′4 ∼= S′4 [42, 43], Γ′5 ∼= A′5 [44–
46] and Γ′6 ∼= S3×T ′ [47]. In the modular invariant models, the Yukawa couplings are inte-
ger weight modular forms of the principal congruence subgroup Γ(N). Recently, ΓN and Γ′N
has been extended to the most general finite modular groups [48], where the modular forms
of level N are generalized to be the vector valued modular forms of SL(2,Z). Moreover,
the rational weight modular forms in modular flavor symmetry and the metaplectic finite
modular groups Γ̃N ≡ Γ̃/Γ̃(N) are discussed in refs. [45, 49]. It is known that there are only
three independent fixed points τ = i, e2πi/3, i∞ in the fundamental domain of the modular
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group [16]. It has been recognized that the mass hierarchies of the charged leptons can arise
from the deviation of the complex modulus from these fixed points [50–53]. In the top-down
approaches such as string theory, generally multiple moduli are involved. In view of this,
the SL(2,Z) modular symmetry with single complex modulus has been extended to the
Sp(2g,Z) symplectic modular symmetry and even other modular symmetries in higher di-
mensional moduli space [54], where the classical modular forms are replaced by more general
automorphic forms. The symplectic modular symmetry would be reduced to the product of
several SL(2,Z) with certain mirror symmetry [30, 32] when the moduli space is factorized
into several independent tori. The predictive power of modular symmetry can be further im-
proved by including the generalized CP symmetry. It is found that the generalized CP sym-
metry can be consistently combined with symplectic modular symmetries for both single
modulus with g = 1 [55–57] and multiple moduli with g ≥ 2 [58]. The generalized CP sym-
metry can enforce the coupling constants to be real in certain representation basis, so that
the vacuum expectation value (VEV) of τ is the unique source of flavor symmetry break-
ing and CP violation. The modular symmetry can also be embedded in SU(5) and SO(10)
Grand Unified Theories [59–67]. Furthermore, the modular symmetry can naturally appear
in top-down constructions [56, 68–76]. However, it is found that the modular symmetry is
usually accompanied by traditional flavor symmetry, this scheme is named as eclectic flavor
group [77–81]. Some models based on eclectic flavor symmetry have been proposed [25, 82].

The modular flavor symmetry is attractive because the modular invariant mass models
usually contain only a few free input parameters, so they have a certain predictive power.
Therefore, it is of great significance to find a realistic model with the least free parameters
in this framework. As far as we know, the modular invariant models in the literature require
at least 7 parameters to explain 12 observables in the lepton sector alone [22, 36, 43, 55],
and at least 9 parameters to explain 10 observables in the quark sector alone [22, 36, 43].
In this paper, after searching a large number of possible models, we succeeded in finding a
modular invariant lepton model with the fewest parameters so far, which contains only 6
real free parameters but successfully matches the current experimental data. We carefully
analyze the best-fit values of this model and perform an exhaustive scan of the parameter
space, we find interesting features of the neutrino mixing angles and CP violation phases
predicted by this model. On the other hand, the modular invariant supersymmetry theory
constrains not only the flavor structures of quarks and leptons, but also the flavor structures
of their superpartners, which leads to specific patterns in soft SUSY breaking terms [61, 83].
These terms will cause lepton flavor violation at low energy. Therefore, we also study the
soft SUSY breaking terms in our minimal lepton model and their flavor phenomenological
implications such as the branching ratio of rare decay µ→ eγ.

This paper is organized as follows. In section 2, the modular symmetry and the soft
SUSY breaking terms in modular invariant supergravity are reviewed. In section 3, we
present the minimal lepton model which is based on finite modular group S′4, and also
analyze the predictions of this model numerically. In section 4, we show the soft breaking
terms in our minimal model, and calculate the branch ratio of lepton flavor violation process
µ→ eγ. The finite modular group Γ′4 ∼= S′4 and its Clebsch-Gordan coefficients are given in
appendix A. We give the explicit expressions of the relevant modular forms in appendix B.
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2 Modular symmetry and soft terms in supergravity

We restrict ourselves to the framework of modular invariant supergravity with single mod-
ulus [5, 84], and consider the moduli-mediated SUSY breaking [85–88]. The modular sym-
metry is described by the modular group Γ ≡ SL(2,Z) which consists of two-dimensional
matrices with integer entries:

SL(2,Z) =


a b

c d

 ∣∣∣ ad− bc = 1 , a, b, c, d ∈ Z

 . (2.1)

It can be generated by two generators S and T

S =

 0 1
−1 0

 , T =

1 1
0 1

 . (2.2)

They obey the following relations

S4 = (ST )3 = 1 , S2T = TS2 . (2.3)

Note that S2 = −12, where 12 denotes the two-dimensional identity matrix. The modular
group Γ acts on the complex upper half-plane H = {τ ∈ C | Imτ > 0} by linear fractional
transformation

γτ ≡ aτ + b

cτ + d
, γ =

a b
c d

 ∈ Γ . (2.4)

It is easy to find that γ and −γ give the same action on τ and thus the faithful action of the
linear fractional transformation is given by the projective special linear group PSL(2,Z)
which is the quotient group PSL(2,Z) ∼= SL(2,Z)/{±12}.

The action of modular group on the matter fields Φi is assumed as follows

Φi
γ−→ (cτ + d)−kiρ(γ)Φi , (2.5)

where −ki is called the modular weight of matter field Φi, and ρ(γ) is the unitary irreducible
representation of SL(2,Z) with finite image [48]. In general, the representation can be taken
for cases where its kernels are principal congruence subgroups Γ(N), and the ρ(γ) is often
referred to as the representation of finite modular groups Γ′N ≡ Γ/Γ(N).

The full N = 1 supergravity Lagrangian is specified in terms of two functions: the
gauge kinetic function fa and the real gauge-invariant Kähler function G(τ,Φi; τ̄ , Φ̄i).1 fa
determines the kinetic terms for the fields in the vector multiplets and in particular the
gauge coupling constant, Refa = 1/g2

a, where the subscript a is associated with the different
gauge groups of the theory. The Kähler function is the combination [85, 88]:

G(τ,Φi; τ̄ , Φ̄i) = K(τ,Φi; τ̄ , Φ̄i) + logW(τ,Φi) + logW(τ̄ , Φ̄i) , (2.6)
1We use the standard supergravity mass units, namely the reduced Planck massMp ≡MPlanck/

√
8π = 1.
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where the Kähler potential and superpotential have the form

K = Kτ +Kmatter + . . . , (2.7)
W = Yijk(τ)ΦiΦjΦk + µij(τ)ΦiΦj + . . . . (2.8)

In particular, we take the minimal form of Kähler potential [5]

Kτ = − log(−i(τ − τ̄)) , Kmatter = K̃īi|Φi|2 = (−i(τ − τ̄))−ki |Φi|2 , (2.9)

where K̃īi is the Kähler metric. As you can see, the transformation of the Kähler potential
induced by the modular transformation of fields is exactly a Kähler transformation:

K γ−→ K + log(cτ + d) + log(cτ̄ + d) . (2.10)

Hence, the modular invariance of Kähler function G requires that the superpotential must
be transformed complementally:

W γ−→ (cτ + d)−1W . (2.11)

In other words, the superpotential behaves like a chiral superfield with modular weight
−1. Modular invariance requires that the Yukawa couplings Yijk(τ) in eq. (2.8) should be
modular forms of weight kY , specifically,

Yijk(τ) γ−→ Yijk(γτ) = (cτ + d)kY ρ(γ)(ijk)(lmn)Ylmn(τ) (2.12)

with kY = ki + kj + kk − 1 and product ρ× ρi × ρj × ρk contains an invariant singlet.
The scalar component of modulus in the hidden sector, τ , may obtain a large VEV

that induces SUSY breaking via non-vanishing VEV of its auxiliary field F τ . The graviton
becomes massive and its mass is given by [85, 88]

m3/2 = eG/2Mp . (2.13)

On the other hand, after taking the so-called flat limit where Mp → ∞ but m3/2 is kept
fixed, all that is left in the observable sector is an effective global SUSY Lagrangian plus a
set of soft SUSY-breaking terms. The effective superpotential is given by [85, 88]

W(eff)(Φi) = Ŷijk(τ)Φ̂iΦ̂jΦ̂k + µ̂ij(τ)Φ̂iΦ̂j (2.14)

in the canonically normalized basis, with normalized Yukawa couplings and normalized
masses

Ŷijk = Yijke
Kτ/2

(
K̃īiK̃jj̄K̃kk̄

)−1/2
, µ̂ij = µije

Kτ/2
(
K̃īiK̃jj̄

)−1/2
. (2.15)

The effective soft SUSY-breaking Lagrangian in the canonically normalized basis is given
by [85, 88]

Lsoft = 1
2
(
Maλ̂

aλ̂a + h.c.
)
− m̃2

i
¯̂ΦiΦ̂i −

(
AijkŶijkΦ̂iΦ̂jΦ̂k +Bµ̂ĤuĤd + h.c.

)
(2.16)
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with
m̃2
i = m2

3/2 − |F
τ |2∂τ̄∂τ log K̃īi ,

Ma = 1
2 (Refa)−1 F τ∂τfa ,

Aijk = F τ
[
∂τKτ + ∂τ log Yijk − ∂τ log

(
K̃īiK̃jj̄K̃kk̄

)]
,

B = F τ
[
∂τKτ + ∂τ logµ− ∂τ log

(
K̃HuK̃Hd

)]
−m3/2 ,

(2.17)

where K̃Hu,d = (−i(τ − τ̄))−kHu,d , Φ̂i and λ̂a are the scalar and gaugino canonically nor-
malized fields respectively

Φ̂i = K̃1/2
īi

Φi , λ̂a = (Refa)1/2λa . (2.18)

3 A minimal neutrino mass model based on S′4 modular symmetry

In this section, we shall present a model for neutrino masses and mixing based on the S′4
modular symmetry, and it depends on only six real parameters including the modulus τ .
It is the phenomenologically viable lepton mass model with the smallest number of free
parameters as far as we know. The generalized CP (gCP) symmetry has been included
in this model in order to increase the predictive power. It is known that the complex
modulus τ transforms as τ → −τ∗ under the action of gCP. In the symmetric basis where
both modular generator S and T are represented by symmetric and unitary matrices, gCP
reduces to the canonical CP transformation [55, 58]. As a consequence, the gCP symmetry
would constrain all couplings constants to be real in the representation basis with real
Clebsch-Gordan coefficients. As shown in appendix A, we indeed works in the symmetric
basis of S′4 and all the Clebsch-Gordan coefficients are real.

In this model, the neutrino masses are described by type-I seesaw mechanism. We in-
troduce three right-handed neutrinos N c = (N c

1 , N
c
2 , N

c
3)T and assume that they transform

according to the triplet 3 of S′4. In charged lepton sector, the first two generations of the
right-handed charged leptons EcD = (Ec1, Ec2)T are assigned to the doublet representation
2̂, and the third generation of the right-handed charged leptons Ec3 is assigned to be S′4
singlet. The left-handed charged lepton L = (L1, L2, L3)T transforms as a triplet 3. The
representation and weight assignments of the fields are summarized as follows:2

ρEc = 2̂⊕ 1̂′, ρL = 3, ρNc = 3, ρHu = ρHd = 1 ,
kEc1,2,3 = 9/2 , kNc = 3/2, kL = −1/2 , kHu = kHd = 0 . (3.1)

The superpotential of the lepton sector includes:

We = α
(
EcDLY

(3)
3̂′

)
1
Hd + β

(
EcDLY

(3)
3̂

)
1
Hd + γ

(
Ec3LY

(3)
3̂

)
1
Hd ,

Wν = g1 (N cL)1Hu + Λ
(
(N cN c)2,sY

(2)
2

)
1
. (3.2)

2This model can be revamped into a N = 1 global SUSY modular model by only shifting the modular
weights of matter fields as kEc

1,2,3
= 4, kNc = 1, kL = −1.

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
5

Then, the charged lepton and neutrino mass matrices can be read off by using the Clebsch-
Gordon coefficients of S′4 shown in appendix A:

Me =


2αY (3)

3̂′,1 − αY (3)
3̂′,3 +

√
3βY (3)

3̂,2 − αY (3)
3̂′,2 +

√
3βY (3)

3̂,3

−2βY (3)
3̂,1

√
3αY (3)

3̂′,2 + βY
(3)

3̂,3

√
3αY (3)

3̂′,3 + βY
(3)

3̂,2

γY
(3)

3̂,1 γY
(3)

3̂,3 γY
(3)

3̂,2

 vd ,

MD = g


1 0 0
0 0 1
0 1 0

 vu , MN = Λ


2Y (2)

2,1 0 0
0
√

3Y (2)
2,2 −Y

(2)
2,1

0 −Y (2)
2,1
√

3Y (2)
2,2

 . (3.3)

The light neutrino mass matrix Mν is given by the seesaw formula

Mν = −MT
DM

−1
N MD = g2v2

u

Λ


− 1

2Y (2)
2,1

0 0

0
√

3 Y (2)
2,2

Y
(2)2

2,1 −3Y (2)2
2,2

Y
(2)

2,1

Y
(2)2

2,1 −3Y (2)2
2,2

0 Y
(2)

2,1

Y
(2)2

2,1 −3Y (2)2
2,2

√
3 Y (2)

2,2

Y
(2)2

2,1 −3Y (2)2
2,2

 . (3.4)

It is remarkable that the light neutrino mass matrix Mν is a block diagonal matrix, and
consequently we can easily read off the light neutrino masses as follows:

m1 = 1
|2Y (2)

2,1 |
g2v2

u

Λ , m2 = 1
|Y (2)

2,1 −
√

3Y (2)
2,2 |

g2v2
u

Λ , m3 = 1
|Y (2)

2,1 +
√

3Y (2)
2,2 |

g2v2
u

Λ . (3.5)

In the modular invariant models, the determinants of the lepton mass matrices are some
one-dimensional vector-valued modular forms of SL(2,Z) [48]. In this minimal model, we
have

det[Me(τ)] = −96
√

6v3
dγ(β2 − 3α2)η18(τ) , (3.6)

where η(τ) = eπiτ/12∏∞
n=1(1 − e2πinτ ) is the well-known Dedekind eta function. We see

that the small electron mass can be naturally reproduced for β ≈ ±
√

3α.
As explained at the beginning of this section, the gCP symmetry constrains all cou-

plings to be real in our working basis. Thus, all lepton flavor observables only depend
on four coupling constants α, β, γ, g2/Λ plus the complex modulus 〈τ〉 in our model. A
notable feature of this model is that the light neutrino mass matrix as well as the neutrino
mass ratios are completely determined by the modulus τ up to the overall scale g2v2

u/Λ.
After numerical fitting, we find the experimental data can be accommodated only if the
neutrino masses are normal ordering, and the best-fit values of the input parameters that
agree well with the experimental data are given by [89]:

〈τ〉 = −0.193773 + 1.08321i , β/α = 1.73048 , γ/α = 0.27031 ,
αvd = 244.621 MeV , g2v2

u/Λ = 29.0744 meV ,
(3.7)

where αvd and g2v2
u/Λ are fixed by the measured values of the electron mass and the solar

mass squared splitting ∆m2
21 respectively [89]. It is worth noting that all dimensionless
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Re〈τ〉

Im
〈τ
〉

Figure 1. The region of modulus τ compatible with experimental data, where the gray line is
the boundary of the fundamental domain. The blue region represents the feasible range of 〈τ〉
compatible with the data ∆m2

21/∆m2
31 of the neutrino mass squared difference [89]. The orange

area denotes the viable region of 〈τ〉 limited only by the measured values of the charged lepton
mass ratios and the reactor mixing angle θ13 [89, 90].

input parameters happen to be O(1), and β/α is close to
√

3. Notice that the electron
mass is exactly vanishing when β/α =

√
3, see eq. (3.6). At the above best fit point, the

charged lepton mass ratios, the lepton mixing angles, CP violating phases and the neutrino
masses are determined to be:

sin2 θ12 = 0.328920 , sin2 θ13 = 0.0218499 , sin2 θ23 = 0.506956 , δCP = 1.34256π ,
α21 = 1.32868π , α31 = 0.544383π , me/mµ = 0.00472633, mµ/mτ = 0.0587566 ,
m1 = 14.4007 meV , m2 = 16.7803 meV , m3 = 51.7755 meV , (3.8)
mβ = 16.8907 meV , mββ = 9.25333 meV ,

where mβ is the effective neutrino mass probed by direct kinematic search in tritium beta
decay and mββ is the effective mass in neutrinoless double beta decay. We see that the
neutrino mass sum is predicted to be m1 + m2 + m3 = 82.9565 meV which is compatible
with the upper limit of Planck ∑imi < 120 meV [91]. We would like to emphasize that
inverted neutrino mass ordering is disfavored in our model. The predicted neutrino mixing
angles and CP violation phase δCP are within the 3σ intervals of the latest global fit NuFIT
v5.1 without SK atmospheric data [89], the charged lepton mass ratios are compatible with
their renormalization group (RG) running values at the GUT scale 2 × 1016 GeV, where
MSUSY = 1 TeV , tan β = 5 is taken as a benchmark [90].
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From eq. (3.5), we see that the light neutrino masses only depends on the VEV of
the modulus τ and the overall mass scale g2v2

u/Λ. Hence we can use the measure value
of the ratio ∆m2

21/∆m2
31 to constrain the range of 〈τ〉, where ∆m2

21 ≡ m2
2 − m2

1 and
∆m2

31 ≡ m2
3 −m2

1 are the solar and atmospheric neutrino mass squared differences respec-
tively. The corresponding result is shown in the blue region of figure 1. Furthermore, we
use the precisely measured values of the reactor angle θ13 and the charged lepton mass
ratios me/mµ, mµ/mτ to limit the phenomenologically allowed region of 〈τ〉, and the two
parameters β/α and γ/α are allowed to vary freely. The corresponding result is displayed
by the orange area in figure 1. Therefore, the modulus should lie in two small regions
around −0.19 + 1.08i and 0.19 + 1.08i in order to accommodate the current data. More-
over, we have also comprehensively explored the parameter space of this minimal model.
Requiring the three charged lepton masses me,µ,τ , the three lepton mixing angles θ12, θ13,
θ23 and the neutrino squared mass splittings ∆m2

21 and ∆m2
31 to lie in the experimentally

allowed 3σ regions [89], we get the correlations between the free parameters and observ-
able quantities, which are shown in figure 2. If 〈τ〉 is changed to −〈τ〉∗ and the values of
coupling constants are kept intact, the sign of the CP violation phases δCP , α21, α31 would
be reversed while predictions for lepton masses and mixing angles remain the same. As a
consequence, we only plot the region of Re〈τ〉 < 0 for simplicity. It can be seen that the
overlapping region in figure 1 almost coincides with the 〈τ〉 region shown in figure 2. It is
remarkable that the phenomenologically viable parameter space is actually very small.

In particular, we notice that the neutrino mixing angle sin2 θ23 is limited in the range
of 0.504 and 0.510 which is in the second octant, the Dirac CP violation phase δCP lie in a
very small interval [1.316π, 1.364π]. These predictions for θ23 and δCP could be tested in
forthcoming long baseline neutrino experiments DUNE [93] and T2HK [94]. In addition, the
neutrino mixing angles sin2 θ12 and sin2 θ13 also show a certain correlation, this feature is
expected to be tested at JUNO [95] which can measure the solar angle θ12 with sub-percent
precision. Moreover, the Majorana CP violation phases are also found to lie in quite narrow
regions α21 ∈ [1.309π, 1.352π] and α31 ∈ [0.510π, 0.576π]. Consequently we have a definite
prediction for the effective Majorana mass mββ in the interval [8.543 meV, 10.010 meV]
which is within the reach of future ton-scale neutrinoless double beta decay experiments.

4 Lepton flavor violation in the minimal modular model

The SUSY flavor phenomena of lepton flavor violations (LFV) for lepton sector have been
discussed in the traditional flavor symmetry models [96–98] and modular flavor models [83,
99]. In this section, we will discuss the SUSY flavor phenomena in our minimal modular
lepton model.

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
5

Figure 2. The predicted correlations between the input free parameters, neutrino mixing angles,
and CP violation phases in the minimal model. The plots only display the points that can reproduce
the charged lepton masses, ∆m2

21, ∆m2
31 and all the three lepton mixing angles at 3σ level [89]. In

the top-right panel, the red dashed lines are the 3σ bounds of the mixing angles. In the bottom right
panel for mββ , the blue (red) dashed lines represent the most general allowed regions for normal
ordering (inverted ordering) neutrino mass spectrum, where the neutrino oscillation parameter are
varied within their 3σ ranges. Moreover, the vertical grey exclusion band stands for the most radical
upper bound

∑
imi < 0.12 eV form Planck [91]. The horizontal grey band represents the present

upper limit mββ ≤ (36− 156) meV from KamLAND-Zen [92].

From the general results of the Kähler potential eq. (2.9) and the soft terms eq. (2.17),
we can obtain the expressions of the soft mass and A-term coefficient as follows:3

m̃2
i = m2

3/2 − ki
|F τ |2

(2Imτ)2 , (4.1)

Aijk = i(ki + kj + kk − 1) F τ

2Imτ −
F τ

Yijk

dYijk
dτ

. (4.2)

In order to estimate the magnitude of the flavor changing neutral current (FCNC), we take
the so-called mass insertion (MI) approximation, and move to the super-CKM (SCKM)
basis, i.e., the basis where through a rotation of the whole superfield (fermion + sfermion),
we obtain diagonal Yukawa couplings for the corresponding fermion fields. The mass

3Interestingly, the soft mass m̃2
i is modular invariant because gravitino mass m3/2 is modular invariant

and F τ has modular weight −2. The A-terms hijk ≡ YijkAijk transform in the same way as Yijk and they
are the non-holomorphic modular forms of weight kY [100].
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insertion parameters
(
δ`LL

)
ij
,
(
δ`LR

)
ij
,
(
δ`RL

)
ij
and

(
δ`RR

)
ij
are defined by

 m̃2
eL m̃2

eLR

m̃2
eRL m̃

2
eRR

 = m2
˜̀

δ`LL δ`LR

δ`RL δ
`
RR

+ diag
(
m2

˜̀
)
, (4.3)

where m˜̀ refers to the average slepton mass, and

m̃2
eL = diag

(
m2

3/2 + 3
2
|F τ |2

(2Imτ)2 ,m
2
3/2 + 3

2
|F τ |2

(2Imτ)2 ,m
2
3/2 + 3

2
|F τ |2

(2Imτ)2

)
,

m̃2
eR = diag

(
m2

3/2 −
11
2
|F τ |2

(2Imτ)2 ,m
2
3/2 −

11
2
|F τ |2

(2Imτ)2 ,m
2
3/2 −

11
2
|F τ |2

(2Imτ)2

)
,

m̃2
eRL = vdAijkYijk = −F τ

(
d

dτ
− i 3

2Imτ

)
Me ,

m̃2
eLR = m̃2 †

eRL . (4.4)

As we can see, the soft mass m̃i is flavor blind due to the common weights for three
generations, therefore, only the A-term contributes to the LFV. The off-diagonal elements
of the trilinear scalar coupling Aijk are not suppressed by the tiny neutrino masses, so that
the resulting LFV decay branching ratios could be in the range of sensitivity of forthcoming
experiments [101–105].

Note that our model is defined at high energy scales Q0 (for example, GUT scale), so in
order to analyze the phenomenology of these quantities at low energy scale Q (for example
1TeV), we need to consider the effects of their RG running. We take tan β = 5, then the
largest contributions to the elements of the A-term arise from those of gauge couplings, we
can estimate the running effects by [106, 107]

Aijk(Q) ' e−
1

16π2
∫ Q
Q0

dt( 9
5g

2
1+3g2

2)
Aijk(Q0) ≈ 1.4Aijk(Q0) , (4.5)

where g1,2 are the SU(2)L × U(1)Y gauge couplings and t = logQ/Q0, we take Q0 =
1016 TeV, Q = 1 TeV. We denote the common scale of soft mass for all scalar particles by
m0, and the common scale of gauginos masses by M1/2, these two parameters are not fixed
by modular flavor symmetry. At Q0, we take the bino mass M1 and wino mass M2 as

M1(Q0) = M2(Q0) = M1/2 . (4.6)

The RG effects lead to the following gauginos masses at low energy scale Q [106, 107]:

M1(Q) ' α1(Q)
α1(Q0)M1(Q0) , M2(Q) ' α2(Q)

α2(Q0)M1(Q0) , (4.7)

where αi = g2
i /4π and α1(Q0) = α2(Q0) ' 1/25 at GUT scale Q0 = 1016 GeV. At low

energy scale Q = 1 TeV we have

M1 = 0.49M1/2 , M2 = 0.86M1/2 . (4.8)
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The amplitude of rare decay `i → `jγ has the form [101–103, 108–111]

M(`i → `jγ) = m`iε
λūj(p− q)

[
iqνσλν

(
AijLPL +AijRPR

)]
ui(p) , (4.9)

where p and q are momenta of the leptons `i and photon respectively, PR,L = 1
2(1±γ5) and

AL,R are the two possible amplitudes entering the process. The lepton mass factor m`i is
associated to the chirality flip present in this transition. The branching ratio of `i → `jγ

can be written as

BR (`i → `jγ)
BR (`i → `jνiνj)

= 48π3αe
G2
F

(∣∣∣AijL ∣∣∣2 +
∣∣∣AijR∣∣∣2) , (4.10)

where αe is the electromagnetic fine-structure constant and GF is the Fermi coupling
constant. In the mass insertion approximation, the amplitudes read as [112, 113]

AijL = α2
4π

(
δ`LL

)
ij

m2
˜̀

[
f1n (a2) + f1c (a2) + µM2 tan β(

M2
2 − µ2) (f2n (a2, b) + f2c (a2, b))

+ tan2 θW

(
f1n (a1) + µM1 tan β

(
f3n (a1)
m2

˜̀
+ f2n (a1, b)(

µ2 −M2
1
)))]

+ α1
4π

(
δ`RL

)
ij

m2
˜̀

(
M1
m`i

)
2f2n (a1) ,

AijR = α1
4π


(
δ`RR

)
ij

m2
˜̀

[
4f1n (a1) + µM1 tan β

(
f3n (a1)
m2

˜̀
− 2f2n (a1, b)(

µ2 −M2
1
))]

+

(
δ`LR

)
ij

m2
˜̀

(
M1
m`i

)
2f2n (a1)

 ,

(4.11)

where θW is the weak mixing angle and m`i is the charged lepton mass, a1,2 = M2
1,2/m

2
˜̀,

b = µ2/m2
˜̀ and fi(c,n)(x, y) = fi(c,n)(x) − fi(c,n)(y). The parameter µ is given through

the requirement of the correct electroweak symmetry breaking, at low energy scale we
have [96, 114],

|µ|2 ' m2
0
1 + 0.5 tan2 β

tan2 β − 1 +M2
1/2

0.5 + 3.5 tan2 β

tan2 β − 1 − 1
2m

2
Z . (4.12)

The loop functions fi are given as [112, 113]

f1n(x) =
(
−17x3 + 9x2 + 9x− 1 + 6x2(x+ 3) ln x

)
/
(
24(1− x)5

)
,

f2n(x) =
(
−5x2 + 4x+ 1 + 2x(x+ 2) ln x

)
/
(
4(1− x)4

)
,

f3n(x) =
(
1 + 9x− 9x2 − x3 + 6x(x+ 1) ln x

)
/
(
3(1− x)5

)
,

f1c(x) =
(
−x3 − 9x2 + 9x+ 1 + 6x(x+ 1) ln x

)
/
(
6(1− x)5

)
,

f2c(x) =
(
−x2 − 4x+ 5 + 2(2x+ 1) ln x

)
/
(
2(1− x)4

)
.

(4.13)
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M1/2

5 TeV

10 TeV

15 TeV

5 10 15 20
10-15
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10-13
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m0[TeV]

B
R
(μ
→
eγ
)

Figure 3. The prediction for BR(µ → eγ) versus m0 with F τ = m0/4 in the minimal model for
M1/2 = 5, 10, 15 TeV respectively. The dark grey region is excluded by the current experimental
bound BR(µ → eγ) < 4.2 × 10−13 [115]. The light grey dashed line denotes the future expected
bound [116].

As we mentioned above, δ`LL and δ`RR still have no off-diagonal terms in the SCKM basis,
so the contribution to µ→ eγ branching ratio arises only from the terms of δ`LR and δ`RL in
eq. (4.11). In numerical calculations of the µ→ eγ branching ratio, the input parameters
contain m3/2,m0, F

τ ,M1/2, while the flavor parameters in the slepton mass matrices have
been fixed to the best-fit values, i.e. eq. (4.4), and tan β = 5. We expect that the SUSY
breaking parameter F τ to be the same order as m0 and m3/2, and in order to prevent
the tachyonic slepton, we take F τ = m0/4 ≈ m3/2/4. After fixing the value of M1/2, the
µ → eγ ratio only depends on the slepton mass scale m0, we plot BR(µ → eγ) versus m0
in figure 3 for M1/2 = 5, 10, 15 TeV. As you can see, the predicted BR(µ → eγ) is lower
than the experimental upper bound as far as the gaugino mass scale M1/2 is larger than
10 TeV, while when M1/2 = 5 TeV the SUSY mass scale m0 should be larger than around
5 TeV to be consistent with the current bound BR(µ→ eγ) < 4.2× 10−13 [115].

On the other hand, if we fix the SUSY parameters m0,M1/2 and flavor parameters
α, β, γ, g2/Λ, while let 〈τ〉 freely vary in the fundamental domain, we can obtain a contour
map of BR(µ → eγ) in the τ plane, as shown in figure 4. It is clear that BR(µ → eγ) is
more sensitive to Im〈τ〉 and less sensitive to Re〈τ〉, in particular, BR(µ → eγ) decreased
significantly with the increase of Im〈τ〉. Moreover, BR(µ→ eγ) is below the current bound
when Im〈τ〉 > 1.05.

Finally, we can also discuss other LFV processes such as `i → `j`k ¯̀
k and µN → eN in

nuclei. These channels are typically dominated by the dipole operators in SUSY models,
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Figure 4. The contour plot of BR(µ → eγ) in the τ plane for m0 = M1/2 = 5 TeV, F τ = m0/4.
The value of branching ratio is normalized with the current upper bound 4.2 × 10−13 [115]. The
other free parameters are fixed to their best-fit values as given in eq. (3.7), where the best-fit value
of 〈τ〉 is marked by a green pentagram in the figure.

leading to the following simple relations [111]:

BR
(
`i → `j`k ¯̀

k

)
' αe

3π

(
log

m2
`i

m2
`k

− 3
)

BR (`i → `jγ) ,

CR(µN → eN) ' αeBR(µ→ eγ) .
(4.14)

The numerical results can be obtained directly, so we omit the detailed discussions about
these LFV processes. It is only necessary to mention that for m0 = 4F τ = M1/2 =
5TeV, both branching ration BR (µ→ eeē) and conversion rate CR(µN → eN) are
roughly O(10−15), which are clearly below their respective current experimental bounds
BR (µ→ eeē) < 1.0× 10−12 and CR(µN → eN) < 7.0× 10−13 [117].

5 Summary and conclusions

In this paper, we find a modular neutrino model with the fewest input parameters so far.
This model is based on the S′4 modular symmetry in combination with gCP symmetry. It
uses four coupling constants β, γ, g2/Λ and the complex modulus τ to well explain the
three charged lepton masses, the three light neutrino masses, the three neutrino mixing
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angles and the three CP violation phases. From the numerical scan of the parameter space,
we find that all the mixing angles and CP violation phases vary in very small regions. In
particular, the atmospheric mixing angle and the Dirac CP phase are predicted to lie in the
ranges sin2 θ23 ∈ [0.504, 0.510] and δCP ∈ [1.316π, 1.364π] respectively. All the predictions
of our model are compatible with the experimental data from neutrino oscillation, tritium
decay, neutrinoless double decay and cosmology. We expect the models could be tested at
future neutrino facilities and ton scale neutrinoless double beta decay experiments.

We also discuss the LFV phenomenology of this model in the moduli-mediated SUSY
breaking framework, where the soft SUSY breaking terms arise from the modulus F−term
in the modular neutrino model. These soft breaking terms also have a certain flavor
structure because they are constrained to be non-holomorphic modular forms due to the
modular symmetry. We have studied the dependence of the branching ratio BR(µ → eγ)
on the slepton mass scale m0, gauginos mass scale M1/2 and modulus VEV 〈τ〉, and we
find that the BR(µ→ eγ) is always below the current bound when the gaugino mass scale
M1/2 is larger than 10 TeV. On the other hand, the branching ratio BR(µ → eγ) also
depends significantly on the moduli vacuum as shown in figure 4, where the BR(µ → eγ)
decreases rapidly with the increase of Im〈τ〉. A similar analysis can be fully implemented
in other lepton flavor violation processes, such as τ → eγ and τ → µγ.
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A Group theory of Γ′4 ∼= S′4

The homogeneous finite modular group Γ′4 ∼= S′4 has 48 elements, and it can be generated
by three generators S, T and R obeying the rules:

S2 = R, (ST )3 = T 4 = R2 = 1, TR = RT . (A.1)

Its group ID in GAP [118] is [48, 30]. Notice that S4 is not a subgroup of S′4, it is isomorphic
to the quotient group of S′4 over ZR2 , i.e. S4 ∼= S′4/Z

R
2 , where ZR2 = {1, R} is the center and

a normal subgroup of S′4. The finite modular group S′4 is a double cover of S4. It is notable
that S′4 is isomorphic to the semidirect product of A4 with Z4, namely S′4 ∼= A4 o Z4. In
other words, S′4 can also be regarded as a split extension of A4 by Z4.
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S T R

1,1′ ±1 ±1 1
1̂, 1̂′ ±i ∓i −1

2 1
2

−1
√

3
√

3 1

 1 0
0 −1

 1 0
0 1


2̂ i

2

−1
√

3
√

3 1

 −i

1 0
0 −1

 −

1 0
0 1



3,3′ ±1
2


0
√

2
√

2
√

2 −1 1
√

2 1 −1

 ±


1 0 0
0 i 0
0 0 −i




1 0 0
0 1 0
0 0 1



3̂, 3̂′ ± i2


0
√

2
√

2
√

2 −1 1
√

2 1 −1

 ∓i


1 0 0
0 i 0
0 0 −i

 −


1 0 0
0 1 0
0 0 1


Table 1. The representation matrices of the generators S, T and R for different irreducible repre-
sentations of S′4 in the T -diagonal basis.

The group S′4 has four singlet representations 1,1′, 1̂ and 1̂′, two doublet representa-
tions 2 and 2̂, and four triplet representations 3,3′, 3̂ and 3̂′. We present the representation
matrices of the generators in different irreducible representations in table 1. In the repre-
sentations 1, 1′, 2, 3 and 3′, the generator R = 1 is an identity matrix, the representation
matrices of S and T coincide with those of S4 [16], consequently S′4 can not be distinguished
from S4 in these representations. In the hatted representations 1̂, 1̂′, 2̂, 3̂ and 3̂′, we have
the generator R = −1.

The tensor products between irreducible representations and the Clebsch-Gordan co-
efficients of S′4 are needed when constructing a concrete S′4 model. In the following, all
Clebsch-Gordan coefficients are given in the form of α ⊗ β, we use αi(βi) to denote the
component of the left (right) basis vector α(β). The notations I, II, III and IV stand for
singlet, doublet, triplet and quartet representations of S′4 respectively.

• I⊗ I→ I ,

1⊗ 1→ 1s, 1⊗ 1′ → 1′

1⊗ 1̂→ 1̂, 1⊗ 1̂′ → 1̂′

1′ ⊗ 1′ → 1s, 1′ ⊗ 1̂→ 1̂′

1′ ⊗ 1̂′ → 1̂, 1̂⊗ 1̂→ 1′s
1̂⊗ 1̂′ → 1, 1̂′ ⊗ 1̂′ → 1′s


I ∼ αβ
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• I⊗ II→ II ,

n = 0

n = 1

1⊗ 2→ 2, 1⊗ 2̂→ 2̂
1̂⊗ 2→ 2̂, 1̂′ ⊗ 2̂→ 2

1′ ⊗ 2→ 2, 1′ ⊗ 2̂→ 2̂
1̂⊗ 2̂→ 2, 1̂′ ⊗ 2→ 2̂


II ∼ αM (n)

β1

β2



where M (0) =

1 0
0 1

, M (1) =

 0 1
−1 0

, it’s the same below.

• I⊗ III→ III ,

1⊗ 3→ 3, 1⊗ 3′ → 3′

1⊗ 3̂→ 3̂, 1⊗ 3̂′ → 3̂′

1′ ⊗ 3→ 3′, 1′ ⊗ 3′ → 3
1′ ⊗ 3̂→ 3̂′, 1′ ⊗ 3̂′ → 3̂
1̂⊗ 3→ 3̂, 1̂⊗ 3′ → 3̂′

1̂⊗ 3̂→ 3′, 1̂⊗ 3̂′ → 3
1̂′ ⊗ 3→ 3̂′, 1̂′ ⊗ 3′ → 3̂
1̂′ ⊗ 3̂→ 3, 1̂′ ⊗ 3̂′ → 3′



III ∼ α


β1

β2

β3



• II⊗ II→ I1 ⊕ I2 ⊕ II ,

n = 0

n = 1

2⊗ 2→ 1′a ⊕ 1s ⊕ 2s

2⊗ 2̂→ 1̂′ ⊕ 1̂⊕ 2̂

2̂⊗ 2̂→ 1a ⊕ 1′s ⊕ 2s



I1 ∼ α1β2 − α2β1

I2 ∼ α1β1 + α2β2

II ∼M (n)

−α1β1 + α2β2

α1β2 + α2β1


• II⊗ III→ III1 ⊕ III2 ,

2⊗ 3→ 3⊕ 3′

2⊗ 3′ → 3′ ⊕ 3
2⊗ 3̂→ 3̂⊕ 3̂′

2⊗ 3̂′ → 3̂′ ⊕ 3̂
2̂⊗ 3→ 3̂⊕ 3̂′

2̂⊗ 3′ → 3̂′ ⊕ 3̂
2̂⊗ 3̂→ 3′ ⊕ 3
2̂⊗ 3̂′ → 3⊕ 3′



III1 ∼


2α1β1

−α1β2 +
√

3α2β3

−α1β3 +
√

3α2β2



III2 ∼


−2α2β1√

3α1β3 + α2β2√
3α1β2 + α2β3


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• III⊗ III→ I⊕ II⊕ III1 ⊕ III2 ,

n = 0

n = 1

3⊗ 3→ 1s ⊕ 2s ⊕ 3a ⊕ 3′s
3⊗ 3̂→ 1̂⊕ 2̂⊕ 3̂⊕ 3̂′

3′ ⊗ 3′ → 1s ⊕ 2s ⊕ 3a ⊕ 3′s
3′ ⊗ 3̂′ → 1̂⊕ 2̂⊕ 3̂⊕ 3̂′

3̂⊗ 3̂′ → 1⊕ 2⊕ 3⊕ 3′

3⊗ 3′ → 1′ ⊕ 2⊕ 3′ ⊕ 3
3⊗ 3̂′ → 1̂′ ⊕ 2̂⊕ 3̂′ ⊕ 3̂
3′ ⊗ 3̂→ 1̂′ ⊕ 2̂⊕ 3̂′ ⊕ 3̂
3̂⊗ 3̂→ 1′s ⊕ 2s ⊕ 3′a ⊕ 3s

3̂′ ⊗ 3̂′ → 1′s ⊕ 2s ⊕ 3′a ⊕ 3s



I ∼ α1β1 + α2β3 + α3β2

II ∼M (n)

2α1β1 − α2β3 − α3β2√
3α2β2 +

√
3α3β3



III1 ∼


α2β3 − α3β2

α1β2 − α2β1

−α1β3 + α3β1



III2 ∼


α2β2 − α3β3

−α1β3 − α3β1

α1β2 + α2β1



B Integer weight modular forms of level 4

The structure of the modular form space of weight k (non-negative integer or half-integer)
and level 4 is well known, and it can be constructed by making use of the theta con-
stants [49]:

Mk(Γ(4)) =
⊕

a+b=2k, a,b≥0
Cθa2(τ)θb3(τ) ,

where the theta constants are defined as

θ2(τ) =
∑
m∈Z

e2πiτ(m+1/2)2 = 2q1/4(1 + q2 + q6 + q12 + . . . ) ,

θ3(τ) =
∑
m∈Z

e2πiτm2 = 1 + 2q + 2q4 + 2q9 + 2q16 + . . . . (B.1)

The weight k modular forms of level 4 can be expressed as the homogeneous polynomials
of degree 2k in θ1 and θ2. Consequently, the linear space of weight k and level 4 modular
forms has dimension 2k + 1. In the following, we report the explicit expressions of the S′4
modular multiplets up to weight 6 in our working basis summarized in table 1. We prefer
to use ϑ1(τ) = θ3(τ), ϑ2(τ) = −θ2(τ) since ϑ1(τ) and ϑ2(τ) turn out to be half weight
modular forms and they form a doublet of the metaplectic cover of S′4 [49].

• kY = 1

Y
(1)

3̂′ =


√

2ϑ1ϑ2

−ϑ2
2

ϑ2
1

 . (B.2)

– 17 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
5

• kY = 2

Y
(2)

2 =

 ϑ4
1 + ϑ4

2

−2
√

3ϑ2
1ϑ

2
2

 ,

Y
(2)

3 =


ϑ4

1 − ϑ4
2

2
√

2ϑ3
1ϑ2

2
√

2ϑ1ϑ
3
2

 . (B.3)

• kY = 3

Y
(3)

1̂′ = ϑ1ϑ2
(
ϑ4

1 − ϑ4
2

)
,

Y
(3)

3̂
=


4
√

2ϑ3
1ϑ

3
2

ϑ6
1 + 3ϑ2

1ϑ
4
2

−ϑ2
2
(
3ϑ4

1 + ϑ4
2
)
 ,

Y
(3)

3̂′ =


2
√

2ϑ1ϑ2
(
ϑ4

1 + ϑ4
2
)

ϑ6
2 − 5ϑ4

1ϑ
2
2

5ϑ2
1ϑ

4
2 − ϑ6

1

 . (B.4)

• kY = 4

Y
(4)

1 = ϑ8
1 + 14ϑ4

1ϑ
4
2 + ϑ8

2 ,

Y
(4)

2 =

 ϑ8
1 − 10ϑ4

1ϑ
4
2 + ϑ8

2

4
√

3ϑ2
1ϑ

2
2
(
ϑ4

1 + ϑ4
2
)
 ,

Y
(4)

3 =


ϑ8

2 − ϑ8
1√

2ϑ2
(
ϑ7

1 + 7ϑ3
1ϑ

4
2
)

√
2ϑ1

(
ϑ7

2 + 7ϑ4
1ϑ

3
2
)
 ,

Y
(4)

3′ = ϑ1ϑ2
(
ϑ4

1 − ϑ4
2

)
√

2ϑ1ϑ2

−ϑ2
2

ϑ2
1

 . (B.5)
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• kY = 5

Y
(5)

2̂
= ϑ1ϑ2

(
ϑ4

1 − ϑ4
2

)2
√

3ϑ2
1ϑ

2
2

ϑ4
1 + ϑ4

2

 ,

Y
(5)

3̂
=


−8
√

2ϑ3
1ϑ

3
2
(
ϑ4

1 + ϑ4
2
)

ϑ2
1
(
ϑ8

1 − 14ϑ4
1ϑ

4
2 − 3ϑ8

2
)

ϑ2
2
(
3ϑ8

1 + 14ϑ4
1ϑ

4
2 − ϑ8

2
)
 ,

Y
(5)

3̂′I
=


2
√

2ϑ1ϑ2
(
ϑ8

1 − 10ϑ4
1ϑ

4
2 + ϑ8

2
)

ϑ2
2
(
13ϑ8

1 + 2ϑ4
1ϑ

4
2 + ϑ8

2
)

−ϑ2
1
(
ϑ8

1 + 2ϑ4
1ϑ

4
2 + 13ϑ8

2
)
 ,

Y
(5)

3̂′II
=
(
ϑ8

1 + 14ϑ4
1ϑ

4
2 + ϑ8

2

)
√

2ϑ1ϑ2

−ϑ2
2

ϑ2
1

 . (B.6)

• kY = 6

Y
(6)

1 = ϑ12
1 − 33ϑ8

1ϑ
4
2 − 33ϑ4

1ϑ
8
2 + ϑ12

2 ,

Y
(6)

1′ = ϑ2
1ϑ

2
2

(
ϑ4

1 − ϑ4
2

)2
,

Y
(6)

2 =
(
ϑ8

1 + 14ϑ4
1ϑ

4
2 + ϑ8

2

) ϑ4
1 + ϑ4

2

−2
√

3ϑ2
1ϑ

2
2

 ,

Y
(6)

3I =


ϑ12

1 − 11ϑ8
1ϑ

4
2 + 11ϑ4

1ϑ
8
2 − ϑ12

2

−
√

2ϑ3
1ϑ2

(
ϑ8

1 − 22ϑ4
1ϑ

4
2 − 11ϑ8

2
)

√
2ϑ1ϑ

3
2
(
11ϑ8

1 + 22ϑ4
1ϑ

4
2 − ϑ8

2
)
 ,

Y
(6)

3II =
(
ϑ8

1 + 14ϑ4
2ϑ

4
1 + ϑ8

2

)
ϑ4

1 − ϑ4
2

2
√

2ϑ3
1ϑ2

2
√

2ϑ1ϑ
3
2

 ,

Y
(6)

3′ = ϑ1ϑ2
(
ϑ4

1 − ϑ4
2

)
2
√

2ϑ1ϑ2
(
ϑ4

1 + ϑ4
2
)

ϑ6
2 − 5ϑ4

1ϑ
2
2

5ϑ2
1ϑ

4
2 − ϑ6

1

 . (B.7)

The higher weight modular forms can be constructed from the tensor products of the
above modular multiplets.
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