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1 Introduction

Symmetry serves as a vital organising principle in the study of quantum field theories. It
can provide highly non-trivial constraints in the theory, for example, via selection rules
and ’t Hooft anomalies. There have been vast recent developments in this line of research.
One of the main important ideas is that a number of properties of the symmetries can
be formulated in terms of the associated topological defects. Specifically, if the symmetry
obeys the group law, it can be viewed as the fusion rule of the topological defects as follows:
the topological defects associated with the group elements g and h can be merged to form
a topological defect associated with the group element gh.

This point of view has led to a number of new concepts of generalised global symme-
tries. This includes higher-form symmetries [1, 2]1 whose topological defects have codimen-
sion greater than one and whose charged objects are extended operators, and non-invertible
symmetries whose topological defects do not have an inverse and so do not form a group.
Examples of the latter in 2d theories and in 3d TQFTs have been known for some time, see

1We remark that these have been worked out in many theories by means of defect groups, see e.g. [3–8].
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for example [9–34], but only very recently they have been studied in different field theories
and especially in higher dimensions from many point of views, see e.g. [35–64] and [65, 66]
for recent reviews. Yet another important idea which is central to this paper is the coexis-
tence of a zero-form and a one-form global symmetry. This can happen in several ways, for
example, they can form a direct or a semi-direct product, there can be a mixed anomaly be-
tween them, or they can combine to form a non-trivial extension, where the latter is known
as a two-group symmetry [17, 67–70]. In this paper, we focus on the two-group symmetries
that involve a discrete one-form symmetry and a continuous zero-form symmetry. This
type of symmetry has been studied in a wide range of theories, see e.g. [69, 71–82].

In this paper, we study mixed anomalies in three-dimensional superconformal field
theories with N ≥ 3 supersymmetry using the superconformal index [83–88] as a main tool.
This provides a convenient and efficient way to detect various mixed anomalies, including
those involving two discrete zero-form global symmetries and a continuous zero-form flavour
symmetries. Specifically, motivated by [89], we calculate the index in a particular way in
order to study the monopole operators carrying fractional magnetic fluxes for both the
gauge group and the Cartan subalgebra of the flavour symmetry group, whose existence
might signal the presence of the anomaly. From the perspective of the index, this is manifest
in the fact that certain gaugings of the global symmetries are not allowed.

We demonstrate these ideas in the context of several Chern-Simons-matter theories,
which include the U(1)k gauge theory2 with hypermultiplets with arbitrary charge, the
theories with so(2N)k gauge algebra and hypermultiplets in the vector representation, and
several variants of the Aharony-Bergman-Jafferis (ABJ) theories [90] with the orthosym-
plectic gauge algebra. Among a number of these theories, we find that gauging a discrete
zero-form global symmetry leads to a dual one-form symmetry that forms a two-group
structure with the zero-form flavour symmetry [17]. We also study discrete mixed anoma-
lies for the T (SU(N)) theory of Gaiotto and Witten [91] and show as an application of
these how they can be used to recover some known facts about the global form of the
global symmetries of the 4d N = 2 theories of class S [92] from the 3d mirror perspective.

Since it is going to play a crucial role in our discussion, let us briefly review the
argument of [68] for why gauging a discrete symmetry with a suitable mixed anomaly gives
a theory with a two-group symmetry. Suppose that we have a d-dimensional theory T on
a manifold Xd with an anomaly encoded in the anomaly theory defined on Yd+1 such that
∂Yd+1 = Xd

exp
(

2πi
N

∫
Yd+1

Ap+1 ∪Θ
)
, (1.1)

where Ap+1 ∈ Hp+1(Xd,Z
[p]
N ) is a background field for a Z[p]

N p-form symmetry and Θ is
some class valued modulo N constructed from the background fields for some other global
symmetries. The full partition function of the theory including the anomaly theory is
schematically

ZT [Ap+1] = exp
(

2πi
N

∫
Yd+1

Ap+1 ∪Θ
)∫
DΦ exp (iS[Φ, Ap+1]) . (1.2)

2In this paper, Gk denotes gauge group or gauge algebra G with Chern-Simons coefficient k.
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When we gauge the symmetry Z[p]
N we promote Ap+1 to a dynamical field ap+1 over which

we sum in the partition function and we introduce a (d − p − 1)-cochain Bd−p−1 which is
the background field for the dual Z[d−p−2]

N (d− p− 2)-form symmetry and which couples to
ap+1 in the partition function

ZT /Z[p]
N

[Bd−p−1] =
∑

ap+1∈Hp+1(Xd,Z
[p]
N )

exp
(2πi
N

∫
Xd

ap+1 ∪Bd−p−1

)
ZT [ap+1]

=
∑

ap+1∈Hp+1(Xd,Z
[p]
N )

exp
(

2πi
N

(∫
Xd

ap+1 ∪Bd−p−1 +
∫
Yd+1

ap+1 ∪Θ
))

×
∫
DΦ exp (iS[Φ, ap+1]) . (1.3)

We can now extend the coupling
∫
Xd
ap+1 ∪ Bd−p−1 to the bulk Yd+1 and exploit the fact

that ap+1 is a (p+ 1)-cocycle δap+1 = 0 to rewrite the partition function as

ZT /Z[p]
N

[Bd−p−1] =
∑

ap+1∈Hp+1(Xd,Z
[p]
N )

exp
(

2πi
N

∫
Yd+1

ap+1 ∪ (δBd−p−1 + Θ)
)

×
∫
DΦ exp (iS[Φ, ap+1]) .

(1.4)

The exponential factor is a gauge anomaly for the gauged Z[p] symmetry, so requiring the
partition function of the theory T /Z[p]

N to be well-defined we get δBd−p−1 + Θ = 0 mod N ,
or in other words in presence of non-trivial background fields for the other symmetries
which appear in Θ we have that Bd−p−1 is not closed and instead

δBd−p−1 = Θ . (1.5)

This means that after gauging a Z[p]
N p-form symmetry with the anomaly (1.1) we obtain a

dual Z[d−p−2]
N (d− p− 2)-form symmetry which forms a two-group with Postnikov class Θ

with the other symmetries.
The superconformal index in three dimensions is also sensitive to one-form symme-

tries, a fact that was already exploited for example in [93, 94]. In particular, it depends
on the global structure of the gauge group thorugh the summation over monopole sectors,
which can be changed when gauging a one-form symmetry. Thanks to this, the index can
also be used in an indirect way to detect anomalies involving a one-form symmetry, and
we will be particularly interested in the mixed anomalies between two discrete zero-form
symmetries and a one-form symmetry. By indirect, we mean that we study the theory
resulting from gauging the one-form symmetry which in three spacetime dimensions gives
rise to a zero-form symmetry. In some cases we can see from the index of the resulting
theory that the additional gauging of a zero-form symmetry is obstructed, thus indicat-
ing the presence of the mixed anomaly in the original theory. As it was pointed out
in [37, 43, 45], if the resulting anomaly takes a suitable form, then it leads to interest-
ing consequences after gauging. In particular, if we gauge the two zero-form symmetries
in the original theory, the remaining one-form symmetry is non-invertible. On the other
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hand, if we gauge the one-form symmetry and one of the two zero-form symmetries, the
other zero-form symmetry is non-invertible. We investigate this in the context of the 3d
N = 3 theories with so(2N)2k gauge algebra with adjoint hypermultiplets, and the ABJ
theories with the orthosymplectic gauge algebra. In particular, for k even, we find that the
Pin(2N)2k × USp(2M)−k variant3 of the ABJ theory has a non-invertible one-form sym-
metry, whereas the (Spin(2N)2k × USp(2M)−k)/Z2 and the (O(2N)2k × USp(2M)−k)/Z2
variants of the ABJ theory have a non-invertible zero-form symmetry.

The paper is organised as follows. In section 2, we study the N = 4 U(1) gauge theory
with 2 hypermultiplets of charge q. This part serves as an introduction on how to use the
superconformal index to detect mixed anomalies and it contains some results that were
already known in the literature. We also present a mirror theory for the U(1) gauge theory
with 2 hypermultiplets of charge 2, which is isomorphic to the Spin(2) gauge theory with
1 hypermultiplet in the vector representation, in this section. In section 3, we generalise
these results to the T [SU(N)] theory, showing that it also possesses a mixed anomaly and
how this can be used to understand the global symmetry group of the models obtained by
gauging various copies of it, such as the 3d mirrors of 4d class S theories. In section 4, we
consider the 3d N = 3 theories with so(2N)k gauge algebra and Nf hypermultiplets in the
vector representation. We discuss the mixed anomalies as well as the two-group structures
in these theories in detail. We also extend the results of section 2 to the 3d N = 3 U(1)k
gauge theory with Nf hypermultiplets of charge q in subsection 4.3. In section 5, we
investigate mixed anomalies involving a one-form symmetry and two zero-form symmetries
as well as the non-invertible symmetries in the theories with so(2N)2k gauge algebra and
Nf adjoint hypermultiplets and the ABJ theory and their variants. Finally, in section 6, we
explore the mixed anomalies between two discrete zero-form symmetries and the continuous
zero-form flavour symmetry as well as the two-group symmetries in the variants ABJ theory
with the orthosymplectic gauge algebra. We conclude in section 7 mentioning some open
questions and possible future developments. In appendix A we review the aspects of the
3d supersymmetric index that are relevant for our discussion.

2 N = 4 U(1) gauge theory with 2 hypermultiplets of charge q

Let us consider the 3d N = 4 U(1) gauge theory with 2 hypermultiplets of charge q.
For convenience, we denote this theory by Tq. The index of this theory is given by (see
appendix A for more details on our conventions)

ITq(w, n|f,m;x) =
∑

l∈Z+ε(m)
FTq(w, n|f,m|l;x) ,

FTq(w, n|f,m|l;x) ≡ wl
∮

dz

2πiz z
n
∏
s=±1

I
1
2
χ ((zqf)s; s(ql +m);x)

× I
1
2
χ
(
(z−qf)s; s(−ql +m);x

)
,

(2.1)

3In this paper, we use the same nomenclature of [95] and use Pin to denote the theory obtained by
straightforwardly gauging both the magnetic and the charge conjugation symmetry of the SO theory. This
symmetry is also called Pin+ as opposed to another possible variant Pin−, especially in non-supersymmetric
set-ups, see for example [96].
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where w, n are the fugacity and background flux associated with the topological (magnetic)
zero-form symmetry and f,m are the fugacity and background flux associated with the
flavour zero-form symmetry. Note that m and n can be integral or half-odd-integral. The
function ε(m) takes value 0 if m is integral, and takes value 1/2 if m is half-odd-integral.
The contribution of a chiral multiplet of charge R coupled with a unit charge to the U(1)
gauge multiplet such that the gauge field has a holonomy z around the S1 and magnetic
flux m on the S2 is

IRχ (z;m;x) = (x1−Rz−1)|m|/2
∞∏
j=0

1− (−1)mz−1x|m|+2−R+2j

1− (−1)m z x|m|−R+2j . (2.2)

It is worth pointing out that, for an integer-valued m, we have

ITq(w, n|f,m;x) =
∑
l′∈qZ

(w
1
q )l′

∮
dz′

2πiz′ z
′n
q
∏
s=±1

I
1
2
χ
(
(z′f)s; s(l′ +m);x

)
× I

1
2
χ

(
(z′−1f)s; s(−l′ +m);x

)
= 1
q

q−1∑
p=0
IT1

(
w

1
q e

2πi p
q , n/q|f,m;x

)
,

(2.3)

where in the first equality we define z′ = zq and l′ = ql, and to establish the second equality
we use the fact that, for an integer `,

1
q

q−1∑
p=0

exp
(

2πi `
q
p

)
=

1 q divides `
0 q does not divide `

, (2.4)

and so we have ∑
l∈Z

q−1∑
p=0

1
q
w

l
q exp

(
2πi l

q
p

)
F (l) =

∑
l′∈qZ

w
l′
q F (l′) (2.5)

for an arbitrary function of F . The second equality of (2.3) is equivalent to the statement
that one can obtain the Tq theory from the T1 theory by gauging a Zq subgroup of the U(1)w
symmetry associated with the fugacity w. In 3d, gauging a zero-form symmetry leads to a
new one-form symmetry. Hence, the theory Tq has a Zq one-form symmetry; in agreement
with [89]. We will discuss the case of non-integer-valued m in the subsequent subsections.

2.1 The case of q = 1

For q = 1, the theory T1 is the T (SU(2)) theory [91]. The index of this theory as given
by (2.1) with the background magnetic fluxes m = n = 0 is

IT1(w, n = 0|f,m = 0;x)

= 1 + x
[
(1 + f2 + f−2) + (1 + w + w−1)

]
+ x2

[
f4 + f−4 + w2 + w−2 − 1

]
+ . . .

= 1 + x
[
χ
su(2)
[2] (f) + χ

su(2)
[2] (w)

]
+ x2

[
χ
su(2)
[4] (f) + χ

su(2)
[4] (w)−

(
χ
su(2)
[2] (f) + χ

su(2)
[2] (w) + 1

)]
+ . . . .

(2.6)
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Here the normalisation of the power of w in (2.1) is such that the object with magnetic
flux 1 corresponds to the fugacity w, and so the character of the adjoint representation
χ
su(2)
[2] (w) written in terms of w is 1 + w + w−1. However, the character of the adjoint

representation χsu(2)
[2] (f) written in terms of f is 1 + f2 + f−2. As is well-known, 3d mirror

symmetry maps the theory T1 to itself [97] and interchanges f2 with w in this notation.
This theory has a global symmetry algebra su(2)f ⊕ su(2)w, where the first and second

su(2) factors are referred to as the Higgs branch and Coulomb branch symmetries, respec-
tively. Since there is no odd power of the fugacity f appearing in the index (2.6), there is no
operator charged under the Z2 centre of SU(2)f , and so the faithful Higgs branch symmetry
is SU(2)f/Z2 ∼= SO(3)f . Similarly, since there is no half-odd-integral power of the fugacity
w appearing in the index (2.6), the faithful Coulomb branch symmetry is SU(2)w/Z2 ∼=
SO(3)w. Indeed, mirror symmetry interchanges the SO(3)f and SO(3)w symmetries.

In [76, 89, 98], it was pointed out that there is a mixed t’Hooft anomaly between
SO(3)f and SO(3)w, characterised by the 4d anomaly theory

exp
(
iπ

∫
wf2 ∪ w

w
2

)
. (2.7)

where wf,w2 denotes the second Stiefel-Whitney class that is an obstruction to lifting the
SO(3)f,w bundles to the SU(2)f,w bundles, and the integration is taken over a spin four-
manifold whose boundary is the three-manifold in which the 3d theory in question lives. In
particular, as proposed in [89, section 7.2] this mixed anomaly can be detected by examin-
ing the mixed gauge/zero-form monopole operators with fractional magnetic flux for both
the gauge group and the Cartan subalgebra of the flavour symmetry group. Our interpre-
tation in terms of the index is to investigate such a mixed anomaly by setting the magnetic
flux of the U(1) gauge group to be ±1/2 and that of the Cartan subalgebra of SO(3)f to be
1/2. This amounts to considering FT1 defined in (2.1) with l = ±1/2, m = 1/2 and n = 0:

FT1(w, n = 0|f,m = 1/2|l = ±1/2;x)

= w±1/2
[
x1/2 + x3/2 − (1 + f2 + f−2)x5/2

+ (3 + f2 + f−2)x7/2 + . . .
]
,

(2.8)

where we emphasise that there is no half-odd-integral power of f appearing. Thus, such
mixed gauge/zero-form monopole operators carry charge zero under the U(1) gauge sym-
metry, charge ±1/2 under the Cartan subalgebra of the su(2)w symmetry, and charge
0 (mod 2) under the Cartan subalgebra of the su(2)f symmetry; in agreement with [89,
(7.85)]. This implies the mixed anomaly (2.7). Moreover, one can use the index to check
the consistency of other mixed gauge/zero-form monopole operators, e.g. those with the
fluxes (1/3, 1/2) and (1/4, 1/2) for the U(1) gauge group and the Cartan subalgebra of the
SU(2)f , respectively, are not consistent because the integrand of the index contains frac-
tional powers of the gauge fugacity, indicating that such fluxes are not properly quantised.

Another way to understand the anomaly is to gauge SO(3)f or SO(3)w; let’s say SO(3)f
for definiteness. This means that in the index we should integrated over f and sum over

– 6 –
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m ∈ Z/2. From the index result (2.8) we see that the effect is of introducing half-integer
spin representations of the topological symmetry, thus turning it into SU(2)w as opposed
to the original SO(3)w. This is the manifestation of the anomaly (2.7) at the level of
the index, since this would be a gauge anomaly if we did not restrict to bundles for the
topological symmetry that have ww2 = 0. We will come back to this point in section 3,
where we will also generalise it to the T (SU(N)) theory.

As a final remark, the T1 theory can also be described as the SO(2) gauge theory with
1 flavour of hypermultiplet in the vector representation, whose quiver can be depicted as

T1 : SO(2)− [USp(2)] (2.9)

Of course, this theory is identical to T (SU(2)) and so it maps to itself under 3d mirror
symmetry. However, if we view the T1 theory as the T (USp(2)) theory, its mirror theory
is then T (SO(3)) which can be described as [91]

T (SO(3)) : O(1)−USp(2)− [SO(3)] (2.10)

As explained in [91, 99], this description arises from gauging the Z2 ∼= O(1) symmetry in the
USp(2) gauge theory with SO(4) flavour symmetry. We will see that the description (2.10)
provides a convenient way to come up with a mirror theory for the T2 theory. As a remark,
in the description (2.9) of the T1 theory, only the Z2 magnetic symmetry is manifest, and
this indeed has a mixed anomaly with the SO(3)f flavour symmetry. This is characterised
by the anomaly theory originated from (2.7), namely

exp
(
iπ

∫
wf2 ∪B

M
1 ∪BM1

)
, (2.11)

where BM1 is the one-form background field for the magnetic symmetry.

2.2 The case of q = 2

Let us first discuss some results for general q. As we pointed out above, the theory Tq,
namely the U(1) gauge theory with 2 hypermultiplets of charge q, can be obtained from the
theory T1 by gauging a Zq subgroup of the SO(3)w symmetry. For q > 1, the topological
symmetry is U(1)w. We find from (2.1) that

FTq(w, n = 0|f,m = 1/2|l = 1/2q;x)

= w
1

2q
[
x1/2 + x3/2 − (1 + f2 + f−2)x5/2

+ (3 + f2 + f−2)x7/2 + . . .
]
,

(2.12)

Following [89], the above result implies that the mixed gauge/zero-form monopole operator
such that the flux for the U(1) gauge group is 1

2q and that for the Cartan subalgebra of
SO(3)f is 1/2 carries charge 1

2q under the U(1)w symmetry and charge 0 (mod 2) under the
Cartan subalgebra of su(2)f . This implies the mixed anomaly between the U(1)w symmetry

– 7 –
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and the SO(3)f symmetry for all q characterised by the anomaly theory4

exp
(
iπ

∫
wf2 ∪ c

w
1 (mod 2)

)
(2.13)

where cw1 is the first Chern class associated with the U(1)w topological symmetry of the Tq
theory.

Let us now focus on q = 2. Since the T1 theory can also be described by the SO(2) gauge
theory as in (2.9), gauging its Z2 zero-form magnetic symmetry leads to another description
of the T2 theory, namely the Spin(2) gauge theory with 1 flavour of hypermultiplet in the
vector representation:

T2 : Spin(2)− [USp(2)] (2.14)

This theory has a two-group symmetry between the Z2 one-form symmetry, arising from
gauging the magnetic symmetry, and the flavour symmetry [89, section 7.4]. One can
indeed see this as follows. We can rewrite the anomaly theory (2.11) for the T1 theory as
(see [96, (2.19)])

exp
(
iπ

∫
wf2 ∪ Bock(BM1 )

)
= exp

(
iπ

∫
Bock(wf2 ) ∪BM1

)
(2.15)

The Postnikov class associated to the aforementioned two-group symmetry is then

δBM2 = Bock(wf2 ) (2.16)

where BM2 is the two-form background field for the one-form symmetry arising from gauging
the magnetic symmetry, and Bock is the Bockstein homomorphism associated with the
short exact sequence:

0 −→ Z2 −→ Z4 −→ Z2 −→ 0 . (2.17)

This indeed fits into the expectation that the Spin(4n+ 2) gauge theory with Nf flavours
in the vector representation has a two-group symmetry [68, 69, 74, 75]. We will also discuss
this in more detail in section 4. The index of the T2 theory can be computed using (2.1)
with q = 2:

IT2(w, n = 0|f,m = 0;x)

= 1 + x
[
1 + χ

su(2)
[2] (f)

]
+ x2

[
χ
su(2)
[4] (f) + w + w−1 − χsu(2)

[2] (f)− 1
]

+ . . .
(2.18)

This indicates that the zero-form symmetry of the T2 theory is SO(3)f ×U(1)w, where the
faithful flavour symmetry is SO(3)f , not SU(2)f , since there is no su(2)f representation with
odd Dynkin label appearing in the index. As pointed out in [89, (7.129)] and around (2.12),
there is a mixed anomaly between the two-group symmetry and the U(1)w symmetry.

It is worth pointing out that if we use the description (2.14) of the T2 theory, instead
of the U(1) gauge theory, the U(1)w symmetry is not manifest and it should be regarded
as emergent in the infrared. The latter is, however, expected to be manifest as a flavour

4From the result (2.12) we see that cw1 could in principle take value mod 2q, but since wf2 is still valued
mod 2 then also the entire anomaly is valued mod 2.

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
1
1
5

symmetry in the mirror theory, which we will shortly demonstrate below. The mirror theory
can be constructed as follows. Recall that the T2 theory can be obtained by gauging the Z2
subgroup of the SO(3)w topological symmetry of the T1 theory. This should correspond to
gauging the Z2 ∼= O(1) subgroup of the SO(3) flavour symmetry in the mirror theory (2.10)
of the T1 theory. We therefore propose that the mirror theory for T2 is given by

mirror of T2 : USp(2)

O(1)

O(1)

[SO(2)] (2.19)

The SO(2) symmetry, which corresponds to the U(1)w symmetry in the original T2 theory,
is indeed manifest in the mirror theory. On the other hand, there is an emergent SO(3)
symmetry in the mirror theory (see [91]); this is mapped under mirror symmetry to the
SO(3)f flavour symmetry the original the T2 theory. Since we have gauged a Z2 symmetry
of the T [SO(3)] theory in order to construct (2.19), the latter contains a Z2 one-form
symmetry, which is mapped to that of the original T2 theory under mirror symmetry.
Since the T [SO(3)] theory is identical, as an SCFT, to the T [SU(2)] theory and hence the
T1 theory, there is a mixed anomaly between the SO(3) flavour symmetry and the SO(3)
emergent magnetic symmetry in T [SO(3)]. As a result, gauging the Z2 subgroup of the
SO(3) flavour symmetry of T [SO(3)] leads to a non-trivial two-group structure between
the new Z2 one-form symmetry and the SO(3) emergent magnetic symmetry in (2.19).
As expected, such a two-group symmetry in (2.19) maps to that of the T2 theory under
mirror symmetry. We emphasise again that the origins of the Z2 one-form symmetry
and the SO(3) zero-form symmetry that participate in the two-group structure in the T2
theory/its mirror (2.19) are interchanged under mirror symmetry in the following respective
way: the Z2 one-form symmetry arises from gauging of the Z2 magnetic/flavour zero-form
symmetry in the T1 theory/its mirror (2.10), whereas the SO(3) symmetry is realised as
the flavour/magnetic zero-form symmetry.

3 Global symmetry group and anomalies of T (SU(N))

One possible generalisation of our previous analysis for the U(1) gauge theory with two
hypers of charge 1 is to the T (SU(N)) theory of Gaiotto and Witten [91]. This is a 3d
N = 4 theory that can be described by the following quiver diagram:

1 2 · · · N − 1 N (3.1)

where each circle node denotes a unitary gauge group, the square node a flavour sym-
metry group and the lines hypermultiplets in bifundamental representations. Notice that
T (SU(2)) corresponds to the U(1) gauge theory with two hypers of charge 1. It is then
natural to wonder how the discussion on the global form of the symmetry group and on
the anomalies of T (SU(2)) of the previous section generalises to T (SU(N)). We will also
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discuss some consequences of these for theories that are obtained by gauging together vari-
ous copies of T (SU(N)), like the star-shaped quivers [100] that are the mirror duals to the
3d reduction of the 4d class S theories [92].

The global symmetry algebra of the T (SU(N)) theory is su(N)f ⊕ su(N)w. The first
piece su(N)f is the flavour symmetry acting on the hypermultiplets at the right end of
the quiver, which is special unitary and not unitary since the u(1) baryonic symmetry can
be reabsorbed with a gauge transformation. The second factor su(N)w is the topological
symmetry that acts on monopole operators. This is enhanced in the quiver description (3.1)
where only the Cartan subalgebra is manifest. Such a symmetry enhancement is due to
the fact that all the gauge nodes are balanced, that is they have a number of flavours
which is twice the number of colours, which implies that there are monopole operators
with dimension 1 that supplement the required extra moment maps [91].

The actual global symmetry group is PSU(N)f × PSU(N)w. This is easy to see
for the flavour symmetry, since one can use a gauge transformation to also reabsorb
a transformation of the centre of SU(N) so that the actual flavour symmetry group is
U(N)/U(1) = PSU(N)f . One way to argue that also the topological symmetry is PSU(N)w
is by resorting to mirror symmetry, under which the T (SU(N)) theory is self-dual as it can
be easily understood from the Hanany-Witten brane set-up of the theory [101]. Even
though the T (SU(N)) theory is simply dual to itself, there is still a non-trivial map on the
flavour and topological symmetries which are exchanged by the mirror duality. Hence, the
two global symmetry groups should be identical. Another way to understand what is the
global symmetry group is using the index. As we will show later for low N , computing the
index one indeed finds representations of su(N)f and su(N)w that are uncharged under
the ZN centre. Notice that this generalises the case of T (SU(2)), for which we saw that
the global symmetry group is SO(3)f × SO(3)w.

The PSU(N) group admits bundles with non-trivial second Stiefel-Whitney class,
which measures the obstruction to lifting them to SU(N) bundles. Using the second Stiefel-
Whitney classes wf,w2 of PSU(N)f,w one can in principle write a discrete anomaly between
them. We propose that in the T (SU(N)) theory there is indeed such an anomaly, which
generalises the one in (2.7) for N = 2

exp
(2iπ
N

∫
wf2 ∪ w

w
2

)
. (3.2)

Before providing evidence for these claims using the superconformal index, let us dis-
cuss some of their consequences. The first one is that if we gauge one of the two symmetries,
say the flavour symmetry, as PSU(N)f rather than SU(N)f then the other symmetry be-
comes SU(N)w. This is because in the gauging we sum over bundles with non-trivial wf2 , so
we necessarily have to restrict to bundles with trivial ww2 to avoid the anomaly (3.2) which
has become a gauge anomaly after the gauging. At the level of the index, as we will see,
one can observe that considering a suitable fractional background flux for the PSU(N)f
symmetry introduces states that transform in representations which are charged under the
centre of SU(N)w. Because of this, if we want to gauge both symmetries of T (SU(N)), at
most one of them can be gauged as PSU(N) and not both.
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In a similar manner, one can understand the precise global structure of the symmetry
group of the 4d theories of class S from their 3d mirror star-shaped quivers. Consider for
example the TN theory, which is realised in class S by compactifying the 6d (2, 0) theory of
type AN−1 on a sphere with three regular maximal punctures. The associated 3d mirror is a
star-shaped quiver with three T (SU(N)) legs that are glued together by gauging a common
PSU(N) symmetry. Suppose that we gauge a diagonal combination of the flavour symmetry
of each T (SU(N)). Then, due to (3.2) we have a mixed gauge anomaly between the
middle PSU(N) gauge group of the star-shaped quiver and the three remaining topological
symmetries of the form exp

(
2iπ
N

∫
w2 ∪

(
ww,12 + ww,22 + ww,32

))
, where w2 is for the middle

gauge group and ww,i2 with i = 1, 2, 3 are for the three topological symmetries. This
means that the global symmetry group of the theory should be such that the combination
ww,12 + ww,22 + ww,32 is trivial, which implies that only a diagonal combination of the three
ZN centres of the topological symmetries is allowed to act non-trivially on the spectrum
of the theory. We then recover the known result that the global symmetry group of TN is
(SU(N)× SU(N)× SU(N)) / (ZN × ZN ) [102, 103]. For example, for N = 2 we have the
T2 theory whose 3d mirror is the diagonal SO(3) gauging of three copies of the T (SU(2))
theory5 and which coincides with the theory of eight free half-hypermultiplets in the [1; 1; 1]
representation of the global symmetry su(2)3 which is charged under the diagonal Z2 centre.

This reasoning can also be extended to other class S theories. For example, one may
also take four copies of the T (SU(2)) theory and gauge the diagonal SO(3) subgroup of
SO(3)4

f . The resulting theory is the mirror theory of the SU(2) gauge theory with 4 flavours
of fundamental hypermultiplets, which is the class S theory of type A1 on a sphere with
four regular punctures. In this case the su(2)4

w symmetry of the star-shaped quiver gets
enhanced to the so(8) flavour symmetry of the latter theory in the infrared. There is a
moment map operator (the mesons) in the adjoint representation of so(8), where upon
applying the branching rule, it contains the representation [1; 1; 1; 1] of su(2)4

w, which is
charged under the diagonal Z2 centre. One can also check that all the representations
appearing in the spectrum are only charged under the diagonal Z2 centre of su(2)4

w. This
fact can again be understood as a consequence of the anomaly (3.2).

In order to argue that the global symmetry group of T (SU(N)) is PSU(N)f×PSU(N)w
and that there is the anomaly (3.2) we will use the superconformal index. The index of
T (SU(N)) can be expressed recursively as follows:

IT (SU(N))(w,n|f ,m;x) = 1
(N − 1)!

∑
l∈ZN+ε(m)

N−1∏
a=1

wlaN−1

∮ N−1∏
a=1

dza
2πiza

znN−1
a

×
N∏
i=1

N−1∏
a=1

∏
s=±1

I
1
2
χ ((zafi)s; s(la +mi);x)

× IT (SU(N−1))({w1, · · · , wN−2}, {n1, · · · , wN−2}|
{z1, · · · , zN−1}, {l1, · · · , nN−1};x) ,

(3.3)

5The fact that the middle node of the star-shaped quiver should be taken to be SU(2)/Z2 ∼= SO(3)
instead of SU(2) in order to obtain the correct mirror of the theory of eight free half-hypermultiplets and
not a Z2 discrete gauging thereof was emphasised in [104, 105].
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where w,n and f ,m are the fugacities and background magnetic fluxes for the topological
and the flavour symmetry6 respectively and the sum over the gauge fluxes l depends on the
fractional part of the background fluxes for the global symmetries which we encode in ε(m).

Let us consider the case in which all the background fluxes are turned off, that is
n = m = (0, · · · , 0). In this case ε(m) is trivial and so all the gauge fluxes should be taken
to be integers. Computing the index perturbatively to low orders in the fugacity x we find
for N = 3, 4 (the result for N = 2 can be found in (2.6))7

N = 3 : 1 +
(
χ[1,1](f) + χ[1,1](w)

)
x+(

χ[2,2](f) + χ[2,2](w) + χ[1,1](f)χ[1,1](w)− 1
)
x2 + · · · ,

N = 4 : 1 +
(
χ[1,0,1](f) + χ[1,0,1](w)

)
x+(

χ[2,0,2](f) + χ[2,0,2](w) + χ[1,0,1](f)χ[1,0,1](w)+

χ[0,2,0](f) + χ[0,2,0](w)− 1
)
x2 + · · · ,

(3.4)

where χ[k1,··· ,kN ](f) denotes the character of the representation of su(N)f with Dynkin
label [k1, · · · , kN ] and similarly for χ[k1,··· ,kN ](w). We can see that the only representations
that appear are those that are uncharged under the ZN centre,8 implying that the global
symmetry group is indeed PSU(N)f × PSU(N)w.

We can then compute the index with a non-trivial value of the background fluxes for
this global symmetry which are fluxes of PSU(N) that are not fluxes of SU(N) or more
generally of SU(N)/Zk for any k that divides N and which is not N itself. For example,
we can consider the PSU(N)f flux m =

(
1
N , · · · ,

1
N ,−

N−1
N

)
while we take the PSU(N)w

flux to be trivial. In this case, the gauge fluxes should be taken to be in Z − 1
N so to

have a correct quantization of the gauge charges in the monopole background. The first
non-trivial contribution to the expansion in x of the index for low N is

N = 3 : χ[1,0](w)x+ · · · ,

N = 4 : χ[1,0,0](w)x
3
2 + · · · .

(3.5)

Looking also at (2.8) we can expect that the contribution for generic N is χ[1,0,··· ,0](w)xN−1
2 .

The Dynkin label [1, 0, · · · , 0] corresponds to the fundamental representation of SU(N)
which has charge 1 under the ZN centre. This implies the anomaly (3.2) in the T (SU(N))
theory. In particular, gauging the flavour symmetry as a PSU(N)f symmetry would turn
the topological symmetry into an SU(N)w symmetry, since in the index we should sum over
fluxes of the form m =

(
1
N , · · · ,

1
N ,−

N−1
N

)
which introduces states in the representations

of SU(N)w that are not representations of PSU(N)w or any other SU(N)w/Zk.
6As usual, we parametrize the flavour symmetry fugacities by fi and the fluxes by mi with i = 1, · · · , N

with the constraints
∏N

i=1 fi = 1 and
∑N

i=1 mi = 0.
7The index of the T (SU(N)) theory was computed also in [106], see eq. (2.1), with the further refinement

of a fugacity for the axial symmetry which is the commutant of the N = 2 R-symmetry inside the N = 4
R-symmetry. Moreover, it was pointed out that the −1 at order x2 corresponds to the extra SUSY current
from the point of view of the N = 3 index, see also [107–110].

8One can check that this is true also to higher orders in the expension in x and for higher N .
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4 so(2N)k gauge algebra and Nf hypermultiplets

Let us now extend our results of section 2 to the 3d N = 3 gauge theory with so(2N)k
gauge algebra and with Nf flavours of hypermultiplets in the vector representation. Let
us first summarise the main results for the SO(2N)k gauge group and then provide the
evidence and reasons later.

• For k odd, the dressed monopoles that are gauge invariant involve an odd number
of chiral fields, and so the global form of the flavour symmetry is USp(2Nf ), not
USp(2Nf )/Z2. There is no discrete anomaly involving the 2nd Stiefel-Whitney class
associated to the flavour symmetry bundle.

• For k divisible by 4, the global form of the flavour symmetry is USp(2Nf )/Z2, and
the anomaly theories are

N Nf Anomaly theory
even even exp

(
iπ
∫
BM1 ∪BC1 ∪ w

f
2

)
even odd exp

(
iπ
∫
BC1 ∪ (BM1 +BC1 ) ∪ wf2

)
odd even exp

(
iπ
∫
BM1 ∪ (BM1 +BC1 ) ∪ wf2

)
odd odd exp

(
iπ
∫
BM1 ∪BM1 ∪ w

f
2 +BC1 ∪BM1 ∪ w

f
2

+BC1 ∪BC1 ∪ w
f
2

)
(4.1)

where BM1 (resp. BC1 ) is the one-cocycle that is the background field for the Z2 zero-
form magnetic symmetry M (resp. the Z2 zero-form charge conjugation symmetry
C), and wf2 is the 2nd Stiefel-Whitney class that obstructs the lift of the USp(2Nf )/Z2
bundles to the USp(2Nf ) bundles. The two rows highlighted in blue are exchanged
under the duality, which will be discussed below, and each row in black is mapped
to itself under the duality.

• We will discuss the case of k ≡ 2 (mod 4) and its subtleties in section 4.2.

In the following discussion we will focus on the case in which k = 4K is divisible by 4
(i.e., K ∈ Z). Gauging the magnetic symmetry in the above SO(2N)4K gauge theory by
making BM1 dynamical, we obtain the Spin(2N)4K gauge theory with Nf hypermultiplets
in the vector representation, whose two-group symmetries are given by

Spin(2N)4K + Nf flavours

N Nf Postnikov class
even even δBM2 = BC1 ∪ w

f
2

even odd δBM2 = BC1 ∪ w
f
2

odd even δBM2 = Bock(wf2 ) +BC1 ∪ w
f
2

odd odd δBM2 = Bock(wf2 ) +BC1 ∪ w
f
2

(4.2)
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where BM2 is the two-form background field associated with the one-form symmetry arising
from gauging the magnetic symmetry. In the above, we followed [96, (2.19)] and rewrote
the relevant terms in the third and fourth lines in (4.1) as

π

∫
wf2 ∪B

M
1 ∪BM1 = π

∫
wf2 ∪ Bock(BM1 ) = π

∫
Bock(wf2 ) ∪BM1 , (4.3)

where Bock is the Bockstein homomorphism associated with the short exact sequence
0 → Z2 → Z4 → Z2 → 0. Similarly to the discussion in [96, (2.20)], upon making BM1
dynamical, we have δBM2 = Bock(wf2 ), as required.

On the other hand, gauging the magnetic symmetry in the above SO(2N)4K gauge
theory by making BC1 dynamical, we obtain the O(2N)+

4K gauge theories with Nf hyper-
multiplets in the vector representation, whose two-group symmetries are given by

O(2N)+
4K + Nf flavours

N Nf Postnikov class
even even δBC2 = BM1 ∪ w

f
2

even odd δBC2 = Bock(wf2 ) +BM1 ∪ w
f
2

odd even δBC2 = BM1 ∪ w
f
2

odd odd δBC2 = Bock(wf2 ) +BM1 ∪ w
f
2

(4.4)

Again, the two rows highlighted in blue are exchanged under the duality, whereas each row
in black is mapped to itself under the duality.

For k = 0, the presence of the mixed anomaly in the SO(4n + 2)0 gauge theory and
the two-group in the Spin(4n + 2)0 gauge theory meets the usual expectation, as pointed
out in [74, 75] (see also [68, 69]). For k ≥ 0, the above statements regarding the SO(2N)4K
gauge theories can be seen from the indices which can be computed in the following way.
For the fugacity of the charge conjugation symmetry χ = +1 (resp. χ = −1), all gauge
magnetic fluxes are set to be ±1/2 (resp. except the last one mN is set to zero and the
gauge fugacities zN and z−1

N are set to 1 and −1 respectively) and all flavour background
magnetic fluxes are fixed to be 1/2 (we refer the reader to appendix A for a summary of
the relevant facts about the 3d superconformal index). We provide some examples for the
SO(2N)k gauge theory with Nf flavours of hypermultiplets in the vector representation in
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the table below.9

N Nf k χ index
2 0 +1 ζ

2

[
xNf−1 + xNf

(
Nf +∑

1≤i 6=j≤Nf fif
−1
j

)
+ . . .

]even
odd

 −1

1
i

× ζ
1
2
2

[
xNf−1 + xNf

(
Nf +∑

1≤i 6=j≤Nf fif
−1
j

)
+ . . .

]
2 4 +1 ζ

2

[
xNf+1

(
polynomials in (f1, . . . , fNf ) of degrees 2, 4

)
+ . . .

]even
odd

 −1

1
i

× ζ
1
2
2

[
xNf

(
polynomials in (f1, . . . , fNf ) of degrees 0, 2

)
+ . . .

]
3 0 +1 ζ

3
2
4

[
x

3Nf−6
2 + x

3Nf−4
2

(
Nf +∑

1≤i 6=j≤Nf fif
−1
j

)
+ . . .

]
even
odd

 −1

1
i

× ζ
4

[
x

3Nf−6
2 + x

3Nf−4
2

(
Nf +∑

1≤i 6=j≤Nf fif
−1
j

)
+ . . .

]
3 4 +1 ζ

3
2
4

[
x

3Nf
2
(
polynomials in (f1, . . . , fNf ) of degrees 0, 2, 4, 6

)
+ . . .

]
even
odd

 −1

1
i

× ζ
4

[
x

3Nf−2
2

(
polynomials in (f1, . . . , fNf ) of degrees 2, 4

)
+ . . .

]

(4.5)

These results indicate the presence of the mixed anomalies given by table (4.1). This
can be explained via examples as follows. Let us first consider an example for N even and
Nf even. We can set χ = 1 (i.e. turn off BC1 ) and sum over ζ = ±1 without getting
any imaginary number in the coefficients; this indicates that, if BC1 is turned off, there
is no anomaly that obstructs gauging the magnetic symmetry and the flavour symmetry
USp(2Nf )/Z2 simultaneously, i.e. no mixed anomaly involving BM1 . On the other hand,
if we set χ = −1 (i.e. turn on BC1 ), summing over ζ = ±1 yields an imaginary coefficient.
This means that there is an obstruction in gauging the magnetic symmetry if the back-
ground field for the charge conjugation symmetry and a non-trivial USp(2Nf )/Z2 bundle
are turned on, i.e. there is a mixed anomaly exp

(
iπ
∫
BM1 ∪BC1 ∪ w

f
2

)
. Let us now con-

sider an example for N even and Nf odd. If we set ζ = 1 (i.e. turn off BM1 ), summing
over χ = ±1 yields an imaginary coefficient, but if we set ζ = −1 (i.e. turn on BM1 ), we
can sum over χ = ±1 without getting an imaginary coefficient. This implies that, if we
turn off BM1 , we have the anomaly exp

(
iπ
∫
BC1 ∪BC1 ∪ w

f
2

)
. However, if we turn on BM1 ,

this anomaly gets cancelled by an additional factor exp
(
iπ
∫
BC1 ∪BM1 ∪ w

f
2

)
. In terms

of the index, each of these anomaly factors contributes an imaginary number, and multi-
plying two imaginary numbers yields a real number. In conclusion, the anomaly theory is
exp

(
iπ
∫
BC1 ∪ (BM1 +BC1 ) ∪ wf2

)
as required. Note that for k divisible by 4, the flavour

fugacities fi (with i = 1, · · · , Nf ) always appear as polynomials of even degrees, and so
there is no anomaly involving wf2 ∪ w

f
2 . This analysis can be carried out generally. For

convenience, we summarise the correspondence between the anomaly theory and its con-
tribution to the index, where the gauge magnetic fluxes and flavour background magnetic

9These results are up to possible overall minus signs.
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fluxes are fixed to be 1/2 as follow

Anomaly theory Feature of the index
exp

(
iπ
∫
BM1 ∪BM1 ∪ w

f
2

)
ζ±

1
2 for the indices for both χ = ±1, i.e. only

(ζ = −1, χ = ±1) give imaginary coefficients.
exp

(
iπ
∫
BC1 ∪BC1 ∪ w

f
2

)
χ±

1
2 for the indices for both ζ = ±1, i.e. only

(ζ = ±1, χ = −1) give imaginary coefficients
exp

(
iπ
∫
BM1 ∪BC1 ∪ w

f
2

)
ζ for χ = +1 and ζ± 1

2 for χ = −1, i.e. only
(ζ = −1, χ = −1) gives imaginary coefficients

exp
(
iπ
∫
BM1 ∪ (BM1 +BC1 ) ∪ wf2

)
ζ±

1
2 for χ = +1 and ζ for χ = −1, i.e. only

(ζ = −1, χ = +1) gives imaginary coefficients.
exp

(
iπ
∫
BC1 ∪ (BC1 +BM1 ) ∪ wf2

)
χ±

1
2 for ζ = +1 and χ for ζ = −1, i.e. only

(ζ = +1, χ = −1) gives imaginary coefficients
exp

(
iπ
∫
BM1 ∪BM1 ∪ w

f
2 ζ±

1
2 for χ = +1 and (−ζ)± 1

2 for χ = −1, i.e. only (ζ, χ) =

+BC1 ∪BC1 ∪ w
f
2

)
(+1,−1), (−1,+1) give imaginary coefficients

exp
(
iπ
∫
BM1 ∪BM1 ∪ w

f
2 ζ±

1
2 for χ = +1 and iζ for χ = −1, i.e. only (ζ, χ) =

+BC1 ∪BM1 ∪ w
f
2 +BC1 ∪BC1 ∪ w

f
2

)
(−1,+1), (±1,−1) give imaginary coefficients

(4.6)

We will provide a non-trivial test of these results in the next subsection using the
duality.

4.1 Compatibility with the duality

Let us provide another indirect argument to support the above claims. We utilise the
duality between the following 3d N = 2 gauge theories [95, section 5.3]: (a) the SO(nc)k
(respectively O(nc)+

k and Spin(nc)k) gauge theory with nf flavours of chiral multiplets in
the vector representation and zero superpotential, and (b) the SO(n′c)−k (resp. O(n′c)+

−k
and O(n′c)−−k) gauge theory, n′c = nf + |k|−nc+2, with nf flavours of chiral multiplets q in
the vector representation, a collection of nf (nf +1)/2 gauge singletsM , and superpotential
W = Mqq. Using the same argument as in [111], we can establish a duality between the
following 3d N = 3 gauge theories:10

(1) the SO(Nc)k (resp. O(Nc)+
k and Spin(Nc)k) gauge theory

with Nf hypermultiplets in the vector representation, and
(2) the SO(N ′c)−k (resp. O(N ′c)+

−k and O(N ′c)−−k) gauge theory,
N ′c = 2Nf + |k| −Nc + 2, with Nf hypermultiplets
in the vector representation.

(4.7)

Let us focus first on the special orthogonal SO gauge group. As pointed out around [95,
(6.12)], in order to match the index of the two theories, one needs to include to the index of

10In the 3d N = 3 theory the CS coupling gives a mass to the N = 2 adjoint chiral multiplet inside the
N = 3 vector multiplet. Integrating it out we obtain an effective N = 2 theory with a quartic superpotential
for the massless chiral fields in the vector representation. The N = 3 duality can then be understood as a
consequence of the N = 2 duality of [95] deformed by such quartic coupling.
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theory (2) the contact term ∏Nf
i=1 f

kn
(i)
f

i , where fi are the flavour fugacities and n(i)
f are the

background magnetic fluxes for the flavour symmetry. If we denote by (ζ, χ) and (ζ ′, χ′)
the fugacities for (magnetic, charge conjugation) symmetries of the theories (1) and (2)
respectively, then we have a fugacity map

ζ ′ = ζ , χ′ = ζχ , or equivalently ζ = ζ ′ , χ = ζ ′χ′ . (4.8)

It can easily be seen that (4.6) is consistent with the duality, where rows (1, 2, 3, 5, 7) get
exchanged with rows (1, 6, 4, 5, 7), respectively.

Suppose that we take Nc to be an even number, say Nc = 2N . Then, the number
of colours N ′c = 2Nf + |k| − 2N + 2 in theory (2) is even if k is even while it is odd if
k is odd. In particular, the duality (4.7) exchanges the SO(even)odd gauge theory with
SO(odd)odd gauge theory.11 The latter theory has a flavour symmetry USp(2Nf ), rather
than USp(2Nf )/Z2. This is due to the fact that SO(odd) has a trivial centre and so
the Z2 centre of the USp(2Nf ) flavour symmetry cannot be reabsorbed into that of the
gauge group SO(odd); therefore we cannot have a discrete anomaly for this theory. This
is compatible with our findings for the SO(even)odd theory.

Let us now explore the case of SO(Nc)k gauge theory with Nf flavours, where Nc = 2N
is even and k = 2κ is even. The number of colours of the dual theory is N ′c = 2(Nf + |κ| −
N)+2, which can be both 0 (mod 4) or 2 (mod 4) depending on the level and the number of
flavours. In particular, we see that Nc/2 and N ′c/2 have the same partity, i.e. both being
odd or even, if and only if Nf + |κ| is odd; otherwise they have the opposite parity. Let us
further assume that k is divisible by 4, i.e. κ is even.12 As a consequence, if Nf is odd, then
Nc/2 and N ′c/2 have the same parity, and each anomaly denoted in black in (4.1) is mapped
into itself, in accordance with the duality (4.8) where C ↔ CM andM↔M. On the other
hand, if Nf is even, then Nc/2 and N ′c/2 have opposite parity, and the two anomalies de-
noted in blue in (4.1) are mapped into each other, again in accordance with the duality (4.8).

Similarly to the above discussion, the two-group symmetries of the O(2N)+
4K gauge

theory with Nf flavours given by (4.4) are mapped to those of the O(2N ′)+
−4K gauge

theory with N ′ = Nf +2|K|−N+1 and Nf flavours. Again, in (4.4), the Postnikov classes
highlighted in blue are interchanged, whereas each of those denoted in black is mapped
to itself under the duality (4.7). We can establish the same statement for the two-groups
symmetries of the Spin(2N)4K gauge theory with Nf flavours and those of the O(2N ′)−−4K
gauge theory with Nf flavours.

4.2 SO(2N)4K+2 gauge theory and open questions

Let us now consider the 3d N = 3 SO(2N)4K+2 gauge theory (K ∈ Z) with Nf hy-
permultiplets in the vector representation. The global form of the flavour symmetry is
USp(2Nf )/Z2, since (1) the dressed monopole operators involve an even number of chiral

11A benefit of dealing with the latter is that its index can be easily computed for both χ = +1 and
χ = −1 at the same time, without having to do two separate computations as for the SO(even)odd gauge
theory [95] (see also appendix A).

12The case of k ≡ 2 (mod 4), i.e. κ is odd, will be considered in section 4.2.
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fields, and (2) the operators that do not carry a magnetic flux transform in representations
whose highest weights are multiples of that of the adjoint representation. The index of this
theory can be computed as explained in appendix A. Here we report the result with all
gauge magnetic fluxes and background flavour magnetic fluxes set to 1/2.

N Nf k χ index
2 2 +1 ζ

2

[
xNf (1 +∑

1≤i<j≤Nf fifj) + . . .
]even

odd

 −1

1
i

× ζ
1
2
2

[
x

2Nf−1
2

(∑Nf
i=1 fi

)
+ . . .

]
3 2 +1 ζ

3
2
4

[
x

3Nf−3
2

(∑Nf
i=1 fi +∑

1≤i<j<k≤Nf fifjfk
)

+ . . .

]
even
odd

 −1

1
i

× ζ
4

[
x

3Nf−4
2

(∑
1≤i<j≤Nf fifj

)
+ . . .

]
(4.9)

Observe the presence of odd degrees of polynomials in (f1, . . . , fNf ) for χ = −1 when N
is even, and for χ = +1 when N odd. These features persist for all Chern-Simons levels
k = 4K + 2. We, however, do not have a good understanding of the anomaly theory that
is compatible with duality (4.7) and duality map (4.8) at present,13 and leave this open
problem for a future investigation.

4.3 U(1)k gauge theory with Nf hypermultiplets

In this section, we consider the 3d N = 3 U(1)k gauge theory with Nf hypermultiplets of
charge q, where we denote this theory by T kNf ,q. The index of this theory is given by

IT kNf ,q
(w, n|f ,m;x) =

∑
l∈Z+ε(m)

FTq(w, n|f ,m|l;x) ,

FT kNf ,q
(w, n|f ,m|l;x) ≡ wl

∮
dz

2πiz z
n+kl

Nf∏
i=1
I

1
2
χ

(
zqf−1

i ; ql − fi;x
)

× I
1
2
χ
(
z−qfi;−ql + fi;x

)
,

(4.10)

13For N even and Nf even, we see from the index that if we turn off BC1 (i.e. χ = +1), there should be no
mixed anomaly involving BM1 and wf2 . Since the duality maps a theory with N even and Nf even to another
theory withN even andNf even, using table (4.6), we see that there are two possibilities for the anomaly the-
ory in this case: either there should be no anomaly or there is an anomaly exp

(
iπ
∫
BC1 ∪ (BC1 +BM1 ) ∪ wf1

)
,

where indeed upon setting BC1 = 0 there is no mixed anomaly. Even though we do not have a clear un-
derstanding of the index results for χ = −1, this seems to suggest that there is still some anomaly and
so we conjecture that the anomaly theory should be exp

(
iπ
∫
BC1 ∪ (BC1 +BM1 ) ∪ wf1

)
. However, for N

odd and Nf even we see from the index that when BC1 = 0 (i.e. χ = +1), there is an anomaly involving
BM1 . This theory is also mapped to a theory with N odd and Nf even under the duality, so we see from
table (4.6) that the anomalies that are compatible with the χ = +1 index and with the duality are either
exp
(
iπ
∫
BM1 ∪BM1 ∪ wf2

)
or exp

(
iπ
∫

(BM1 ∪BM1 +BC1 ∪BC1 +BM1 ∪BC1 ) ∪ wf2
)
. Again we do not have a

clear understanding of the index result in (4.9) for χ = −1 and so we are not able to identify which one is the
correct anomaly theory. Indeed, each anomaly theory in (4.6) that is mapped to itself under the duality is not
compatible with the χ = −1 index. In particular, rows 1, 5 and 7 of table (4.6) give an imaginary coefficient
in the index for χ = −1 and some value of ζ; however, in (4.9), we see that for χ = −1 there is no imaginary
number for both ζ = ±1. It is possible that the form of the anomaly theory is more complicated than those
presented in table (4.6), or that the prescription of computing the indices (4.9) needs to be improved.
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where w is the fugacity for the U(1)w topological symmetry of the theory, and f1,...,Nf are
the fugacities for the flavour symmetry algebra su(Nf ). Using the similar argument as
in (2.3), we see that if we gauge a Zq subgroup of the U(1)w magnetic symmetry of T kNf ,q=1

leads to the T kq
2

Nf ,q
theory.14

For k = 0, the global form of the su(Nf ) flavour symmetry is SU(Nf )/ZNf . This
can be seen from the power series in x of the index IT kNf ,q

(w, n = 0|f ,m = 0;x) that
the dependence of fi are in terms of the characters of representations of SU(Nf ) of the
form [m, 0, . . . , 0,m], where [1, 0, . . . , 0, 1] is the adjoint representation of su(Nf ), for some
m. The operators associated with these terms transform trivially under the ZNf centre of
SU(Nf ). Moreover, there is no term involving a product of w and fi in the index, since the
bare monopole operators are gauge neutral and so they are not dressed by the chiral fields.
The global symmetry of the T k=0

Nf ,q
theory is therefore SU(Nf )/ZNf × U(1)w, for general

Nf and q. There is also a mixed anomaly between SU(Nf )/ZNf and U(1)w which can be
detected by considering FT k=0

Nf ,q
(w, n|f ,m|l;x) with n = 0, m =

(
1
Nf
, . . . , 1

Nf
,−Nf−1

Nf

)
and

l = 1
qNf

, where the result contains the prefactor w
1

qNf . This mixed anomaly is characterised
by the anomaly theory

exp
(

2πi
Nf

∫
wf2 ∪ c

w
1 (mod Nf )

)
, (4.11)

where wf2 is the generalised 2nd Stiefel-Whitney class that obstructs the SU(Nf )/ZNf
bundles to the SU(Nf ) bundles, and cw1 is the first Chern-class associated with the U(1)w
topological symmetry. For the special case of q = 1, this is in agreement with [76, (2.6)]
and [89, (7.86)]. For Nf = 2 we recover (2.13).

Let us now consider the case of k > 0. For convenience, let

s = GCD(k, q) , κ = k/s , q = q/s . (4.12)

In addition to the above discussion, there are terms involving the product between wq

and w−q and the characters of the representations Symκ Nf = [κ, 0, . . . , 0] and Symκ Nf =
[0, . . . , 0, κ] of su(Nf ). These corresponds to the monopole operators V+q and V−q, car-
rying the U(1) gauge charges −kq and kq, dressed by Qκ and Q̃κ, where Q and Q̃ are
the chiral fields carrying gauge charges +q and −q. Since qκ − kq = 0, these dressed
monopoles indeed carry zero gauge charge. The faithful global (non-R) symmetry is
[SU(Nf ) × U(1)w]/Zκ. The Zκ action can be seen from the index (4.10) as follows. If we
put f =

(
1
Nf
, . . . , 1

Nf
,−Nf−1

Nf

)
then the argument ql− fi ∈ Z implies that l ≡ 1

qNf
(mod q).

From the factor zn+kl, we must have n, which is the background magnetic flux of the U(1)w
topological symmetry, being − k

qNf
= − κ

qNf
(mod 1).15

Let us assume that k > 0 and that q divides k. Here, s = GCD(k, q) = q, q = 1
and κ = k/q. The analysis is very similar to that of [68, section 6.2], where κ in this
paper is denoted by ` in that reference. This theory has a Zq one-form symmetry, since

14Here q2 comes from the redefinition z′ = zq and l′ = lq, each of which gives a factor of q.
15If κ

qNf
∈ Z, then n can be turned off, and the global (non-R) symmetry is SU(Nf )/Zκ ×U(1)w.
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the Zq subgroup of the Zk symmetry acts non-trivially on the Wilson lines that are not
screened by the matter fields. Suppose further that GCD(κ, q) > 1.16 It was pointed
out in [68, (6.6)] that there is a two-group symmetry between the Zq one-form symmetry
and the [SU(Nf ) × U(1)w]/Zκ=k/q flavour symmetry. The correponding Postnikov class
is Bock(w(κ)

2 ) where w(κ)
2 is the generalised 2nd Stiefel-Whitney class that obstructs the

lift of the [SU(Nf )×U(1)w]/Zκ bundles to the SU(Nf )×U(1)w bundles, and Bock is the
Bockstein homomorphism associated with the short exact sequence:

0 −→ Zq −→ Zk −→ Zκ=k/q −→ 0 . (4.13)

If GCD(q, κ) = 1, then Zk = Zq × Zκ and the exact sequence splits; in which case, the
two-group symmetry is trivial.

Let us focus on the cases in which q is equal to 1 or 2, where the above results can be rec-
onciled with those of the SO(2)k and Spin(2)k gauge theories. Indeed, the theory T k2Nf ,q=1
can also be described as the SO(2)k gauge theory with Nf hypermultiplets in the vector
representation. Gauging the Z2 subgroup of the U(1)w topological symmetry of this theory
leads to the T 4k

2Nf ,q=2 theory, which can also be described by the Spin(2)k gauge theory with
Nf hypermultiplets in the vector representation. As we discussed earlier, when k is 0 mod
4, the latter theory has a two-group symmetry between the Z2 one-form symmetry and the
USp(2Nf )/Z2 symmetry. This is also the case for the T 4k

2Nf ,q=2 theory, where it follows from
the above discussion if we set the background field for the U(1)w topological symmetry to
zero and restrict the background field for the flavour symmetry to be in USp(2Nf )/Z2.

5 Non-invertible symmetries in the ABJ-type theories

In this section, we investigate mixed anomalies involving a one-form symmetry and two
zero-form symmetries, and the non-invertible symmetries arising from gauging appropriate
symmetries that participate in such anomalies.

5.1 so(2N)2k gauge algebra with Nf adjoints

In [37] it was shown that a 3d theory with a non-invertible symmetry can be constructed
starting from a theory with one Z2 one-form symmetry and two Z2 zero-form symmetries
with the mixed anomaly

exp
(
iπ

∫
B2 ∪B(1)

1 ∪B(2)
1

)
, (5.1)

where B2 is the background field for the one-form symmetry and B
(i)
1 for i = 1, 2 are

those for the two zero-form symmetries. In such a situation gauging two of the symmetries
doesn’t break the third one as one would naively expect from the anomaly, instead it was
explained in [37] that it makes it non-invertible.

Suppose first that we gauge the two zero-form symmetries. Then the anomaly (5.1)
would make the codimension two topological defect associated to the one-form symmetry

16Recall that this is indeed the case for the T kq
2

Nf ,q
theory with q > 1, which arises from gauging the Zq

magnetic symmetry of the T kNf ,q=1 theory.
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non-gauge invariant, but the gauge invariance can be restored by dressing it with a suitable
two-dimensional TQFT. The fusion rules for the dressed defect can then be deduced from
the tensor product property of the TQFT and typically result in the defect not being
invertible. In particular, it was shown in [37] that for an anomaly of the form (5.1) the
dressed defect N (M1) for the one-form symmetry obeys the non-group-like fusion rule

N (M1)×N (M1) =
2∏
i=1

(
1 + L(i)(M1)

)
, (5.2)

which implies that it does not admit an inverse. In (5.2), L(i)(M1) = exp
(
iπ
∮
M1

b
(i)
1

)
and

b
(i)
1 are the dynamical fields for the two gauged zero-form symmetries, so L(i)(M1) are the
codimension two topological defects that are associated to the two one-form symmetries
that are dual to the zero-form symmetries that were gauged which obey ordinary group-like
fusion fules and are invertible.

Similarly, we can gauge the one-form symmetry and one of the two zero-form symme-
tries to make the second one non-invertible. Again it was shown in [37] that dressing the
codimension one topological defect associated to the remaining zero-form symmetry with
a three-dimensional TQFT makes it gauge invariant, but at the price of having it obey the
non-group-like fusion rule

N (1)(M2)×N (1)(M2) = 1 +W (M2)
|H0(M2,Z2)|

∑
M1∈H1(M2,Z2)

L(2)(M1) , (5.3)

which implies that it does not admit an inverse. In (5.3), W (M2) = exp
(
iπ
∮
M2

b2
)
,

L(2)(M1) = exp
(
iπ
∮
M1

b
(2)
1

)
and b2, b(2)

1 are the dynamical fields for the gauged one-form
and zero-form symmetries respectively, so W (M2) and L(2)(M1) are the codimension one
and two topological defects that are associated to the zero-form and one-form symmetries
that are dual to the one-form and zero-form symmetries respectively that were gauged and
they obey ordinary group-like fusion fules and are invertible.

One of the examples considered in [37] (see also [45, section 8.4]) is the non-
supersymmetric SO(2N)2k theory with 2Nf adjoint real scalars for N , k and Nf even.
This theory has a Z2 one-form symmetry coming from the centre of the gauge group which
acts trivially on the matter fields and the monopole operators and two Z2 zero-form sym-
metries which are the magnetic and the charge conjugation symmetries. Between these
symmetries there is an anomaly which is precisely of the form (5.1) [96]17

exp
(
iπ

∫
B2 ∪BM1 ∪BC1

)
. (5.4)

This then authomatically implies that the Pin+(2N)2k theory with 2Nf adjoint real scalars,
which is obtained by gauging both the magnetic and the charge conjugation symme-
tries, has a non-invertible one-form symmetry for N , k and Nf even. Similarly, the

17For N and k odd there are additional terms in the anomaly theory that are not linear in BM1 and
BC1 [96] so the procedure of [37] is not applicable in a straightforward way. It would be interesting to
investigate what happens in such cases.
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Spin(2N)2k/Z
[1]
2 = Sc(2N)2k or Ss(2N)2k

18 (resp. O(2N)2k/Z
[1]
2 = PO(2N)2k) gauge the-

ory with 2Nf adjoint real scalars, which are obtained by gauging the Z[1]
2 one-form symme-

try and the magnetic (resp. charge conjugation) symmetry, has a non-invertible zero-form
symmetry for N , k and Nf even.

Before discussing how the procedure of [37] can be applied to the ABJ theory, we will
first do the propedeutic exercise of showing how it is possible to use the superconformal
index to detect the anomaly (5.4) in the supersymmetric version of this theory.19 Namely,
we consider the 3d N = 3 SO(2N)2k theory with Nf adjoint hypers for N and k even.20

In order to detect the anomaly (5.4) we compute the index of the theory in which the
one-form symmetry has been gauged, which amounts to including monopole sectors with
half-integer flux, and refined with fugacities χ and ζ for the zero-form symmetries.

Computing the index for low N , k and Nf and for χ = +1 we find21,22

N = 2, k = 0, Nf = 2 : 1 + (21 + ζ)x+O(x2)

N = 2, k = 0, Nf = 3 : 1 + 42x+ 40x
3
2 + (832 + ζ)x2 +O(x

5
2 )

N = 2, k = 2, Nf = 1 : 1 + 6x+ 13x2 − 2(3 + ζ)x
5
2 +O(x3) .

(5.5)

If we instead compute the same indices but for χ = −1 we find

N = 2, k = 0, Nf = 2 : 1 + 8x
1
2 + (32 + ζ

1
2 )x+O(x

3
2 )

N = 2, k = 0, Nf = 3 : 1 + 12x
1
2 + 72x+ 280x

3
2 + (789− ζ

1
2 )x2 +O(x

5
2 )

N = 2, k = 2, Nf = 1 : 1 + 4x
1
2 + (8− ζ

1
2 )x+O(x

3
2 )

N = 4, k = 0, Nf = 2 : 1 + 8x
1
2 + 42x+ 164x

3
2 + 539x2 + 1564x

5
2 + 4296x3

+ 11552x
7
2 + 31248x4 + 84316x

9
2 + 225352x5

+ 589792x
11
2 + (1511597 + ζ

1
2 )x6 +O(x

13
2 ) .

(5.6)

The half-integer powers of the fugacity ζ for the magnetic symmetry when χ = −1 signal
that the theory has the anomaly (5.4).

18Here we follow the notation of [112]. The theories Sc(2N) and Ss(2N) for N even are obtained by gaug-
ing respectively the ZC2 and the ZS2 one-form symmetries of the Spin(2N) theory, where ZC2 comes from the
centre symmetry of Spin(2N) acting on one spinor representation and the vector representation while ZS2 acts
on the other spinor and again the vector. Since Sc(N) is related to Ss(N) by the Z2 outer-automorphism of
Spin(N), we will not discuss them separately. In fact, there is another way to obtain this theory. As pointed
out in [96, Footnote 29], the zero-form magnetic symmetry of the SO(2N)/Z2 gauge theory is extended
to Z4. If we gauge a Z2 subgroup of the latter, we arrive at the Spin(2N)2k/Z[1]

2 = Sc(2N)2k or Ss(2N)2k

gauge theory, as required. Indeed, the commutant of Z2 in Z4 is identified with the Z2 zero-form magnetic
symmetry in the resulting theory. Moreover, in this theory, there is a mixed anomaly between the Z2

one-form symmetry, arising from gauging the zero-form symmetry, and the Z2 magnetic symmetry.
19The definition of the magnetic and the charge conjugation symmetries is slightly different in the super-

symmetric and in the non-supersymmetric case, see for example [95, 96], but also in the supersymmetric
case we find the anomaly (5.4).

20One could also consider the case with N = 2 supersymmetry, which we expect to behave similarly.
21For simplicity we don’t turn on any fugacity for the continuous symmetry acting on the matter fields.
22For k = 0 we consider Nf ≥ 2 in order for the theory not to be bad in the sense of [91].
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Although computing the index for higher values of Nf is feasible, increasing N and k
is computationally more demanding. Nevertheless, we can find a monopole operator that
for any even N and k would give a contribution to the index with half-integer power of ζ,
which confirms the presence of the anomaly (5.4) for any even N and k. If we consider the
monopole with flux

(
1
2 , · · · ,

1
2 , 0
)
, where the last flux is zero since we are considering the

case χ = −1 [95], would give the following contribution to the index:23

ζ
N−1

2 x
N(N−1)

2

N−1∏
a=1

zka , (5.7)

where za are the so(2N) gauge fugacities which we parametrize such that the character of
the adjoint representation under which the matter fields transform is

χ
so(2N)
adj. = N +

N∑
a<b

zazb + zaz
−1
b + z−1

a zb + z−1
a z−1

b , (5.8)

with the last fugacity being set to zN = 1 and z−1
N = −1 for χ = −1 [95]. The presence of the

gauge fugacities za in the monopole contribution signals that this is not a gauge invariant
operator. Nevertheless, when k is even we can dress it with the matter fields to make it
gauge invariant and the contribution to the index of the resulting operator would have a
half-integer power of ζ only for N even. Hence, the anomaly (5.4) is indeed present for any
N and k even and for arbitrary Nf . This in turn implies, following the general analysis
of [37], that the 3d N = 3 Pin(2N)2k theory with Nf adjoint hypermultiplets, obtained by
gauging both the magnetic and the charge conjugation symmetries [95], has a non-invertible
one-form symmetry whose topological defect satisfies the fusion rule (5.2) if N and k are
even. Similarly, the Spin(2N)2k/Z

[1]
2 = Sc(2N)2k or Ss(2N)2k (resp. O(2N)2k/Z

[1]
2 =

PO(2N)2k) gauge theory with Nf hypermultiplets in the adjoint representation, which
are obtained by gauging the Z[1]

2 one-form symmetry and the magnetic (resp. charge
conjugation) symmetry, have a non-invertible zero-form symmetry whose topological defect
satisfies the fusion rule (5.3) for N and k even.

5.2 ABJ theories of the orthosymplectic type

Let us now consider the Aharony-Bergman-Jafferis (ABJ) theories [90] with gauge alge-
bra so(2N)2k × usp(2M)−k and two bifundamental half-hypermultiplets. We will assume
throughout this subsection that k is even.24

First we consider the SO(2N)2k × USp(2M)−k version of the theory. This has a
Z[1]

2 one-form symmetry coming from the diagonal combination of the centres of the two
gauge nodes25 (see [94, 114]). There are also the Z2 zero-form magnetic and charge

23This can be easily deduced by looking at the overall factor in front of the q-Pochhammers that appear
in the integrand of the integral expression of the index.

24We remark that for k odd, we encounter the same problem as in (4.2), namely we cannot find the
anomaly that is compatible with the generalised level-rank duality [90, 113].

25Both SO(2N) and USp(2N) groups have a Z2 centre; see [96, table 3]. Since the Wilson line in the
bifundamental representation is screened by a matter field, an anti-diagonal combination of Z2 × Z2 is
absent. The bare monopole operators, despite not being gauge invariant, are also uncharged under the
diagonal combination and so we are left with one Z2 one-form symmetry, which is denoted here by Z[1]

2 .
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conjugation symmetries.26 We will show momentarily using the index that for N even
and arbitrary M the theory has exactly the anomaly (5.4). This in turn implies that
the Pin(2N)2k × USp(2M)−k variant of the theory has a non-invertible one-form sym-
metry whose topological defect satisfies the fusion rule (5.2) for N even. Similarly, the
(Spin(2N)2k×USp(2M)−k)/Z[1]

2
27 and the (O(2N)2k×USp(2M)−k)/Z[1]

2
28 variants of the

theory have a non-invertible zero-form symmetry, which is the charge conjugation symme-
try for Spin and the magnetic symmetry for O, whose topological defects satisfy the fusion
rule (5.3) for N even.

In order to detect the anomaly, we compute the index of the theory [SO(2N)2k ×
USp(2M)−k]/Z[1]

2 where the one-form symmetry is gauged and refined with the fugacities
χ and ζ for the zero-form symmetries. For low N , M and k and for χ = +1 we find

N = 2,M = 1, k = 2 : 1 + x+ (5 + 6ζ)x2 +O(x3)
N = M = 2, k = 2 : 1 + x+ (16 + 11ζ)x2 +O(x3)

N = 2,M = 1, k = 4 : 1 + x+ 4x2 − 4x3 + (4 + 9ζ)x4 +O(x4)
N = M = 2, k = 4 : 1 + x+ 10x2 + (31 + 24ζ)x3 +O(x4) ,

(5.9)

while for χ = −1 we have

N = 2,M = 1, k = 2 : 1 + (1− 3ζ
1
2 )x+O(x2)

N = M = 2, k = 2 : 1 + x+ (−2 + 3ζ
1
2 + 5ζ)x2 +O(x3)

N = 2,M = 1, k = 4 : 1 + x+ (2− 5ζ
1
2 )x2 +O(x3)

N = M = 2, k = 4 : 1 + x− 2x2 + 4x3 + (4 + 3ζ
1
2 + 9ζ)x4 +O(x5) .

(5.10)

Similarly to the example of the previous subsection, the presence of states carrying ζ
1
2

indicates that the theory has the anomaly (5.4).
Again computing the index for higher N , M and k becomes computationally challeng-

ing, but we can construct a gauge invariant dressed monopole operator with half-integer
flux that for χ = −1 gives a contribution with a half-integer power of ζ for N even and if
either M is odd and k abritrary or M is even and k is odd. Indeed, the monopole with
flux

(
1
2 , · · · ,

1
2 , 0; 1

2 , · · · ,
1
2

)
, where the first N entries correspond to the so(2N) flux and

the last M to the usp(M) flux, would give the following contribution to the index:

ζ
N−1

2

N−1∏
a=1

(zsoa )k
M∏
i=1

(
zuspi

)−k
, (5.11)

where zsoa are the so(2N) gauge fugacities and zuspi the usp(2M) ones which we parametrize
such that the character of the bifundamental representation of so(2N) × usp(2M) under

26In this section we turn off any background field for the SO(3)f flavour symmetry of the ABJ theory.
It would be interesting to understand what is its fate after the gaugings that we are going to perform as a
consequence of the anomalies (6.1)–(6.2), in particular if it also becomes non-invertible.

27Here the gauged Z[1]
2 one-form symmetry is the diagonal combination of either the ZS2 or the ZC2 centre

symmetries of Spin(2N) and the Z2 centre symmetry of USp(2N).
28Here the gauged Z[1]

2 one-form symmetry is the diagonal combination of the centre symmetries of O(2N)
and USp(2N).
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which the matter fields transform is

χ
so(2N)×usp(2M)
bifund. =

[
N∑
a=1

zsoa + (zsoa )−1
] [

M∑
i=1

zuspi +
(
zuspi

)−1
]
. (5.12)

and again we set zsoN = 1 and (zsoN )−1 = −1 for χ = −1. The presence of the gauge fugacities
zsoa , zuspi for the two gauge nodes in the monopole contribution (5.11) signals that this is
not a gauge invariant operator. Nevertheless, we can try to dress it with the matter fields
to make it gauge invariant. This can be done by choosing terms in (5.12) to cancel the
gauge fugacities in (5.11). If N andM have opposite parity, the choice can be made in such
a way that they do not involve zsoN for any k. For example, for N = 2 and M = 3, these
terms can be chosen as follows: (zso1 )−1zusp1 , zso1 z

usp
2 , and (zso1 )−1zusp3 ; upon raising to the

power k, the product of these terms cancel the gauge contribution in (5.11), as required. If
N and M have the same parity and k is even, such a choice that does not involve zsoN can
be made again. For example, for N = M = k = 2, we can choose from the square of (5.12)
the following terms: (zso1 )−2(zusp1 )2 and (zusp2 )2, which cancel precisely the gauge fugacities
in (5.11). However, if N and M have the same parity and k is odd, such a choice must
involve zsoN or (zsoN )−1. For example, forN = M = 2 and k = 1,we can choose from (5.12) the
following terms: (zso1 )−1zusp1 and (zso2 )±1(zusp2 ). Since for χ = −1 we have to set zsoN = 1 and
(zsoN )−1 = −1, the two contributions cancel against each other. Hence, if N andM have the
same parity and k is odd, we cannot obtain the gauge invariant dressed monopole operators.
However, since we focus on k even, we will not consider the latter case; thus, the gauge
invariant dressed monopole operators can be formed independent of the parity of N andM .

The contribution to the index of the resulting dressed monopole operator has a half-
integer power of ζ only for N even, so the anomaly (5.4) is present for anyM , assuming that
k is even. This in turn implies, following again the analysis of [37], that the Pin(2N)2k ×
USp(2M)−k ABJ theory, with N and k even, has a non-invertible one-form symmetry
and similarly the (Spin(2N)2k × USp(2M)−k)/Z[1]

2 and the (O(2N)2k × USp(2M)−k)/Z[1]
2

theories have a non-invertible zero-form symmetry for N and k even.

6 Two-groups in the ABJ theories of the orthosymplectic type

Let us now consider another interesting aspect of the ABJ theories [90], namely the two-
group symmetries. We focus again on those with gauge algebra so(2N)2k × usp(2M)−k,
with k even. The two bifundamental half-hypermultiplets transform under the flavour
symmetry algebra su(2)f as a doublet. In fact, it can be checked using the superconformal
index that there is no operator transforming under the Z2 centre of SU(2)f , and so the
global form of this flavour symmetry is in fact SO(3)f . Another way to see this is by
observing that a transformation by the Z2 centre of the flavour symmetry can always be
reabsorbed by a gauge transformation for the Z2 centre of either the gauge groups. It is
crucial to remark that, for generic N , M and k, this theory has N = 5 supersymmetry and
the SO(3)f symmetry is a subgroup of the SO(5) R-symmetry.29

29Note that the amount of supersymmetry can be larger than N = 5, for example, it can be N = 6
for k = 1. However, since we restrict ourselves to k even, we will only consider the theories with N = 5
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We examine the mixed anomalies between the magnetic symmetry, the charge con-
jugation symmetry and the SO(3)f flavour symmetries. In the following, we denote the
background fields for the former two by BM1 and BC1 respectively, and denote by wf2 the 2nd
Stiefel-Whitney class that obstructs the lifting the SO(3)f bundles to the SU(2)f bundles.
Let us first summarise the main results and then provide the evidence and reasons later.

1. Let us take N = 2n+ 1. The SO(4n+ 2)2k×USp(2M)−k theory with k even (and M
arbitrary) has a mixed anomaly between the Z2 zero-form magnetic symmetry, the
Z2 zero-form charge conjugation symmetry and the SO(3)f symmetry given by the
anomaly theory

exp
(
iπ

∫
BM1 ∪ (BM1 +BC1 ) ∪ wf2

)
. (6.1)

We remark that this is consistent with the third line of (4.1).

2. Let us take N = 2n. The SO(4n)2k × USp(2M)−k theory with k even has a mixed
anomaly given by the anomaly theory

exp
(
iπ

∫
BM1 ∪BC1 ∪ w

f
2

)
exp

(
iπ

∫
B2 ∪BM1 ∪BC1

)
, (6.2)

where the first factor is consistent with the first line of (4.1) and the second factor
comes from (5.4) and was discussed extensively in the previous section.

These mixed anomalies involving only the zero-form symmetries can be seen from the
indices that can be computed in following way. For the charge conjugation fugacity χ = +1
(resp. χ = −1), all of the magnetic fluxes of the so(2N) gauge algebra are set to 1/2 (resp.
except the last one mN is set to zero and the gauge fugacities zN and z−1

N are set to 1
and −1 respectively), those for the usp(2M) gauge algebra are set to 0, and those for the
SO(3)f flavour symmetry are set to 1/2.30

N M k χ index
2 1 2 +1 1

2ζ
[
x3(f2 + f4)− x4 (1 + f2)+ . . .

]
−1 −ζ

1
2
[
x2 − x3f2 − x4(1− f2 + f4) + . . .

]
2 2 2 +1 1

2ζ
[
x5(f2 + f4)− x6 (1 + f2)+ . . .

]
−1 1

2ζ
1
2
[
x4 − x5f2 − x6(1− f2 + f4) + . . .

]
3 2 2 +1 1

4ζ
3
2
[
x6(1 + f2) + . . .

]
−1 1

4ζ
[
x5f4 − x6f2 + . . .

]
3 3 2 +1 1

4ζ
3
2
[
x9(1 + f2) + . . .

]
−1 −1

4ζ
[
x8f4 − x9f2 + . . .

]

(6.3)

The mixed anomalies between zero-form symmetries can be immediately written down as
described in (4.6). This is consistent with the statements in (6.1) and (6.2).

supersymmetry.
30This is because we can choose to reabsorbe a non-trivial transformation for the Z2 centre of the flavour

symmetry by a gauge transformation for the Z2 centre of the SO(2N) gauge group only.
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An immediate consequence of the mixed anomalies is the two-group symmetries that
are present upon gauging various symmetries. Below we use the same notation as in (4.2)
and (4.4).

• Gauging the zero-form magnetic symmetry leads to the ABJ theory Spin(2N)2k ×
USp(2M)−k. For N odd and k even (M arbitrary), the two-group symmetry is
characterised by

δBM2 = Bock(wf2 ) +BC1 ∪ w
f
2 . (6.4)

For N even and k even, the two-group is characterised by

δBM2 = BC1 ∪ (wf2 +B2) . (6.5)

• Gauging the zero-form charge conjugation symmetry leads to the ABJ theory
O(2N)2k × USp(2M)−k. For N odd and k even (M arbitrary), the two-group sym-
metry is characterised by

δBC2 = BM1 ∪ w
f
2 . (6.6)

For N even and k even, the two-group is characterised by

δBC2 = BM1 ∪ (wf2 +B2) . (6.7)

To summarise some of the results of this section and the previous one, we saw that
starting from the ABJ theory of the SO-type forN and k even which has a non-trivial mixed
anomaly, we can go via suitable gaugings either to variants with non-invertible symmetries
(Pin, Spin/Z[1]

2 or O/Z[1]
2 ) or to some with two-group symmetries (Spin or O). This is

analogous to similar findings that were pointed out in [45] for the non-supersymmetric
so(4N) pure gauge theory in arbitrary d dimensions.

Hitherto we have discussed mixed anomalies and two-group symmetries that involve
the SO(3)f flavour symmetry. However, since SO(3)f is a subgroup of a larger SO(5) R-
symmetry, it is natural to ask whether the whole R-symmetry participates in such mixed
anomalies or two-group symmetries. It is not clear to us how the superconformal index can
be used to answer this question. We hope to investigate and address this issue in future
work.

7 Conclusions

In this paper we investigated discrete mixed anomalies in a variety of 3d N ≥ 3 theories
using the superconformal index as our main tool. These include the U(1)k gauge theory
with Nf hypermultiplets of charge q, the T (SU(N)) theory of Gaiotto-Witten, the theories
with so(2N)2k gauge algebra with hypermultiplets in the vector representation, and variants
of the Aharony-Bergman-Jafferis (ABJ) theory with the orthosymplectic gauge algebra.
We then exploited this knowledge to argue, following various constructions available in
the literature, that different global variants of these theories obtained by gauging some
anomalous symmetries possess non-invertible or two-group symmetries.
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There are several open questions and possible directions for future investigations that
one might pursue. Among the open questions, it would be interesting to understand the
anomalies of the SO(2N)2k gauge theories with vector matter and of the SO variant ABJ
theories for k odd and how to reconcile them with the known dualities that they enjoy. An-
other interesting question is whether the two-group involving the SO(3)f flavour symmetry
of the ABJ theory that we found can be extended to a two-group for the entire R-symmetry,
of which SO(3)f becomes part due to the supersymmetry enhancement at low energies.

One possible line of future research is to try to apply the same analysis also to other
theories for which we can compute the superconformal index, possibly with less supersym-
metry. The index indeed becomes particularly useful when studying mixed anomalies of
more complicated quiver gauge theories, such as the 3d N = 2 theories arising from the
compactifications of 5d SCFTs on Riemann surfaces with flux [115–118].

Finally, it would be interesting to check our results about mixed anomalies, two-group
symmetries and non-invertibles symmetries in the ABJ theories from the holographic per-
spective, along the lines of for example [64, 114, 119–123].
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A 3d supersymmetric index conventions

In this appendix we give a brief review of the 3d supersymmetric index [83–88]. This is
also to explain our conventions, which are the same as those used in [94].

The index can be expressed as a matrix integral of the form

I({f ,m}) =
∑
n

1
|Wn|

∮
TrkG

rkG∏
i=1

dui
2πiui

Zcl({u,n})Zvec({u,n})Zmat({u,n}; {f ,m}) .

(A.1)
In this expression, u are the gauge fugacities living in the Cartan of the gauge group G

and n the corresponding magnetic fluxes living in the co-weight lattice of G. Hence, the
summation over magnetic fluxes is sensible to the global structure of the gauge group. The
integration contour is taken to be the unit circle T for each integration variable and the
prefactor |Wn| is the dimension of the Weyl group of the residual gauge symmetry in the
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monopole background with flux n. Finally, {f ,m} denote possible fugacities and fluxes
for global symmetries.

The integrand of (A.1) has three types of contributions. First, we have the classical
contribution Zcl, which can consist of Chern-Simons (CS) interactions and, when the gauge
group contains some abelian factor, FI interactions. For example, for a U(N) gauge group
it takes the form

ZU(N)
cl ({u,n}) =

N∏
i=1

uknii wni , (A.2)

where k is the CS level and w is the fugacity associated with the U(1)w zero-form topological
symmetry. In the main text we consider also USp(2N), SO(2N) and SO(2N + 1) gauge
groups, for which the classical contribution is

ZUSp(2N)
cl ({u,n}) =

N∏
i=1

u2kni
i

ZSO(2N+ε)
cl ({u,n}) =

N∏
i=1

u2kni
i ζni , (A.3)

where for compactness we denoted SO(2N + ε) for ε = 0, 1. Moreover, ζ is the fugacity for
the zero-form topological symmetry, which is U(1)ζ for SO(2) ∼= U(1), while it is a ZM2 for
SO(2N) and SO(2N + 1) with N > 1 so in these cases we have the condition ζ2 = 1.

Then we have the contribution Zvec of a 3d N = 2 vector multiplet, which takes the
following generic form:

Zvec({u,n}) =
∏
α∈g

x−
|α(n)|

2 (1− (−1)α(n)uαx|α(n)|) , (A.4)

where α are the roots of the gauge algebra g of the gauge group G and we are using the
short-hand notations

uα =
rkG∏
i=1

uαii , α(n) =
rkG∑
i=1

αini, |α(n)| =
rkG∑
i=1

αini . (A.5)

Explicitly for the groups of main interest in this paper we have

ZUSp(2N)
vec ({u,n}) =

N∏
i=1

x−2|ni|
∏
s=±1

(1− (−1)2s niu2s
i x

2|s ni|)

×
N∏
i<j

x−|ni+nj |−|ni−nj |
∏

s1,s2=±1
(1− (−1)s1ni+s2njus1

i u
s2
j x
|s1ni+s2nj |)

ZSO(2N+ε)
vec ({u,n}, χ = +1) =

 N∏
i=1

x−|ni|
∏
s=±1

(1− (−1)s niusix|s ni|)

ε (A.6)

×
N∏
i<j

x−|ni+nj |−|ni−nj |
∏

s1,s2=±1
(1− (−1)s1ni+s2njus1

i u
s2
j x
|s1ni+s2nj |) .
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For SO(2N + ε) we also have a discrete zero-form charge conjugation symmetry ZC2 whose
corresponding fugacity in the index we denote by χ and the above expressions hold for
χ = +1. For χ = −1 we have to set uN = +1, u−1

N = −1 and nN = 0 when ε = 0, while
when ε = −1 we have [95, 124, 125]

ZSO(2N+1)
vec ({u,n}, χ = −1) =

N∏
i=1

x−|ni|
∏
s=±1

(1 + (−1)s niusix|s ni|) (A.7)

×
N∏
i<j

x−|ni+nj |−|ni−nj |
∏

s1,s2=±1
(1− (−1)s1ni+s2njus1

i u
s2
j x
|s1ni+s2nj |) .

Finally, we have the contribution Zmat of matter fields which come into 3d N = 2
chiral multiplets. The contribution of a chiral with R-charge r and transforming under a
U(1) symmetry with fugacity and flux u and n respectively is

Zchir(u;n; r) = (x1−ru−1)|n|/2
∞∏
p=0

1− (−1)nu−1x|n|+2−r+2p

1− (−1)nux|n|−r+2p . (A.8)

When r is taken to be the superconformal R-charge, then the supersymmetric index coin-
cides with the superconformal index of the SCFT to which the gauge theory flows in the
IR. The full contribution to the index of a set of chirals transforming in representations
RG and RF of the gauge and the flavour symmetry respectively and with R-charge r is

Zmat({u,n}; {f ,m}, r) =
∏

ρG∈RG

∏
ρF∈RF

Zchir(uρGfρF ; ρG(n) + ρF (m); r) , (A.9)

where ρG and ρF are the weights of RG and RF respectively. Notice that a chiral in the ad-
joint representation of the gauge group and with R-charge 1 gives a trivial contribution to
the index. Thus, the index factor for a 3d N = 4 vector multiplet, which decomposes into an
N = 2 vector and an N = 2 chiral, actually coincides with the one of an N = 2 vector mul-
tiplet (A.4). An example of a matter field that we encountered in the main text is an N = 4
hypermultiplet in the bifundamental of SO(2N + ε)×USp(2M), where in the SO(2N + ε)
gauge theory USp(2M) is a flavour symmetry while in the ABJ theory it is a gauge sym-
metry. Its contribution to the index is (we take the superconformal R-charge r = 1/2)

ZSO(2N+ε)×USp(2M)
mat ({u,n}; {z,m};χ = +1) =

 M∏
j=1

∏
s=±1

Zchir(zsj ; smj ; 1/2)

ε

×
N∏
i=1

M∏
j=1

∏
s1,s2=±1

Zchir(us1
i z

s2
j ; s1ni + s2mj ; 1/2) , (A.10)

where {u,n} are the SO(2N + ε) fugacities and fluxes, while {z,m} are the USp(2M)
fugacities and fluxes. The last expression holds again only for χ = +1. The correct
contribution for χ = −1 in the case ε = 0 is obtained by setting zN = 1, z−1

N = −1 and
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mN = 0, while when ε = 1 we have the compact expression for generic χ [95, 124, 125]

ZSO(2N+1)×USp(2M)
mat ({u,n}; {z,m};χ) =

M∏
j=1

∏
s=±1

Zchir(χ zsj ; smj ; 1/2)

×
N∏
i=1

M∏
j=1

∏
s1,s2=±1

Zchir(us1
i z

s2
j ; s1ni + s2mj ; 1/2) . (A.11)

To conclude, let us explain how to obtain the indices of the theories with gauge algebras
so(N) and usp(2M) for different choices of the global structure of the gauge group. Let us
start from the simplest case of usp(2M). If we take the gauge group to be USp(2M) then
we have to sum over integer magnetic fluxes n ∈ ZM , while if we take it to be USp(2M)/Z2
then we have to sum over half-integer magnetic fluxes n ∈ (Z/2)M . In the latter case one
can also introduce a fugacity g obeying g2 = 1 for the Z2 magnetic symmetry so that the
monopoles with integer magnetic flux carry g0 = 1 while those with half-integer magnetic
flux carry g1.

In the case of so(N) there several possible global variants, which depend on the value of
N . In the main text we only consider the case of so(2N) and in particular we compute the
index for the groups SO(2N) and SO(2N)/Z2. These work similarly to the usp(2M) case,
that is for SO(2N) we sum over integer fluxes while for SO(2N)/Z2 we sum over half-integer
fluxes. There are also other groups, some of which we also encountered in the main text
but we didn’t need to compute their index explicitly. For example, so(N) for any N admits
the variants Spin(N), O(N) and Pin(N). These are obtained from the SO(N) theory by
gauging the magnetic and the charge conjugation symmetries. At the level of the index, the
gauging is implemented by summing over all the possible values of their fugacities ζ = ±1
and χ = ±1 and dividing by the dimension of the corresponding symmetry group [95]

ISpin(N)(χ) = 1
2
(
ISO(N)(ζ = +1;χ) + ISO(N)(ζ = −1;χ)

)
IO(N)+(ζ) = 1

2
(
ISO(N)(ζ;χ = +1) + ISO(N)(ζ;χ = −1)

)
IO(N)−(ζ) = 1

2
(
ISO(N)(ζ;χ = +1) + ISO(N)(−ζ;χ = −1)

)
IPin(N) = 1

2
(
ISpin(N)(χ = +1) + ISpin(N)(χ = −1)

)
= 1

4
(
ISO(N)(ζ = +1;χ = +1) + ISO(N)(ζ = −1;χ = +1)

+ ISO(N)(ζ = +1;χ = −1) + ISO(N)(ζ = −1;χ = −1)
)
, (A.12)

where for simplicity we only specify the dependence on ζ and χ which are the only relevant
ones for the gauging.
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