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1 Introduction

The possibility that Dark Matter (DM) is just gravitationally coupled to the visible sector
is certainly worrisome, since it comes with no obvious experimental and observational
signatures, but it is one that we have to start embracing seriously. If gravity is all we got,
we should at least explain how dark sectors can ever be populated and the observed DM
relic abundance reproduced. It would be remarkable if gravity itself is responsible for the
DM genesis.

One unavoidable contribution to the dark sector abundance is the production through
tree level graviton exchange, also known as gravitational freeze-in [1, 2]. This is efficient
if the reheating temperature is close to the experimental bound from inflation TR|max ≈
5×1015 GeV and rapidly declines for smaller values. Another generic mechanism is particle
production due the time dependent background [3, 4]. This is at work during inflation
for minimally coupled scalars and for massive vector fields [5] leading to masses as low
as 10−5 eV. In the first case this however comes at the price of strong constraints from
isocurvature perturbations [6], while for the vector it relies on the Stueckelberg mechanism
for mass generation [7].
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In this paper we introduce a new mechanism that allows secluded sectors to be pop-
ulated even in absence of any coupling to the Standard Model (SM) and to the inflaton.
We consider interacting dark sectors with a dynamical mass scale M , arising either from
confinement or from spontaneous symmetry breaking. If the scale of inflation HI > M the
sector is in the unbroken phase during inflation and undergoes a phase transition during
reheating or radiation domination. Assuming no thermal population the energy gained
from the phase transition, of order M4, populates the dark sector whose lightest state is
automatically stable and constitutes the DM candidate. In the simplest scenarios we find,

Ωh2

0.1 ≈
TR

1012GeV

(
M

108GeV

)2
, TR <

√
MMPl (1.1)

leading to heavy DM scenarios.
Production from a phase transition is particularly transparent for Weyl invariant sec-

tors because inflation automatically prepares the system in a false vacuum empty state.
This is attractive as it avoids strong isocurvature constraints from inflationary production.
The only relevant scales in the evolution are Hubble and M so that the phase transition
is triggered when H ∼ M , a condition realized during reheating or radiation domination.
This is complementary to particle production due to the time dependent background but
as we will see typically leads to a larger abundance. The contribution can also dominate
gravitational freeze-in depending on the reheating temperature.

As examples we consider asymptotically free dark gauge theories, strongly coupled
Conformal Field Theories (CFT) with deformations (and their holographic realization in
Randall-Sundrum scenarios) and conformally coupled elementary scalars (with a second
order instability). If the scale of inflation is large compared to the mass all these scenarios
undergo a phase transition after inflation that populates the dark sector. The lightest state
of the sector is automatically stable providing a natural DM candidate. Moreover, these
theories are approximately Weyl invariant at high energies so that no significant particle
production happens during inflation. The assumption of a Weyl invariant sector is not very
restrictive being only violated by minimally coupled scalars that are naturally associated
to spontaneous breaking of a global symmetry.

The paper is organized as follows. In section 3 we discuss in detail the phase transi-
tion mechanism for a conformally coupled scalar with an instability. In this case one can
follow explicitly the dynamics of the scalar during the phase transition and determine the
abundance. We show in this simple example that the phase transition dominates particle
production in the expanding universe and gravitational freeze-in if TR < 1013 GeV. In sec-
tion 4 we consider gauge theories arguing that the confinement phase transition can also
successfully populate the dark sector. We also study inflationary production that is con-
trolled by the β−functions of the theory. For strongly coupled CFTs we use the AdS/CFT
correspondence to determine the inflationary production. A potentially sizable contribu-
tion exists in this case that is associated to the explicit breaking a conformal invariance of
gravity. We then turn to the contribution from the phase transition that can be determined
using the dilaton effective action. We summarise in 6. In appendix A we derive analytically
the abundance of conformally coupled scalar produced in radiation domination.
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2 Phase transition mechanism

Approximately Weyl invariant dark sectors such as gauge theories are very difficult to
produce if they are only gravitationally coupled to the SM. In fact in the limit of exact
Weyl invariance time dependence of the background drops out from the classical equations
of motions eliminating particle production during and after inflation. Particle production
is then controlled by the explicit breaking of Weyl symmetry that eventually induces a
mass scale M .

These sectors can however be produced gravitationally from the SM thermal bath
through tree level graviton exchange (also known as, gravitational freeze-in) [1, 2]. This
type of thermal production is only efficient for very large SM reheating temperature. As
we will discuss, another mechanism can be relevant due to the dynamics of the mass scale.
In the case where the dark sector does not thermalize among itself, it can gain an energy
density proportional to M4 when Hubble becomes comparable with M .

In the rest of this section we give an outline of the two contributions, writing the
general scaling of the energy density produced in the two cases.

2.1 Gravitational freeze-in: tree level graviton exchange

After reheating of the SM to temperature TR dark sector states are produced through
s-channel graviton exchange from the SM plasma. This production is analogous to a UV
dominated freeze-in, since it originates from SM thermal initial states. In the approxima-
tion that TR is much larger than SM thresholds and than the mass M , it was shown in [8]
that the abundance of free particles can be written in a completely general way as1

ρ

s

∣∣∣∣
GR

= 6× 10−6McD

(
TR
MPl

)3
, TR > M , (2.1)

where cD is the central charge (cD = 4/3, 4, 16 for a conformally coupled scalar, Weyl
fermion, massive gauge field respectively) of the approximate relativistic CFT that de-
scribes the dark sector at these energies.

If interactions allow the dark sector to thermalize in the relativistic regime, it develops
a dark sector temperature TD, given by TD = 0.25(cD/gD)1/4(TR/MPl)3/4T , where T is the
SM temperature and gD is the number of degrees of freedom. In such a case the abundance
becomes

ρ

s

∣∣∣∣
GR, therm.

= 1.5× 10−4MgD

(
cD
gD

)3/4 ( TR
MPl

)9/4
, (2.2)

that is larger than for free particles.

2.2 Phase transition and particle-production

Gravitational freeze-in becomes inefficient when TR is small, as it stems from the formulas,
leaving a practically empty dark sector at the onset of radiation domination. In such a

1We report throughout the ratio of energy to entropy densities. The energy fraction is then given by
Ωh2 = 0.27/eVρ/s.
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case, the dark sector is only characterized by the relative size of the Hubble parameter H
and the mass scale M .

We wish to argue that whenH ∼M an energy density of order ∼M4 becomes available
in the dark sector, which soon after starts to redshift as matter. Under this assumption
the abundance is found to be

ρ

s

∣∣∣∣
PT
∼M Min

[(
M

MPl

) 3
2
,
TRM

M2
Pl

]
, (2.3)

independently of the details of inflation. The above formula captures the situation where
critical condition H ≈M happens both during radiation or during reheating.

While the formula above is simply based on the argument that an energy density of
order M4 becomes dynamical at a critical time, we will show that it represents at least two
well defined mechanisms by which a dark sector can be populated: phase transitions and
particle production due to the expanding universe.

• Phase transition. Thanks to the generation of the dynamical scale M at the
phase transition, the dark sector gains an energy density ∆V ≈ M4. Since the
UV contributions from gravitational freeze-in and inflationary production are very
suppressed, it is a good approximation to consider the phase transition to happen
practically at zero temperature. In a cosmological scenario, the critical parameter in
this case can be identified as H ≈M .

• Particle production. Thanks to the expansion of the Universe, when H ≈ M

the Fourier modes of the quantum fields undergoing the phase transition (or simply
acquiring a mass term) experience a large deviation from adiabaticity. Such con-
dition signals the non-thermal production of non-relativistic particles that can be
determined computing Bogoliubov coefficients.

In both cases the expected scaling is the one of eq. (2.3). However, as we will show
explicitly in a few cases, the contribution from the phase transition can be enhanced at
weak coupling and it can be the dominant source of energy allowing for a ‘jump start’ of
secluded dark sectors.

3 Elementary conformal scalar

We first consider a scalar field with conformal coupling to the curvature. The generic
renormalizable theory is described by the lagrangian

L = (∂µφ)2

2 − 1
2µ

2φ2 + 1
12φ

2R− λ

4φ
4 . (3.1)

The coupling to curvature guarantees that classically for µ = 0 the action is invariant under
a Weyl transformations, gµν → Ω(x)2gµν and φ → Ω(x)−1φ so that the scale factor can
be removed from the equations of motion. A related important fact is that the coupling
to curvature generates a positive mass squared 2H2

I during inflation. Weyl invariance is
explicitly broken by the mass term and the running of the couplings (see for example [9]).
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Figure 1. Energy density per unit logarithmic mode a4dρ/d log k of eq. (3.3), normalized to
(HIM/2π)2aa3

M . The plot shows the energy of real scalars of mass M conformally (black) and
minimallly (red) coupled. The spectrum is for M/HI = 0.01 and it is cut-off at kmax = HIae.

We assume that the sector is decoupled from the SM, so that it can be populated
only through gravitational effects. In this work, we wish to distinguish between quantum
production due to the non-adiabatic evolution of the Bunch-Davies vacuum, and production
from a phase transition. A second order phase transition is possible if µ2 = −M2/2, while
µ2 = M2 is the other possible branch. This parametrization is chosen to denote with M

the mass of the scalar both in unbroken and broken phase.

3.1 Particle production from time dependent background

We start reviewing particle production in the scenario with no interactions and positive
mass term M2 = µ2. In a expanding universe particle are produced due to the time de-
pendence of the background. This is controlled by the explicit breaking of Weyl invariance
that for the conformally coupled scalar is the mass term.

Upon rescaling the field by the scale factor a, φ = v/a, the equation of motion in
conformal time takes the form

v′′k(η) + ω2
k(η)vk(η) = 0 , ω2

k(η) = k2 +M2a2(η) (3.2)

where M is the physical mass today.
As reviewed in the appendix the energy density per unit logarithmic interval produced

by the non-adiabatic evolution of eq. (3.2) can be written as

a4 dρ

d log k = k3

2π2 lim
η→∞

[
|∂ηvk|2

2 + ω2
k|vk|2

2 − ωk
2

]
= k3

2π2 lim
η→∞

ωk|βk|2 , (3.3)

where βk are the Bogoliubov coefficients associated to the transformation from the vacuum
at early times to the vacuum infinity. In the above formula v is the wave function associated
to the quantum operator of the field aφ that annihilates the Bunch-Davies vacuum and
therefore it has initial conditions in the asymptotic past as vk(−∞) = e−ikη/

√
2k.
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Particle production is most efficient when there is a large deviation from adiabaticity.
In this case the distortion from the initial plane wave solution happens when the mass
becomes relevant, i.e. k/a ≈ M . The abundance, due to the overall 1/a4 factor, will be
dominated by

H = M = k

a
, (3.4)

where the first condition is selected as otherwise the density is suppressed by the extra
redshift. The first condition is realized in radiation domination for ,

TR > T∗ ≡ 0.55
(100
g∗

)1/4√
MMPl (3.5)

and otherwise during reheating. We will take g∗ = 100 in what follows. Therefore the
production will be peaked at scales shorter than cosmological, corresponding to co-moving
wave-numbers

kpeak =


aR
√
HRM TR > T∗

aR
√
HRM

(
HR

M

)1/3
TR < T∗

(3.6)

respectively during radiation domination or reheating.
The amount of energy density stored in the scalar field from particle production only

depends on the scale M , since it is the only scale of the problem. From eq. (3.4) the energy
density when H = M can only be a function ρ|H=M = κM4, where κ is a coefficient that
can be calculated precisely from eq. (3.3). In terms of κ, the yield of scalars at late times is

ρ

s
= κ


0.14M

(
M

MPl

) 3
2

TR & T∗

M4

s(TR)

(
aM
aR

)3
= TR

M2

4M2
Pl

TR . T∗

(3.7)

where we have used s = 2.3g1/4
∗ (HMPl)3/2 valid in radiation domination. In the second

equation aM is the scale factor when H = M , we approximated reheating as a phase of
matter domination so that H = HR(aR/a)3/2.2

Numerical computations of the abundance of conformally coupled real scalars can be
found in [12, 17] using Bogoliubov coefficients. In figure 1 we show the energy density
a4dρ/d log k evaluated at a conformal time corresponding to H < M .

However, here we would like to present analytical results, decomposing the contribution
in different epochs, see also [18, 19]. We start with radiation domination where the contri-
bution is the largest, and then discuss production during reheating and the subdominant
production during inflation (where Weyl invariance is a good symmetry).

2We do not consider here the model dependent contribution to particle production from inflaton scat-
terings [10–16].
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Radiation. We first consider the case where the condition (3.4) takes place during radia-
tion, ie. TR &

√
MMPl. During radiation where the scale factor reads a = aR(1 + aRHRη)

the equation of motion (3.2) can be solved explicitly in terms of parabolic cylinder func-
tions. As shown in the appendix this allows to analytically determine the Bogoliubov
coefficients as

|β(z)|2 = e−
3z
4 (ez + 1)
4
√
πz

(
z

4π

∣∣∣∣Γ(1
4 + i

z

4π

) ∣∣∣∣2 +
∣∣∣∣Γ(3

4 + i
z

4π

) ∣∣∣∣2
)
− 1

2 , z ≡ πk2

a2
RHRM

(3.8)
From eq. (3.8) the energy density per unit logarithmic momentum interval is given by,

a3 dρ

d log k = k3

2π2M


Γ[3/4]2

2π aR

√
HRM

k
k � aR

√
HRM

a8
R

M4H4
R

64k8 k � aR
√
HRM

. (3.9)

Asymptotic behaviors at small and large k agree with other results in the literature (see for
example [19]). Analytically it is possible to compute the position of the peak of the power
spectrum at kpeak = 0.629279aR

√
MHR where a3ρpeak = 0.00092 a3

RM
5/2H

3/2
R . Performing

the integral over momentum the total abundance is given by

ρ

s

∣∣∣∣
quantum

= C
2π 7

2

M5/2H
3/2
R

s(TR) = 0.0002M
(
M

MPl

) 3
2

(3.10)

where we used C = 0.164341, see appendix. As anticipated, the DM abundance is only set
by the mass of the scalar, for which we get the prediction MDM = 5.7× 108 GeV.

Reheating. If the scalar is produced during reheating (TR .
√
MMPl) one should solve

the wave-equation in matter domination. The analytic solution is given in term of Heun
functions. To estimate the final abundance we can however simply rescale the result during
radiation,

ρ

s

∣∣∣∣
quantum

≈ C
2π 7

2

M5/2H
3/2
∗

s(TR)

(
aM
aR

)3
≈ 10−4 TR

M2

M2
Pl
. (3.11)

In figure 2 we show the regions where production from the time dependent background
dominates the gravitational contribution. This is only realized in a small region for TR > T∗
while it is generic in the opposite regime, i.e. if DM is produced during reheating.

Inflation. Finally we discuss what happens during inflation, in order to show that Weyl
symmetry forbids any sizeable particle production in this epoch, as anticipated in the
introduction and section 2. This derivation will be particularly useful in the next sections.
The equation of motion in de Sitter reads,

v′′k + k2v + M2

H2
I η

2 vk = 0 . (3.12)

To leading order inM2/H2
I the solution of the equation above with Bunch-Davies boundary

conditions is given by

vk = e−ikη√
2k
− iM

2

H2
I

eikη√
2k

[
π + iEi(−2kη)]

2 +O

(
M4

H4
I

)
, (3.13)
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Figure 2. Parameter space of the conformally coupled scalar. The DM abundance is reproduced
along the black solid line. The darker green region corresponds to TR ≤M where the gravitational
freeze-in (blue line) becomes inefficient (see eq. (2.1)). The lighter green region corresponds to
HR ≤M where the particle production (left panel) or phase transition (right panel) happen during
reheating. The red region is highlighted to show where the contribution from particle production
(left panel) or phase transition (right panel) generated in radiation domination dominate over the
gravitational freeze-in. Gray regions are excluded.

where Ei(z) is the exponential integral function. The solution above is valid for kη < 1 since
modes are produced when k/a = HI and could be expanded in log terms. To determine
the energy density at a later time one should evolve this solution during reheating and
radiation. For the incoming plane wave we have already performed this computation above,
leading to a production peaked when H = M = k/a. For the second term proportional to
the outgoing wave to leading order in M2 the evolution is trivial so that the Bogoliubov
coefficient can be directly computed from the wave-function at the end of inflation. The
energy density at later times is thus

dρ

d log k ∼
k3

2π2

√
k2 +M2a2

a4
M4

H4
I

. (3.14)

From this formula it follows that the energy density from inflationary fluctuation is domi-
nated by the highest momentum modes k = aeHI that are produced at the end of inflation
and renter the horizon right after with an energy density M4/(2π2). Comparing with
eq. (3.9) we can see that this amount of energy is always negligible.

3.2 Production from phase transition

When µ2 < 0 the origin of the potential is unstable in flat space. The minimum of
the potential is at φ = µ/

√
λ where the mass is M2 = −2µ2 and the Z2 symmetry is

– 8 –
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spontaneously broken.3 During inflation however the coupling to curvature produces a
positive mass 2H2

I that stabilizes the field at the origin if HI > M/2.4 Even if the scalar
is initially displaced after few e-foldings of inflation the field reaches φ = 0, see [7].

After inflation the effective mass drops during reheating and vanishes in radiation since
R = 0. As a consequence the origin of the potential becomes unstable and the field starts
to evolve towards the minimum through a second order phase transition.

The inflationary production can be studied as in the previous section. During inflation
fluctuations of the field satisfy eq. (3.12) with a negative squared mass. To leading order this
however leads to exactly the same amount of relativistic modes since this is proportional
to M4/H4

I . Therefore also in this case the production during inflation is negligible. This
shows explicitly that the phase transition occurs in an empty dark sector.

The dark sector is thus populated only through gravitational freeze-in from the SM
thermal bath and by the latent heat associated to the phase transition.

Abundance. To determine the abundance we need to estimate the time when the phase
transition completes. The time scale for the second order PT is set by the mass M2 of the
field. We assume that the scalar field starts to oscillate as non-relativistic matter after a
time t∗ = 2π/M . Since H ∼ 1/t we use as criterium that the phase transition completes
for H∗ = M/(2π). With this criterium the DM abundance can be determined from the
latent heat ∆V = M4/(16λ) assuming that the energy redshifts as matter after the phase
transition,

ρφ
s

∣∣∣∣
PT

= ∆V
s(T∗)

≈ M

λ
min

[
0.15M

3/2

M
3/2
Pl

, 0.4MTR
M2

Pl

]
. (3.15)

If the relaxation time of the phase transition is longer, a larger abundance is produced.
Therefore the estimates above can be considered as a lower bound. This provides an explicit
computation of the contribution discussed in eq. (2.3).

Note that the abundance from the phase transition has the same dependence on mass
and reheating temperature as the contribution (3.10). This follows from the fact that in
both cases DM is produced when H ∼M . The coefficient is larger and enhanced for small
λ so that the abundance obtained for equal mass is always larger than the free theory.

The comparison with the quantum production and tree-level gravitational production is
shown in figure 2.5 Gravitational freeze-in dominates when the mass TR >

√
MMPl except

for the red region where the effects from quantum and phase transition are important
during radiation. When reheating is not instantaneous (green region), gravitational freeze-
in is subdominant and the production is dominated by the quantum production or phase
transition happening during reheating.

3The model as it stands suffers from domain wall problems due to the spontaneously broken Z2 sym-
metry. This can be easily solved by adding a small cubic term that makes domain walls unstable. The
conformal scalar illustrates the general fact that production from the phase transition dominates over
quantum production.

4A similar mechanism can be found in ref. [20] where however the Z2 symmetry is restored during the
expansion of the universe.

5We assume here that no thermalization takes place in the relativistic regime. When this happens the
PT takes place when T ∗

D ∼ µ/
√
λ and the abundance is roughly ρ/s ∼ ξ3T ∗

D.
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4 Gauge theories

We now turn to confining gauge theories. In the massless limit the action of fermions
and gauge fields is automatically Weyl invariant at the classical level. Weyl invariance is
violated by fermions mass terms and by quantum corrections that introduce a dynamical
scale Λ in the theory that controls the mass of the all the hadrons in the chiral limit. Weyl
symmetry becomes completely broken when the theory confines through a first or second
order phase transition. We argue that the production of such sector can be analogous to
the one of the conformally coupled scalar that undergoes a phase transition when H ∼M .
Contrary to scalars gauge theories would not suffer from domain wall problems but other
topological defects might exist [21].

To start with we consider the production of this sector during inflation, due to the
violation of Weyl invariance from the running of gauge couplings. Using the results of the
conformal scalar this contribution is negligible, see also [22] for related work. The dark
sector can instead be populated by the confinement phase transition leading to DM mass
around 108 GeV.

4.1 Quantum production: suppressed by β-functions

In asymptotically free gauge theories, at energies larger than the confinement scale Λ, the
theory can be effectively described as a weakly coupled CFT with marginal deformations.
The deviation from conformality in the chiral limit arises at the quantum level, conformal
and Weyl invariance are violated by the running of the gauge coupling that eventually leads
to confinement.

In the perturbative regime the quantum production in an expanding universe can be
computed as in [23, 24]. For SU(N) gauge theories with NF flavors the 1-loop β−function
of the gauge coupling is

β(g) = − g3

16π2 b0 , b0 = 11
3 N −

2
3NF . (4.1)

The 1PI effective action in flat space has thus the form

L = − 1
4g2

[
1 + g2b0

16π2 log
(−�
M2

)]
G2
µν + · · · (4.2)

where g is the gauge coupling renormalized at the scale M . Weyl invariance can be for-
mally restored promoting M to a field transforming as M → Ω−1M . This implies that
in conformally flat background gµν = e2Ωηµν the quantum effective action acquires a new
term that depends on the scale factor,

L = − 1
4g2

[
1 + g2b0

16π2 log
(−�
M2

)]
G2
µν −

1
4

(
− b0

8π2

)
ΩG2

µν + · · · . (4.3)

For Ω = log a the equation of motion (in conformal coordinates) are then easily derived
from the above effective action

1
g2(−�)∂µG

µν −Gµν b08π2∂µ log a = 0 , (4.4)
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The above equation is better rewritten in Fourier space, making explicit the derivative with
respect to conformal time and neglecting the log(a) as compared to its derivative [23]. As
expected only the two transverse polarizations ~AT have non-trivial dynamics while the other
two Aη and ~AL ∼ ~k are non-dynamical. The equation for the transverse components is

A′′T + k2AT + b0g
2

8π2
a′

a
A′T = A′′T + k2AT − 2∆ a′

a
A′T = 0 , ∆ = − b0g

2

16π2 , (4.5)

where ∆ coincides with the anomalous dimension of G2
µν .6 We can eliminate the first deriva-

tive with the rescaling AT → a∆v. In terms of the new mode function v, the equation has
the same form of a conformal scalar eq. (3.2), with frequency given now by

ω2
k = k2 + ∆(∆ + 1)a

′2

a2 −∆a′′

a
. (4.6)

The energy density of the transverse mode can thus be computed using eq. (3.3). During
inflation the frequency is

ω2
k

∣∣
dS = k2 + ∆

η2 . (4.7)

Therefore the equation is identical to the one of the conformal scalar during inflation with
the replacement M2/H2

I → ∆. Since confining gauge theories have negative anomalous
dimension ω2

k becomes negative for small k but as we discuss the instability is irrelevant.
Since the gauge fields are massless we can directly borrow the result for the scalar (3.14)
so that the energy density of relativistic gluons is given by,

ρgluons ∼ (N2 − 1)H
4
I

π2 ∆2a
4
e

a4 � H4 (4.8)

Similar results can be found in [22]. This contribution is again negligible as we will see.
During radiation the frequency becomes

ω2
k

∣∣
RD = k2 − ∆

η2 , (4.9)

so that particle production is even more suppressed in this phase (in the perturbative
regime) since η grows.

It is useful to notice that the deviation from Weyl invariance is proportional to the
anomalous dimension of the operator G2

µν . This allows to generalize these results to the-
ories with scalars and fermions. Due to the wave-functions renormalization the classical
equations are corrected by a term proportional the anomalous dimension of the kinetic
term. One thus finds that the quantum production of particles is controlled by the square
of the anomalous dimension.

4.2 Phase transition: glueball dark matter

In analogy with the conformal scalar we now consider the population of the dark sector
through the phase transition. For simplicity we focus on pure glue gauge theories that give

6We find a factor of 2 difference with respect to the derivation in [23].
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rise to glueballs in the confined phase. The lightest glueball in particular is accidentally
stable and provides an excellent DM candidate, see [8, 25–31]. A wealth of lattice results
are in particular available for SU(N) gauge theories. For N = 3 in particular latent heat
and lightest CP even glueball are found [32–34],

Lh = 1.4Λ4 , M0++ = 5.5Λ (4.10)

where Λ is the critical temperature of the finite temperature de-confinement phase transi-
tion.

For HI > Λ the gluons are free during inflation. There are several ways to argue
for this. First de Sitter space can be roughly treated as a thermal bath of temperature
Tds = HI/(2π) so that for HI > Λ deconfinement takes place. A related argument is that
in euclidean signature dS is 4-sphere of radius 1/HI so that the space is smaller than the
size of the hadrons. In real time the hadrons would have a size larger than the horizon so
there is no local physics can sustain them. After inflation, Hubble drops during reheating
and then radiation so that a phase transition to the confined vacuum will take place to the
confined vacuum. If the system has not thermalized in the relativistic regime as will be
the case for large masses considered here, the phase transition happens out of equilibrium.
Nevertheless given that the only scale available is Hubble we expect the phase transition
to happen when H ∼ Λ. Indeed 1/Λ is also the typical time scale on interactions.

Abundance. Given the latent heat in (4.10) for the thermal phase transition we then
expect an energy Λ4 to be released in the dark sector when H ∼ Λ. Whereas in the context
of the conformal scalar with an instability it is clear the role of H in the evolution of φ, here
it is less evident how explicitly H affects the evolution of the order parameter of Yang Mills
towards confinement. It is tempting to interpret H as a control parameter for a potential
at finite three-dimensional volume, rather than finite temperature.

Assuming an energy Λ4 to be released for H = Λ, we can estimate the abundance of
glueballs as in eq. (3.15),

ρDG
s

= ∆V
s(TR)

a3
Λ
a3
R

∼ 0.1 Λ Min
[( Λ

MPl

)3/2
,
ΛTR
M2

Pl

]
, (4.11)

This rough estimate indicates a DM mass ≈ 108 GeV or heavier.7 The dark glueballs
scenario also predicts the existence of cosmic strings with tension √µ ∼ Λ that could be
within the reach of future gravity wave experiments [35].

Let us also note that as we approach confinement the effective gauge coupling in (4.4)
becomes large and the anomalous dimension of G2

µν becomes of order 1. We can then
interpret the non-adiabaticity in the equation as a source of particle production.

7The large value of the mass raises the question of the cosmological stability of glueballs. Even assuming
negligible couplings to the SM fields the lightest glueball that is CP even can at least decay to gravitons [27].
Naive dimensional analysis and large N counting indicate a decay rate Γ ∼ N2/(128π3)M5/M4

Pl so that
cosmological stability would require at least M < 107 GeV. We see two possible way out. First, the abun-
dance could be larger if the relaxation time is longer than our conservative estimate 1/Λ. Second, as argued
in [31] heavier glueballs (for example the lightest CP odd glueball) might be more stable due to accidental
symmetries. If these are also populated an abundance is produced compatibly with cosmological stability.
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Figure 3. Parameter space of Glueball DM. The DM abundance is reproduced along the black
solid line. The darker green region corresponds to TR ≤ M0++ where the gravitational freeze-
in (blue line) becomes inefficient (see eq. (2.1)). The lighter green region corresponds to HR ≤
Λ where the phase transition happens during reheating. The red region is highlighted to show
where the contribution from the phase transition generated in radiation domination dominates over
the gravitational freeze-in. The light shaded region corresponds to a cosmologically unstable DM
according to naive dimensional analysis estimates.

The contribution above must be compared with the unavoidable gravitational freeze-
in production, see [8]. As shown in that reference for large reheating temperatures gluons
thermalize in the relativistic regime. When this happens the contribution from the phase
transition is already included in the finite temperature phase transition. Thermal equilib-
rium however changes the abundance because the phase transition to the massive theory
takes place when the dark sector temperature TD = Λ rather than H ∼ Λ, enhancing the
abundance. One finds for the abundance of the lightest stable glueball [8]

(
ρDG
s

)
GR, therm.

≈ 0.01Λ
(
TR
MPl

)9/4
, (4.12)

allowing to reproduce the DM for masses as low as GeV for the largest reheating temper-
atures. Numerically the thermalization is compatible with a cosmologically stable lightest
glueball for TR & 1013GeV [8]. For lower reheating temperatures the gluons would not ther-
malize in the relativistic regime and confinement would occur out equilibrium as discussed
above. After confinement, if TR > M0++ gravitational freeze-in would produce energetic
gluons in the confined vacuum that would give rise to gluon jets, contributing with an
abundance estimated in eq. (2.1). Note that this criterium is slightly different from the
one employed in [8].

– 13 –



J
H
E
P
0
1
(
2
0
2
3
)
0
8
5

In figure 3 we show the parameter space of the model. We identify three regions. The
first (in lighter and darker green) where the phase transition happens during reheating and
dominates the abundance, and for sufficiently small reheating temperatures it is the only
contribution. The second (in red) where phase transition is a sizable contribution even if it
happens in radiation domination although production from gravitational freeze-in of dark
gluons (that hadronizes in the vacuum) starts to be competitive. And the third (in white)
where DM is reproduced via a phase transition at finite temperature, since the dark gluons
have thermalized while relativistic (their energy is far more dominant).

5 Strongly coupled scenarios

We now generalize the previous discussion to general CFTs with deformations that create a
mass gap. As discussed [8] the lightest state is accidentally stable and provides an excellent
DM candidate analogous to glueballs.

In general an interacting CFT is expected to have a traceless energy momentum tensor
Tµµ ≡ 0. This implies that when coupling to a curved background the system is automat-
ically Weyl invariant (modulo Weyl anomaly at quantum level that does not play a role
here). Many of the statements above thus apply in this more general setting. In particular
the production during inflation is controlled by possible relevant or irrelevant deformations
and thus strongly suppressed as long as HI � Λ, where Λ is the dynamical scale of the
CFT. If the system however undergoes a phase transition after inflation this can populate
the dark sector.

At strong coupling and large N the dynamics of CFTs can be studied through the
AdS/CFT correspondence that relates the system to a weakly coupled gravitational theory
in 5 dimensional Anti-de-Sitter space [36]. Let us first discuss the exact (with no deforma-
tions) CFT during inflation, i.e. the CFT in a de-Sitter background. The dual description
is a gravitational theory with AdS5 metric with 4D de Sitter slicing. The metric can be
parametrized as

ds2
5 = ds2

4f(y)2 − dy2 , ds2
4 = 1

H2
I η

2 (dη2 − dx2) , f(y) = e−k5y − H2
I

4k2
5
ek5y, (5.1)

where k5 is the five-dimensional curvature of the space while and HI � k5 is the 4D Hubble
expansion.

To make contact with phenomenology we wish to make 4D gravity dynamical and add
SM fields external to the CFT. To do so we introduce a UV brane that ends the space
at y = 0 and add there SM degrees of freedom. This gives rise to a Randall-Sundrum
like scenario [37] where the elementary SM fields are coupled gravitationally to a CFT
(see [38, 39] for the holographic interpretation). The presence of the UV brane corresponds
to a UV cut-off k5 for the CFT. One consequence is the contribution to the 4D Planck mass,

∆M2
p ≈

M3
5
k
≡ N2

effk
2
5 . (5.2)

Since we are not interested in explaining the hierarchy problem M5 and k will be free
parameters and the 4D Planck mass is obtained introducing localized kinetic term on the
UV brane.
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Note that the 5D metric has a horizon at finite distance,

yhor = 1
k5

log k5
HI

. (5.3)

Due to horizon an IR brane beyond yhor should be replaced by the horizon. This is similar
to finite temperature where the IR brane disappears for T > ΛIR and is replaced by the
5D black hole horizon [40]. In this case instead the black hole is replaced by a cosmological
horizon. This will be important when deformations are included that generate a mass gap.

5.1 Inflationary production

The construction above allows to compute the inflationary production of the CFT through
the holographic dual. Compared to glueballs and scalars a new effect arises associated to
the explicit breaking of Weyl invariance of the UV brane. Decomposing the 5D metric in
4D gives rise to a tower of massive spin-2 fields. These are not conformally coupled and
therefore will be produced during inflation. We can interpret this effect as the breaking of
Weyl symmetry induced by gauging 4D gravity.

Explicitly the Kaluza-Klein reduction of the 5D metric in the setup above has been
performed in [41]. One finds a massless zero mode that describes the 4D graviton and a con-
tinuous tower of massive gravitons withM > 3/2HI (corresponding to the normal brunch of
de Sitter spin-2 representations). We should then consider the production of massive gravi-
tons in de-Sitter space. Since their mass is larger the dS temperature TdS = HI/(2π) they
are expected to be non-relativistic and their abundance thermal for M � TdS. Moreover
since the mass is large the five polarization of the massive graviton are expected to behave
as 5 minimally coupled scalars. The production of massive scalars in de Sitter has been
studied in several papers, the abundance of scalar fields with M > 3/2H produced during
inflation can be found in [42]. The number density at the end of inflation is found to be

n(ae;µ) = 2π
3

H3
Iµ

3

e2πµ − 1 , µ =
√
M2

H2
I

− 9
4 , (5.4)

where HI is Hubble at the end of inflation. Note that this corresponds to less that 1
particle per Hubble volume.

In holographic theories the number density at the end of inflation can thus be obtained
integrating over the whole tower of Kaluza-Klein particles weighted by the density of states
dN/dM ≡ σ(M),

nRS(ae) = 5
∫ ∞

0
dM σ(M)n(ae;µ) . (5.5)

The continuum density of Kaluza-Klein states starts at M = 3
2H and it is flat afterwards

(neglecting corrections H/M), therefore we approximate it as σ(M) = k−1θ(M − (3/2)H).
This gives

nRS(ae) = 0.015H
4
I

k5
. (5.6)

The energy density at the end of inflation is accordingly

ρRS(ae) = 5
∫ ∞

0
dM σ(M)M n(ae;µ) = 0.025H

5
I

k5
. (5.7)
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Figure 4. Parameter space of Dilaton DM. The DM abundance is reproduced along the black solid
line. The darker green region corresponds to TR ≤ Λ where the gravitational freeze-in (blue line)
becomes inefficient (see eq. (2.1)). The lighter green region corresponds to HR ≤ Λ where the phase
transition happens during reheating. The red region is highlighted to show where the contribution
from phase transition generated in radiation domination dominate over the gravitational freeze-in.

We see explicitly in the limit k5 → ∞ (CFT with no cut-off) the energy density goes to
zero and no production occurs during inflation as expected due to Weyl invariance.

The CFT states are unstable to decay to the SM. However due to interactions the
dark sector can thermalize or the states with large invariant mass decay to ligher and more
stable ones (see for example the discussion in [43]). Assuming that this works efficiently
energy density redshifts relativistically after it thermalizes due to interactions in the CFT
itself . Therefore after inflation the density at reheating reads

ρRS ≈ 0.12 HI

k5

(
HI

MPl

)4/3 ( TR
MPl

)4/3
T 4 . (5.8)

This amount of energy can be sizable and even larger than the one from gravitational
freeze-in for slow reheating if k5 is comparable to HI .

5.2 Dilaton dark matter

So far we discussed the pure CFT limit where the system has no mass gap. As well known a
gapped system can be realized introducing marginal deformations (operators of dimensions
∆ = 4 + ε with ε� 1) that grow in the infrared eventually creating a mass gap [44]. This
is the analog of confinement in gauge theories. The mechanism is entirely analogous to the
Coleman-Weinberg mechanism of dimensional transmutation in weakly coupled massless
theories [45].
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In the 5D picture bulk fields of mass m correspond to operators of dimension ∆ =
2 +

√
4 +m2/k2

5 so that marginal deformations are mapped into 5D scalar fields with mass
|m| � k5. Through the Goldberger-Wise mechanism the effective potential induced by
the scalars stabilizes the radius of the extra-dimensions to a finite value [46]. This can be
described by the dilaton effective action [47],

L = N2

16π2 [(∂ϕ)2 − V̂ (ϕ)] + V0 , V̂ (ϕ) = λ0ϕ
4
[
1− 4

4 + ε

(
ϕ

Λ

)ε]
+O(λ2

0) , (5.9)

where V0 = − N2

64π2
ε

1+ε/4λ0Λ4 is the vacuum energy. We have introduced ε = ∆ − 4 ≈
m2/(4k2

5). Expanding around the minimum ϕ = Λ we find

∆V = N2

64π2 |ελ0|Λ4 , M2 = −2ελ0Λ2 (5.10)

so that the dilaton mass is suppressed compared to the dynamical scale 4π/NΛ.
In the 5D picture the IR scale is related to the position of the IR brane Λ ∼

k5 exp[−k5yIR] that is stabilized by the Goldberger-Wise fields. This leads to a phase
transition: if yIR > yhor in (5.3) the brane is replaced by the AdS horizon and the CFT is
in the unbroken phase in de-Sitter background. In the opposite regime the 4D curvature
becomes negligible. This is somewhat similar to the finite temperature phase transition
of Randall-Sundrum models [40]. In the present case however the phase transition, as for
glueballs, would be non thermal.

Deformations of the CFT by marginally relevant operators break conformal invariance
similarly to β functions in gauge theories. From the discussion in section 4 it follows that
the production during inflation will then be suppressed by (4−∆)2 ≈ m4/k4

5.
As in section 3.2 we assume that the phase transition completes when H = M/(2π)

and that the energy density redshifts as matter afterwards. The abundance of dilaton DM
is found,

ρdilaton
s

∣∣∣∣
PT

= N2

64π2
1
|ελ0|

min
[
0.5M

5/2

M
3/2
Pl

,
TRM

2

M2
Pl

]
(5.11)

This contribution can be enhanced at small ε leading to smaller dilaton masses than
the one of the glueball case. For reference, in figure 4 we consider the case of N = 10 and
|ελ0| = 0.1.

Let us now discuss the stability. In the case of glueballs the critical mass is in tension
with cosmological stability of DM. For the dilaton the situation is more promising because
the decay rate is suppressed by the mass. The dilaton decay to gravitons arises from higher
dimension operators such as ϕR2

µνρσ/Λ. This leads to a decay rate Γ ∼ 1/(8π)M3Λ2/(M4
Pl)

that is suppressed by 16π2/N2Λ2/M2 compared to the glueball estimates. A full compu-
tation could be performed in the 5D RS scenario.

6 Conclusions

Particle production in dark sectors is often discussed at the level of free field theories and
leads to few viable scenarios. In this work we have shown that secluded dark sectors with
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non trivial dynamics can be populated through a phase transition where the energy of the
false vacuum is converted into massive stable particles. This genesis of the dark sector from
the vacuum opens new avenues for dark sector model building. The presence of interactions
is the crucial ingredient of the framework that can in principle give rise to different DM
phenomenology.

We focused in particular on approximately Weyl invariant dark sectors with dynamical
mass scale M . This is rather generic being automatically realized for example in confining
gauge theories and more general in interacting Conformal Field Theories. Assuming the
scale of inflation to be large compared to M we have shown in general that inflationary
production is strongly suppressed being determined by the β functions of the theory. This
in turn avoids strong constraints from isocurvature perturbations. On the other hand
inflation offers a mechanism to prepare the initial state in a false vacuum. The energy will
then be released during the evolution of the universe. Since the control parameter is the
Hubble parameter we argued that this happens when H ∼M with an energy M4.

We found that this contribution can dominate the universal gravitational freeze-in and
ordinary particle production in the expanding universe, if the reheating temperature is not
maximal. The general prediction is that DM is heavy in the range 108 GeV or larger raising
the question of cosmological stability of DM.

The dynamics considered in this paper is non-standard and would deserve further
study. While for the scalar we can explicitly follow the evolution, the non-thermal phase
transition of Yang-Mills theories or Randall-Sundrum scenarios due to the rapid expansion
of the universe would be interesting on its own. In this work we did not consider the
possibility of a phase transition during inflation that might lead to different scenarios with
lighter DM. We hope to return to these questions in future work.
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A Conformally coupled scalar

In this appendix we review the derivation of the particle production for a massive real
scalar field X(η, ~x) conformally coupled to the metric, during radiation domination. We
write the quantum real scalar field as

X(η, ~x) =
∫

d3k

(2π)3X(η,~k)e−i~x·~k = 1
a

∫
d3k

(2π)3

(
vk(η)b~ke

−i~x·~k + h.c

)
(A.1)

where the quantum operators annihilates the Bunch Davies vacuum at the beginning of
inflation and the mode functions are vk(η) = exp(−ikη)/

√
2k at η = −∞ in the asymptotic

past. The equation for the mode function is

v′′k(η) + ω2
k(η)vk(η) = 0 , ω2

k(η) ≡ k2 +M2a(η)2 . (A.2)
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The computation of particle production requires the knowledge of the mode function v in
the asymptotic future in radiation domination, from which we can extract the Bogoliubov
coefficient |βk(η)|2. This is essential in the computation of the energy density (and number
density) at η →∞

a4 dρ

d log k = k3

2π2 lim
η→∞

[
|∂ηvk|2

2 + ω2
k|vk|2

2 − ωk
2

]
= k3

2π2 lim
η→∞

ωk|βk|2 . (A.3)

For a conformally coupled scalar with mass HI > M , the maximal production happens
in radiation when H drops belowM and k/a ≈M , while production during inflation is very
negligible. We assume that at the onset of radiation the relevant modes are not distorted
from the Bunch-Davies conditions, and they satisfy eq. (A.2) with boundary condition,

vk(ηe) = exp(−ikηe)/
√

2k , v′k(ηe) = −i
√
k

2 exp(−ikηe) (A.4)

The full solution can be written in general as

vk(η) = αk(η) exp(−i
∫ η

ωkdη)/
√

2ωk(η) + βk(η) exp(i
∫ η

ωkdη)/
√

2ωk(η) (A.5)

where αk(ηe) = 1 and βk(ηe) = 0. Deep into radiation domination the scale factor can be
written as a(η) ∝ η. For a sharp transition to radiation at the end of inflation at ηe = 0
we can write a(η) = aR(1 + aRHRη) ≈ a2

RHRη. The equation then becomes simply

v′′k(η) + (k2 +M2a4
RH

2
Rη

2)vk(η) = 0 (A.6)

which is accurate for modes k � kmax ≡ aRHR. The above equation is solved by a
parabolic cylinder function, solution of the following

D′′(w) + (ν + 1
2 −

w2

4 )D(w) = 0, Dν(w) =

wνe−w
2/4 w →∞

2ν/2√π
Γ[ 1

2−
ν
2 ] w → 0 . (A.7)

From the form of the equation, by symmetry we can construct a second solution via w →
±iw as well as ν → −1 − ν. Solution of the equation with +w2/4 can be constructed
straightforwardly. In our case, deep into radiation domination, the mode function is then

vk(η) = c1Dν(
√

2MHRaRηe
iπ/4) + c2Dν∗(−i

√
2MHRaRηe

iπ/4) , ν = −i k2

2a2
RHRM

− 1
2 .

(A.8)
Up to irrelevant complex phases, the Bogoliubov coefficient is

βk(∞) = c2 (2a2
RHRM)

1
4 exp

(
k2π

8a2
RHRM

)
(A.9)

where the coefficient c2 is matched to the initial value in (A.4). Noticing that ωk ≈Ma(η)
at late times, we have

a3 dρ

d log k = k3

2π2M |βk(∞)|2 . (A.10)
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From the expansion of the parabolic cylinder functions we get the full expression at η =∞,

|βk(∞)|2 = e−
3z
4 (ez + 1)
4
√
πz

(
z

4π

∣∣∣∣Γ(1
4 + i

z

4π

) ∣∣∣∣2 +
∣∣∣∣Γ(3

4 + i
z

4π

) ∣∣∣∣2
)
− 1

2 , z ≡ πk2

a2
RHRM

.

(A.11)
By direct inspection we extract the following behaviour

|βk(∞)|2 =


Γ[3/4]2

2π aR

√
HRM

k
small k

a8
R

M4H4
R

64k8 large k

. (A.12)

The above formula completes our calculation and allows us to derive the energy density as

a3 dρ

d log k = k3

2π2M


Γ[3/4]2

2π aR

√
HRM

k
small k

a8
R

M4H4
R

64k8 large k

. (A.13)

From the measure k3 we see that in the IR (k �M) the power spectrum goes like k2, while
it is strongly suppressed for k � M as k−5. From the full expression for |βk|2 at infinity
we can numerically integrate the power spectrum on all k. In terms of the dimensionless
variable z, the integral of the power gives C =

∫
dz/(2z) × (z3/2|β|2) ≈ 0.165. The peak

of the power spectrum is located at kpeak ≈ 0.63aR
√
MHR ≈ 1024 Mpc−1√M/MPl. From

the integral, we can finally write the energy density

ρ

s
= 1
s
C a

3
R

a3
M5/2H

3/2
R

2π7/2 = 0.0012499
( 100
g(TR)

)1/4
CM

(
M

MPl

) 3
2
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