
J
H
E
P
0
1
(
2
0
2
3
)
0
9
7

Published for SISSA by Springer

Received: October 25, 2022
Revised: December 15, 2022
Accepted: January 6, 2023

Published: January 18, 2023

ANEC on stress-tensor states in perturbative λφ4

theory

Teresa Bautistaa and Lorenzo Casarinb,c
aDepartment of Mathematics, King’s College London,
The Strand, London WC2R 2LS, U.K.
bInstitut für Theoretische Physik, Leibniz Universität Hannover,
Appelstraße 2, 30167 Hannover, Germany
cMax-Planck-Institut für Gravitationsphysik (Albert Einstein Institut),
Am Mühlenberg 1, D-14476 Potsdam, Germany
E-mail: teresa.bautista@kcl.ac.uk,
lorenzo.casarin@itp.uni-hannover.de, lorenzo.casarin@aei.mpg.de

Abstract: We evaluate the Average Null Energy Condition (ANEC) on momentum eigen-
states generated by the stress tensor in perturbative λφ4 and general spacetime dimension.
We first compute the norm of the stress-tensor state at second order in λ; as a by-product
of the derivation we obtain the full expression for the stress tensor 2-point function at
this order. We then compute the ANEC expectation value to first order in λ, which also
depends on the coupling of the stress-tensor improvement term ξ. We study the bounds
on these couplings that follow from the ANEC and unitarity at first order in perturbation
theory. These bounds are stronger than unitarity in some regions of coupling space.

Keywords: Field Theories in Lower Dimensions, Renormalization and Regularization,
Effective Field Theories

ArXiv ePrint: 2210.11365

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2023)097

mailto:teresa.bautista@kcl.ac.uk
mailto:lorenzo.casarin@itp.uni-hannover.de
mailto:lorenzo.casarin@aei.mpg.de
https://arxiv.org/abs/2210.11365
https://doi.org/10.1007/JHEP01(2023)097


J
H
E
P
0
1
(
2
0
2
3
)
0
9
7

Contents

1 Introduction 1

2 Norm of the state 3

3 ANEC expectation value on the stress-tensor state 7

4 Positivity bounds 9
4.1 Case 2 < d < 4 10
4.2 Case d = 4 12

5 Conclusions and outlook 14

A Conventions and formulae 15

B Calculation of the eye diagram 15

C Full Euclidean stress-tensor 2-point function to order O(λ2) 17

D Wightman functions in momentum space 18

E Massive free scalar 19

1 Introduction

The Average Null Energy Condition (ANEC) states that the integral of the null energy
over a complete null worldline is non-negative,

+∞∫
−∞

dz− T−−(z) ≥ 0 . (1.1)

This is a quantum statement, it holds true at operatorial level. It is satisfied in free
theory [17], it has been shown to hold for interacting unitary QFTs with a nontrivial UV
fixed point using field-theoretic methods [11], and more generally for any unitary QFT
using entropy arguments [9].

The ANEC (1.1) is an inherently Lorentzian concept. In fact, the central ingredient
in the proof of [11] is causality, which more in general is crucial in the analytic conformal
bootstrap programme, recently reviewed in [3, 12]. In this sense, studying the implications
of the ANEC lies within the broad program of determining the consequences of causality
and unitarity for QFTs.
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The ANEC was shown to encode important information about conformal field theories
with the derivation of the ‘conformal collider bounds’ [14], which are bounds on conformal
anomalies. To derive these, the ANEC operator is placed at null infinity, and its expectation
values are taken on a state |ψ〉 which generates some energy excitation,

〈E〉 = 1
〈ψ|ψ〉

lim
z+→∞

(
z+

2

)d−2

〈ψ|
+∞∫
−∞

dz− T−−(z) |ψ〉 ≥ 0 . (1.2)

This then has the interpretation of the energy flux measured per unit angle in the transverse
directions at null infinity, which owing to (1.1) has to be non-negative.

The expectation value (1.2) is computed from 3-point correlators involving the stress
tensor, and their positivity translates into bounds on the quantities which such correlators
depend on. In a CFT, for a momentum eigenstate generated by the stress tensor itself, the
expectation value in d = 4 spacetime dimensions depends on the conformal anomalies a
and c, and the ANEC translates into a lower and an upper bound on their ratio a/c. The
bounds thus obtained also happen to be optimal, given that the ANEC operator commutes
with the momentum operator at null infinity.

The ANEC has also been used to place bounds on conformal dimensions of operators [8,
21], in some cases stronger than the unitary bounds. Furthermore, it has been shown [11,
20] that the ANEC is the first of a whole family of positivity conditions, which similarly
follow from causality and unitarity. These take the form of the positivity of light-ray
operators [5, 18, 20], non-local operators labeled by a continuous spin J , for which the
J = 2 operator is precisely the ANEC operator. Their positivity therefore generalises the
ANEC to continuous spin.

Given how useful the ANEC has proven to be in the context of CFTs, it is natural to
explore its implications for generic QFTs. Since it follows from unitarity and causality, it
is tempting to think that the ANEC could encode interesting constraints on RG flows and
be related to monotonicity theorems. However, the lack of conformal symmetry makes it
much more difficult to make general statements on the correlators. It is therefore useful to
start by studying a particular example.

In this paper, we continue the programme initiated in [1] by studying the implications
of the ANEC in the particular example of λφ4 in perturbation theory. This is an interacting
theory with a trivial fixed point in d = 4 dimensions and a Wilson-Fisher fixed point in
d = 4 − 2ε, and it is simple enough to allow one to explicitly compute the expectation
value of the ANEC operator at low perturbative orders. Concretely, here we consider a
state generated by the stress-tensor, thereby following the construction of [14] and deriving
nontrivial constraints for the parameters of the theory. For practical purposes we focus on
the case 2 < d ≤ 4, although some of the results have a more general range of validity.

The constraints that we obtain from the ANEC depend on the spacetime dimension,
the coupling λ, the improvement-term coupling ξ, and the energy of the state; they are
trivially satisfied in the free case. The constraints are similar to the unitarity constraint
that follows from demanding positivity of the norm of the state. Setting the renormalization
scale equal to the energy of the state we obtain bounds for the couplings at such energy.

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
7

The ANEC turns out to be in most cases more stringent than unitarity. The evaluation
of the norm of the state and of the ANEC correlator is solid; however, the analysis of the
bounds is more speculative given that they follow from the edge of validity of perturbation
theory, and require higher-order corrections to be confirmed.

The outline of the paper is as follows. In section 2 we compute the norm of the state
generated by the stress tensor up to order O(λ2), which follows from the Wightman 2-
point stress-tensor correlator. In section 3 we compute the ANEC expectation value on
the same state up to order O(λ), by first computing the Wightman 3-point correlator of
the stress tensor and then turning it into an expectation value of the ANEC operator at
null infinity. Finally in section 4 we present and discuss the resulting constraints, together
with the unitarity constraint following from positivity of the norm of the state. Several of
the intermediate expressions for the correlators are listed in the appendices, including the
expression for the full stress-tensor 2-point function to O(λ2) and details of the derivation of
the Wightman function in momentum space from the Euclidean correlators. In appendix E,
we compare with the case of the free massive scalar.

2 Norm of the state

Our starting point is the Euclidean action in d = 4− 2ε dimensions

SE =
∫
ddxE

[1
2(∂φ)2 + 1

4!λφ
4
]
, (2.1)

where subscripts E (L) indicates Euclidean (Lorentzian) signature. In the following we will
drop them whenever it is clear from the context.

The Euclidean stress-energy tensor derived from (2.1) reads

Tµν = ∂µφ∂νφ−
1
2 (∂φ)2 δµν − ξ

(
∂µ∂ν − δµν ∂2

)
φ2 − λ

4! φ
4 δµν . (2.2)

It includes the improvement term with a real parameter ξ. As we shall confirm with
our calculation, its addition is necessary to construct a renormalizable energy-momentum
tensor at the quantum level [10]. Tracelessness of the stress tensor (when λ = 0 or d = 4)
is achieved when ξ = ξd := d−2

4(d−1) .
We want to evaluate the norm of the stress-tensor momentum eigenstate

|ε · T 〉 = εµν
∫
ddx e−i q x

0
Tµν(x) |0〉 , q > 0 (2.3)

on which we will evaluate the ANEC operator. This state has vanishing spatial momentum
pi = ~0 and energy p0 = q > 0. We introduced also a complex symmetric polarization tensor
ε. Conservation of the stress tensor allows us to consider purely space-like polarization,
ε0µ = 0. We write the norm as

N = 〈ε · T |ε · T 〉

= ε∗µνεαβ
∫
ddx eiqx

0 〈Tµν(x)Tαβ(0)〉 = ε∗µνεαβ〈Tµν(q,~0)Tαβ(−q,~0)〉 ,
(2.4)
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〈TµνTαβ〉(0) : 〈TµνTαβ〉(1) :

〈TµνTαβ〉(2) : a b c

d e f

Figure 1. Diagrams for the 2-point function. The thick dot represents a stress tensor insertion.
The left one has indices µν; the right one αβ. The arrow represents the flow of the external
momentum p.

where the correlator involved is the Wightman 2-point function. In the second step we have
dropped a factor of the spacetime volume, since it cancels with an analogous contribution
from the ANEC 3-point function in the expression for the normalized energy flux (1.2).

We start by constructing the Euclidean correlator,

〈Tµν(p)Tαβ(−p)〉E = 〈TµνTαβ〉E(0) + λ 〈TµνTαβ〉E(1) + λ2 〈TµνTαβ〉E(2) +O(λ3) , (2.5)

where the dependence on p in the r.h.s. is understood. The Feynman diagrams to order
O(λ2) are shown in figure 1. Except for the eye diagram (2)f , all integrals in the other
diagrams’ contributions can be treated with two-propagator integral technology, summa-
rized in appendix A. The eye diagram is considerably more complicated, nonetheless it can
be computed exactly; details are in appendix B. For the purpose of this paper, we could
disregard the terms with tensorial dependence on the external momentum, since they van-
ish when contracted with the polarization tensor, εµνpν = 0 when pµ = (q,~0). However,
we provide the result for the full Euclidean 2-point function with generic momentum in
appendix C as an additional technical result.

Next, we need to rotate from Euclidean to Lorentzian signature and construct the
Wightman function. The Euclidean diagrams are all proportional to (p2)−α, with the
exponent fixed by dimensionality. The relevant Wightman function follows from the pre-
scription

〈Tµν(x)Tαβ(0)〉 = lim
ε→0+

〈Tµν(xE)Tαβ(0)〉E , x0
E = ix0 + ε. (2.6)

Constructing the Wightman function in momentum space is less immediate than in po-
sition space, and requires straightforward but tedious mathematical manipulations. In
the case of the 2-point function, the prescription (2.6) translates into the replacement
(p2)−α → 2 sin(πα) Θ[p0 − |~p |] |p2|−α, where on the r.h.s. the Lorentzian metric is used.
The step function selects timelike momenta with positive energy, consistent with our choice
pµ = (q,~0), q > 0. We collect more details of the Wick rotation in momentum space in
appendix D.

Finally, the norm exhibits the form

N = a ε̃∗ij ε̃ij + b ε∗iiεjj , (2.7)
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where ε̃ij and εii are the symmetric traceless part and the trace of the spacelike polarization
tensor εij = εkk

δij
d−1 + ε̃ij , and for the coefficients we find

a = qd

2d+3 (4π) d
2 − 3

2 Γ[ 3
2 + d

2 ]
+ λ2q3d−8

(4π) 3d
2 −1

{
(2d− 3)(324− 434d+ 173d2 − 21d3) Γ[ d2 − 1]4

6 (d− 4)(d− 3)(d+ 1) Γ[ 3d
2 − 3] Γ[2d− 1]

(2.8)

−
4π (d− 6)(d− 2)Γ[3− d

2 ] Γ[3− 3d
2 ] Γ[ d2 − 1]3

43 (d− 3)(d+ 1) Γ[d] Γ[ 3d
2 + 1

2 ] Γ[ 1
2 −

3d
2 ]

+
(4π)4(d− 1)(2 cos(πd) + 1) csc(πd) Γ[3− 3d

2 ] Γ[ d2 − 1]2

4 d
2 +1 Γ[ 3

2 + d
2 ] Γ[2d− 3] Γ[3− d] Γ[1− d

2 ]

[
3
F2

(
1 , 2−d , d−2

3−d , 1− d
2

∣∣∣ 1)
+ 3(2d− 5)

(d− 3) 3F2

(
1 , 3−d , d−2

4−d , 2− d
2

∣∣∣ 1)+ 3(d− 2)(2d− 5)(3d− 8)
2(d− 4)2(d− 1) 3F2

(
1 , 4−d , d−2

5−d , 3− d
2

∣∣∣ 1)]},
b = qd (d2 − 1) (ξ − ξd)2

2d (4π) d
2 − 3

2 Γ[ 3
2 + d

2 ]

(
1− λ

q4−dΥ(d)
)

(2.9)

+ λ2q3d−8

(4π) 3d
2 −1

{
Γ[ d2 − 1]4

Γ[2d− 5] Γ[ 3d
2 − 3]

[
2 (ξ − ξd)2

(d− 4)

(
1
3 + (3d− 8)

(d− 4) 3F2

(
1 , 4−d , d−2

5−d , 3− d
2

∣∣∣ 1))

+ (d− 4)
3(d− 3)(d− 1) ξ −

(d− 4)(7d2 − 29d+ 28)
48(d− 3)(d− 1)2(2d− 5)

]

+ (ξ − ξd)2

[
Γ[ d2 − 1]6 Γ[2− d

2 ]3

4 Γ[d− 2]3 Γ
(
4− 3d

2
)

Γ[ 3d
2 − 3]

+ (3d− 8)
(d− 3)

Γ
(
d
2 − 1

)3 Γ[2− d
2 ]

Γ[ 3d
2 − 3] Γ[d− 2]

2π cot
(

3πd
2

)]}
,

with Υ(d) defined as

Υ(d) =
(d− 1) Γ[3− d

2 ] Γ[d2 − 1]
2d (4π)

d
2−

3
2 (4− d) Γ[1

2 + d
2 ]2 Γ[1

2 −
d
2 ]
. (2.10)

The behaviour of this function is plotted in figure 2.
In d = 4 a finite result is obtained by adding the known renormalization countert-

erms1 [22], which is a nontrivial consistency check of our general expression for the Eu-
clidean 2-point function, and in particular of the contribution coming from the eye diagram.
After renormalization with minimal subtraction, we obtain

a= q4

120(4π)

[
1− 5

36
λ2

(4π)4

]
,

b= q4

4π

[(
ξ− 1

6

)2
+ λ

(4π)2

(
ξ− 1

6

)2
(

log q
2

µ2−2− 1
3(6ξ−1)

)
+ λ2

864(4π)4

[
−10π2(1−6ξ)2

+147+4ξ(1467ξ−464)+30(1−6ξ)2 log2 q
2

µ2−12(6ξ−1)(70ξ−11) log q
2

µ2

]]
,

(2.12)

where the renormalization scale has been redefined as µ2 → µ2 eγE/4π .
1Explicitly we write ξB = ξ+δξ , µd−4 λB = λ+δλ , µ2−d/2 φB =

√
1 + δZ φ, where the counterterms

to the relevant order read

δξ =
λ(ξ − 1

6 )
(4π)2(4− d) +

2λ2(ξ − 1
6 )

(4π)4(4− d)2 −
5λ2(ξ − 7

30 )
12 (4π)4(4− d) , δλ = 3λ2

(4π)2(4− d) , δZ = − λ2

12(4π)4(4− d) .

(2.11)
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2 3 4
d

-1

1

Υ(d)

Figure 2. Υ(d) is negative for 2 < d < 3 and positive for 3 < d < 4, vanishes for d = 3 and has
poles for d = 2 and d = 4, increasing monotonically from Υ(2+) = −∞ to Υ(4−) = +∞.

The coefficient a does not receive O(λ) corrections and is finite at order O(λ2). The
coefficient b at first order in λ is zero at the conformal value ξ = ξ4 = 1

6 ; however, starting
at second order in the coupling, the corrections are nonvanishing, corresponding to the
quantum breakdown of classical conformal symmetry [4, 10, 22].

In a CFT, the term b |εii|2 is absent from the norm, and the coefficient a of |ε̃ij |2 is
related to the type-B trace anomaly coefficient c, as2 a = q4

180(4π)c, with c = 3/2 for the
conformally-coupled free scalar. This suggests a generalization of this anomaly coefficient
along the RG flow, as

c = 3
2

(
1− 5

36
λ2

(4π)4

)
, (2.14)

matching the independent result of [13]. It would be interesting to extend the calculation
to higher orders and see the logarithmic dependence on the energy scale.

2The Euclidean 2-point function of the stress tensor has the form

ε∗µν εαβ 〈Tµν(q)Tαβ(−q)〉E = q4

720π c
(

2
4− d − log( q

2

µ2 ) +O(4− d)
)
|ε̃ij |2 , (2.13)

where c is the trace anomaly 180(4π)2〈T 〉 = −aE4 + c Weyl2. After renormalizing the UV divergence by
addition of a gravitational counterterm, the Euclidean correlator is finite and the anomaly c is the coefficient
of the logarithm. When Wick rotating to Lorentzian signature to construct the Wightman 2-point function,
the Euclidean correlator gets multiplied by a factor of (Γ[2−d/2] Γ[d/2−1])−1 = (4−d)/2+O(4−d)2, which
renders the Euclidean pole finite and the logarithm disappears, ε∗µν εαβ 〈Tµν(q)Tkl(−q)〉 = q4

720π c |ε̃ij |2.

– 6 –
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〈TµνTTαβ〉(0) :

1 3

2

〈TµνTTαβ〉(1) : a

1 3

2

b

1 3

2

Figure 3. Diagrams for the 3-point function. We did not include the third permutation of the first
order diagram because it does not contribute to the expectation value.

3 ANEC expectation value on the stress-tensor state

In this section we present the evaluation of the correlator of the energy flux operator in
terms of the Wightman 3-point function of stress-tensors,3

〈E〉 = lim
z+→∞

(
z+

2

)d−2 +∞∫
−∞

dz−
∫
ddx e−iqxε∗µνεαβ 〈Tµν(x)T−−(z±)Tαβ(0)〉

= 2 ε∗µνεαβ lim
z+→∞

(
z+

2

)d−2 ∫
dd−1~p

(2π)d−1
e2ip1r 〈Tµν(q,~0 )T−−(−p1, ~p )Tαβ(p1 − q,−~p )〉 .

(3.1)
Following [15], for simplicity we inserted the ANEC operator at (z+ → ∞, z−, za = 0),
where z± = z1 ± z0, and za indicates the transverse directions a = 2, . . . , d.

We construct 〈E〉 starting from 〈Tµν(x)T (z)Tαβ(y)〉E where

T ≡ T−− = ∂−φ∂−φ (3.2)

is the component of the stress tensor in the Euclidean null direction. We ignore ξ terms in
this operator because they are total derivatives that vanish after the integration over z−.
We write the momentum-space perturbative expansion as

〈Tµν(p1)T (p2)Tαβ(p3)〉E = 〈TµνTTαβ〉E(0) + λ 〈TµνTTαβ〉E(1) +O(λ2). (3.3)

Diagrams with a 2-propagator subdiagram depending only on the momentum p2 can also be
discarded. This is justified because such integral is proportional to (p2−)2, which vanishes
upon integration over z−. To slightly simplify the expressions we identify p2− = 0 =
−p1− − p3− from the start. The Feynman diagrams up to order O(λ1) are in figure 3. The
Euclidean correlators read

〈TµνTTαβ〉E(0) = 8
∫
d̄dk

[(k − p1)−]2 Vµν(k, p1) Vαβ(k,−p3)
k2 (k + p3)2 (k − p1)2 ,

〈TµνTTαβ〉E(1)a = 4
(ξ − ξd)Γ[d2 ]2 Γ[1− d

2 ]
(4π)

d
2 Γ[d− 1]

p1µp1ν − p2
1δµν

[(p1)2]2−d/2
∫
d̄dk

[(k − p1)−]2Wµναβ(k, p3)
k2 (k − p1)2 (k + p3)2 ,

〈TµνTTαβ〉E(1)b = 〈TαβTTµν(p1 ↔ p3)〉E(1)a ,

(3.4)
3For an alternative method to compute expectation values of the ANEC (and more generically of detector

operators), based on using Feynman rules within the in-in formalism, see [5].
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where

Vαν(k, p) = kαkν − k(αpν) + ξ pαpν −
1
2δαν(k2 − k · p+ 2ξ p2) ,

Wµναβ(k, p) = 2kαkβ − δαβk2 − δαβ k · p+ 2k(αpβ) + 2ξ(pαpβ − δαβp2) .
(3.5)

The Wightman function relevant to compute the expectation value is the one defined as

〈Tµν(x) T (z) Tαβ(0)〉 = lim
ε,ζ→0+

〈Tµν(xE)T (zE)Tαβ(0)〉E , x0
E = ix0 + ε , z0

E = iz0 + ζ ,

(3.6)
with ε > ζ. As opposed to the case of the 2-point function, where the momentum de-
pendence is particularly simple, here the analyticity properties of the momentum-space
correlators are more complicated and no simple prescription for the Wick rotation from
Euclidean to Lorentzian signature is available. One has to resort to a case-by-case analysis.
We give further details of the Wick rotations needed for (3.4) in appendix D; a complete
discussion of the method used can be found in [2, 6].

The resulting Lorentzian expressions read

〈TµνTTαβ〉(0) = 8 (2π)3
∫
d̄dk [(k − p1)−]2 V̂µν(k, p1) V̂αβ(k,−p3) δ̄[p1 − k] δ̇[p3 + k] δ̄[k] ,

〈TµνTTαβ〉(1)a =
(ξ − ξd)Γ[ d2 ]2 Γ[1− d

2 ]
2(4π) d

2 −3 Γ[d− 1]
p1µp1ν − p2

1ηµν
|(p1)2|2−d/2

∫
d̄dk [(k − p1)−]2 Ŵµναβ(k, p3) δ̇[p3 + k]×

×
[
cos
[
πd

2

]
δ̄[k] δ̇[k − p1]− 1

π
sin
[
πd

2

]
Θ[p0

1 − |~p1|]
(

δ̄[k]
(k − p1)2 + δ̄[k − p1]

k2

)]
,

〈TµνTTαβ〉(1)b = 〈TαβTTµν(p1 ↔ −p3)〉(1)a ,

(3.7)
with V̂ and Ŵ the same as (3.5) but with the Lorentzian metric δ → η, and where we have
used the notation

δ̄[k] ≡ δ[k0 − |~k|]
k0 + |~k|

, δ̇[k] ≡ δ[k0 + |~k|]
−k0 + |~k|

. (3.8)

These expressions can be directly used to evaluate the correlator of the energy flux (3.1).
The delta function δ̇[p3 + k] can be used to integrate p1

3. The large-z+ limit can then be
computed rescaling of the transverse components pa3 → pa3/z

+, which makes manifest the
falloff ∼ (z+)2−d of the correlator, and the remaining integrals can be done relatively
easily.4

The energy flux operator E breaks the SO(d − 1) rotational invariance to SO(d − 2)
corresponding to the rotations in the transverse directions. We can therefore further de-
compose the polarizations as εij ' (ε11, ε1a, ε̃ab, εaa) corresponding to the scalar component
11, a vector, a symmetric traceless tensor and the trace part in the transverse directions.
The general tensor decomposition of the correlator of the energy flux in terms of these
polarizations is therefore

〈E〉 = â |εaa|2 + b̂ |ε11|2 + ĉ (ε11ε
∗
aa + ε∗11εaa) + ê ε∗a1εa1 + f̂ ε̃∗acε̃ac . (3.9)

4This type of calculations are described in detail in [6].
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To order O(λ1) we obtain the following expressions for these coefficients:

â= qd+1 (4ξ−1)2

16(4π)d−2

(
1−4 (ξ−ξd)

(4ξ−1)
λ

q4−dΥ(d)
)
, b̂= qd+1 ξ2

(4π)d−2

(
1− (ξ−ξd)

ξ

λ

q4−dΥ(d)
)
,

ĉ= qd+1(4ξ−1)ξ
4(4π)d−2

(
1− (ξ−ξd)(8ξ−1)

2ξ(4ξ−1)
λ

q4−dΥ(d)
)
, ê= 0 = f̂ ,

(3.10)
where Υ(d) is the one defined in (2.10). We note the relation ĉ2 = â b̂+O(λ2).

The case d = 4 is special because renormalization is required. Adding the appropriate
counterterms (cf. footnote 1), the coefficients of the energy flux correlator become

â = q5 (4ξ − 1)2

16(4π)2

[
1 + λ

(4π)2
ξ − 1

6
ξ − 1

4

(
log q

2

µ2 − 2− 1
3(6ξ − 1)

)]
,

b̂ = q5 ξ2

16(4π)2

[
1 + λ

(4π)2
ξ − 1

6
ξ

(
log q

2

µ2 − 2− 1
3(6ξ − 1)

)]
, ĉ2 = â b̂+O(λ2) .

(3.11)

In these expressions we observe that the values ξ = 0, 1/4 emerge naturally. We will see
how these play a role below.

4 Positivity bounds

The ANEC demands the (normalized) expectation value,

〈E〉 = 〈E〉
N

, (4.1)

to be non-negative. Since the norm of the state N has to be positive by unitarity, the
non-normalized correlator 〈E〉, given by the energy flux correlator, is also non-negative.

Given the norm N = a |ε̃ij |2 + b |εii|2, unitarity translates into

a ≥ 0, b ≥ 0, (4.2)

whose expressions are given in (2.8) and (2.9) up to O(λ2). Given the complexity of
the expressions, we will consider the unitarity constrain at full O(λ2) only in d = 4. In
2 < d < 4 we will only consider the expression at O(λ1), which is the order at which we
evaluate the ANEC correlator.

The expectation value 〈E〉 is the energy flux for unit angle in the Sd−2 sphere, and
therefore reduces to the energy q when integrated over it. The general expression can
therefore be written as

〈E〉 = K
[
a ε̃∗ij ε̃ij + b ε∗iiεjj + c (ε∗iiε11 + εiiε

∗
11 + c0) + e (ε∗1iε1i + e0) + f (ε∗11ε11 + f0)

]
,

K = q

Vol[Sd−2] , c0 = −2 ε∗iiεjj
d− 1 , e0 = −

ε∗ijεij

d− 1 , f0 = −
ε∗iiεjj + 2ε∗ijεij

d2 − 1 ,

(4.3)

where a and b are the same as in the 2-point function (2.7) and the constants c0, e0, f0
are chosen to make each term in round brackets vanish when integrated over the Sd−2
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sphere. The overall normalization K is chosen so that the first two terms have the same
coefficients as in (2.7). Via the decomposition εij ' (ε11, ε1a, ε̃ab, εaa) we match (4.3) with
the decomposition (3.9), to find

â

K
= 1

(d− 1)(d− 2)a+ b− 2
d− 1c−

1
(d− 1)(d− 2)e−

d

d2 − 1f ,

b̂

K
= d− 2
d− 1a+ b+ d− 2

d− 1(2c+ e) + d2 − 4
d2 − 1f ,

ĉ

K
= − 1

d− 1a+ b+ d− 3
d− 1c−

1
d2 − 1f ,

ê

K
= 2a+ d− 3

d− 1e−
4

d2 − 1f ,
f̂

K
= a− 1

d− 1e−
2

d2 − 1f .

(4.4)

It is easier to express the ANEC positivity constraints for the hatted coefficients,

â ≥ 0 , b̂ ≥ 0 , âb̂− ĉ2 ≥ 0 , ê ≥ 0 , f̂ ≥ 0 . (4.5)

In the particular case under consideration the situation is somewhat simpler. The
coefficients (3.10) of the tensor decomposition happen to satisfy the relation â b̂ = ĉ2 +
O(λ2). This allows us to write (3.9) as the manifestly-positive expression

〈E〉 =
∣∣∣∣√â εaa +

√
b̂ ε11

∣∣∣∣2 (4.6)

provided â ≥ 0 and b̂ ≥ 0. Any other sign configuration would result in manifestly non-
positive expressions, which are ruled out by the ANEC. Therefore, three of the five con-
straints (4.5) are saturated.

We next spell out the constraints explicitly depending on the dimension. We write
λ → λµ4−d, where µ is some energy scale (which in d = 4 becomes the renormalization
scale) and λ is now dimensionless.

We have computed the relevant 3-point correlators at first order. At this order, a vio-
lation of the ANEC and unitarity inequalities corresponds to a breakdown of perturbation
theory. To proceed, we make the assumption that there is a ξ-independent range of λ small
enough where the first-order approximation is valid. To assess the reliability of the bounds
derived, we would need to go to the next order. The calculations involved for this lie at
the boundary of current diagrammatic technology, and we leave this for future work.

4.1 Case 2 < d < 4

The ANEC constraints are

ξ − ξd
ξ − 1

4
λΥ(d)

(
µ

q

)4−d
≤ 1 , ξ − ξd

ξ
λΥ(d)

(
µ

q

)4−d
≤ 1 , (4.7)

at first order in perturbation theory.
Notice that if ξ = ξd the inequalities (4.7) are trivially satisfied. We therefore assume

ξ 6= ξd. From the left-hand side of the inequalities (4.7), it emerges that the values ξ = 0
and ξ = 1

4 play a distinguished role. We will see below that indeed these values flag
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ξ
0 1

4−Υ(d) ξd λ 1
4 + Υ(d)

(
1
4 − ξd

)
λ

Figure 4. The ANEC bounds exclude two ranges of ξ, in red zig-zag lines, below ξ = 0 and above
ξ = 1/4 when 3 < d < 4.

forbidden ranges of the parameter. One explanation for the origin of these values might
be that for d > 2, the conformal value ξd = (d−2)

4(d−1) ranges from ξd=2 = 0 to ξd→∞ = 1
4 . It

would be good to better understand this curious emergence.
To compare with the constraints from unitarity at this order, the latter reduce to

only one constraint, since the coefficient a in (2.8) has no order O(λ1) correction and the
tree-level contribution is manifestly positive. We get

λΥ(d)
(
µ

q

)4−d
≤ 1 . (4.8)

This constraint does not depend on ξ.
We now set the arbitrary scale to µ = q (which sets the normalization of the dimen-

sionless λ) and derive the consequences for the couplings at this scale. We find it convenient
to further distinguish the cases of d smaller and bigger than d = 3, which correspond to
opposite signs for Υ(d). At d = 3, these bounds don’t constrain ξ or λ since Υ(3) = 0.

3 < d < 4. In this case Υ(d) > 0 (see figure 2), and 1
8 < ξd < 1

6 , both increasing
monotonically with d. The unitarity constraint (4.8),

0 < λ ≤ 1
Υ(d) , (4.9)

puts an upper bound for the coupling λ, which disappears as d approaches d = 3.
This bound combined with the ANEC constraints limit the allowed range of ξ at fixed

λ (recall that 0 < ξd < 1/4):

ξ ≤ −Υ(d) ξd λ+O(λ2), 0 < ξ <
1
4 , ξ ≥ 1

4 + Υ(d)
(1

4 − ξd
)
λ+O(λ2),

(4.10)
where the λ-dependent upper and lower bounds have been expanded to first order in λ.
Two gaps in the allowed range of ξ appear around ξ = 0, 1/4, see figure 4. The gaps
increase with the dimension d. At exactly d = 4, the bounds have to be analized separately
because of renormalization.

Turning it around, we can derive bounds for λ at fixed ξ. For 0 < ξ < 1
4 , the unitarity

bound (4.9) is the most stringent, while for other values of ξ, the ANEC constraints win:

ξ < 0 : λ ≤ 1
Υ(d)

ξ

ξ − ξd
, ξ >

1
4 : λ ≤ 1

Υ(d)
ξ − 1

4
ξ − ξd

. (4.11)

Again, these bounds become more stringent at d close to d = 4, where the upper bounds
are small. As d approaches d = 3, they become automatically satisfied.
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ξ
−Υ(d) ξd λ 1

4 + Υ(d)
(

1
4 − ξd

)
λ0 1

4

Figure 5. The ANEC bounds exclude two ranges of ξ, in red zig-zag lines, abovew ξ = 0 and
below ξ = 1/4 for 2 < d < 3.

2 < d < 3. In this case Υ(d) < 0, and 0 < ξd < 1
8 . The unitarity bound (4.8) is

automatically satisfied for any positive λ, in contrast to the previous case. The allowed
regions for ξ are now entirely due to the ANEC and read

ξ < 0, −Υ(d) ξd λ+O(λ2) ≤ ξ ≤ 1
4 + Υ(d)

(1
4 − ξd

)
λ+O(λ2), ξ >

1
4 ,

(4.12)
where again the λ-dependent upper and lower bounds have been expanded to first order.
In writing (4.12) we made the additional simplifying assumption Υ(d)λ > −1 to expand
to first order, though it is not required by the constraints. The bounds (4.12) are plotted
in figure 5.

Alternatively, for certain values of ξ, we obtain upper bounds for λ,

0<ξ <ξd : 0<λ≤ 1
Υ(d)

ξ

ξ−ξd
, ξd<ξ <

1
4 : 0<λ≤ 1

Υ(d)
ξ− 1

4
ξ−ξd

. (4.13)

Again, these bounds become trivial as d approaches d = 3, where the upper bounds diverge.

4.2 Case d = 4

Given the structure of (3.11) and (2.12), even though the constraints (4.7) and (4.8) diverge
if we simply evaluate them at d = 4 (because of Υ(d)), they are still formally valid under
the replacements ξd → 1

6 and Υ(d) (µq )4−d → 1
(4π)2

[
2 + 1

3(6ξ−1) − log q2

µ2
]
. Furthermore,

we introduce λ̂ = λ/(4π)2, which emerges as natural perturbative parameter. The ANEC
constraints read

λ̂
ξ − 1

6
ξ − 1

4

(
2 + 1

3(6ξ − 1) − log q
2

µ2

)
≤ 1, λ̂

ξ − 1
6

ξ

(
2 + 1

3(6ξ − 1) − log q
2

µ2

)
≤ 1,

(4.14)

and the unitarity one, at first order,

λ̂

(
2 + 1

3(6ξ − 1) − log q
2

µ2

)
≤ 1. (4.15)

Looking back at the â and b̂ coefficients (3.11) from which (4.14) follow, the first one is
multiplied by a factor of (ξ − 1

4)2, and the second one is multiplied by a factor of ξ2.
Therefore, the ANEC constraints are saturated and automatically satisfied in these cases.
Similarly, the unitarity constraint (4.15) appears in fact multiplied by a factor of (ξ − 1

6)2

from the coefficient b in (2.12). Therefore, when ξ = 1
6 , both in the free (conformal) λ = 0
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ξ
0 1

4
1
6− 5

18 λ̂
1
4 + 2

9 λ̂
1
6 + λ̂

18

Figure 6. The ANEC and unitarity bounds exclude certain ranges of ξ, in red zig-zag lines, below
ξ = 0, above ξ = 1/6, and above ξ = 1/4, when d = 4.

case and in the interacting case at first order, the unitarity inequality is saturated and
trivially satisfied, and the pole in (4.15) is naturally avoided.

Setting the renormalization scale to µ = q, the logarithms disappear. The couplings
λ and ξ have an implicit dependence on the scale due to renormalization; the inequalities
become therefore conditions for the couplings evaluated at such value of the energy scale.
However, the running of λ starts atO(λ2), and the running of ξ starts atO(λ1) but it always
appears multiplied by λ. Therefore, since we work at first order in λ, our inequalities (4.14)
do not capture the implicit dependence on µ.

Unitarity bounds. Since we have computed the ANEC correlator at O(λ), we first
consider the unitarity constraints at the same perturbative order. A big difference with
the 2 < d < 4 case, in the d = 4 case the unitarity constraint depends on ξ. This allows in
principle to set bounds on ξ for fixed λ̂ from this condition.

Using (2.12), a > 0 is automatically satisfied at first order, and b > 0 gives

ξ ≤ 1
6 , ξ ≥ 1

6 + λ̂

18 +O(λ̂2). (4.16)

This first order analysis seems to indicate that, at fixed λ̂, a finite range of ξ above ξ = 1
6

is forbidden by unitarity.
Extending the analysis to O(λ2), there is now also the condition from a ≥ 0. Putting

both unitarity conditions a, b ≥ 0 together, the result that we find is that ξ is no longer
constrained. This is not a contradiction because the first-order bounds arise from the
boundary of validity of perturbation theory. This is however a clear reminder that any of
the bounds we derive need to be analysed in view of the higher order contributions, which
is outside the scope of this paper.

ANEC bounds. Combining the ANEC constraints (4.14) with the unitarity
constraint (4.15), at O(λ1), we obtain the following allowed regions for ξ at fixed λ̂:

ξ≤− 5
18 λ̂, 0< ξ ≤ 1

6 ,
1
6 + λ̂

18 ≤ ξ≤
1
4 , ξ≥ 1

4 + 2
9 λ̂, (4.17)

where it has to be understood that all the λ̂-dependent bounds are only up to O(λ̂2).
The bounds (4.17) prescribe forbidden gaps in the allowed range of ξ below ξ = 0, above
ξ = 1

6 , and above ξ = 1
4 , see figure 6. The ANEC bounds appear therefore stronger than

unitarity in sme regions of parameter space. As opposed to the generic d case, at d = 4
three forbidden regions arise instead of just two (see figures 4, 5); the reason for this is the
ξ-dependence of the unitarity constraints in this case.
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We can constrain the ANEC expectation value with the unitarity constraint at O(λ̂2).
We get

ξ ≤ − 5
18 λ̂, 0 ≤ ξ ≤ 1

4 , ξ ≥ 1
4 + 2

9 λ̂,
(4.18)

where again it has to be understood that all the λ̂-dependent bounds are only up to O(λ̂2).
These bounds look quite different from (4.17) due to the qualitative difference between the
first and second order unitarity constraint. Once again the ANEC appears to be stronger
than unitarity.

5 Conclusions and outlook

In this paper we have derived constraints following from the ANEC in the case of the λφ4

theory at first order in the coupling. We have considered a state generated by the stress
tensor and evaluated the correlators in perturbation theory. We find nontrivial bounds
for the parameters of the theory. The ANEC and unitarity constraints (4.7), (4.8) (and
the equivalent at d = 4, (4.14)) originally depend on the dimensionless ratio between the
energy of the state q and a reference (renormalization) scale µ, which we then fix to the
value µ = q. This would constrain the renormalized parameters at such energy scale,
although the running in the case d = 4 is not captured by the perturbative order at which
we work. We observe that the values ξ = 0, 1

4 play a prominent role; the significance of
this is not yet clear.

As a technical result, we compute the 2-point function of the stress tensor to second
oder in the coupling. This allows us to identify a candidate for the c-anomaly coefficient
under deformations, in a complementary approach to that of [13]. Our method allows us
to directly evaluate this term and it is therefore easier to extend to higher orders.

Since we are using perturbation theory in the coupling λ only, this analysis is exact
in ξ. However, being this a perturbative analysis, the inclusion of higher order effects
can dramatically affect the results, as we demonstrated with the analysis of the unitarity
constraint at d = 4. The technical derivation of the correlators is solid, but the bounds
derived stand on a less firm ground.

We have not been able to identify a pattern in the quantum corrections, which would
allow one to speculate about higher order effects and on the reliability of the bounds.
More information is needed on the perturbative expansion by direct calculation of higher
order terms. In this we are encouraged by the results in perturbation theory of λφ4 [16],
which however cannot be immediately used for our purposes because of the additional
complexifications, integrations and limits of our approach. Concretely, the inclusion in
the ANEC correlator of the contributions of order O(λ2) is diagrammatically much more
complicated than the order considered here, thus requiring a more sophisticated technology
in order to evaluate the integrals in a form that is useful for our purposes. The inclusion of
higher orders would allow one to consider the effect of the running of the couplings λ and
ξ, thereby providing us with a working example in which to understand the implications
of the ANEC for renormalization group flows. This could eventually lead to insights on
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the a-theorem, providing, for example, an interpolating function in terms of the 3-point
function of the stress tensor.

As a final note, we observe that λφ4 escapes the ANEC proof of [11], not having a UV
limit. It would be interesting to understand how such proof might be generalised. Con-
nected is the fact that the theory does not enjoy a nonperturbative definition, thus despite
it being the prototype for perturbative calculations its meaning outside this approach is
unclear.
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A Conventions and formulae

We use the Lorentzian (−,+ ,+ ,+) signature. We define momentum measure as

d̄dp = ddp

(2π)d . (A.1)

Our momentum-space correlators correspond to

〈Tµν(x)Tαβ(y)〉 =
∫
d̄dp1 d̄

dp2 e
ip1x+ip2y (2π)d δ(d)[p1 + p2] 〈Tµν(p1)Tαβ(p2)〉 ,

〈Tµν(x)Tρσ(z)Tαβ(y)〉 =
∫
d̄dp1 d̄

dp2 d̄
dp3 e

ip1x+ip2z+ip3y×

× (2π)d δ(d)[p1 + p2 + p3] 〈Tµν(p1) Tρσ(p2)Tαβ(p3)〉 ,
(A.2)

which are defined for conserved momenta
∑
pi = 0.

Two-propagator loop integrals are given by

Idmn(p) =
∫
d̄dq

1
[q2]m[(q − p)2]n = (p2)d/2−m−n

(4π)d/2
Γ[m+ n− 1

2d] Γ[1
2d−m] Γ[1

2d− n]
Γ[d−m− n] Γ[m] Γ[n] .

(A.3)
Standard formulae to relate tensor to scalar integrals can be found e.g. in [6].

B Calculation of the eye diagram

In this appendix we explain the calculation of the eye-diagram (diagram (2)f in figure 1)
contribution to the stress-tensor two-point function. The contribution is given by the
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integral

〈Tµν(p)Tαβ(−p)〉E(2)f =
∫
d̄dk d̄dw d̄dq

Vµν(k, p)Vαβ(q, p)
k2 q2w2 (k + p)2 (q + p)2 (w − k + q)2 , (B.1)

Vαν(k, p) = kαkν − k(αpν) + ξ pαpν −
1
2δαν(k2 − k · p+ 2ξ p2) . (B.2)

The inner loop can be computed using (A.3) and we are left with

〈Tµν(p)Tαβ(−p)〉E(2)f = 1
(4π)d/2

Γ[2− 1
2d]Γ[1

2d− 1]Γ[1
2d− 1]

Γ[d− 2] Iµναβ(p),

Iµναβ(p) =
∫
d̄dk d̄dq

Vµν(k, p)Vαβ(q, p)
k2 q2 (k + p)2 (q + p)2[(k − q)2]2−d/2

.

(B.3)

The tensorial integral has the general structure

Iµναβ =A1 δµν δαβ +A2 (δµα δνβ + δµβ δνα) +B1 (δαβ pµpν + δµνpαpβ)
+B2 (δνβpµpα + δµβpνpα + δµαpνpβ + δναpµpβ) + C pµpνpαpβ

(B.4)

with scalar coefficients. By contracting with δµν δρσ, pµpνpρpσ, . . . we obtain a system of
equations for the coefficients. In doing so, in the integrand numerator one obtains powers of
the loop momenta, powers of the external momenta, and mixed terms that can be rewritten
in terms of the previous two by completing the square. In turn, the contractions reduce
to iterated two-propagator integrals which can be computed exactly using (A.3), or to
combinations of the scalar integral

Id∆(p) ≡
∫
d̄dk d̄dq

1
k2 q2 (k + p)2 (q + p)2[(k − q)2]∆ (B.5)

with ∆ = 2− d/2, 1− d/2 or −d/2. This scalar integral has been computed for generic ∆
in terms of Gamma and hypergeometric functions [7, 19], and is given by

Id∆(p) = (p2)3d/2−6 2
(4π)d Γ

[
d

2 − 1
]

Γ
[
d

2 −∆− 1
]

Γ [3− d+ ∆] ×

×
[ 2 Γ

[
d
2 − 1

]
3F2

(
1 , 2− d2 +∆ , d−2
3− d2 +∆ , 1+∆

∣∣∣∣ 1)
(d− 2∆− 4) Γ[1 + ∆] Γ[ 3

2d−∆− 4]
− π cot[π(d−∆)]

Γ[d− 2]

]
.

(B.6)

We finally get

A1 = d2 − 2d− 2− 8(d− 2)(d+ 1)ξ + 16(d2 − 1)ξ2

16(d2 − 1) p4Id2− d
2
(p)

− p2

2(d− 2)(d2 − 1)I
d
1− d

2
(p)− 1

2(d− 2)(d2 − 1)I
d
− d

2
(p)

−
(
36d5−294d4 + 817d3−830d2 + 101d+ 174−32(d−2)(d+ 1)(2d−3)(3d2−15d+ 19)ξ

)
×

×
Γ[4− 3d

2 ] Γ[ d2 − 1]2 Γ[d− 3]
12(4π)d(d+ 1) Γ[2− d

2 ] Γ[2d− 1]
(
p2) 3d

2 −4

A2 = p4

16(d2 − 1)I
d
2− d

2
(p) + p2

4(d− 2)(d+ 1)I
d
1− d

2
(p) + 1

4(d− 2)(d+ 1)I
d
−d/2(p)

−
(
85d3 − 480d2 + 853d− 486

)
Γ[3− 3d

2 ] Γ[ d2 − 1]2 Γ[d− 3]
4(4π)d(d+ 1) Γ[1− d

2 ] Γ[2d− 1]
(
p2) 3d

2 −4
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B1 = −d
2 − 2d− 2− 8(d− 2)(d+ 1)ξ + 16(d2 − 1)ξ2

16(d2 − 1) p2Id2− d
2
(p)

+ 1
2(d− 2) (d2 − 1)I

d
1− d

2
(p)− 1

2(d− 2) (d2 − 1) p2 I
d
− d

2
(p)

−
(
15d5 − 128d4 + 372d3 − 407d2 + 90d+ 60− 4(d− 2)(d+ 1)(2d− 3)(9d2 − 49d+ 68)ξ

)
×

×
Γ[1− d

2 ]3 Γ[ d2 ]3

23d−2(4π)d−1Γ[4− d] Γ[2− d
2 ]2 Γ[d− 1

2 ] Γ[ d+3
2 ] Γ[ 3d

2 − 2]
[
2 cos dπ2 + cos 3dπ

2
] (p2) 3d

2 −5

B2 = − p2

16(d2 − 1)I
d
2− d

2
− 1

4(d+ 1)(d− 2)I
d
1− d

2
(p) + 1

4(d− 2)(d+ 1)p2 I
d
− d

2
(p)

−
(d4 + 80d3 − 475d2 + 858d− 492) Γ[1− 3d

2 ] Γ[1− d] Γ[d] Γ[ 3d
2 ] Γ[1− d

2 ] Γ[ d2 ]
23+3d(4π)d−1Γ[4− d] Γ[2− d

2 ]2 Γ[d− 1
2 ] Γ[ d+3

2 ] Γ[ 3d
2 − 2]

(
p2) 3d

2 −5

C = d(d− 2)− 8(d− 2)(d+ 1)ξ+16(d2 − 1)ξ2

16(d2 − 1) Id2− d
2
(p)+ 1

2(d2 − 1)p2 I
d
1− d

2
(p)− 1

2(d2 − 1)p4 I
d
− d

2
(p)

+
(
21d4 − 152d3 + 477d2 − 774d+ 480− 16(d− 3)(d+ 1)(2d− 3)(3d− 10)ξ

)
×

×
Γ[1− 3d

2 ]Γ[1− d] Γ[1− d
2 ] Γ[ d2 ] Γ[d] Γ[ 3d

2 ]
3 23d+1(4π)d−1Γ[4− d] Γ[2− d

2 ]2 Γ[d− 1
2 ] Γ[ d+3

2 ] Γ[ 3d
2 − 3]

(
p2) 3d

2 −6

To compute the norm (2.7) we only need the coefficients A1 and A2, since we multiply
the 2-point function by the transverse polarization tensors, but we give the full result for
completeness.

C Full Euclidean stress-tensor 2-point function to order O(λ2)

In this appendix we write the contributions of all the diagrams up to 2-loop (figure 1), of
the 2-point function, with the complete momentum dependence:

〈TµνTαβ〉E(0) = Γ[2−d/2]Γ[d/2−1]2

8(4π)d/2(d2−1)Γ[d−2]
1

(p2)2−d/2×
[
(δανδβµ+δαµδβν)p4

+δαβδµνp4
(
d2(1−4ξ)2+d(8ξ−2)−2

(
8ξ2−8ξ+1

))
+pαpβpµpν

(
d2(1−4ξ)2+d(8ξ−2)−16(ξ−1)ξ

)
−p2 (δαµpβpν+δβνpαpν+δανpβpµ+δβµpαpν)

−p2(δµνpαpβ+δαβpµpν)
(
d2(1−4ξ)2+d(8ξ−2)−2

(
8ξ2−8ξ+1

))]
,

〈TµνTαβ〉E(1) =−(ξ−ξd)2 Γ[2−d/2]2 Γ[d/2−1]4

(4π)dΓ[d−2]2

(
p2δαβ−pαpβ

)(
p2δµν−pµpν

)
(p2)4−d ,

〈TµνTαβ〉E(2)a =−
Γ[7− 3d

2 ]Γ[d2−1]4

9(4π)3d/2(d−4)(3d−10)(3d−8)Γ[2d−4]
1

(p2)4−3d/2 δµνδαβ ,

〈TµνTαβ〉E(2)b =
Γ[4− 3d

2 ]Γ[d2−1]4
[
(2d−5)(8ξ−1)p2δαβ+pαpβ(d(3−16ξ)+40ξ−8)

]
(4π)3d/224(d−3)Γ(2d−4)(p2)5− 3

2d
δµν ,

〈TµνTαβ〉E(2)c = 〈TαβTµν(p→−p)〉E(2)b ,
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〈TµνTαβ〉E(2)d =
(d−2)Γ[7− 3d

2 ]Γ[d2−1]4

(4π)3d/2 9(d−4)2(d−3)(3d−10)(3d−8)Γ[2d−2]
1

(p2)6− 3d
2
×

×
[
p2 (pβpµδαν+pαpµδβν+pαpνδβµ+pβpνδαµ)(d2−6d+12)−(δανδβµ+δαµδβν)p4d

−δαβδµνp4 64(d−3)(2d−5)(2d−3)
(
ξ2− (d−2)

2(2d−5)ξ+ 4d3−22d2+33d−12
64(d−3)(2d−5)(2d−3)

)

−pαpβpµpν64(d−3)(2d−5)(2d−3)
(
ξ2− (d−2)(3d−10)

4(d−3)(2d−5)ξ−
d(3d−10)(3d−8)

64(d−3)(2d−5)(2d−3)

)
+p2 (pαpβδµν+pµpνδαβ)64(d−3)(2d−5)(2d−3)×

×
(
ξ2− (d−2)(5d−16)

8(d−3)(2d−5)ξ+ 3(d−2)(d2−4d+2)
32(d−3)(2d−5)(2d−3)

)]
,

〈TµνTαβ〉E(2)e =−(ξ−ξd)2 25−3dΓ[1− d
2 ]3Γ[d2 ]3

(4π)
3
2d−

3
2 Γ[d−1

2 ]3

(
p2δαβ−pαpβ

)(
p2δµν−pµpν

)
(p2)6− 3

2d
,

with 〈TµνTαβ〉E(2)f given in the previous appendix.

D Wightman functions in momentum space

In this appendix we give some more detail on how we obtain the Wightman 2- and 3-point
functions in momentum space from the corresponding Euclidean expressions, by means of
a Wick rotation inside the Fourier transform. A complete discussion can be found in [2, 6].

The starting point is the position space expression of a Wightman function, which
follows from its Euclidean expression by Wick rotating the time coordinate and using
the iε prescription: Lorentzian time of operators to the left in the correlator get a more
negative imaginary part. The prescriptions for the 2- and 3-point functions are given
in (2.6) and (3.6). The idea is then to implement this prescription in the Euclidean Fourier
representation (A.2) of the correlator, and further complexify the zeroth component of
the momenta p0

E = ip0 to obtain a Lorentzian Fourier kernel. In this procedure one has to
deform the contour of integration in a way compatible with the limit ε→ 0, which is thereby
made manifest. The redefinition of the contour of integration depends on the analytic
properties of the integrand, i.e. the Euclidean expression of the momentum-space correlator.
It is in them that the information on causality is encoded and becomes correspondigly
reflected in the resulting Lorentzian expression.

Next we detail how we used this method to obtain the stress-tensor 2- and 3-point
functions used in the paper.

2-point function. The Euclidean correlator, given in appendix C, has a simple power-
law dependence on the external momentum, (p2

E)−α with α < 1. In this case the integrand
presents a branch cut from p0

E = +i|~p| to +i∞ and a symmetric one from p0
E = −i|~p| to

−i∞, all branch points being simple and the cuts going along the imaginary axis (additional
positive integer powers of p2 do not change this fact). The exponential in the (A.2) contains
ip0

Ex
0
E = p0

E(x0 − iε), ε > 0, therefore in the complex p0
E plane we close the contour of

integration in the upper half. The integral over the real p0
E line can be therefore expressed

– 18 –
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in terms of an integral along the two sides of the upper branch cut multiplied by a factor
∼ sinα. In terms of the Lorentian momentum p0 = −ip0

E, this integral can be extended
over the whole real domain introducing a step function. Overall, and reintroducing all
factors, we obtain the formal substitution (p2

E)−α → 2 sin(πα) Θ[p0−|~p |] |p2|−α mentioned
in the main text.5

3-point function. For the 3-point function the dependence on the external momenta is
more complicated. The Euclidean expressions are given in (3.4).

We start with the free contribution, labelled as (0). We first consider p3E, which gives
simple poles in the complex p0

3E plane for p0
3E = −k0

E± i|~p3 +~k|. The exponential contains
−ip0

3Ez
0
E = p0

3E(−z0 + iζ), ζ > 0, which forces to close the contour of integration of p0
3E on

the lower half plane. The real p0
3E integral reduces to the residue of the pole with negative

imaginary part. We now turn to p1E, which gives simple poles for p0
1E = k0

E ± i|~p3 − ~k|.
The exponential contains ip0

3E(x0
E − z0

E) = p0
3E(x0 − z0 − i(ε− ζ)), ε > ζ, therefore we close

the contour of p0
1E in the upper half plane and the integral reduces to the residue of the

pole with positive imaginary part. Finally we consider kE, which gives the simple poles
k0

E = ±i|~k|. k0
E appears in the exponential through the residues of the external momenta

as ik0
Eε, and since ε > 0 the contour is closed on the upper half plane. The integral then

is given by the residue on the pole k0
E = +i|~k|. Introducing the Lorentzian components

p0 = −ip0
E for all three momenta we get the expression in (3.7).

We now turn to the first order term labelled as (1)a. The other one, (1)b, is analogous.
We start considering p3E, which goes like in the free case. Then, we consider the loop
momentum kE. We have simple poles at the values k0

E = ±i|~k| and k0
E = p0

1E± i|~k−~p1|. k0
E

appears in the exponential through the value of p0
3E as ik0

Eζ, therefore we close the contour
of integration in the upper half plane and the integral reduce to the sum of the two residues
with positive imaginary part. Finally we turn to p1E. Due to the factor (p2

1E)d/2−2, the
zeroth component has a branch cut from p0

1E = +i|~p1| to +i∞ and a symmetric one from
p0

1E = −i|~p1| to −i∞, both along the imaginary axis, as well as some simple poles. In the
first term in the sum of the k0

E residues, we have poles for p0
1E = i(|~k|± |~k+~p1|); the second

term has simple poles for p0
1E = i(−|~k+~p1|± |~k|). p0

1E appears in the exponent respectively
as ip0

1E(ε − ζ) and ip0
1Eε, therefore we close both of them in the upper half plane. The

integral over real p0
1E is therefore expressed in terms of several contributions: the integral

along the branch cut (multiplied by ∼ sin πd
2 ), the isolated poles (giving a residue when

they lie on the upper half plane) and a pole lying on the branch cut (which contributes with
a residue multiplied by cos πd2 ). The contributions of the isolated poles cancel with each
other. Rewriting in term of Lorentzian components for all the momenta and extending it
to an integral over the whole real line we finally obtain result is as in (3.7).

E Massive free scalar

In this appendix we inspect the ANEC in the case of the massive free boson with generic
conformal coupling ξ, whose mass term brakes scale invariance already at the classical level.

5For α > 1 and the branch points are not simple. Additional terms appear, see [6].
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The calculation proceeds as in the massless case, except for the fact that the propagator
now exhibits the mass. We only give the final expressions for the energy flux correlator,

〈E〉 = qd+1 Θ[q − 2m]
2d+1(4π)d−2

(
1 +
√
r
)d−3 ∣∣4ξ(ε11 + εaa) + rε11 −

√
r(ε11 + εaa)

∣∣2
+ qd+1 Θ[q − 2m]

2d+1(4π)d−2
(
1−
√
r
)d−3 ∣∣4ξ(ε11 + εaa) + rε11 +

√
r(ε11 + εaa)

∣∣2 , (E.1)

where we have defined r := 1 − 4m2/q2. When m = 0 (r = 1), only the first term
in (E.1) survives, and thus reproduces the result of the massless case, given by (4.6) and
coefficients (3.10) with λ = 0. The condition q > 2m stems from the fact that the state
under consideration, generated by the stress tensor and therefore quadratic in the field,
is a combination of two-particle states, which has a continuous spectrum above the mass
threshold. This condition ensures that (E.1) is real, that (1 −

√
r) is non-negative, and

therefore that the ANEC is satisfied.

Open Access. This article is distributed under the terms of the Creative Commons
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