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1 Introduction

The observations of neutrino oscillations in terrestrial experiments have conclusively estab-
lished that neutrinos have tiny but non-zero masses [1]. The past and present neutrino
oscillation experiments have consolidated the 3-flavor paradigm of neutrino mixing, measur-
ing most of the parameters governing the oscillations with a considerable precision [2–4]. The
parameters that are quite well measured include the solar mass-squared difference (∆m2

21),
the magnitude of the atmospheric mass-squared difference (|∆m2

31|) and the mixing angles
(θ12, θ23, θ13). Future experiments are aimed to unambiguously determine the unknown
oscillation parameters — the sign of ∆m2

31, the octant of the atmospheric neutrino mixing
angle θ23, and the CP phase δCP in the lepton sector. In addition, these experiments can
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also probe physics beyond the Standard Model (BSM), which can give rise to sub-leading
effects on top of the dominant neutrino oscillation phenomenon.

A possible BSM scenario is the invisible decay of neutrinos to final states which do
not interact with the detector. Such decays can occur in two ways: for Dirac neutrinos,
the decay mode is νj → ν̄iR + χ, where ν̄iR is a singlet fermion and χ is an iso-singlet
scalar [5, 6]. For Majorana neutrinos, the decay channel is νj → νs + J , where νs is a
sterile neutrino and J is a Majoron [7, 8]. The LEP constraints on the decay of the Z
boson to invisible particles disfavor the triplet Majoron model, indicating that this Majoron
would be primarily a singlet [9]. The solar and atmospheric neutrino data disfavor pure
neutrino decay solutions [10–12] to these anomalies. However, combined oscillation and
decay scenarios, with decay as a sub-leading effect, can still be allowed and have been
studied in the context of solar [13–20] and atmospheric neutrinos [21–24]. The decay effects
for the neutrino mass eigenstate νi with mass mi and lifetime τi are typically characterized
by the term exp [−(mi/τi)(L/Eν)], which represents the fraction of neutrinos of energy Eν
that decay after traversing a distance L.

Constraints on invisible neutrino decay have been obtained from several neutrino
observations. Assuming only the state ν2 decays, a lower bound on the decay lifetime
has been obtained from the solar neutrino data to be τ2/m2 > 8.7 × 10−5 s/eV (99%
C.L.) [19]. Considering the possibility of both ν2 and ν1 undergoing invisible decay, and
combining high and low energy solar neutrino data along with KamLAND reactor data,
the limits are τ1/m1 > 4× 10−3 s/eV and τ2/m2 > 7× 10−4 s/eV at 95% C.L. [25]. The
constraints obtained from the observation of supernova SN1987A neutrinos [26] imply
that for at least one neutrino mass eigenstate, τ/m > 105 s/eV. The global analysis of
atmospheric and long-baseline neutrino experiments in the context of decay plus oscillation
solutions to neutrino anomalies [27] puts the bound τ3/m3 > 2.9× 10−10 s/eV (90% C.L.).
Analysis of oscillation plus decay scenario for MINOS and T2K [28] and more recently in
the context of T2K and NOνA data [29] constrain τ3/m3 > 2.8× 10−12 s/eV (90% C.L.)
and τ3/m3 > 1.5× 10−12 s/eV (3σ), respectively.

Prospects of constraining neutrino decay in future high precision accelerator experiments
like DUNE, T2HK/T2HKK, ESSνSB have been examined in [30]. Effects of decay plus
oscillation in the context of the JUNO experiment have been studied in [31]. Invisible decay
combined with oscillation in the context of future atmospheric neutrino experiments have
been studied in [32] for INO, and in [33] for KM3Net-ORCA. Invisible neutrino decay has
also been studied in the context of neutrino telescopes [34–36]. Strong bounds on invisible
neutrino decay lifetime can come from cosmology [37–39]. Recent studies on constraining
invisible neutrino decay from precision cosmology has been performed in [40, 41].

Many of the scenarios with oscillation and decay studied in the above references were
explored prior to the discovery of non-zero θ13, and considered neutrino decay in a 2-flavor
scenario in vacuum. Notable exceptions like [42] and some of the more recent works [31, 43]
have calculated the expressions for combined oscillation and decay probabilities in vacuum
in the 3-flavor scenario. However, these studies assume that the neutrino mass eigenstates
in vacuum are the same as the decay eigenstates. Compact analytic expressions for 2-flavor
mixing in vacuum, which do not make this assumption and use a non-unitary matrix
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for the diagonalization of the Hamiltonian, have been presented in [44]. In all the above
studies, matter effects, if relevant, have been included in numerical analyses. No study
offering compact analytic expressions for probabilities in matter in the presence of invisible
decay had been accomplished till recently, even in the simple case of 2-flavor mixing. In
a recent paper [45], we have presented the first-ever analytic expressions for probabilities
with 2-flavor neutrino oscillation and decay in matter.

The propagation of decaying neutrinos can be described in terms of a non-Hermitian
Hamiltonian, where the Hermitian component drives the neutrino oscillations, and the
anti-Hermitian component governs the neutrino decay. This may be written as

H = H − iΓ/2 , (1.1)

where H is the Hermitian component and −iΓ/2 is the anti-Hermitian component of the
total Hamiltonian H. In terms of H, the flavor evolution of neutrinos takes the form

[ν(t)]α = [e−iHt]αβ [ν(0)]β , (1.2)

where, [. . .] denotes a matrix. While eq. (1.1) is valid in all bases, a convenient basis is that
where the Hermitian part of the Hamiltonian is diagonal [45]. This corresponds to the basis
of mass eigenstates in matter, in the absence of decay. The matrix H expressed in this basis
(Hm) is a diagonal matrix whose elements depend on neutrino mass squared differences,
neutrino energy, and the Earth matter potential. On the other hand, the matrix Γ in this
basis (Γm) may be non-diagonal. Thus, in general, Hm and Γm do not commute, and hence
cannot be simultaneously diagonalized. Since [Hm,Γm] 6= 0 in general, Hm is not a normal
matrix, and

e−iHmt 6= e−iHmte−Γmt/2 . (1.3)

Thus, in order to calculate the oscillation amplitude matrix, one has to express the left
hand side of eq. (1.3) in terms of a chain of commutators using the inverse Baker-Campbell-
Hausdorff (BCH) formula, also known as the Zassenhaus formula [46, 47]. In [45], we have
developed a procedure for calculating the neutrino probabilities for combined oscillation
and decay in constant density matter for two neutrino flavors, employing a resummation
procedure for the Zassenhaus expansion [48].

In this paper, we set out to derive the analytic probabilities in constant density matter
for the 3-flavor mixing. It may be recalled here that even in the absence of decay it is
difficult to deal with three-neutrino propagation in matter, due to the mismatch between the
propagation and the interaction eigenstates of neutrinos. In fact, no exact compact analytic
solution exists [49]. However, one can derive the probabilities perturbatively, as series
expansions in terms of small parameters that have been identified. Two approximations that
are often used are (i) the One Mass Scale Dominance (OMSD) approximation which exploits
the fact that the solar mass-squared difference is much smaller than the atmospheric one, i.e.
∆m2

21 � ∆m2
31, and takes ∆m2

21 = 0, (ii) the α−s13 expansion in terms of small parameters
α ≡ ∆m2

21/∆m2
31 and s13 ≡ sin(θ13) [50]. The inclusion of decay into the picture makes

this problem even more complicated.
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Additional complications with decaying neutrinos arise because a non-Hermitian effective
Hamiltonian cannot be diagonalized using a unitary matrix [44]. The mismatch between
the decay and mass eigenstates in matter introduces additional parameters. For instance,
even if one starts with a single decaying vacuum mass eigenstate, all the mass eigenstates
in matter will develop decaying components. Such non-intuitive features are brought out
in our analytic treatment. We compute the neutrino conversion/survival probabilities, in
vacuum as well as in the presence of matter, using different techniques and under various
approximations. Our analytic expressions may be used to probe and understand the nature
of changes to the neutrino oscillation probability in the presence of decay.

In section 2, we present our parametrization of the effective Hamiltonian corresponding
to neutrino oscillation and decay, and formally set up the scheme for perturbative expansion
in small parameters. We first consider the scenario where only the mass eigenstate ν3 in
vacuum decays. This is motivated by the observation that the limits on the decay lifetimes
of ν1 and ν2 are quite stringent and the decay of ν3 can significantly affect the oscillation
probabilities in long-baseline experiments. Then we go to the generalized scenario where all
components of the decay matrix Γ in the vacuum mass basis are nonzero. This generalized
scenario can be of relevance, since exotic interactions of neutrinos in matter may relax some
of the constraints previously discussed. The rest of the paper is organized as follows.

(i) We first calculate in section 3 the results in the OMSD approximation, in the scenario
where only the third mass eigenstates ν3 decays in vacuum. We show that the 2-flavor
formalism developed in [45] can be used effectively in this scenario.

(ii) We then develop in section 4 the 3-flavor Zassenhaus expansion for ν3 decaying in
vacuum, relaxing the assumption ∆m2

21 = 0. In this case, the probabilities in vacuum
are explicitly presented in terms of a series expansion in α, the reactor mixing angle
sin θ13 as well as the decay parameter γ3. We also give the prescription for obtaining
the probabilities in matter using the Zassenhaus expansion in terms of αm, sm13, γmi
and the mismatch parameters γmij , where the suffix ‘m’ denotes the corresponding
quantities in matter.

(iii) We bring out the explicit matter dependence in section 5 and section 6 by using the
Cayley-Hamilton theorem, which allows us to write down the probabilities in terms of
parameters defined in vacuum, with the dependence on matter potential expressed
explicitly. The scenario with only ν3 decay is considered in section 5, whereas the
general decay matrix Γ (with all its components non-zero) is considered in section 6.

In section 7, we compare the analytic expansions against numerically computed probabilities
(in the PREM-averaged constant matter density along the line of propagation [51, 52]) for
baselines of 1300 km and 7000 km. We further extend our analysis to a wider range of
baselines and identify the regions in the (Eν , L) parameter space where the accuracy of
our analytically calculated probabilities is very high. Our study reveals some non-intuitive
features of the neutrino oscillation probabilities, which can be explained with the analytic
expressions. We end in section 8 with summary and conclusions.
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2 The effective Hamiltonian

Neutrino decay may be analyzed in terms of an effective Hamiltonian which is non-Hermitian.
Such a Hamiltonian can be expressed as a combination of Hermitian and anti-Hermitian
components, which describe the neutrino oscillation and decay, respectively. In the Weisskopf-
Wigner approximation [53, 54], one may write the decay matrix as

Γij = 2π
∑
k

〈νi|H′|φk〉〈φk|H′|νj〉 δ(Ek − Eν) . (2.1)

Here |φk〉 represents the final states with energy Ek to which neutrinos decay, and H′ is the
interaction term due to BSM physics.

In principle, all the elements of the matrices Hij and Γij can be non-zero in any generic
basis. For the simplicity of discussion, we can write the effective Hamiltonian in the basis
where the Hermitian component of the Hamiltonian is diagonal, and use the suffix ‘m’ for
the corresponding matrix. Note that the suffix ‘m’ emphasizes that this form is applicable
even in the presence of matter. In this basis, the Hamiltonian takes the form

Hm ≡ Hm −
i

2Γm ≡

 a1 0 0
0 a2 0
0 0 a3

− i

2

 2b1 b12e
iχ12 b13e

iχ13

b12e
−iχ12 2b2 b23e

iχ23

b13e
−iχ13 b23e

−iχ23 2b3

 . (2.2)

Here Hm and Γm are Hermitian matrices, with ai’s being the eigenvalues of the Hermitian
component Hm that are responsible for neutrino oscillations. The bi’s and bij ’s are the ele-
ments of the decay matrix, which may be obtained from eq. (2.1) by using the corresponding
basis. This is a 3-flavor generalization of the convention introduced in [45]. Note that all the
ai’s, bi’s, bij ’s and χij ’s are real. Since the effects of decay is expected to be sub-dominant
compared to the oscillation effects, O(bi), O(bij) < O(ai). The values of bi’s and bij ’s are
further constrained by the condition that the decay matrix, Γm is positive definite.

Most of the earlier literature analyzing neutrino decay only considers scenario where
decay eigenstates are the same as mass eigenstates, i.e. the eigenvectors of Hm and Γm
coincide, which corresponds to γij = 0. However, this scenario is clearly not applicable if
[Hm,Γm] 6= 0. Further, due to earth matter effects, the eigenstates of Hm are in general
different from the neutrino mass eigenstates in vacuum. Therefore, even in the scenario
where mass eigenstate and decay eigenstates are identical in vacuum, the off-diagonal decay
terms γij will invariably arise in matter. This makes it imperative to incorporate the effects
of γij ’s, while calculating the analytic expressions for neutrino probabilities.

In section 2.1, we first separately discuss the Hamiltonian for the scenario where only
one mass eigenstate in vacuum, ν3, decays. This corresponds to the scenario primarily
considered in literature. Note that this does not mean that the decay matrix Γm in the
effective mass basis in matter, as defined in eq. (2.2), will only have one non-zero component.
In section 2.2, we generalize to the scenario where all elements of Γ can be non-zero even
in vacuum.
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2.1 Decay of ν3 only

In the scenario where only the ν3 mass eigenstate in vacuum decays, the neutrino propagation
in the presence of matter may be described in terms of the effective Hamiltonian

H(γ3)
f = 1

2Eν
U


 0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

− i
 0 0 0

0 0 0
0 0 γ3∆m2

31


U † +

 Vcc 0 0
0 0 0
0 0 0

 , (2.3)

where ∆m2
21 ≡ m2

2−m2
1, ∆m2

31 ≡ m2
3−m2

1, and Vcc =
√

2GFNe, with GF the Fermi constant,
and Ne the electron number density. Here γ3 is defined such that γ3∆m2

31 = m3/τ3, where
m3 is the mass, and τ3 is the lifetime of ν3. The neutrino mixing matrix U = U23 U13 U12,
with

U23 =

 1 0 0
0 c23 s23
0 −s23 c23

 , U13 =

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 , U12 =

 c12 s12 0
−s12 c12 0

0 0 1

 . (2.4)

We use the notation sij ≡ sin θij and cij ≡ cos θij throughout the rest of this paper.
Since the exact compact expressions for neutrino oscillation probabilities in the 3-flavor

are impossible to find, we will be using perturbation techniques in this paper. The small
dimensionless parameters in which the perturbative expansion can be carried out are α,
s13 and γ3. For convenience, we express all of these in terms of a common book-keeping
small parameter λ ≡ 0.2. Based on their magnitudes or current upper limits on the values
of these parameters, we assign them the powers of λ as

α ≈ 0.03 ' O(λ2) , s13 ' 0.14 ' O(λ) , γ3 . 0.1 ' O(λ) . (2.5)

We also define the dimensionless quantities

A = 2EνVcc
∆m2

31
, ∆ = ∆m2

31L

4Eν
, (2.6)

since these are combinations that often appear in the final expressions.
Note that the addition of the matter effect term Vcc mixes the eigenstate ν3 with the

others. This implies that when neutrinos propagate through matter, the decay matrix Γm
in the effective mass basis in matter, as defined in eq. (2.2), would have non-zero elements
other than γm3 . As a result, more than one neutrino mass eigenstates in matter will now be
seen to undergo decay.

2.2 General decay matrix Γ

The effective Hamiltonian in flavor basis, in the presence of matter, may be expressed in
the form

H(Γ)
f = U

 1
2Eν

 0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

− i

2Γ

U † +

 Vcc 0 0
0 0 0
0 0 0

 , (2.7)
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where

Γ = ∆m2
31

Eν

 γ1
1
2γ12e

iχ12 1
2γ13e

iχ13

1
2γ12e

−iχ12 γ2
1
2γ23e

iχ23

1
2γ13e

−iχ13 1
2γ23e

−iχ23 γ3

 . (2.8)

Since neutrino decay has not yet been observed in reactor or long-baseline experiments, the
length-scales associated with decay can safely be assumed to be larger by at least a factor
of ∼ 1/O(λ) than the corresponding oscillation length-scales. This would imply

γ1∆m2
31 . O(λ)∆m2

21 , γ2∆m2
31 . O(λ)∆m2

21 , γ3∆m2
31 . O(λ)∆m2

31 , (2.9)

and therefore,
γ1 . O(λ3) , γ2 . O(λ3) , γ3 . O(λ) . (2.10)

Furthermore, since the decay matrix Γ must be positive definite, its off-diagonal terms are
constrained to be O(γ2

ij) . O(γi)O(γj). Each of the dimensionless quantities for the general
decay scenario are now expressed in terms of powers of λ. For our calculations, we take

γ1 , γ2 ∼ O(λ3) , γ3 ∼ O(λ) , γ12 ∼ O(λ3) , γ13 , γ23 ∼ O(λ2) , (2.11)

which allows the values of γ as large as permitted by constraints above. In summary, we
take1

Γ ∼ ∆m2
31

Eν

 λ
3 λ3 λ2

λ3 λ3 λ2

λ2 λ2 λ

 . (2.12)

For future long baseline neutrino experiments with the expected absolute accuracy in
the probabilities ∼ 1 %, it is enough to have analytic expressions accurate up to O(λ3).
Therefore, in our analytic calculations we ignore any γ2

ij terms, as well as γ2
1 and γ2

2 terms.
Naively, one may expect the effects of ν3 decay to be dominant in all cases. However, we
shall see later explicitly that there are cases where the other γi, γij elements can contribute
to the same extent.

In the next sections, we’ll calculate analytic expressions for neutrino conversion/ survival
probabilities, in the presence of matter and decay, as perturbative expansions in powers of
the book-keeping parameter λ.

3 One Mass Scale Dominance (OMSD), with decay of ν3 only

In the OMSD approximation, using the observation that α ∼ O(λ2), the effect of ∆m2
21

is neglected with respect to ∆m2
31. The propagation can then be studied in an effective

2-flavor approximation in the 1–3 sector, when only the ν3 mass eigenstate in vacuum
1Note that the powers of λ used in eq. (2.12) are rather conservative, especially for the off-diagonal

elements. In the absence of any further exotic physics, and for the neutrino decay widths much smaller than
the mass-squared differences, the off-diagonal elements of Γ in vacuum (i.e., γij , i 6= j) will be vanishingly
small. We, however, retain the dependence on these off-diagonal elements for the sake of completeness.
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decays. As a result, the Hamiltonian becomes independent of the mixing angle θ12 and the
CP phase δCP.

H(OMSD)
f = ∆m2

31
2Eν

U
 0 0 0

0 0 0
0 0 1− iγ3

U † +

A 0 0
0 0 0
0 0 0


 , (3.1)

where the mixing matrix U has the simplified form

U = R23(θ23) ·R13(θ13) =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13

0 1 0
−s13 0 c13

 . (3.2)

The matter potential matrix in eq. (3.1) commutes with the rotation matrix R23 in eq. (3.2).
Therefore, the matter effects only modify the R13 part of the mixing matrix. We go to a
basis rotated by R23 in which the effective Hamiltonian takes the form

H̃(OMSD)
f = ∆m2

31
2Eν

R13

0 0 0
0 0 0
0 0 1− iγ3

R†13 +

A 0 0
0 0 0
0 0 0


 . (3.3)

We represent by “∼” the quantities in this R23-rotated basis. The Hamiltonian in eq. (3.3)
can be decomposed into a Hermitian matrix responsible for oscillatory behavior, and an
anti-Hermitian matrix responsible for decay; represented as

H̃(OMSD)
f = H̃

(OMSD)
f − i

2Γ̃(OMSD)
f . (3.4)

Here,

Γ̃(OMSD)
f ≡ ∆m2

31
Eν

R13 diag[(0, 0, γ3)]R†13 . (3.5)

Now, the Hermitian matrix H̃(OMSD)
f can be diagonalized as

H̃
(OMSD)
f = ∆m2

31
2Eν

Rm13

Λ1 0 0
0 Λ2 0
0 0 Λ3

Rm †13 . (3.6)

The eigenvalues Λi can be obtained as

Λ1,3 = ∆m2
31

4E [1 +A∓ C13] , Λ2 = 0 , (3.7)

where C13 ≡
√

(cos 2θ13 −A)2 + (sin 2θ13)2 . The rotation matrix Rm13 = R13(θm13), where

tan 2θm13 = sin 2θ13
cos 2θ13 −A

. (3.8)

A rotation via Rm13 takes us to the “OMSD basis” where the total Hamiltonian can be
represented as

H̃(OMSD)
m = diag[(Λ1,Λ2,Λ3)]− i

2Γ̃(OMSD)
m . (3.9)
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Here,

Γ̃(OMSD)
m = Rm †13 Γ̃(OMSD)

f Rm13 = ∆m2
31

Eν

 γm1 0 1
2γ

m
13

0 0 0
1
2γ

m
13 0 γm3

 , (3.10)

with
γm1 ≡ γ3 sin2 δθ , γm3 ≡ γ3 cos2 δθ , γm13 ≡ −γ3 sin(2 δθ) , (3.11)

where δθ ≡ θm13 − θ13. Note that, even though we started with only ν3 decaying, the decay
matrix in the OMSD basis has multiple non-zero diagonal as well as off-diagonal elements.
Since the second row and column of this matrix is zero and since Λ2 is vanishing, the
2-flavor technique developed in [45] can be directly applied. In the next subsection, we
calculate the neutrino survival/ conversion probabilities Pµµ, Pee, Peµ and Pµe using the
OMSD approximation.

3.1 Neutrino probabilities with OMSD approximation

The amplitude for να → νβ in the OMSD approximation is given by

A(να → νβ) = [e−iH
(OMSD)
f

L]βα = [R23R
m
13ÃmR

m †
13 R†23]βα , (3.12)

where
Ãm = exp[−iH̃(OMSD)

m L] (3.13)

is the amplitude matrix in the OMSD basis. The neutrino survival/ conversion probabilities
can be calculated from, Pαβ = |A(να → νβ)|2. They may be written in a compact form in
terms of some intermediate quantities. We define

d1 ≡ (1 +A− 2iγm1 − C13) ∆
L
, d3 ≡ (1 +A− 2iγm3 + C13) ∆

L
, ∆d ≡ d3 − d1 , (3.14)

and

D1,3 ≡
(
1 +A− i(γm1 + γm3 )∓ C̃m13

) ∆
L
, ∆D ≡ D3 −D1 = 2C̃m13

∆
L
, (3.15)

where
C̃m13 =

√
[C13 − i(γm3 − γm1 )]2 − (γm13)2 . (3.16)

Applying the Pauli exponentiation technique as discussed in [45], we can then directly
obtain

Ãm =

 aG−(L) +G+(L) 0 bG−(L)
0 1 0

bG−(L) 0 G+(L)− aG−(L)

 . (3.17)

Here, G+(L), G−(L), a and b are given by

G±(L) = 1
2
(
e−iD3L ± e−iD1L

)
, a = −∆d

∆D
, b = −2i γ

m
13

∆D

∆
L
. (3.18)
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Finally, the probabilities Pµµ, Pee, Peµ and Pµe, the ones relevant for most of the neutrino
experiments, may be expressed in the OMSD approximation as

Pµµ =
∣∣∣c2

23 + s2
23G+(t)− s2

23 (a cos 2θm13 + b sin 2θm13)G−(t)
∣∣∣2 , (3.19)

Pee = |G+(t) + (a cos 2θm13 + b sin 2θm13)G−(t)|2 , (3.20)
Peµ = |s23 (b cos 2θm13 − a sin 2θm13)G−(t)|2 . (3.21)

With the OMSD approximation, we have Pµe = Peµ. Note that, each of the individual
terms — G±(t), a and b — are complex in nature. In this scenario where only ν3 vacuum
mass eigenstate decays, the expressions for probabilities for antineutrinos have the same
form as those for neutrinos; however, the numerical values of the parameters a, b, θm13 and
D1,3 would be different for antineutrinos in the presence of matter. The analytic expansions
obtained here will be referred to simply as “OMSD” in section 7, when comparing against
the numerically obtained exact results in constant matter density approximation.

The OMSD probabilities obtained above may be explicitly expressed in terms of the
quantities s13, γm1 , γm3 , and up to O(λ) in γm13, using the 2-flavor Zassenhaus expansion
employed in [45]. The relevant expressions are

Pµµ =
(
c2

23 + s2
23

[
(sm13)2e−2γm

1 ∆ + (cm13)2e−2γm
3 ∆
])2
− s4

23 sin2 2θm13 e
−2γ+∆ sin2 ∆m

− sin2 2θ23

[
(sm13)2e−2γm

1 ∆ sin2 ∆−
2 + (cm13)2e−2γm

3 ∆ sin2 ∆+
2

]

+ γ̃s2
23 sin 2θm13

{
C13

[
s2

23e
−2γ+∆ sin 2∆m + c2

23

(
e−2γm

3 ∆ sin ∆+ − e−2γm
1 ∆ sin ∆−

)]

+ γ−

[
s2

23

(
(cm13)2e−4γm

3 ∆ − (sm13)2e−4γm
1 ∆ − cos 2θm13e

−2γ+∆ cos 2∆m

)

+ c2
23

(
e−2γm

3 ∆ cos ∆+ − e−2γm
1 ∆ cos ∆−

)]}
, (3.22)

Pee =
[
(cm13)2e−2γm

1 ∆ + (sm13)2e−2γm
3 ∆
]2
− sin2 2θm13e

−2γ+∆ sin2 ∆m

− γ̃ sin 2θm13

[
C13e

−2γ+∆ sin 2∆m − γ−

(
2 cos 2θm13e

−2γ+∆ sin2 ∆m

−
[
e−2γm

3 ∆ − e−2γm
1 ∆
][

(sm13)2e−2γm
3 ∆ + (cm13)2e−2γm

1 ∆
])]

, (3.23)

Peµ = s2
23 sin 2θm13

[
sin 2θm13 − 2γ̃γ− cos 2θm13

] [1
4
(
e−2γm

1 ∆ − e−2γm
3 ∆
)2

+ e−2γ+∆ sin2 ∆m

]
.

(3.24)

In the OMSD limit, we have Pµe = Peµ. Here, (cm13) ≡ cos θm13 and (sm13) ≡ sin θm13, and

∆m ≡ C13∆ , ∆± ≡ (1 +A± C13) ∆ , γ± ≡ γm1 ± γm3 , γ̃ ≡ γm13
C2

13 + γ2
−
. (3.25)
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In the no-decay limit, the above equations reduce to the well-known OMSD expressions
given in [52, 55–57]. Note that, the probabilities above are expansions up to O(λ) in γm13 ≡
−γ3 sin(2 δθ), since γ3 ∼ O(λ), and sin(2 δθ) in principle can be as large as O(1). However,
for densities in the crust of the Earth (that are relevant for long-baseline experiments),
δθ = θm13 − θ13 is very small, and hence higher order corrections due to γm13 are quite small.

The above expressions indicate how, in certain circumstances where the OMSD ap-
proximation is valid, the 2-flavor analysis outlined in [45] allows us to write down compact
expressions for neutrino survival/ conversion probabilities in the presence of matter and
decay. These probabilities may be used whenever oscillations due to ∆m2

21 can be ignored.

4 Developing the 3-flavor Zassenhaus expansion

In [45], a resummation procedure for the Zassenhaus expansion was introduced and applied
to calculate the 2-flavor neutrino probabilities in the presence of decay and matter. In this
section, we develop the 3-flavor version of this procedure, which allows us to calculate the
3-flavor neutrino propagation probabilities with decay in the presence of matter.

The exponential of a sum of two matrices can be decomposed using the inverse Baker-
Campbell-Hausdorff (BCH) or Zassenhaus expansion. The expansion may be expressed in
terms of an infinite series [48] as

eX+Y =

1 +
∞∑
p=1

∞∑
n1,...,np=1

np . . . n1
np(np + np−1) . . . (np + . . .+ n1)Ynp . . .Yn1

 eX , (4.1)

where
Yn = 1

n!L
n−1
X Y . (4.2)

Here, L denotes the commutation operator, i.e.

LXY = [X,Y] . (4.3)

When truncated up to first order in Y, only the p = 1 term contributes, and eq. (4.1)
becomes

eX+Y '

1 +
∞∑

n1=1
Yn1

 eX . (4.4)

Here the absolute sign(| · |) denotes the typical scale of a non-zero element of the matrix.
In order to get closed functional forms for the infinite sums, we need to find the analytic
form of Yn.

For the general decay scenario in the presence of matter, the effective Hamiltonian in
the mass basis in matter (where the Hermitian part of the Hamiltonian is diagonal) takes
the form2

Hm =
∆m2

31,m
2Eν


−iγm1 − i

2γ
m
12e

iχm
12 − i

2γ
m
13e

iχm
13

− i
2γ

m
12e
−iχm

12 αm − iγm2 − i
2γ

m
23e

iχm
23

− i
2γ

m
13e
−iχm

13 − i
2γ

m
23e
−iχm

23 1− iγm3

 . (4.5)

2Note that, as shown in [45] for the two flavor scenario, even for this three flavor scenario, all elements of
the decay matrix Γm in the matter basis will be nonzero due to the mismatch between mass eigenstates in
matter and decay eigenstates, even if only one neutrino mass eigenstate in vacuum were to decay.
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Note that all the quantities in this section — ∆m2
31,m, ∆m, αm, Um, θ

m
ij , γ

m
i , γ

m
ij and χmij —

are to be taken in the presence of matter. These expressions are also applicable for vacuum,
i.e. at vanishing matter density.

In order to calculate the amplitude matrix Am = e−iHmL in the matter basis, we define
the matrix A ≡ −iHmL. This matrix can be decomposed into A = X + Y, where X is a
diagonal matrix, and Y consists of the off-diagonal contributions due to the γij terms:

X = −2i


−iγm1 0 0

0 αm − iγm2 0

0 0 1− iγm3

∆m , Y = −


0 γm12e

iχm
12 γm13e

iχm
13

γm12e
−iχm

12 0 γm23e
iχm

23

γm13e
−iχm

13 γm23e
−iχm

23 0

∆m .

(4.6)
Note that the matrix Y can be further decomposed into

Y = Y12 + Y13 + Y23 , (4.7)

where Y12, Y13 and Y23 are hermitian matrices with the only non-zero elements

[Yij ]ij = −γmij e
iχm

ij ·∆m , [Yij ]ji = −γmij e
−iχm

ij ·∆m . (4.8)

Using Y12, Y13 and Y23, we can calculate Yn in eq. (4.2) as

Yn = 1
n!
(
∆n−1

12 Σn−1
12 Y12 + ∆n−1

13 Σn−1
13 Y13 + ∆n−1

23 Σn−1
23 Y23

)
, (4.9)

where we have defined Σ12 = diag[(1,−1, 0)], Σ13 = diag[(1, 0,−1)], Σ23 = diag[(0, 1,−1)],
and

∆ij ≡ Xii − Xjj . (4.10)

The amplitude matrix in matter basis calculated up to first order in γij can be expressed as

Am =



e−2γm
1 ∆m 2∆m

γm12 e
iχm

12

∆12
g12(L) 2∆m

γm13 e
iχm

13

∆13
g13(L)

2∆m
γm12 e

−iχm
12

∆12
g12(L) e−2iαm∆m−2γm

2 ∆m 2∆m
γm23 e

iχm
23

∆23
g23(L)

2∆m
γm13e

−iχm
13

∆13
g13(L) 2∆m

γm23e
−iχm

23

∆23
g23(L) e−2i∆m−2γm

3 ∆m


, (4.11)

where gij(L) ≡ 1
2 (exp[Xjj ]− exp[Xii]). The probability in flavor basis can then be calculated

via
Pαβ =

∣∣∣[UmAmU †m]βα
∣∣∣2 . (4.12)

We now present the probabilities in vacuum and in the presence of matter.

4.1 Probabilities in vacuum, expanded in α, s13, and γ3

We use the matter amplitudes in eq. (4.11) to calculate the probabilities, where we expand
perturbatively in term of the parameters, α, s13 and γ3. Note that the expressions for the
amplitude are valid also in vacuum, just by dropping the suffix ‘m’.
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The normalized decay widths γi’s and γij ’s, defined in the vacuum basis can be
severely constrained for a neutrino propagating through vacuum. This gives, effectively,
γ1, γ2, γ12, γ13, γ23 → 0, so we may work in the limit of only ν3 decay, with γ3 ∼ O(λ).
The survival/ conversion probability may be expressed as a summation of 2 individual
terms in this case:

Pαβ = P
(0)
αβ + P

(γ3)
αβ . (4.13)

Here P (0)
αβ is the no decay contribution, while P (γ3)

αβ is the contribution from γ3. The neutrino
survival/ conversion probabilities Pµµ, Pee, Peµ and Pµe are as given below. Note that due
to the largeness of θ23, the effect of ν3 decay is the most prominent in Pµµ:

P (0)
µµ = 1− sin2 2θ23 sin2 ∆

+ 4s2
13s

2
23 cos 2θ23 sin2 ∆ + α sin2 2θ23 c

2
12 ∆ sin 2∆ +O(λ3) , (4.14)

P (γ3)
µµ = −γ3∆

(
sin2 2θ23 cos 2∆ + 4s4

23

)
+ γ2

3∆2
(
sin2 2θ23 cos 2∆ + 8s4

23

)
+O(λ3) . (4.15)

The probabilities Pee, Peµ and Pµe are calculated up to O(λ3) since the modifications due
to γ3 only manifest at the third order:

P (0)
ee = 1− 4s2

13 sin2 ∆ +O(λ4) , (4.16)
P (γ3)
ee = −4 γ3 s

2
13 ∆ cos 2∆ +O(λ4) , (4.17)

P (0)
eµ = 4s2

13s
2
23 sin2 ∆ + 2α s13 sin 2θ12 sin 2θ23 ∆ cos (∆− δCP) sin ∆ +O(λ4) , (4.18)

P (γ3)
eµ = −8γ3 s

2
13s

2
23 ∆ sin2 ∆ +O(λ4) . (4.19)

Since the above equations are for neutrino propagation in vacuum, Pµe is given by the
replacement rule

Pµe ≡ Peµ(δCP → −δCP) . (4.20)

The antineutrino propagation probabilities are also obtained by the replacement rule

Pᾱβ̄ = Pαβ(δCP → −δCP) . (4.21)

4.2 Probabilities in matter, expanded in αm, sm13, γmi ’s and γmij ’s

In matter, the stringent decay constraints on the general decay matrix may not survive
and all the decay elements may be non-zero. However, note that the decay elements γmi ’s
and γmij ’s are defined in the matter basis (where the Hermitian part of the Hamiltonian is
diagonal). In the presence of large matter densities, the rotation induced by matter effects
to the decay matrix may be large, and we may even have γij ∼ O(λ). The decay matrix
Γ defined in vacuum, with its terms represented by γi and γij , can be connected with the
decay matrix Γm defined in the matter basis (with elements γmi and γmij ) via

Γm = U †m U Γ U † Um . (4.22)
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Recall that, due to the mismatch between the vacuum and the matter eigenstates, all γmi ’s
and γmij ’s would be non-zero even if only the vacuum mass eigenstate ν3 were to decay. Let
us express the full probability in terms of

Pαβ = P
(0)
αβ + P

(γ3)
αβ + P

(Γ)
αβ , (4.23)

where the new P
(Γ)
αβ term denotes the contribution of the general decay matrix apart from

that of the γm3 . The first two terms may be obtained by applying the replacement rules

θij → θmij , γ3 → γm3 , χij → χmij , ∆→ ∆m, α→ αm (4.24)

to eq. (4.14)–(4.19), i.e. the suffix ‘m’ should be reintroduced to represent that we are
working in matter basis. The additional contributions from the general decay matrix may
be given as

P (Γ)
µµ = sin 2θm23 (γm13s

m
12 cosχm13 − γm23c

m
12 cosχm23) sin 2∆m , (4.25)

P (Γ)
ee = −4γm1 ∆m(cm12)2 − 4γm2 ∆m(sm12)2 − 2γm12∆m sin 2θm12 cosχm12

− 2sm13 [γm13c
m
12 cos (δCP + χm13) + γm23s

m
12 cos (δCP + χm23)] sin 2∆m , (4.26)

P (Γ)
eµ = −4sm13(sm23)2 [γm13c

m
12 sin (δCP + χm13) + γm23s

m
12 sin (δCP + χm23)] sin2 ∆m . (4.27)

We also have

P (Γ)
µe = P (Γ)

eµ (δmCP → −δmCP, χ
m
ij → −χmij ) . (4.28)

The probabilities associated with antineutrino propagation are given by

Pᾱβ̄ = Pαβ(δmCP → −δmCP, χ
m
ij → −χmij ) , (4.29)

with all parameters in matter calculated using A→ −A.
Since the amplitude derived above is only accurate up to O(γmij ), our probability

expression will only be correct up to O(λ), even when sm13 is not too large. For matter
densities in the Earth crust, the mismatch between matter and vacuum basis is small, and
our expressions should be correct up to higher orders in λ.

In order to get analytic expressions that are valid over a wide range of matter densities,
we need explicit dependence on the matter potential. In the next 2 sections, applying
the Cayley-Hamilton theorem, we derive the neutrino survival/ conversion probabilities
with complete dependence on the matter potential term, first for the decay of ν3 only, and
afterwards for the general decay matrix Γ.

5 Explicit matter dependence, with decay of ν3 only

In this section we will obtain compact analytic forms for the relevant neutrino probabilities
with explicit matter dependence. We use the effective Hamiltonian H(γ3)

f in eq. (2.3),
denoting the case when only the vacuum mass eigenstate ν3 decays. We employ the Cayley-
Hamilton theorem [58] to calculate relevant probabilities with explicit dependence on the
‘normalized’ matter potential A ≡ 2EνVcc/∆m2

31.
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Using the Cayley-Hamilton theorem, any function g(M) of a matrix M can be expressed
in terms of its eigenvalues as

g(M) =
k∑
i=1

Mi g (λi) , with Mi ≡
k∏

j=1,j 6=i

1
λi − λj

(M− λjI) , (5.1)

where λi’s are the distinct eigenvalues of the matrix M. Taking M = −iH(γ3)
f L, the

probability amplitude matrix Af , such that [Af ]βα = A(να → νβ), can be expressed as

Af = exp[−iH(γ3)
f L] = e−iE1L

(E1 − E2)(E1 − E3)
[
H(γ3)
f − E2I

][
H(γ3)
f − E3I

]
+ e−iE2L

(E2 − E1)(E2 − E3)
[
H(γ3)
f − E1I

][
H(γ3)
f − E3I

]
+ e−iE3L

(E3 − E1)(E3 − E2)
[
H(γ3)
f − E1I

][
H(γ3)
f − E2I

]
.

(5.2)

Here, E1, E2 and E3 are the eigenvalues of the effective Hamiltonian. The survival/
conversion probabilities can be calculated as Pαβ = |A(να → νβ)|2. In the next two
subsections, we employ perturbative expansions in terms of different choices of small
parameters that may be valid for different parameter regimes. Even for the next generation
of neutrino experiments, the bin-by-bin oscillation probability is not expected to be measured
with an accuracy of more than a few per cent. Therefore, perturbative expansions up to
O(λ2)−O(λ3) for the probabilities should suffice for bringing out the main features of the
effect of neutrino decay.

5.1 Probabilities expanded in s13, α and γ3

The analytic expansions in s13, α and γ, up to O(λ2) or O(λ3), are especially useful because
of their simple compact form. We take s13, γ3 ∼ O(λ), α ∼ O(λ2). The eigenvalues of the
Hamiltonian may be expressed in the form Ei = E

(0)
i + E

(γ3)
i , where E(0)

i is the no-decay
contribution to the eigenvalues, and E(γ3)

i is the modification due to the decay of ν3 mass
eigenstate in vacuum. These can be given as

E
(0)
1 + E

(γ3)
1 ≡ E1 = ∆m2

31
2Eν

(
A+ α s2

12 + s2
13

A

A− 1 − iγ3 s
2
13

A2

(A− 1)2

)
+O(λ4) , (5.3)

E
(0)
2 + E

(γ3)
2 ≡ E2 = ∆m2

31
2Eν

(
α c2

12

)
+O(λ4) , (5.4)

E
(0)
3 + E

(γ3)
3 ≡ E3 = ∆m2

31
2Eν

(
1− iγ3 − s2

13
A

A− 1 + iγ3 s
2
13

A2

(A− 1)2

)
+O(λ4) . (5.5)

It may be observed that E3 gets modified at O(λ), E1 has a O(λ3) modification, while E2
has no modifications due to decay up to O(λ3).

Following our earlier convention, we express the probabilities as,

Pαβ = P
(0)
αβ + P

(γ3)
αβ (5.6)
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where P (0)
αβ denotes the no-decay contribution and P (γ3)

αβ denotes the modifications due to
the decay of ν3. We present the expressions for Pµµ, Pee, Peµ, and Pµe, relevant for neutrino
experiments. The largest effect of γ3 is expected in Pµµ, where we get

P (0)
µµ = 1− sin2 2θ23 sin2 ∆

− 2
A− 1s

2
13 sin2 2θ23

(
sin ∆ cosA∆ sin[(A− 1)∆]

A− 1 − A

2 ∆ sin 2∆
)

− 4s2
13s

2
23

sin2[(A− 1)∆]
(A− 1)2 + α c2

12 sin2 2θ23 ∆ sin 2∆ +O(λ3) , (5.7)

P (γ3)
µµ = −γ3∆

(
sin2 2θ23 cos 2∆ + 4s4

23

)
+ γ2

3∆2
(
sin2 2θ23 cos 2∆ + 8s4

23

)
+O(λ3) . (5.8)

For Pee, Peµ, and Pµe, the terms with γ3 appear at O(λ3). Therefore, we present these
probabilities up to O(λ3):

P (0)
ee = 1−4s2

13
sin2[(A−1)∆]

(A−1)2 +O(λ4) , (5.9)

P (γ3)
ee = γ3 s

2
13

(
4Asin[2(A−1)∆]

(A−1)3 −4∆ 1+A2

(A−1)2 +8∆sin2[(A−1)∆]
(A−1)2

)
+O(λ4) , (5.10)

P (0)
eµ = 4s2

13s
2
23

sin2[(A−1)∆]
(A−1)2

+2αs13 sin2θ12 sin2θ23 cos(∆−δCP) sin[(A−1)∆]
A−1

sinA∆
A

+O(λ4) , (5.11)

P (γ3)
eµ =−8γ3 s

2
13s

2
23 ∆ sin2[(A−1)∆]

(A−1)2 +O(λ4) . (5.12)

Note that Pµe = Peµ(δCP → −δCP). The antineutrino oscillation probabilities are given by
Pᾱβ̄ = Pαβ(δCP → −δCP , A→ −A) . The probabilities obtained here will be referred to as
“Full-expansion” in section 7. In the vacuum limit, i.e. in the limit of A→ 0, the survival/
conversion probabilities given above match the results derived via Zassenhaus expansion in
section 4. Moreover, the expressions for P (0)

αβ above match those given in [50] to appropriate
orders, as expected.

The perturbative expansions in eq. (5.7)–(5.12) are valid as long as α∆ . 1 and
γ3∆ . 1. For example, for the first oscillation peak of both T2K and DUNE, we find that
our perturbative analysis is valid. Since γ3 ∼ O(λ), when λ∆ ∼ 1, then our perturbative
expansion is expected to deviate from the numerically obtained values. This would happen
at large values of L/E, i.e. at longer baselines, and/or lower energies. With an exact
dependence on γ3, we would be able to increase the region of validity of our analytic
expressions to the point where α∆ ∼ λ2∆ . 1. This would be done in the next subsection.

5.2 Probabilities expanded in s13, and α; exact in γ3

An expansion that retains the exact dependence on γ3 is expected to give further insight
into the probabilities, demonstrating the e−γ3∆ behavior explicitly. As discussed above,
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such an expansion will also be applicable for higher values of ∆, and hence to lower energy
regimes for a given baseline.

Taking s13 ∼ O(λ) and α ∼ O(λ2), the eigenvalues of the Hamiltonian are

E1 '
∆m2

31
2Eν

(
A+ α s2

12 + s2
13

A (1− iγ3)
A− (1− iγ3)

)
+O(λ4) , (5.13)

E2 '
∆m2

31
2Eν

(
α c2

12

)
+O(λ4) , (5.14)

E3 '
∆m2

31
2Eν

(
1− iγ3 − s2

13
A (1− iγ3)
A− (1− iγ3)

)
+O(λ4) . (5.15)

Employing the Cayley-Hamilton procedure as in section 5.1, the neutrino survival probability
Pµµ becomes

Pµµ =
∣∣∣∣∣c2

23+s2
23e
−2i(1−iγ3)∆−2iαc2

12c
2
23 ∆+s2

13s
2
23

(
e−2iA∆ (1−iγ3)2

[A−(1−iγ3)]2

+e−2i(1−iγ3)∆
[
2iA∆[A−(1−iγ3)]−(1−iγ3)

] 1−iγ3

[A−(1−iγ3)]2

)∣∣∣∣∣
2

+O(λ3) . (5.16)

Note that the leading contribution of the decay parameter γ3 is through the s2
23 term. The

contribution from the first two terms in the amplitude above is

P leading
µµ = c4

23 + s4
23 e
−4γ3∆ + 2s2

23c
2
23 cos(2∆)e−2γ3∆

= 1− sin2 2θ23 sin2 ∆− s4
23

(
1− e−4γ3∆

)
− 2s2

23c
2
23 cos(2∆)

(
1− e−2γ3∆

)
. (5.17)

If the value of γ3 is indeed ∼ O(λ), the above terms would lead to significant deviations
from the standard 3-neutrino oscillation probabilities, and may give the first indications of
decaying ν3.

The survival probability Pee and the conversion probabilities Peµ and Pµe are

Pee = 1−2s2
13

[(
1−e−2γ3∆ cos[2(A−1)∆]

)[ 1+γ2
3

(A−1)2+γ2
3
− 2A2γ2

3[
(A−1)2+γ2

3
]2
]

+e−2γ3∆ 2Aγ3
(
1−A+γ2

3
)[

(A−1)2+γ2
3
]2 sin[2(A−1)∆]+ 2A2γ3∆

(A−1)2+γ2
3

]
+O(λ4) , (5.18)

Peµ = s2
13s

2
23

(
1+e−4γ3∆−2e−2γ3∆ cos[2(A−1)∆]

) γ2
3 +1

(A−1)2+γ2
3

+αs13 sin2θ12 sin2θ23
sinA∆
A

×
[(

sin [(A−2)∆+δCP]e−2γ3∆+sin [A∆−δCP]
) (A−1)−γ2

3
(A−1)2+γ2

3

+γ3
(

cos [A∆−δCP]−cos [(A−2)∆+δCP]e−2γ3∆
) A

(A−1)2+γ2
3

]
+O(λ4) . (5.19)
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With Pµe = Peµ(δCP → −δCP), and Pᾱβ̄ = Pαβ(δCP → −δCP , A→ −A). The probabilities
obtained here will be referred to as “Expansion” in section 7. Since both the “Expansion”
and the “Full-expansion” give the same results in the absence of decay, we shall refer to
these simply as “Expansion” while discussing the probabilities without decay. Note that in
eq. (5.16)–(5.19) match [50] in the limit γ3 → 0, as expected. However, they bring out the
complex nature of dependence of probabilities on γ3.

Since we have an exact dependence on γ3, our expansion is valid for all values of ∆
such that α∆ . 1, i.e. for λ2∆ . 1. Therefore, the analytic expression with expansion in
s13 and α and an exact dependence on γ3 and the matter potential A is the most suitable
for longer baselines or lower energies.

6 Explicit matter dependence, with a general decay matrix Γ

As argued in section 2.2, when we allow maximum possible values for the elements of the
decay matrix Γ, we have

γ1 , γ2 ∼ O(λ3) , γ3 ∼ O(λ) , γ12 ∼ O(λ3) , γ13, γ23 ∼ O(λ2) . (6.1)

Note that these elements are defined in the vacuum basis.3

6.1 Probabilities expanded in s13, α, γi and γij
The eigenvalues of the effective Hamiltonian Hf in eq. (2.7) due to the inclusion of the
general decay matrix Γ can be expressed as

Ei = E
(0)
i + E

(γ3)
i + E

(Γ)
i . (6.2)

While E(0)
i and E(γ3)

i are given in section 5.1, the additional terms E(Γ)
i are

E
(Γ)
1 = ∆m2

31
2Eν

[
−iγ1 c

2
12−iγ2 s

2
12−iγ12 s12c12 cosχ12 (6.3)

−is13
(
γ13 c12 cos [δCP+χ13]+γ23 s12 cos [δCP+χ23]

) A

A−1

]
+O(λ4) ,

E
(Γ)
2 = ∆m2

31
2Eν

[
−iγ1 s

2
12−iγ2 c

2
12−iγ12 s12c12 cosχ12

]
+O(λ4) , (6.4)

E
(Γ)
3 = ∆m2

31
2Eν

[
is13

(
γ13 c12 cos [δCP+χ13]+γ23 s12 cos [δCP+χ23]

) A

A−1

]
+O(λ4) . (6.5)

Applying Cayley-Hamilton theorem to the effective Hamiltonian H(Γ)
f , as defined in eq. (2.7),

gives the neutrino probabilities

Pαβ = P
(0)
αβ + P

(γ3)
αβ + P

(Γ)
αβ , (6.6)

3As discussed earlier, for small decay widths and in the absence of further exotic physics, the off-diagonal
elements (γij , i 6= j) would be vanishingly small. Their contributions calculated in this section may be
neglected, though we have kept them for the sake of completeness.
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where P (Γ)
αβ is the extra contribution to the probability corresponding due to the new

diagonal elements γ1, γ2 and off-diagonal elements γ12, γ13 and γ23. The expressions for
the P (0)

αβ and P (γ3)
αβ are already given in section 5.1. The P (Γ)

αβ probabilities are given as

P (Γ)
µµ = sin 2θ23 (γ13 s12 cosχ13 − γ23 c12 cosχ23) sin 2∆ +O(λ3) , (6.7)
P (Γ)
ee = −4γ1 c

2
12∆− 4γ2 s

2
12∆− 2γ12 ∆ sin 2θ12 cosχ12

+ 2s13
(
γ13 c12 cos [δCP + χ13] + γ23 s12 cos [δCP + χ23]

)(sin[2(A− 1)∆]
(A− 1)2 − 2A∆

A− 1

)
+O(λ4) , (6.8)

P (Γ)
eµ = −4s13s

2
23 (γ23 s12 sin [δCP + χ23] + γ13 c12 sin [δCP + χ13]) sin2[(A− 1)∆]

(A− 1)2 +O(λ4) ,

(6.9)

and Pµe = Peµ(δCP → −δCP, χij → −χij). The probabilities for antineutrino are given by

Pᾱβ̄ = Pαβ(δCP → −δCP , χij → −χij , A→ −A) . (6.10)

From the above expressions, we make the following observations:

• The P (Γ)
µµ contributions do not have any matter dependence, similar to the observation

made in section 5.2.

• The modifications to Pµµ due to the off-diagonal decay components are O(λ2), which
are subleading as compared to the contributions of γ3.

• The probability modifications P (Γ)
ee , P (Γ)

eµ are ∼ O(λ3). Therefore, the effects of
neutrino decay would continue to be hard to observe in the Pee, Peµ, and Pµe channels
even in future long baseline experiments. However, if one is able to reach absolute
precision of ∼ 1% in probability, then it is important to consider these terms alongside
the effects of γ3.

• The diagonal components of the general decay matrix γ1 and γ2 are absent in P (Γ)
eµ ,

whereas the contribution from the off-diagonal elements γ13 and γ23 are present.

Note that the vacuum limits with the inclusion of general decay matrix Γ match with
our results obtained via the 3-flavor Zassenhaus expansion method in section 4.1.

7 Comparison of analytical expressions with numerical results

In this section, we compare the accuracy of our analytic approximations against the exact
numerical results. For this, the 3-neutrino mixing parameter values taken are

θ12 = 33◦ , θ23 ' 45◦ , θ13 ' 8.5◦ , δCP = 0◦ ,
∆m2

21 = 7.37× 10−5 eV2 , ∆m2
31 = 2.56× 10−3 eV2 . (7.1)

These values are consistent with the global fit [2–4, 59] within 3σ for normal mass ordering
(∆m2

31 > 0) of neutrinos.
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We present our results for Pµµ and Pµe, the most relevant probabilities for long baseline
experiments. For the purpose of illustration, we take the simpler case of only ν3 decaying,
by choosing γ3 = 0.1 and all the other elements of the decay matrix Γ equal to be zero
in vacuum. Note that the presence of matter will give rise to off-diagonal elements of the
decay matrix Γm in the matter basis, which is automatically taken care of in our analysis.

For the scenario without decay, we show the comparison of the numerical results with
two analytic approximations:

• OMSD: Pµe and Pµµ calculated in the OMSD approximation (with exact dependence
on s13).

• Expansion: Pµe calculated up to O(λ3) and Pµµ calculated up to O(λ2) in s13 and α.

For the scenario with decay, we show the comparison of the numerical results with
three analytic expansions:

• OMSD: Pµe and Pµµ calculated in the OMSD approximation, with exact dependence
on s13, γm1 , γm3 and γm13 (Note that the non-zero γ3 leads to non-zero γm1 , γm3 and γm13
in the OMSD basis).

• Expansion: Pµe calculated up to O(λ3) and Pµµ calculated up to O(λ2) in s13 and α,
with exact dependence on γ3.

• Full-Expansion: Pµe calculated up to O(λ3) and Pµµ calculated up to O(λ2) in s13, α
and γ3.

Note that Expansion is always an improvement analytically over Full-Expansion. We
quantify the accuracy of these analytic approximations in terms of the quantity

∆Pαβ = Pαβ(analytic)− Pαβ(numerical) . (7.2)

We first show the comparison for the next-generation long-baseline neutrino experiment
DUNE with L = 1300 km, and then for a hypothetical “magic-baseline” [60] experiment
with L = 7000 km. Later we discuss the utility of our analytic approximations over a wide
range of energies and baselines.

7.1 At a baseline L = 1300 km

The future long-baseline experiment DUNE has the energy range Eν ' 0.5–10GeV, and
baseline L ' 1300 km. The oscillation probability, when the detailed earth density profile
is taken into account, may be reproduced very accurately when the approximation of a
constant density ρavg ' 3 g/cc along the path of the neutrino is used. Our numerical results
have been calculated with this constant density approximation.
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Figure 1. The top panels show probabilities Pµµ in the scenarios without (left) and with (right)
decay, for L = 1300 km and γ3 = 0.1. The bottom panels show the absolute error |∆Pµµ| for the
analytic expressions shown. The thick (thin) curves indicate positive (negative) signs of ∆Pµµ. The
dashed vertical line at Eν ' 0.8GeV corresponds to λ∆ = 1, to the left of which the expansion in
γ3 is not expected to be valid.

In figure 1, we compare the probabilities Pµµ obtained from the analytic expressions
with the exact numerical results, in the scenarios “without decay” and “with decay”. We
can make the following observations:

• For the scenario without decay, analytic expressions — both with OMSD as well
as the Expansion — reproduce the dip and peak positions quite accurately. The
probability of the first oscillation peak as well as the dip (the ones at highest energies)
is also very well reproduced.

• For the scenario without decay, the Expansion method gives the probability with
|∆Pµµ| . 1% for energies Eν > 1GeV. This is expected from results in earlier
literature.

• For the scenario with decay, the height of the first oscillation peak reduces all the
way from 1 to 0.6 (for γ3 = 0.1). Our analytic expressions predict this, since the
contribution of γ3 to Pµµ has been shown to be O(λ). This could, therefore, be one
of the most prominent signatures of the decay of ν3.

• The positions of dips and peaks are predicted quite accurately by all our approxi-
mations. The Expansion method (the dependence on γ3 exactly calculated) gives an
accuracy of |∆Pµµ| . 1% for the whole energy range of 0.5–10GeV.
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Figure 2. The top panels show probabilities Pµe in the scenarios without (left) and with (right)
decay, for L = 1300 km and γ3 = 0.1. The bottom panels show the absolute error |∆Pµe| for the
analytic expressions shown. The thick (thin) curves indicate positive (negative) signs of ∆Pµe. The
dashed gray vertical line follows the same convention as that mentioned in figure 1.

• Note that for the first as well as second oscillation dip (as counted from the highest
energies) the probability Pµµ in the scenario with decay gets a non-zero value, though
it was zero for the scenario without decay. This is a curious observation, although
one that can be explained via our analytic expressions. The explanation as well as
the implications of this will be further expanded upon on section 7.4.

Our analytic approximations in the both the scenarios with and without decay become
less accurate become less accurate for lower values of energies (i.e. higher values of ∆). This
is expected since at lower energies we approach the regime where ∆m2

21 oscillation is also
important or the term describing decay is no longer linear in γ3∆ (the latter only affects
the Full-Expansion results).

In figure 1 (and also in later figures), we observe many sharp dips in the |∆Pαβ | at
many discrete values of energies indicating that |∆Pαβ | = 0. This should not be taken
as a measure of absolute accuracy since this simply happens at the energies where the
values from analytic expressions coincidentally match the numerical results (the curves
corresponding to analytic expressions “cross” the curves obtained numerically).

In figure 2, we compare the probabilities Pµe obtained from the analytic expressions
with the exact numerical results, in the scenarios without decay and with decay. We can
make the following observations:

– 22 –



J
H
E
P
0
1
(
2
0
2
3
)
0
5
1

• As in the case of Pµµ, the dip and peak positions in both the scenarios without and
with decay are reproduced quite accurately in all approximations.

• The values of probabilities are reproduced very well with OMSD as well as the
Expansion method for the scenarios without and with decay, with |∆Pµe| . 1% for
energies Eν > 1GeV.

• For the scenario with decay, the height of the first oscillation peak reduces from
≈ 0.065 to ≈ 0.050 (for γ3 = 0.1). Since the absolute decrease in probability is quite
small, it would be difficult to isolate the effect of decay in Pµe channel for this baseline.
This is expected since our analytic expression show that the leading term in Pµe is
itself O(λ2), while the leading order modification due to γ3 is at O(λ3).

Since the accuracy of our analytic expressions is better than 1% in probability and the
accuracy of probability measurement at an experiment like DUNE may reach ∼ 1%, one
may be able to identify the effect of neutrino decay, which may lead to O(λ) modifications
in the probability Pµµ.

7.2 At a baseline L = 7000 km

The magic baseline of L = 7000 km [60, 61] has been discussed extensively in the literature,
since the probabilities at this baseline are almost independent of the unknown CP phase δCP.
As a result, the 3-neutrino oscillation problem may be crafted into an effective 2-neutrino
oscillation problem using the OMSD approximation, which is detailed in section 3. The
OMSD approximation is expected to work very well in this regime, as has been pointed
out earlier [52]. Although no experiment is currently planned with this magic baseline, we
present our results at this baseline to point out the power of OMSD approximation even
when neutrinos decay.

We take the energy range of Eν ' 2–25GeV. At L = 7000 km, the constant average
density approximation of the Earth is expected to yield quite accurate neutrino probabilities
with the PREM-averaged density ρavg = 4.15 g/cc [52]. In figure 3 we compare the
probabilities Pµµ obtained from the analytic expressions with the exact numerical results in
the average density approximation, in the scenarios without and with decay, for L = 7000 km.
The following observations can be made:

• For the scenario without decay, analytic expressions — both with OMSD as well as
the Expansion — reproduce the position of dips and peaks of the oscillation quite well.
The OMSD approximation especially reproduces the heights of the first oscillation
peak and the dip (from high to low energy) very accurately. This is expected behavior
as seen in earlier literature.

• For the scenario without decay, the Expansion method gives the probability with
|∆Pµµ| . 4% in all energies of interest except for Eν ' 5–10GeV. The OMSD
approximation yields results accurate to |∆Pµµ| . 4% for all Eν & 7GeV.

• The oscillation peak (counting from high to low energies) may be seen to have shifted
marginally. This gives rise to the seemingly large values of |∆Pµµ|. However, given
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Figure 3. The top panels show probabilities Pµµ in the scenarios without (left) and with (right)
decay, for L = 7000 km and γ3 = 0.1. The bottom panels show the absolute error |∆Pµµ| for the
analytic expressions shown. The thick (thin) curves indicate positive (negative) signs of ∆Pµµ. The
dashed vertical line at Eν ' 4.5GeV corresponds to λ∆ = 1, to the left of which the expansion in
γ3 is not expected to be valid.

the expected errors on the measurement of neutrino energy this shift of 0.1–0.2GeV
is quite negligible.

• For large energies the OMSD approximation is always below the numerically calculated
probability by ∆Pµµ ≈ 2% in the energy range shown. This is primarily because
the OMSD approximation ignores the contribution due to ∆m2

21. The error in the
Expansion method however goes down to � 1% at higher energies.

• For the scenario with decay, the height of the first oscillation peak reduces from 0.65
to 0.4 (for γ3 = 0.1). This is in line with the expected modifications at the leading
order that arise due to ν3 decay. We also observe significant reduction of probabilities
at the second and third oscillation peaks from ≈ 0.95 to ≈ 0.4, which may prove to
be a promising signature of neutrino decay.

• The positions of dips and peaks are predicted quite accurately by all our approxima-
tions. The OMSD as well as the Expansion method (the dependence on γ3 exactly
calculated) gives an accuracy of |∆Pµµ| . 4% for the whole energy range.

• Again, similar to the observations made for Pµµ in the previous subsection, for the first
as well as second oscillation dip (as counted from the highest energies) the probabilities
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Figure 4. The top panels show probabilities Pµe in the scenarios without (left) and with (right)
decay, for L = 7000 km and γ3 = 0.1. The bottom panels show the absolute error |∆Pµe| for the
analytic expressions shown. The thick (thin) curves indicate positive (negative) signs of ∆Pµµ. The
dashed gray vertical line follows the same convention as that mentioned in figure 3.

in the scenario with decay become non-zero. This interesting feature is observed to
be more prominent at 7000 km baseline, with as much as 10% of muon neutrinos
surviving at the first oscillation dip.

In figure 4, we compare the probabilities Pµe obtained from the analytic expressions
with the exact numerical results, in the scenarios without and with decay. We can make
the following observations:

• Similar to all the previous cases, the dip and peak positions in both the scenarios
without and with decay are reproduced quite well in all approximations. The OMSD
approximation also predicts the heights of the oscillation peaks and dips quite well.

• The probabilities are reproduced very well with the OMSD approximation; |∆Pµµ| .
1% for all energies, with or without decay.

• The Expansion method predicts too large a conversion probability and hence is not
suitable for comparing with precision measurements of Pµe at L = 7000 km.

• For the scenario with decay, the height of the first oscillation peak reduces from ≈ 0.3
to ≈ 0.16 (for γ3 = 0.1). This is a quite significant decrease and definitely within the
domain of measurability if indeed γ3 ∼ O(0.1).
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To summarize, at the magic baseline of L = 7000 km, both Pµµ and Pµe would serve as
channels to look for neutrino decay and the OMSD approximation works extremely well at
the magic baseline for explaining the features of the probabilities.

7.3 Over a wide range of baselines

In the previous two subsections, we explored the nature of Pµµ and Pµe at L = 1300 km, and
L = 7000 km. It was observed that the Expansion method gave very accurate estimations
at L = 1300 km, whereas the OMSD approximation gave more accurate results at the
baseline of L = 7000 km. Thus, the values of baselines determine how good a particular
approximation would be. In this section, we examine the goodness of the expressions for
varying lengths of neutrino long baseline experiments from L ' 30–10, 000 km. For these
baselines, the neutrinos travel mainly through the crust and mantle of the earth and hence
the approximation of constant matter density, which is the average density along that
baseline, is expected to work. We show our results for energies ranging in 100MeV–30GeV.
Note that we take δCP = 0, however the accuracy of the expressions would also have a small
but finite dependence on the actual values of the δCP.

In figure 5 we show the regions in the (Eν , L) parameter space where OMSD approxi-
mation and the Expansion method are able to reproduce the neutrino probabilities to an
accuracy of |∆Pαβ | < 1%. Note that since Expansion (with exact dependence on γ3) is
always expected to formally do better than the Full-Expansion (expanded in s13, α and γ3)
we do not show the results derived with the Full-Expansion method. It may be observed
from figure 5 that, at smaller baseline and larger energies, both the analytic approximations
give very accurate results. Especially for Pµe at L > 7000 km, the OMSD approximation
works excellently for energies Eν > 1GeV.

7.4 The first two oscillation dips in Pµµ
We also point out, for a wide range of baselines of neutrino oscillation experiments, one
interesting physics observations that could manifests due to the modifications from neutrino
decay. At leading order in the absence of decay, the dips in the oscillation are approximately
obtained when ∆ = (2n+ 1)π/2 (where n = 0, 1, 2, . . .). At an oscillation dip, the leading
contribution to the survival probability Pµµ may be written using eq. (5.17) as

P leading
µµ (dip) = 1− sin2 2θ23 − s4

23

(
1− e−4γ3∆

)
+ 2s2

23c
2
23

(
1− e−2γ3∆

)
. (7.3)

The last two terms are non-zero only when γ3 6= 0. Hence, the deviation of P leading
µµ (dip)

from cos2 2θ23 indicates the presence of neutrino decay. In particular, if θ23 = 45◦, the
value of Pµµ at the dips would be predicted to be vanishing for the scenario without decay.
However, they could be significantly non-zero with decay.

At the first oscillation dip, we get

Pµµ(first dip) ' P leading
µµ (∆ ' π/2) = 1

4
(
1− e−πγ3

)2 ≥ 0 , (7.4)

while at the second oscillation dip,

Pµµ(second dip) ' P leading
µµ (∆ ' 3π/2) ' 1

4
(
1− e−3πγ3

)2
≥ 0 . (7.5)
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Figure 5. The regions in the (Eν , L) parameter space where |∆Pαβ | < 1% with the OMSD
approximation (blue) and the Expansion method (red). The top two panels correspond to |∆Pµµ|
and the bottom two panels correspond to |∆Pµe|. The purple region satisfies this criteria for both
methods. In the gray region, our analytic approximations are not valid, since α∆ > 1. The white
spaces indicate where the analytic approximations are valid but not accurate up to 1%. The small
isolated colored patches in the white regions (“islands”) are where the analytic and numerical
results match by coincidence. The horizontal dashed lines indicate the baselines L = 1300 km and
L = 7000 km.
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Figure 6. The survival probabilities Pµµ at the first (left) and the second (right) oscillation dips for
a range of baselines L. We have taken θ23 = 45◦ and γ3 = 0.1. Note that the values of Pµµ without
decay are non-zero primarily due to Earth matter effects.

Both the dips, therefore, are expected to give non-zero values for the survival probability
Pµµ. It is also predicted that the survival probability at the second oscillation dip would be
more than that at the first oscillation dip. For γ3 = 0.1, we obtain from these two equations,
Pµµ(first dip) ' 1.8% and Pµµ(second dip) ' 9.3%, i.e. an increase of about ∼ 0.02 at the
first oscillation dip, and ∼ 0.1 at the second oscillation dip. While this is just a leading
order approximation, we show in figure 6 the numerical results for a range of baselines,
which bear out the predictions regarding the effects of decay extremely well.

This increase in probability may be used as a potent non-trivial signature of neutrino
decay. This is especially true for the second oscillation dip, where we get an increase of ∼ 0.1
in probability in the presence of decay (with γ3 = 0.1). Note that the second oscillation dip
is at energies

Eν ' 0.69
(

L

1000 km

)
GeV , (7.6)

indicating that its identification would need good energy resolution at lower energies or
longer baselines. On the other hand, at an experiment like DUNE the first dip is expected
at ∼ 2.7GeV, where the flux is sufficiently large and distinguishing the measured survival
probability from its prediction without decay may be possible.

8 Summary and conclusions

In this paper, we have presented for the first time, the modifications to the 3-flavor neutrino
oscillation probabilities due to possible invisible decay of neutrinos during their propagation
through matter. We give compact analytic expressions for the probabilities Pµµ, Pee, Peµ and
Pµe, which are relevant for the reactor, long-baseline and atmospheric neutrino experiments.

The inclusion of decay leads to a non-Hermitian effective Hamiltonian, where the
Hermitian component is responsible for oscillations, and the anti-Hermitian component
gives rise to invisible decay of neutrinos. These two components may not commute in
general, leading to a mismatch between the mass eigenstates and the decay eigenstates of
neutrinos. Even if these components commute in vacuum under certain scenarios, they
invariably become non-commuting due to matter effects on propagating neutrinos.
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Since the constraints on ν1 and ν2 decay in vacuum are quite stringent, we specially
discuss the scenario where only the ν3 mass eigenstate in vacuum decays. However, we also
treat the most general scenario where the decay matrix Γ has all non-zero components. Such
a scenario may be relevant in the case of exotic matter effects in the decay of neutrinos.

Our analytic treatment is based on the perturbative expansion in a small book-keeping
parameter λ ≡ 0.2. The small parameters relevant for neutrino oscillations are taken to
be s13 ≡ sin θ13 ∼ O(λ), α ≡ ∆m2

21/∆m2
31 ∼ O(λ2). The decay parameter γ3, based on

the current constraints is taken to be γ3 ∼ O(λ). In the most general decay scenario, the
requirement that the decay length-scale should be more than the oscillation length-scale,
along with the positive definiteness of the decay matrix, conservatively allows γ1, γ2, γ12 ∼
O(λ3) and γ13, γ23 ∼ O(λ2).

The One Mass Scale Dominance (OMSD) approximation is applicable when the oscilla-
tion due to ∆m2

21 can be ignored and only the ν3 mass eigenstate in vacuum decays. The
2-flavor results from [45] can then be directly adapted, and the Pauli exponentiation of 2× 2
matrices can be implemented. This allows us to calculate the oscillation probabilities with
exact dependence on θm13, γm1 , γm3 and γm13, where ‘m’ denotes quantities in the presence of
matter. The probabilities obtained with OMSD approximation have no δCP dependence.
Interestingly, even though we have started with only ν3 decaying in vacuum, both mass
eigenstates in matter, νm1 and νm3 , show decaying behavior.

The Zassenhaus expansion (inverse Baker-Campbell-Hausdorff), in its resummed version,
can be used to incorporate the non-commuting nature of the Hermitian and the anti-
Hermitian components of the effective Hamiltonian. This allows the calculation of the
probability as a perturbative expansion in the small off-diagonal components of the decay
matrix Γ. The 2-flavor Zassenhaus resummation can be used in conjunction with the OMSD
approximation to obtain explicit analytic expressions for the probabilities, exact in θm13, γm1 ,
γm3 , and expanded up to linear order in γm13. When θm13 ≈ θ13 ∼ O(λ), these expressions match
at O(λ2) with the exact OMSD results obtained using the Pauli exponentiation technique.

We develop the 3-flavor Zassenhaus expansion which expands the applicability of the
probabilities beyond the OMSD approximation. This allows us to calculate the probabilities
exact in diagonal elements, and correct up to the first order in the off-diagonal elements, of
the decay matrix Γ. We find that the effect of γ3 on the probability Pµµ occurs at O(λ),
whereas its effect on Pee, Peµ and Pµe occurs at O(λ3). This indicates that the effects of ν3
decay would be the most prominent in the Pµµ channel. In the most general decay scenario,
when all elements of Γ are present, the effects of the additional decay terms appear at O(λ2)
and higher orders in λ. Therefore, they are subdominant to the effects of γ3, which appear
at O(λ). On the other hand, these contributions to Pee, Peµ and Pµe are at O(λ3), which
are at the same order as the leading order contribution due to γ3.

In our perturbative calculations, we have expanded in parameters s13, α, γi, γij in
vacuum, whose values are known to be small. In the presence of matter, one may expect
to obtain the corresponding expressions by replacing all parameters with their matter
counterparts. However, the values of some of these quantities in matter (sm13, αm, γmi , γmij )
may not be small. Therefore, for formally correct expansions in orders of λ, it is desirable
to have explicit matter dependence. We achieve this by employing the Cayley-Hamilton
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theorem which allows the calculations of probabilities in matter in terms of the fundamental
quantities s13, α, γi, and γij in vacuum, which are definitely small.

In the simpler case where only ν3 decays in vacuum, we use the Cayley-Hamilton theorem
to calculate the neutrino probabilities Pµµ, Pee, Peµ, and Pµe analytically. These probability
expressions are perturbative expansions in s13, α and γ3, with explicit dependence on the
normalized matter potential A. They confirm that even in the presence of matter, the effect of
ν3 decay manifests at O(λ) in Pµµ, whereas for Pee, Peµ, and Pµe, the effects of decay occurs
at O(λ3). Moreover, the decay contribution to Pµµ is independent of matter effects up to
O(λ2). For Pee, Peµ, and Pµe, we observe that the decay contribution has matter dependence,
with Peµ and Pµe having the sin2[(A−1)∆]/(A−1)2 dependence similar to the terms without
decay. We extend our calculations further to include the exact dependence on γ3 (with
expansion in s13 and α) to point out the phenomenologically rich functional dependence
of the probabilities on γ3, in addition to the naively expected exponential decay terms.

In the general case where all the elements of the decay matrix Γ may be non-zero, we
calculate the additional contributions due to γ1, γ2, γ12, γ13 and γ23. We observe that even
in matter, the effects of these additional decay elements on Pµµ appear at O(λ2) or less,
compared to the effects of γ3, which appear at O(λ). Thus, these off-diagonal terms will
not significantly affect the signatures of decay in Pµµ. As observed earlier, for Pee, Peµ, and
Pµe, the effects of these elements remain as important as the γ3 contribution, all appearing
at O(λ3) even in matter.

Our analytic observations have helped us get insights into the impact of possible neutrino
decay on the probabilities and estimate the extent of this impact qualitatively in terms of
an expansion in λ. Finally, we compare our analytic expressions with the exact numerical
results, calculated for long-baseline experiments. For illustration, we take L = 1300 km,
which is close to the baseline of the Deep Underground Neutrino Experiment (DUNE) and
L = 7000 km, which corresponds to the “magic baseline”. Our comparison of Pµµ and Pµe
shows that all our analytic approximations reproduce the peak and dip positions in the
probability quite accurately. As far as the values of the probability are concerned, the
“Expansion” (obtained using the Cayley-Hamilton theorem) is a very accurate analytic
approximation at L = 1300 km, with |∆Pαβ | < 0.01 at energies more than a few GeV. The
OMSD approximation gives results with such accuracy at L = 7000 km. The expected
leading order effects of the decay, at O(λ) on Pµµ, are confirmed with the numerical
calculations. We show the regions in the (Eν , L) parameter space where our two major
analytic approximations, viz. OMSD approximation and Expansion, give results correct to
|∆Pαβ | < 0.01. These indicate that our approximations work very well for lower values of
∆ = ∆m2

31L/(4Eν).
The primary aim of our analysis has been to obtain physics insights from the approximate

analytic expressions. We reiterate some of the key insights below:

• In the OMSD limit, the propagation of νm1 and νm3 in matter is relevant. It can be
seen that even for the scenario where only the ν3 vacuum mass eigenstate decays, in
matter we get decaying behavior for both the matter mass eigenstates (νm1 and νm3 ).
Further, we also inevitably obtain a nonzero value for the off-diagonal term γm13.
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• From Pµµ:

(i) In the absence of decay, the leading order contribution to Pµµ is O(1). The
corrections to Pµµ due to decay are of O(λ). Thus, neutrino decay may affect
the probability Pµµ significantly.

(ii) The leading corrections due to decay do not depend on matter effects.
(iii) These leading corrections have s4

23 dependence, and hence break the octant
degeneracy in Pµµ to O(λ), while θ13 terms and the matter effects can break the
octant degeneracy only to O(λ2).

• From Pµe:

(i) In the absence of decay, the leading order contribution to Pµe is O(λ2). The
corrections to Pµe due to decay are of O(λ3).

(ii) These leading corrections due to decay terms depend on matter effects and are
proportional to s2

13. Due to matter effects, the decay contribution is affected
non-trivially at the oscillation peaks.

Furthermore, in the 2–4GeV range, where we expect the maximum number of appearance
events in DUNE, the analytic expansion with the exact γ3 dependence is accurate up to
∼ O(0.1)% for Pµe and ∼ O(0.1–1)% for Pµµ. This makes these expressions particularly
suitable for exploring the physics of neutrino oscillations and decay in DUNE and other long-
baseline and atmospheric neutrino experiments, where matter effects play an important role.

Analytic approximations often reveal hidden features of interest which may not be
immediately apparent while looking at numerical results. This makes analytic approxima-
tions extremely useful as an indicator of new physics effects. We observe such features
in the heights of the dips in the muon neutrino survival probability Pµµ. Our analytic
approximations, at their leading order, suggest the non-intuitive result that the probabilities
at these dips would have higher values in the presence of decay, compared to those in the
absence of decay. This conclusion is born out by the exact numerical calculations and stays
valid even in the presence of matter at long baselines. The increase in this probability may
be as much as ∼ 0.02 at the first oscillation dip, and ∼ 0.1 at the second oscillation dip, for
γ3 = 0.1. This feature may be useful as a unique sensitive signature to confirm the presence
of possible neutrino decay, or put strong constraints on it.

The analytic expressions derived in this paper are suitable for all current and upcoming
long-baseline neutrino experiments, as well as for atmospheric neutrino experiments, where
matter effects play a significant role.
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