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1 Introduction

Hydrodynamics is a powerful and universal effective theory for a variety of physical systems
at large distances and long time, capturing the dynamics of the interacting system towards
thermal equilibrium [1]. The dynamical equations of motion for hydrodynamics are local
conserved equations for the densities of the conserved charges and the corresponding cur-
rents. The currents can be expressed in terms of derivative expansions of densities (or the
conjugate quantities, e.g. temperature, fluid velocity), namely the constitutive equations.1
Then the evolution of the system can be solved from the conservation equations and the
constitutive equations under proper boundary conditions.

1Note that we focus on the classical hydrodynamics and neglect the effects of statistical fluctuations of
the hydrodynamic system, which is suppressed in the large N limit [2].
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Recently the convergence of derivative expansions in hydrodynamics has been explored
from the perspective of the dispersion relations of hydrodynamic modes [3–6].2 The hydro-
dynamic modes are poles of retarded Green’s function of densities with gapless dispersion
relation satisfying lim

k→0
ω(k) = 0 at small frequency and momentum, e.g. shear modes,

sound modes and diffusion modes. The derivative expansions of the constitutive equations
predict that the dispersion relations of hydrodynamic modes are series expansions of ω in
k. Therefore the convergence of derivative expansions in constitutive equations could be
studied from the convergence of the dispersion relations [4–6]. It was proposed in [3–6]
that, by viewing the hydrodynamic mode as complex spectral curve in C2 of complexified
frequency and momentum, the convergence radii (keq, ωeq) of the hydrodynamic dispersion
series is set by the absolute value of the complex momentum and complex frequency where
the hydrodynamic pole collides with the first non-hydrodynamic gapped pole, namely “pole
collision”. Along this line, the convergence of hydrodynamic dispersion series has been in-
vestigated using kinetic theory in [10], using field theory in [11, 12] and using holographic
duality in [13–20].

Physically, the breakdown of hydrodynamic dispersion series is due to the presence
of non-hydrodynamic gapped degrees of freedom in the system. In general, for strongly
interacting quantum field theories, in addition to the hydrodynamic mode a large amount of
excitations with shorter lifetime exist which are also captured by the poles in the retarded
Green’s function, i.e. the quasi-normal modes (QNM) in the gauge/gravity duality [21–23].
In the hydrodynamic limit, the higher energy excitations decay quickly with time and only
hydrodynamic mode remains at late time. However, as the absolute value of complexified
momentum increases larger and larger to a special scale k ∼ keq, or equivalently the
distance becomes shorter and shorter, the lifetime of the hydrodynamic mode and the
first non-hydrodynamic mode are of same order 1/ωeq. In this scenario, the higher energy
excitations cannot be ignored and hydrodynamics breaks down.

Certainly the scale at which hydrodynamics breaks down depends on the details of
the microscopic dynamics. The convergence radii are different for hydrodynamics of field
theories with different ’t Hooft couplings or gauge couplings [11, 12, 14, 17]. Meanwhile,
the origins of the first non-hydrodynamic modes are different for different systems, for ex-
ample, it could be a slow mode due to symmetry breaking [24–26] or an infra-red (IR) mode
for hydrodynamics at low temperature [15]. In this respect it is extremely interesting to
extract the possible universality of the breakdown of hydrodynamics in particular solvable
hydrodynamic systems which have holographic dual descriptions. Given the fact that the
transport physics in the quantum critical phase is universally governed by the quantum
critical groundstate, it is expected that for the breakdown of the hydrodynamics near the
quantum critical groundstate there is perhaps some universality inherited from the critical
groundstate. Recently it was found in [15] that when the hydrodynamic system is dual to
black hole geometry with extremal near horizon geometry of AdS2×R2, at low tempera-
ture the non-hydrodynamic modes of the diffusive hydrodynamics seem to be universally

2The convergence of derivative expansions in hydrodynamics has been studied earlier for boost invari-
ant flow in e.g. [7, 8]. There are also studies on all order linearized hydrodynamics using fluid/gravity
correspondence see e.g. [9].
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the poles related to the near horizon geometry, namely IR modes. The generalizations
to different hydrodynamic systems with exactly the same IR geometry as [15] have been
made in [16, 18] and similar universal results on non-hydrodynamic modes were obtained.
Therefore, it is natural to ask, at the low temperature, if the non-hydrodynamic modes in
systems with a holography dual encoding a quantum critical groundstate are really univer-
sally determined by the poles of the emergent IR critical state. This motivates us to study
the breakdown of hydrodynamics at low temperature in different quantum critical phases.

In this work, we study the breakdown of hydrodynamics near the quantum critical
state of a different semi-local quantum liquid from the one dual to AdS2×R2. We consider
the strongly interacting hydrodynamic systems at zero density that are holographically
described by dilatonic black holes with extremal near horizon geometries conformal to
AdS2×R2, realized in the generalized Gubser-Rocha model with linear axion fields [27–30].
In the case of AdS2×R2 quantum critical state [15, 16, 18], there is a nonzero entropy at
zero temperature and might be unstable [31], while in our case the holographic system has
zero entropy at zero temperature and is expected to be a stable groundstate. We focus on
the neutral hydrodynamic systems where the particle-hole symmetry allows the charge and
energy to diffuse separately, and study the breakdown of the charge diffusive hydrodynamics
at low temperature near the quantum critical state. To uncover possible universality of the
breakdown of hydrodynamics, we discuss the origin of the first non-hydrodynamic mode by
tuning the IR effective gauge coupling constant. In particular, we show that depending on
the IR effective gauge coupling constant, the first non-hydrodynamic mode which collides
with the hydrodynamic mode could be either an IR mode or a slow mode, resulting in
different scaling behaviors of the local equilibrium scales. Here the IR mode is a quasi-
normal mode from the near horizon geometry, while the slow mode is a long-lived gapped
non-hydrodynamic mode with lifetime much longer than the Planckian time τpl = ~/(kBT )
and the slow mode is related to the whole geometry from the horizon to the boundary. We
will also study the upper bound for the charge diffusion constant [32] and find that it is
always satisfied if the velocity and timescale are defined from pole collision which sets the
convergent radii of diffusive hydrodynamics, following the proposal in [15]. We will also
comment on the effects of temperature as well as the IR effective gauge coupling constant
in the convergence radii of hydrodynamics.

This paper is organized as follows. We first introduce the hydrodynamic system under
study and show the IR geometry at low temperature as well as the IR Green’s function
in section 2. In section 3 we study the breakdown of the diffusive hydrodynamics from
holographic pole collision and discuss related physics, including the properties of non-
hydrodynamic modes, convergent radii, diffusion upper bound. Section 4 is devoted to
conclusions and discussions. Some details on the equations, calculations and figures during
the discussion are collected in appendices.

2 The generalized Gubser-Rocha model

We consider the hydrodynamic systems which are dual to dilatonic black holes with the near
horizon geometries describing special semi-local quantum liquid states at low temperature.
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The gravitational dual theory is the generalized Gubser-Rocha model with linear axion
fields [27–29],

S =
∫
d4x
√
−g

(
R− 1

4e
αφ F 2 − 3

2(∂φ)2 + 6
L2 coshφ− 1

2

2∑
I=1

(∂ψI)2
)
, (2.1)

where Fab = ∂aAb−∂bAa is the field strength for a U(1) gauge field Aa. The massless scalar
fields ψI = mxi δIi are known as linear axion fields [30] which explicitly break the spatial
translational symmetry in the x-y plane while preserving the isotropy.3 The dilaton field
φ with a particular choice of potential is used to realize a special quantum critical point at
low energy. Here we choose a specific form of effective gauge coupling g2

eff = e−αφ which
in principle could be promoted to an arbitrary function of the dilaton field Z[φ]. As we
shall show in the following, the gauge coupling strength near the horizon is crucial for the
properties of breakdown of hydrodynamics. When α = 1, it reduces back to the standard
Gubser-Rocha model with linear axion terms.

We shall focus on the neutral zero density systems, i.e. we set A = 0. The gauge field
could be viewed as a probe in the black hole background. We choose the ansatz for the
finite temperature background as

ds2 = −udt2 + dr2

u
+ f(dx2 + dy2) ,

φ = φ(r) , ψI = mxI ,

(2.2)

where {t, x, y, r} are spacetime coordinates, and u, f, φ are functions of the radial coordinate
r, xI = x, y for I = 1, 2, while m characterizes the strength of momentum relaxation. More
details about the equations of motion can be found in appendix A.

For the zero density system, there exist two different solutions. One solution has a
nontrivial dilaton which indicates that in the dual field theory a nontrival source for the
scalar operator has been turned on. The other solution is the AdS4-Schwarzschild black
hole with linear axions where the dilaton field is trivial, i.e. φ = 0. In this paper we shall
focus on the dilatonic black hole.4

The neutral dilatonic black hole solution takes the following analytic form

u =
√
r(r − r0)

(
r − r0 +

√
2m
) 1√

r − r0 + m√
2

,

f =
√
r

(
r − r0 + m√

2

)3/2
,

φ = 1
2 log

(
r − r0 + m√

2
r

)
,

ψI = mxI .

(2.3)

3The translational symmetry breaking effect can also be realised in the framework of massive gravity [33],
see e.g. [34].

4Note that these two solutions are two different physical situations, i.e. with or without external scalar
source, and it is not proper to study the phase transition between them unless one makes the hairy black
hole sourceless.
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Note that the sign of the linear axion does not matter. Since the system only depends on
the m2 and should be symmetric under m → −m. In the following we shall focus on
m > 0. This hairy black hole has two horizons with the outer horizon located at r = r0.
The AdS boundary is located at r →∞.

The effective gauge coupling constant takes the form of g2
eff = e−αφ and it is monotoni-

cally decreasing from the UV boundary to the IR horizon when α > 0 which can be under-
stood in terms of charge screening. We shall focus our discussion mainly in the regime α ≥ 0
in most sections of this paper and only comment on the case of α < 0 in subsection 3.5.

The temperature and the entropy density of the dilatonic black hole are

T =
√
mr0

25/4π
, s = 2−

11
4 m
√
mr0 . (2.4)

Obviously this system has a vanishing entropy density at zero temperature and at finite
temperature s ∼ T . This fact was crucial in the proposal of linear resistivity for strange
metal in [34]. The linear resistivity has also been discussed in related model in e.g. [35].

The charge diffusion constant Dc at zero density can be obtained from Einstein relation

Dc = σ

χ
, (2.5)

where σ and χ are the electrical conductivity and susceptibility. The electrical conductivity
takes the form

σ =
(

m

2
√

2πT

)α
. (2.6)

One particularly interesting observation is that when α = 1 we have linear resistivity
which reminds us of the behavior of the strange metal phase in high Tc systems [34]. The
susceptibility χ can be obtained from the retarded Green’s function 〈ρρ〉|ω=k=0. At zero
frequency and zero momentum, the fluctuation of At decouples from other fields, and we
have a′′t +

(f ′
f + αφ′

)
a′t = 0 . In the background (2.3), with the condition at(r0) = 0 at

the horizon, at can be solved at = 1 −
(

Q
r0

+1
Q
r

+1

) 1
2 (1+α)

for α 6= −1.5 When r → ∞, the

asymptotic expansion of at is at = a1− a2
r +. . . , and the susceptibility can be obtained from

χ = a2
a1
. The charge diffusion constant can be computed from (2.5). In appendix B we use an

alternative approach to calculate Dc following [36, 37] and obtain the same results as above.
In table 1 we list the electrical conductivity, susceptibility, and the charge diffusion

constant as well as its low temperature behavior. We leave the detail discussions on the
IR geometry at low temperature and the IR Green’s function to subsection 2.1.

The charge current is conserved and the charge density diffuses in the late time near
equilibrium regime. The diffusive constant Dc is expected to be bounded from below
due to the chaotic behavior of operators [38, 39], and from above due to causality and
unitarity [32]. The butterfly velocity vB and Lyapunov time τL are fundamental quantities

5When α = −1, we have at = 1− log( Q
r

+1)
log
(

Q
r0

+1
) .
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σ χ Dc T � m

α( 6= −1)
(

m
2
√

2πT

)α (1+α)mα(m2−8π2T 2)
2
√

2m1+α−23+ 3α
2 (πT )1+α

σ
χ

Dc → 2
√

2
(1+α)m

(
m

2
√

2πT

)α
, α > −1

Dc → − 8πT
(1+α)m2 , α < −1

α = −1 2
√

2πT
m

m2−8π2T 2
√

2m log
(

m2
8π2T2

) σ
χ Dc → 8πT

m2 log
(

m
2
√

2πT

)
Table 1. The electrical conductivity σ, susceptibility χ and charge diffusion constant Dc as a
function of α.

to characterize quantum chaos and they have been studied in [29] for this model. More
explicitly, at zero density the butterfly velocity and Lyapunov time are

v2
B = 16π2T 2

24π2T 2 +m2 , τL = 1
2πT . (2.7)

Therefore, in the quantum critical region T/m→ 0 where vB ∼ T/m,

• when α > −1, Dc � v2
BτL and satisfies the lower bound proposal. It is crucial to

define an upper bound for the charge diffusion constant;

• when α < −1, Dc → − 1
1+αv

2
BτL, i.e. the charge diffusion constant satisfies a bound

defined from quantum chaos;

• when α = −1, the ratio between Dc and v2
BτL diverges with logarithmic dependence

in m/T instead of a power law dependence.

In the following we shall show that if we use the equilibrium velocity and time veq and
τeq from local equilibrium scales following the proposal in [15], the upper boundDc ≤ v2

eqτeq
is always satisfied for the charge diffusion constant.

2.1 The near extremal geometry and IR Green’s function

At zero temperature, the near horizon geometry of (2.3) takes a simple form which is
conformal to AdS2×R2. More precisely, we have the IR geometry by taking the limit
r → 0 of (2.3) with r0 = 0,

ds2 = −2
3
4m

1
2 r

3
2dt2 + dr2

2 3
4m

1
2 r

3
2

+ 2−
3
4m

3
2 r

1
2
(
dx2 + dy2

)
,

eφ = 2−
1
4m

1
2 r−

1
2 .

(2.8)

Through a coordinate transformation r =
√

2
mζ2 we obtain

ds2 = 2
√

2
mζ

(
1
ζ2

(
−dt2 + dζ2

)
+ m2

4
(
dx2 + dy2

))
. (2.9)

Under the scaling transformation (t, ζ, x, y) → (λt, λζ, x, y), the line element ds2 →
λ−1ds2 which means this geometry is conformal to AdS2×R2. This geometry is known
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to describe a semi-local quantum liquid state with finite spatial correlation length while
infinite correlation time [40]. Note that our study is different from the holographic systems
in [15, 16, 18] where the extremal IR geometry is AdS2×R2 which in general gives a nonzero
entropy at zero temperature and might suffer from potential instabilities [31]. Note that
the important near horizon geometry (2.9) is completely supported by the translational
symmetry breaking parameter m. When m = 0, we do not have this type of near horizon
geometry at zero density. This is quite similar to the case in [30] where an AdS2×R2 near
horizon geometry emerges in the extremal black hole with linear axion fields, while with
pure AdS vacuum solution without linear axion fields.

At extremely low temperature T � m, i.e. r0 � m, the geometry in the near horizon
regime with r − r0 � m is

ds2 = −2
3
4 (mr)

1
2 (r − r0)dt2 + dr2

2 3
4 (mr) 1

2 (r − r0)
+ 2−

3
4m

3
2 r

1
2
(
dx2 + dy2

)
,

eφ = 2−
1
4m

1
2 r−

1
2 .

(2.10)

Taking the limit r0 → 0, the above geometry reduces to the IR geometry at zero tempera-
ture (2.8). Note that now the effective gauge coupling near the horizon takes the form of
g2
eff ∼ (T/m)α at low temperature.

In the near extremal dilatonic black hole, the IR Green’s function GIR can be computed
analytically. As we will show in the next section, the poles of this IR Green’s function can
play important roles in the whole Green’s function in the dual field theory. Note that we will
study the charge diffusive hydrodynamics, which are encoded in the equations of motion of
fluctuations of gauge fields as discussed in detail in appendix A.2. We first focus on the case
k = 0 for simplicity and comment on nonzero k later. We define w = ω

2πT in the following.
We will solve the first equation in (A.13) at low temperature with the near horizon geom-
etry (2.10). We focus on r − r0 � m regime, then the EOM is reduced to a simple form6

a′′ +
( 1
r − r0

+ 1− α
2r

)
a′ + r0

4r
w2

(r − r0)2 a = 0 (2.11)

where a is the gauge invariant quantity of the fluctuations of gauge fields in the diffusive
channel as discussed in appendix A.2 and also in the beginning of next section.

The analytic solution is a linear combination of two independent hypergeometric func-
tions

a = (r − r0)−
iw
2

[
c1 2F1

(1− α− iw
2 ,− iw2 ,

1− α
2 ,

r

r0

)
+

+ c2

(
r

r0

) 1+α
2

2F1

(
1− iw

2 ,
1 + α− iw

2 ,
3 + α

2 ,
r

r0

)]
.

(2.12)

Near the horizon r = r0 of (2.10), this solution gives rise to the infalling and outgoing
solutions with the exponents (r − r0)− iw2 and (r − r0)+ iw

2 , respectively. The infalling
6Note that here we work in the limit k � ω while not exactly k = 0.
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boundary condition constrains that

c2
c1

= iw

2
Γ
(

1−α
2

)
Γ
(

1+α−iw
2

)
Γ
(

3+α
2

)
Γ
(

1−α−iw
2

) . (2.13)

Close to the outer boundary of IR geometry (2.10), i.e. r
r0
→∞,

a(r) = A(ω, T ) + B(ω, T )r
−1+α

2 . (2.14)

When α < 1, the IR Green’s function GIR is

GIR(ω, T ) ∝ B(ω, T )
A(ω, T ) ∝ −i

w

2
Cos

(
π
2 (α− iw)

)
Γ
(
α−1

2

)
Γ
(

1−α+iw
2

)
Cos

(
π
2 (α+ iw)

)
Γ
(

1−α
2

)
Γ
(

1+α+iw
2

)( T√
m

)1−α
. (2.15)

When α > 1, the IR Green’s function is

GIR(ω, T ) ∝ 2i
w

Cos
(
π
2 (α+ iw)

)
Γ
(

1−α
2

)
Γ
(

1+α+w
2

)
Cos

(
π
2 (α− iw)

)
Γ
(
α−1

2

)
Γ
(

1−α+iw
2

)( T√
m

)α−1
. (2.16)

When α = 1, close to the boundary of IR geometry, we have

a(r) = S(ω, T ) +R(ω, T ) log r . (2.17)

In this case there is a logarithmic anomaly for the source term. A proper way to get the
Green’s function is to consider a double trace deformation (e.g. [41]) and then the Green’s
function depends on the Landau pole of the theory. We will not discuss the poles for this
case. As we shall show in the next subsection, close to α = 1 the poles from UV Green’s
function slightly mismatch the IR results α→ 1 which should be related to this anomaly.

From the above formula (2.15) and (2.16), we find the poles of the IR Green’s function:

• When α < 1, the IR poles are located at iω
2πT = 2n − 1 − α with positive integer

n = 1, 2, . . . .

• When α > 1, the IR poles are located at iω
2πT = 2n − 1 + α with positive integer

n = 1, 2, . . . .

Finally we make some comments on the finite k effect on the IR Green’s function. There
is no general analytical solution from (A.13) at finite k in the IR regime. Nevertheless,
one can get useful information about the location of QNMs when k ∼ ω. Note that to
solve (A.13), we should first take the near extremal limit r0 � m as well as near horizon
r − r0 � m, then take the limit of the outer boundary of IR via r/r0 → ∞. In the limit
r − r0 � m we have u � f in the IR. When k ∼ ω � m, we have k2u � ω2f . At
small momentum k ∼ ω, the equations (2.11) get corrected at order k2/m2. Therefore it
is expected that the location of quasi-normal modes are of almost the same value as the
zero frequency result, which is similar to the AdS2 results [15, 16, 18]. Here we will not
consider the case when k becomes even larger for simplicity. We shall call the poles at
small frequency k ≤ ω of the above behavior as IR modes. In the next section we will show
the comparison between the IR poles discussed above and the corresponding QNMs of UV
pole computed from numerics.
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3 Breakdown of hydrodynamics from pole collision

In this section, we will study the breakdown of hydrodynamic system in the previous
section from pole collision in the charge diffusive sector and also examine the related upper
bound of the charge diffusion constant Dc. We focus on the neutral hydrodynamic system
near semi-local quantum liquid state which is dual to the geometry that is conformal to
AdS2×R2. We also comment on the high temperature effects on convergence radii and
diffusion upper bound.

We consider the fluctuations for gauge fields δAt, δAx, δAr which decouple from
other matter field fluctuations. In momentum space δAµ = aµ(r)e−iωt+ikx , the dynamical
equations are given by (A.9) in appendix A.2. Using the gauge invariant quantity a ≡
at + ω

k ax, we have the EOM for a as

a′′ +
(

ω2f ′

−ω2f + k2u
− ω2fu′

u(−ω2f + k2u) + f ′

f
+ αφ′

)
a′ +

(
ω2

u2 −
k2

uf

)
a = 0 . (3.1)

With the infalling boundary condition near the horizon, we obtain the retarded Green’s
function. The quasi-normal modes of the dual system [42, 43] can be obtained from the
Green’s function, i.e. the sourceless condition at the boundary. In the remaining part, we
will show our numerical results on pole collision and discuss related physics with different
IR gauge coupling constant.

3.1 Pole collision with a slow mode

In systems with a long-lived non-hydrodynamic slow mode, the equilibrium time is con-
siderably longer than Plankian time, i.e. τeq � T−1. This non-hydrodynamic mode slows
down the hydrodynamic system’s return to equilibrium. The low frequency dependence
of the transport typically has a Drude behavior. The slow mode has appeared in previ-
ous models, such as systems with momentum conservation weakly broken [26], holographic
quantum critical points with irrelevant deformations [24, 25], holographic probe branes [36],
and so on.

In this subsection, we will show that the slow mode also shows up in our model at low
temperature when α > 1. There is a pole collision between the diffusive hydrodynamic
mode and the gapped slow mode, after which they translate into two sound-like modes,
namely “diffusion-sound crossover” [26]. Note that the sound-like modes only exist starting
from a finite keq and they are not exactly hydrodynamic modes.

In the following, we consider α = 2 as an example. In this case the effective gauge
coupling constant in the IR is geff ∼ T/m at low temperature. The electrical conductivity,
susceptibility and charge diffusion constant are shown in table 2. It is interesting to note
that we have σ ∼ (m/T )2 at low temperature which reminds us the resistivity in a Fermi
liquid. We have shown in section 2 that at low temperature Dc � v2

BτL, with v2
B →

16π2T 2

m2 , τL = 1
2πT . We will discuss the upper bound on charge diffusion using the local

equilibration scales from pole collision.
Both the hydrodynamic and the first non-hydrodynamic modes are quasi-normal modes

of the system, which are shown in figure 1, with α = 2 and T/m ' 1.34 × 10−4. The left
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σ χ Dc T � m

α = 2 m2

8π2T 2
3m2(m2−8π2T 2)
2
√

2m3−64π3T 3

√
2m3−32π3T 3

12m2π2T 2−96π4T 4 Dc → m
6
√

2π2T 2

Table 2. The electrical conductivity σ, susceptibility χ and charge diffusion constant Dc for α = 2.
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Figure 1. Pole collision between the hydrodynamic mode (blue dots) and the non-hydrodynamic
slow mode (orange dots) for α = 2 and T/m ' 1.34× 10−4. They collide at (keq,−iωeq) (red star)
and translate into two sound-like modes with opposite real parts, in green and red dots. The black
lines are analytic dispersion relations obtained from telegrapher equation.

and right plots are for the imaginary and real parts of frequencies of the lowest two quasi-
normal modes as a function of real k. The two modes collide at a real k and a pure
imaginary ω. For small momentum, these two quasi-normal modes are a hydrodynamic
mode and the first non-hydrodynamic mode (i.e. a slow mode) respectively. Moreover,
the hydrodynamic mode is diffusive, i.e. ω = −iDck

2 while the non-hydrodynamic mode
behaves as ω = −iΓ + iDck

2. In the full finite k ≤ keq regime, both the hydrodynamic
mode and the first non-hydrodynamic modes are pure imaginary. These two modes obey
the “semicircle law” and display pole collision at (keq,−iωeq) where they merge into two
sound-like modes with opposite real parts. In the large k � keq limit, the real parts are
linear in k, i.e. Re(ω) = ±vsk where vs is the velocity of the sound-like waves.

For α = 2, when ω � T , the quasi-normal modes can be derived analytically from the
matching method as discussed in appendix B. It turns out that the dynamics of both the
hydrodynamic mode and the first non-hydrodynamic slow mode are governed by a simple
telegrapher equation

ω2 + i

τ
ω − Dc

τ
k2 = 0 , (3.2)

from which we can obtain the dispersion relations

ω± = − i

2τ
(
1±

√
1− 4Dcτk2

)
, (3.3)

where Dc and τ are defined in (B.14). The dispersion relations (3.3) are shown in black
lines in figure 1, from which we find that the telegrapher equation fits the first two quasi-
normal modes perfectly well when |ω| � T . We can get a lot of information from the
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telegrapher equation:7

• The pole collision between the hydrodynamic diffusion mode and the slow mode oc-
curs at kc = 1√

4Dcτ
, ωc = − i

2τ . Their absolute values define equilibrium momentum
and equilibrium frequency as

(keq , ωeq) =
( 1√

4Dcτ
,

1
2τ

)
, (3.4)

which is labeled as a red star in figure 1.

• When k ≤ keq, ω± are imaginary and represented by the black curves in the left
subdiagram.

• When k > keq, Im(ω±) = − i
2τ remain a constant and Re(ω±)→ ±vsk with vs =

√
Dc
τ

when Dcτk
2 � 1, indicating that these are two sound-like modes.

The convergence radii of hydrodynamic expansions are set by the scales defined from the
pole collision point, i.e. (keq, ωeq) =

(
1√

4Dcτ
, 1

2τ

)
, from which we have the equilibrium

time and the equilibrium velocity [15]

τeq = 1
ωeq

, veq = ωeq
keq

. (3.5)

It is interesting to note that we have veq = vs. At low temperature, for the case α = 2 that
we considered,

v2
eq ∼ 1 , τeq ∼

m

T 2 . (3.6)

We see that the equilibration velocity veq is a constant and is much larger than the butterfly
velocity vB. Meanwhile, the equilibration time is much longer than the Planckian time [44,
45] or the Lyapunov time of the system.

For the charge diffusion constant at low temperature, on the one hand, it is bounded
from below Dc � v2

BτL, on the other hand, from (3.4) and (3.5) we see that the diffusion
constant is bounded from above as

Dc .
1
2 v

2
eq τeq . (3.7)

The symbol “'” here indicates that Dc saturates this bound in the quantum critical re-
gion. This is a typical feature of diffusion upper bound with a slow mode as the first
non-hydrodynamic mode in the system. We will discuss the related universality in subsec-
tion 3.3.

7Here we focus on the real momentum behavior. In appendix C the quasi-normal modes with respect to
complex momentum near equilibrium momentum are discussed.
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σ χ Dc T � m

α = 0 1 m
2
√

2 + πT ( m
2
√

2 + πT )−1 Dc → 2
√

2
m

Table 3. The electrical conductivity σ, susceptibility χ and charge diffusion constant Dc for α = 0.

3.2 Pole collision with an IR mode

In the previous subsection, we have shown that the breakdown of the hydrodynamics is due
to the presence of a slow mode which collides with the hydrodynamic diffusion mode. By
tuning the bulk gauge coupling constant in the IR, i.e. the parameter α, we show there are
situations that the first non-hydrodynamic mode is an IR pole in GIR of the strongly coupled
semi-local quantum liquid which is described by the geometry conformal to AdS2×R2 . For
the case that the quantum critical states are described by the IR geometry of AdS2×R2,
the first non-hydrodynamic mode has been shown to be always an IR pole. Here we observe
that this is true only for a special regime of the IR effective gauge coupling.

In this subsection we focus on the case α = 0 in a parallel description with subsec-
tion 3.1. Now the effective gauge coupling in the IR is geff ∼ 1. The electrical conductivity
σ, susceptibility χ and charge diffusion constant Dc are shown in table 3. We also have
Dc � v2

BτL at low temperature in this case. The quasi-normal modes are shown in figure 2.
The hydrodynamic diffusive mode (in blue dots) exist for a large regime of momentum. It
obeys the dispersion relation (in black line) ω = −iDck

2 with

Dc '
2
√

2
m

. (3.8)

The non-hydrodynamic modes are a tower of pure imaginary IR modes located at Im[ω] =
−n · 2πT , with n = 1, 3, 5 . . .. As shown in section 2.1, the poles of IR Green’s function is
almost independent of k for small momentum k ≤ ω. Therefore, these non-hydrodynamic
modes of the dual system have a clear origin from the semi-local quantum liquid, due to
the deep IR geometry that is conformal to AdS2×R2. This statement can be generalized
to a series of α as illustrated in figure 4 in the next subsection, which show that the
non-hydrodynamic excitations come from the dynamics of IR quantum critical physics.

As shown in figure 2, the hydrodynamic diffusive mode collides with the first non-
hydrodynamic mode with an IR origin at (keq,−iωeq), which is indicated by a red star as
we zoom in the region bounded by a gray circle. The collision occurs at real k where the
diffusive mode and first IR mode merge into two complex modes with the same imaginary
part and opposite real parts (figure 2). They split back into the diffusive mode and the IR
mode. These behaviors are different from the observations in [15, 16, 18] where the collision
occurs at complex momentum and frequency. The behaviors of quasi-normal modes for
the complex momentum close to the equilibrium momentum are shown in appendix C.

The most interesting character is displayed in the scaling behaviors of the equilibration
scales. As T/m→ 0, we have numerically confirmed that

ωeq ∼ T , k2
eq ∼ mT (3.9)
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Figure 2. Pole collision between the hydrodynamic diffusive mode and the first non-hydrodynamic
mode (an IR mode) when T/m ' 1.34×10−5 and α = 0. The right plots are the real and imaginary
parts of frequencies of these modes as a function of k close to the collision points.

and therefore
v2

eq ∼
T

m
, τeq ∼

1
T
. (3.10)

One can immediately see that the equilibration velocity is much larger than the butterfly
velocity, while the equilibrium time is of the same order as the Lyapunov time or Planckian
time. As a result, we have Dc ∼ v2

eqτeq. We numerically compute the ratio Dc/(v2
eqτeq) as

a function of T/m, as shown in figure 3. It is apparent that Dc . v2
eqτeq always hold and

Dc → v2
eqτeq as T/m→ 0 . (3.11)

Similar bounds have been observed in heat diffusion and crystal diffusion [15, 16, 18]
with the IR geometry of AdS2×R2. Here we emphasize that, in all these examples the
diffusion constants are independent of T when such pole collision occurs.

3.3 More on pole collision for general α at low temperature

We have shown two kinds of pole collisions in the previous two subsections for two different
choices of α in (2.1).8 The hydrodynamic diffusive mode collides with a slow mode with
a long lifetime (τT � 1) when α = 2 (or geff ∼ T/m) where the dispersion relation
obeys the semi-circle law, while collides with an IR mode (α = 0, or geff ∼ 1) which is
the lowest pole of the retarded Green’s function of the conformal to AdS2×R2 geometry.
These two different kinds of pole collisions indicate two different origins of breakdown of
hydrodynamics at low temperature. In this subsection we study the pole collision via
tuning the IR effective gauge coupling constant (i.e. varying α) and discuss the related
diffusion upper bound.

8We focus on the cases α ≥ 0 in this subsection and comment on the case α < 0 in subsection 3.5.
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Figure 3. The charge diffusion constant Dc is bounded from above by the equilibrium time and
equilibrium velocity defined from pole collision, as T/m→ 0.

Both the hydrodynamic and the first non-hydrodynamic modes are the poles of the
retarded Green’s function, i.e. the quasi-normal modes. In the left plot of figure 4, we
show the behavior of the first three quasi-normal modes at zero momentum as a function
of α. The black dotted points are the quasi-normal modes obtained numerically from the
retarded Green’s function, while the red lines are the poles obtained analytically from the IR
Green’s function GIR(ω) in the conformal to AdS2×R2 geometry, and the dashed blue line
is the quasi-normal modes from the near-far matching calculation as shown in appendix B.

More explicitly, the IR Green’s function GIR(ω) at zero momentum in the conformal
to AdS2×R2 geometry has been calculated in section 2.1, and we find a tower of IR poles
at pure imaginary values iω

2πT = 2n − 1 − α for α < 1, iω
2πT = 2n − 1 + α for α > 1 with

n = 1, 2 . . .. The lowest three (for α < 1) or two (for α > 1) modes of these infinite IR
poles are represented in red lines in the left plot of figure 4, which coincides with the UV
poles from numerical results represented in black dots.9 Note that for α > 1 the lowest
IR mode starts from iω

2πT = 1 + α, which is not the lowest non-hydrodynamic mode. This
is due to the appearance of a slow mode when α increases, whose lifetime is much larger
than 1/T . The slow mode can be calculated from a near-far matching method as shown in
appendix B. The analytical result on ω∗ from (B.14) is presented in the blue line in the left
plot of figure 4, which matches very well with the black dots obtained numerically for α > 1.

In the right plot of figure 4, we show the frequency of the first non-hydrodynamic
mode as a function of momentum. Note that for 0 < α < 1 we only plot the curves up
to special k’s because they collide with the hydrodynamic pole almost at the locations we
stopped. Different from the AdS2×R2 case in [15, 16, 18], now the non-hydrodynamic
pole descending from the IR mode discussed in subsection 2.1 has nontrivial dependence
on k, especially for 0 < α < 1. Although we do not have the IR Green’s function for
general k since it is not possible to get the analytical solution and it is also numerically
difficult because the separation of scales is highly nontrivial, nevertheless we shall name
these modes as IR modes as they coincide with the analytical results on IR modes in regime
k < ω and they are naturally inherited from the IR modes for general k.

9Note that when α = 1, there seems a derivation between numerical result and analytical result. As we
have discussed in section 2.1, when α = 1, there is a logarithmic term to define the dual Green’s function
in IR and the analytical results should be modified due to this logarithmic term.
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Figure 4. Left: the first three lowest quasi-normal modes at zero momentum (black and blue dots)
as a function of α at low temperature T/m ' 1.34 × 10−7. The red lines are the IR poles from
the IR Green’s function while the blue line is the pole obtained from a matching method shown in
appendix B. Right: the frequency of the first non-hydrodynamic quasi-normal mode as a function
of momentum for α = −1,−0.8,−0.6,−0.4,−0.2, 0, 0.1, 0.2, 0.4 from top to down at the same low
temperature as the left plot.
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Figure 5. The imaginary and real parts of frequencies of the hydrodynamic and IR modes at low
temperature T/m = 1.34× 10−5 for α = 1/10.

We consider an example with α = 1/10 at low temperature T/m = 1.34×10−5. In this
case the first non-hydrodynamic mode is an IR mode. The behavior of the hydrodynamic
and IR modes are shown in figure 5. Similar to the α = 0 case, the collision also occurs at
real momentum and pure imaginary frequency. The difference is that before the collision,
for α = 1/10 the frequency of the IR mode has a nontrivial dependence on k, while for α = 0
the frequency is almost independent of k. Nevertheless we still have similar scaling behavior
of local equilibrium scales and diffusion upper bound as we will discuss in the following.
When we further increase k, we will see the second collision with the second IR pole.

The collision between the hydrodynamic mode and non-hydrodynamic mode indicates
the scales (ωeq, keq) where hydrodynamics breaks down. Similar to the discussion in pre-
vious subsections, we could define the equilibrium time τeq and equilibrium velocity veq
for each value of α. In the following we discuss the scaling behaviors of (veq, τeq) near the
quantum critical state with respect to temperature.
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• The hydrodynamic pole collides with a slow mode. This occurs when Tτ � 1,10
the trajectory of the hydrodynamic mode and slow mode obey the telegrapher equa-
tion (B.13), (B.14). From the pole collision we have

(keq, ωeq) =
( 1√

4Dcτ
,

1
2τ

)
. (3.12)

From the formula for Dc and τ in (B.14), we obtain the following scaling behavior at
low temperature

ωeq ∼ keq ∼ m
(
T
m

)α
for α > 1

ωeq ∼ T , keq ∼ m
(
T
m

) 1+α
2 for α ≤ 1 while Tτ > 1

, (3.13)

from which we have
veq ∼ T 0 , τeq ∼ mα−1

Tα for α > 1

veq ∼
(
T
m

) 1−α
2 , τeq ∼ 1

T for α ≤ 1 while Tτ > 1
; (3.14)

• The hydrodynamic pole collides with an IR mode. This occurs when α < 1, and the
locations of the pole collision can only be obtained numerically. We have checked
numerically and found that

ωeq ∼ T , keq ∼ m
(
T

m

) 1+α
2

(3.15)

from which we have

veq ∼
(
T

m

) 1−α
2

, τeq ∼
1
T
. (3.16)

The combinations of equilibrium velocity and equilibrium time give the scaling of v2
eqτeq ∼

mα−1/Tα which is of exactly the same order as the charge diffusion constant Dc at low
temperature as shown in table 1. There are two special cases with α = 0 as the first one, and
in such a system the scaling ωeq ∼ k2

eq ∼ T shares similarities with the observations in [15,
16, 18]. Another special example is when α = 1, the scaling ωeq ∼ keq ∼ T is similar to the
hydrodynamic system dual to the Schwartzschild black hole at high temperature [4]. Here
we also have different scalings of the equilibrium frequency and equilibrium momentum
and these scalings depend crucially on the parameter α which characterize the IR gauge
coupling constant g2

eff ∼ (T/m)α.
In the low temperature limit, for arbitrary α ≥ 0 the behavior of Dc/(v2

eqτeq) is shown
in the left plot of figure 6. We found that in the case of pole collision with an IR mode
Dc/(v2

eqτeq) decrease sharply from 1 when α = 0, and gradually reaches 1/2 as a feature of
the slow mode phase via a crossover. When α > 1, the case of pole collision with a slow
mode, Dc/(v2

eqτeq) equals to 1/2. The right plot in figure 6 shows the equilibrium velocity
is always smaller than the speed of light.

10Note that this happens at α > 1. However, for the crossover regime α ∼ 1 the IR pole and the slow
mode are of the same order, and the telegrapher equation seems also apply. Therefore we also discuss the
scaling behavior for α < 1 in this case.
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Figure 6. Two quantities Dc/(v2
eqτeq) (left) and veq (right) as a function of α at low temperature

T/m ' 3× 10−6. The diffusion upper bound is always satisfied for α ≥ 0.
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Figure 7. The convergence radii ωeq/(2πT ) and keq/(2πT ) as a function of α (i.e. the IR effective
gauge coupling) at low temperature T/m ' 3× 10−6.

We have found that effects of α, i.e. the IR effective gauge coupling constant g2
eff ∼

(T/m)α, plays a prominent role in the origin of the first non-hydrodynamic mode. The
equilibrium frequency and momentum as function of α is shown in figure 7. Note that for
α < 1, although the first non-hydrodynamic mode is an IR pole, ωeq/(2πT ) depends on α
in a non-trivial way. This is due to the fact that now the non-hydrodynamic pole depends
on k as shown in figure 4 and is different from the cases of critical states dual to AdS2
in [15, 16, 18] where ωeq/(2πT ) only depends on the IR conformal dimension of the density
operator. Here at finite k we do not have a clear notion of conformal dimension in IR at low
temperature due to the lack of analytical solution as discussed in section 2.1. Moreover,
the convergence radius of the diffusion dispersion relation, which is given by keq/(2πT ),
is monotonically decreasing when we increase α or equivalently decrease the IR effective
gauge coupling geff. This behavior is consistent with the intuition that hydrodynamics
works better for a strongly coupled quantum many body system. Moreover this behavior
is independent of the nature of the first non-hydrodynamic mode at low temperature. Note
that monotonic behavior for the convergence radius as functions of coupling has been found
in [11] using the experimental data for fluids. There are also studies in [12, 17] showing
the non-monotonic dependence of the coupling strength in the theory. It is interesting to
understand the dependence of hydrodynamic convergence on the coupling constant better.
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3.4 Comments on pole collision at general temperature

The above discussions are mainly for low temperature where the extremal near horizon
geometry is conformal to AdS2×R2. In this subsection we briefly comment on the behavior
of pole collisions beyond the low temperature regime.

We focus on two special cases, i.e. α = 2 and α = 0. Their low temperature behaviors
have been studied in detail in sections 3.1 and 3.2. In the following we tune the temperature
to study the breakdown of hydrodynamics and the upper bound for the diffusion constant.
In figure 8, we show the behavior of the equilibrium frequency and equilibrium momentum
as function of T/m. We find that when it is a slow mode (i.e. top plots) as the first
non-hydrodynamic mode at low temperature, the convergence radius keq/(2πT ) increases
when we increase T/m, while when it is an IR mode (i.e. down plots) at low temperature,
the convergence radius decreases when we increase T/m. Note that in the plots the black
dot is the result for the Schwartzschild black hole since at T/m = 1/(23/2π) the dilatonic
black hole reduces to a Schwartzschild black hole. For α = 2, below T/m ' 0.15, the
collision occurs at real momentum while above this value the collision occurs at complex
momentum.11 We have ωeq ∼ keq ∼ T 2/m at small T while we have ωeq ∼ keq ∼ T at large
T . For α = 0, the collision always occurs at real momentum. The equilibrium momentum
behaves as keq ∝

√
Tm at low temperature while keq ∝ T at high temperature.

The upper bound for the diffusion constant can be examined for general temperature.
In figure 9 we show the ratio Dc/(v2

eqτeq) as a function of T/m for these two choices of
values of α and find that the diffusion upper bound is always satisfied. For the case α = 2,
there is an interesting “non-smooth” behavior for Dc/(v2

eqτeq) close to T/m ' 0.15 at which
the location of pole collision changes from real momentum to complex momentum. It is
interesting to check if this behavior is typical when the location of collision changes from
real momentum to complex momentum.

3.5 Comments on pole collision for negative α

Finally we briefly comment on the behavior of the pole collision for negative α at low
temperature. Note that the effective gauge coupling in the IR at low temperature is of the
form g2

eff ∼ (T/m)α. When α > 0 it correctly captures the charge screening effect while for
α < 0 it departs from the intuition of the charge screening effect. Nevertheless we consider
one simple example of negative α = −10−4 to analyze the pole collision at low temperature
for complementary.

Similar to the discussions for α ∈ [0, 1), we now have the first non-hydrodynamic mode
inherited from the IR modes. In figure 10, we show the frequencies of the hydrodynamic
and the first non-hydrodynamic modes as a function of real k at low temperature T/m =
4.23 × 10−6. We find that different from the cases of α ≥ 0, now we do not have pole
collision at real momentum.

11This is consistent with the following observation on the slow mode at zero momentum. When we
increase the temperature up to a certain temperature, the pure imaginary slow mode splits into a pair of
complex QNMs with opposite real parts while same imaginary part. Then the poles moves up when we
further increase the temperature. When T/m ≥ 1, the QNMs will be almost fixed and not sensitive to the
temperature any more.
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Figure 8. The equilibrium momentum and equilibrium frequency as a function of T for α = 2
(top two) and α = 0 (down two). The black dot is for the temperature at which the dilaton
becomes trivial, i.e. the Schwartzschild black hole. Note that at high temperature, when α = 2,
keq/(2πT )→ 1.107 while when α = 0, keq/(2πT )→ 0.148.
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Figure 9. Dc/(v2
eqτeq) as a function of T for α = 2 (left) and α = 0 (right). For α = 2, interesting

“non-smooth” behavior of Dc/v
2
eqτeq was observed when the location of collision changes from real

momentum to complex momentum.

Now the pole collision occurs at complex value of momentum. Close to the collision
point keq, in figure 11 we plot the frequencies as a function of the phase of the momentum
with fixing modulus |k| with |k| < keq, |k| = keq, |k| > keq respectively. The orange
curve represents the IR mode while the blue curve is the hydrodynamic mode at complex
momentum which form a big closed curve and we only show a part of it closed to the location
of pole collision. The arrow is the evolution when we increase the phase of the complex
momentum from 0 to π.12 We find that the behavior of frequencies are slightly different

12Note that different from [4], we use the phase ϕ in k = |k|eiϕ instead of k2.
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Figure 10. Frequencies of the hydrodynamic mode (blue) and the first IR mode (orange) at low
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one close to k = keq which shows that there is no pole collision for real k.
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Figure 11. The complex frequencies of the hydrodynamic mode (blue) and the lowest IR mode
(orange) by tuning the phase of the complex value of k at low temperature T/m = 4.23 × 10−6

for α = −10−4. The arrow indicates the value of the phase from 0 to π. The collisions occur at
(k = keqe

iϕk , ω = ωeqe
iϕω ) with keq/(2πT ) ' 115.3266 and ωeq/(2πT ) ' 1, while ϕk ' 0.0036π

and 0.9964π, ϕω ' ∓0.4964π. Note that ϕω ' ϕk − π/2 and Dc/(v2
eqτeq) = 0.9994. From

left to right, the modulus of the complex momentum are fixed in each plot to be |k|/(2πT ) =
115.3236 (left), 115.3266 (middle), 115.3296 (right).

from the case shown in appendix C, there is no obvious topological change. However,
there is an interesting reconnection of quasi-normal modes crossing keq. The hydrodynamic
mode and non-hydrodynamic mode exchange their positions after the collision and this is
the reason that in figure 10 we use different colors for a single curve. Note that similar
behavior has been observed before in [12, 18]. At the collision points, the phases of the
complex frequency ϕk and complex momentum ϕω satisfy ϕω ' ϕk−π/2. We have checked
that the diffusion upper bound is satisfied.

The above behavior is expected to be quite general for any negative value of α
since we have checked that for real k the behaviors of the hydrodynamic mode and non-
hydrodynamic mode are quite similar to the plot shown in figure 10. For any negative
α, the first non-hydrodynamic mode is expected to be an IR mode and its pole collision
with the hydrodynamic mode occurs at complex momentum. One might also expect that
the diffusion upper bound is always saturated for any negative α similar to the example
we have checked in this subsection, then from the left plot in figure 6, across α = 0 one
finds similar “non-smooth” behavior of Dc/(v2

eqτeq) as the left plot in figure 9. It would be
extremely interesting to study the physical conditions under which that the pole collision
occurs at real or complex momentum.
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4 Conclusion and discussion

We have studied the breakdown of diffusive hydrodynamics in holographic neutral states
described by the generalized Gubser-Rocha model with linear axion fields. The holographic
systems have near horizon geometries conformal to AdS2×R2 in the extremal limit which
are known as special semi-local quantum critical states [40]. We introduced a general gauge
coupling which is characterized by a parameter α via g2

eff = e−αφ where φ is the dilaton field.
The convergence radius of hydrodynamic expansion is determined by the pole collision be-
tween the hydrodynamic and lowest non-hydrodynamic modes. We focused on the low
temperature physics where the effective gauge coupling near the horizon g2

eff ∼ (T/m)α.
We found that when α > 1, the first non-hydrodynamic mode which collides with the
charge diffusive mode is a slow mode. When α < 1, the first non-hydrodynamic mode
is the lowest IR pole. This observation indicates that the origin of universality for the
breakdown of charge diffusive hydrodynamics close to a quantum critical state crucially
depends on the effective gauge coupling strength. In other words, the breakdown of hydro-
dynamics in a quantum critical phase only exhibits partially universality being inherited
from the quantum critical groundstate. Moreover, we found that at low temperature the
pole collision occurs at real momentum for α ≥ 0 while complex momentum for negative
α. At high temperature, we checked two typical examples with different origins of lowest
non-hydrodynamic mode at low temperature and found that the pole collision occurs at
real momentum for α = 0 and complex momentum for α = 2.

The different origins of the non-hydrodynamic modes at low temperature result in
totally different scaling behaviors of the (ωeq, keq) which characterize the convergence radius
of the dispersion relation of hydrodynamics in momentum space, i.e. (3.13) and (3.15).
Following the proposals in [15], we define the equilibrium velocity veq = ωeq/keq and the
equilibrium time τeq = 1/ωeq from the local equilibration scales which are set by pole
collision. At low temperature, when the non-hydrodynamic mode is a slow mode, we found
that the local equilibrium time is always larger than the Planckian time or Lyapunov time,
and the equilibrium velocity is larger than the butterfly velocity, and the diffusion upper
bound is automatically saturated as Dc = 1

2v
2
eqτeq. When the non-hydrodynamic mode is

an IR mode, we found that the local equilibrium time is of the same order as the Planckian
time or Lyapunov time, while the equilibrium velocity is larger than the butterfly velocity,
and now the upper bound for the diffusion constant becomes Dc . c(α)v2

eqτeq with c(α) an
monotonically decreasing function starting from c(0) = 1 to c(1) = 1/2.

We also studied the effect of the IR gauge coupling constant at low temperature and
the temperature effect for fixed α on the convergence radius of hydrodynamic diffusion
dispersion relations. We found that at low temperature, when we decrease the IR gauge
coupling constant, the convergence radius keq/(2πT ) monotonically decreases. For fixed α,
the behavior of convergence radius keq/(2πT ) with respect to T/m depends on the origin of
the first non-hydrodynamic mode at low temperature. When the first non-hydrodynamic
mode is a slow mode, keq/(2πT ) increases when we increase the temperature, while when
the first non-hydrodynamic mode is an IR mode, keq/(2πT ) decreases when we increase
the temperature. In both cases, keq/(2πT ) approaches a constant at high temperature.
Moreover, the upper bound for the charge diffusion constant is always satisfied at any
temperature.
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For the case that the hydrodynamic pole collides with an IR mode, we have the follow-
ing interesting observations compared with the results from hydrodynamics near AdS2×R2

quantum critical points [15]. Firstly, in our model the extremal IR geometry is conformal
to AdS2×R2 and this results in zero entropy at zero temperature while still has semi-local
quantum critical behavior. However, except the case of α = 0 now in general the first
non-hydrodynamic mode has nontrivial dependence on k/T for larger k as shown in the
right plot of figure 4, this is different from the AdS2×R2 case. Secondly, the equilibrium
frequency is always proportional to T while the dependence of equiblirium momentum on
T depends on α. Interestingly when α = 0 we have the diffusion constant independent of
T/m at low temperature and ωeq ∼ k2

eq ∼ T which is quite similar to the results in [15].
Thirdly, in our model at low temperature the pole collision could occur for both complex
momentum if α < 0 and real momentum if 0 ≤ α < 1, while the pole collision only occurs
for complex momentum in [15]. This might be related to the fact that we focused on the
charge diffusive hydrodynamics. It would be interesting to study the breakdown of other
diffusion dispersion relations in the hydrodynamic systems we considered. Finally, the
upper bound for the diffusion constant is always satisfied in both these two models.

The holographic effective field theory for diffusive hydrodynamics has been studied
in [46, 47]. The convergence of the diffusive hydrodynamics should put a special cutoff
scale for the effective field theory which might be able to manifest in the action. Therefore,
it would be interesting to derive the effective field theory for our model since it incorpo-
rated two different origins of non-hydrodynamic modes with a tuning parameter α which
results in different convergence radius. Moreover, for the case of pole collision with a slow
mode, there exists a quasi-hydrodynamic picture [26, 37] as well as an effective field theory
description [48]. It would be interesting to construct an analogous description to include
the IR mode into the effective theory.

The holographic charge diffusive hydrodynamics has been understood through a semi-
holographic description in terms of the IR degrees of freedom together with a Goldstone
boson which arises from the spontaneous breaking of U(1) × U(1) down to the diagonal
U(1) [49]. Our study indicates that at low temperature the IR effective gauge coupling
g2
eff ∼ (T/m)α seems to control the coupling strength between IR gauge fields and the
Goldstone boson. When g2

eff > T/m the IR gauge fields play an important role and the first
non-hydrodynamic mode is an IR mode, while when g2

eff < T/m the first non-hydrodynamic
mode depends on all the energy scales since (B.14) is an integration along the whole radial
direction. It would be very interesting to construct explicitly such a semi-holographic
description.
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A Equations of motion

In this appendix, we show the equations of motion for the background and the fluctuations.

A.1 Equations of background

For the action (2.1) discussed in section 2, we have the following equations of motion

Rµν −
1
2gµν

[
R− 1

4e
αφF 2 − 3

2(∂φ)2 + 6 coshφ− 1
2

2∑
I=1

(∂ψI)2
]

= 1
2e

αφFµρF
ρ
ν + 3

2∂µφ∂νφ+ 1
2

2∑
I=1

(∂µψI∂νψI) ,

∇µ(eαφFµν) = 0 ,

∇2φ− α

12e
αφF 2 + 2 sinhφ = 0 ,

∇2ψI = 0 .

(A.1)

For the ansatz (2.2) of the background, we have the equations

u′′ +
(
− f

′2

2f2 + 3
2φ
′2
)
u− m2

f
= 0 ,

f ′′ + 3
2fφ

′2 − f ′2

2f = 0 ,

uf ′2

f2 + 2f ′u′
f
− 3uφ′2 + 2m2

f
− 6(eφ + e−φ) = 0 ,

φ′′ + (u
′

u
+ f ′

f
)φ′ + 1

u
(eφ − e−φ) = 0 .

(A.2)

The first three equations are from the Einstein equation while the last equation is from
the equation of motion for dilaton field. There are four equations for three fields, among
which only three are independent. One can check that, for example, the first equation can
be obtained from linear combination of the other equations and the derivative of the first
order equation from Einstein equation.

Note that in this work, we focus on vanishing chemical potential cases, i.e. At = 0. For a
nonzero At, i.e. finite chemical potential, there is an analytical solution when α = 1 [28, 29],

u(r) = r2g(r)h(r), f(r) = r2g(r) ,

h(r) = 1− m2

2(Q+ r)2 −
(Q+ r0)3

(Q+ r)3

(
1− m2

2(Q+ r0)2

)
, g(r) =

(
1 + Q

r

) 3
2
,

At(r) =
√

3Q(Q+ r0)
(

1− m2

2(Q+ r0)2

)(
1− Q+ r0

Q+ r

)
,

φ(r) = 1
3 log (g(r)) ,

(A.3)

while for general α one needs to solve the system numerically.
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The nontrivial dilatonic neutral black hole solution (2.3) is the case Q = −r0 + m√
2

of (A.3). There exists another neutral black hole solution, i.e. the well-known AdS4
Schwartzschild solution with axion charge, which has trivial dilaton and can be viewed
as the case Q = 0 of (A.3). It takes the following form,

u = r2
(

1− r3
0
r3

)
− m2

2

(
1− r0

r

)
, f = r2, φ = 0 . (A.4)

For the dual theory of the background (A.4), the electrical conductivity, susceptibility
and diffusion constant are as follows [29],

σ = 1 , χ = 1
6
(
4πT +

√
16π2T 2 + 6m2

)
, Dc = 6

4πT +
√

16π2T 2 + 6m2
. (A.5)

Note that different from the quantities for the background of (2.3), here they do not depend
on the parameter α due to the fact that in (A.4) we have trivial dilaton field. The butterfly
velocity and Lyapunov time are

v2
B = 6πT

4πT +
√

16π2T 2 + 6m2
, τL = 1

2πT . (A.6)

Therefore, we have
Dc

v2
BτL

= 2 . (A.7)

This is quite different from the dual theory of the dilatonic black hole introduced in sec-
tion 2.

A.2 Equations of fluctuations

At zero density, the fluctuations of gauge field and metric field decouple from each other.
We focus on the charge diffusive hydrodynamics and will consider the fluctuations of gauge
field in momentum space. Without loss of generality, we make the Fourier transformation

δAµ = aµ(r)e−iωt+ikx , (A.8)

and obtain the dynamical equations for the fluctuations. The fluctuations {at, ax, ar} and
ay are decoupled due to they have different parity when y → −y. The first three fluctuations
are parity even and contribute to the diffusive process in the hydrodynamic limit, while
the last fluctuation is parity odd and do not consist hydrodynamic mode.

A.2.1 Diffusive channel

The equations of motion for the fluctuations at, ax, ar are

a′′t +
(
f ′

f
+ αφ′

)
a′t + iωa′r −

k2

uf
at −

kω

uf
ax + iω

(
f ′

f
+ αφ′

)
ar = 0 ,

a′′x +
(
u′

u
+ αφ′

)
a′x − ika′r + ω2

u2 ax + kω

u2 at − ik
(
u′

u
+ αφ′

)
ar = 0 ,

iω

u
a′t + ik

f
a′x +

(
k2

f
− ω2

u

)
ar = 0 .

(A.9)
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Note that these equations are invariant under U(1) gauge transformation

δAµ → δAµ − ∂µΛ , Λ = e−iωt+ikxλ(r) . (A.10)

One can always choose the radial gauge ar = 0 to do the calculation.13 In this gauge, the
above equations reduce to

∂r
(
feαφa′t

)
− eαφ

u
k (ωax + kat) = 0 ,

∂r
(
ueαφa′x

)
+ eαφ

u
ω (ωax + kat) = 0 ,
ω

u
a′t + k

f
a′x = 0 .

(A.11)

Another way to solve the equations (A.9) is to use the U(1) gauge invariant vari-
ables [42] which are defined as

a = at + ω

k
ax , b = ar + ia′x

k
, (A.12)

we have the decoupled equations for these variables

a′′ +
(

ω2f ′

−ω2f + k2u
− ω2fu′

u(−ω2f + k2u) + f ′

f
+ αφ′

)
a′ +

(
ω2

u2 −
k2

uf

)
a = 0 ,

b′′ +
(3u′
u

+ αφ′
)
b′ +

(
u′′

u
+ αφ′′ + u′2

u2 + 2αu′φ′
u

+ ω2

u2 −
k2

uf

)
b = 0 .

(A.13)

The above two different methods to calculate the Green’s function and quasi-normal
modes are equivalent [50]. In this paper, we will use both of them. To study the pole
collisions in the charge diffusive process, we solve the quasi-normal modes of the first
equation in (A.13). To calculate the telegrapher’s equation and related parameters, we will
work in the radial gauge and use equations (A.11).

A.2.2 Transverse channel

The equation of motion for ay is

a′′y +
(
u′

u
+ αφ′

)
a′y +

(
ω2

u2 −
k2

uf

)
ay = 0 . (A.14)

The equation of ay, together with hty, hxy in general finite density case, is related to the
parity-odd channel. We do not consider this sector in this work.

13The radial gauge will be used in appendix B. There is a residual gauge transformation which is useful
in the calculation of the retarded Green’s function [50].
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B τ from the matching method

As shown in section 3, when α > 1 the first non-hydrodynamic mode has the feature of
ω � T as T → 0. The hydrodynamic mode and the first non-hydrodynamic mode are
well fitted by the telegrapher equation. In this appendix, we shall semi-analytically solve
the equations (A.9) to show the first two quasi-normal modes satisfying the telegrapher
equations [24, 25, 36, 37].

We work in the radial gauge, i.e ar = 0. Our strategy to solve the equations (A.11)
is as follows. We first divide the radial direction outside the horizon into inner regime
r − r0 � T and outer regime r − r0 � ω, then we solve (A.9) separately in these regimes
and match the solutions in the matching regime ω � r− r0 � T to get the solution in the
full spacetime.

• In the outer regime r − r0 � ω, k, we can solve the system order by order in ω and
k. The leading order solution satisfies equations

∂r
(
feαφa′t

)
= 0 , ∂r

(
ueαφa′x

)
= 0 . (B.1)

Therefore, the solutions take the following form14

at(r) = ãt + j̃tR1(r) +O(ω, k) ,
ax(r) = ãx + j̃xR2(r) +O(ω, k) ,

(B.2)

with
R1(r) =

∫ ∞
r

ds

feαφ
, R2(r) =

∫ ∞
r

ds

ueαφ
. (B.3)

Note that j̃t and j̃x in (B.2) are the dual charge density and current from the holo-
graphic dictionary. Plugging (B.2) into the constraint equation in (A.11), we obtain
the dual conservation equation (via replacing −iω → ∂t, ik → ∂x)

∂tj̃
t + ∂xj̃

x = 0 , (B.4)

where we have used j̃t = −j̃t, j̃x = j̃x since we work in the most plus convention for
the dual field theory. In the hydrodynamic limit, the outer regime can be extended
to r → r0, where R1(r) is regular, while there is a logarithmic divergence in R2(r) as
u(r)→ 4πT (r− r0). One can rewrite R2(r) in terms of the sum between the regular
part r2(r) and the logarithmic divergent part

R2(r) = r2(r)− 1
4πTeαφ0

log (r − r0) , (B.5)

where
r2(r) =

∫ ∞
r

ds

( 1
ueαφ

− 1
4πTeαφ0

1
s− r0

)
, φ0 = 1

2 log m√
2r0

. (B.6)

14Variables with a tilde are defined on boundary in momentum space. The xµ dependence of the fields
can be realized by Fourier transformation and replacing −iω → ∂t, ik → ∂x.
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• In the inner regime r − r0 � T , the solutions for (A.11) can be written as

at = a
(1)
t (r) + a

(2)
t (r) (r − r0)−

iω
4πT ,

ax = a(1)
x (r) + a(2)

x (r) (r − r0)−
iω

4πT ,
(B.7)

where a(1,2)
t , a

(1,2)
x are regular functions when r → r0, with frequency and momentum

dependence. The second terms are from the standard infalling boundary condition
while the first terms are from the gauge transformation of the fields which are of pure
gauge [50]. The functions here are constrained by regular conditions as (via replacing
−iω → ∂t, ik → ∂x)

a
(2)
t (r0) = 0 , ∂ta

(1)
x (r0)− ∂xa(1)

t (r0) = 0 . (B.8)

The second equation above indicates that a(1)
t , a

(1)
x are pure gauge.

• In the overlap regime, i.e. ω, k � r−r0 � T , we match the solutions (B.2) and (B.7).
We split the inner solution (B.7) into regular part and logarithmic divergence

at = a
(1)
t , ax = a(1)

x + a(2)
x + ∂ta

(2)
x

4πT log (r − r0) . (B.9)

Comparing the above solution in the overlap regime with the outer solution (B.2),
we have

a
(1)
t = ãt + j̃tR1(r0) , a(1)

x + a(2)
x = ãx + j̃xr2(r0) , ∂ta

(2)
x = −e−αφ0 j̃x . (B.10)

From (B.8) and (B.10), we have the relation

r2(r0)∂tj̃x −R1(r0)∂xj̃t = −(dã)tx − e−αφ0 j̃x (B.11)

where −(dã)tx is the external electric field along x-direction in the dual field theory that can
be switched off. Therefore we have the full set of equations for quasi-hydrodynamics (B.4)
and (B.11). To get the above form, it is crucial to work in the limit ω � T . Note that
in (B.11), comparing to the standard constitutive equation (i.e. Fick’s law of diffusion),
we have an additional ∂tjx term which is contributed from the non-hydrodynamic mode.
From (B.4) and (B.11), we obtain the dispersion relation of the operator j̃t or j̃x as

ω2 + i

r2(r0)eαφ0
ω − R1(r0)

r2(r0) k
2 = 0 . (B.12)

It takes the same form as the telegrapher equation

ω2 + i

τ
ω − Dc

τ
k2 = 0 , (B.13)

where
τ =

∫ ∞
r0

dr

(
eαφ0

ueαφ
− 1

4πT
1

r − r0

)
, Dc =

∫ ∞
r0

dr
eαφ0

feαφ
. (B.14)
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Note that the above two integration can be calculated analytically, and we have checked
that Dc is the same as that in table 1. The pole collision location can be obtained from
the telegrapher equation (B.13) and we have

ωeq = 1
2τ , keq =

√
1

4Dcτ
. (B.15)

Therefore we have the equilibrium time τeq = 2τ .
Furthermore, from the equation (B.14), we can analyze the scaling behaviors of τ . It

is useful to start from the following equation

eαφ0r2(r) = I2(r) + C(α, r0,m) , (B.16)

where C(α, r0,m) is the integration constant to satisfy r2(∞) = 0. When α > 1,
C(α, r0,m) ∝ m−1(T/m)−α and I2(r0) ∝ T−1 at low temperature T/m→ 0. Therefore in
this case we have

τm ∝
(
T

m

)−α
, α > 1, (B.17)

i.e. τ ∝ T−α when m fixed. While for α ≤ 1, τ ∝ T−1 for fixed m.
Note that in the above derivation, we have assumed that ω � T (i.e. α > 1). However,

the final results (B.14) on Dc applies for any α, and the results on τ applies for the case
ω < T . The numerical integration of τ as a function of α could be found in the dashed
blue line in figure 4 and it matches the exact value of the quasi-normal modes quite well
in the regime ω < T .

C Pole collision in complex momentum space

We have shown that for cases α ≥ 0 at low temperature the pole collision between hydro-
dynamic mode and the first non-hydrodynamic mode occurs at real momentum, while for
negative α the pole collision occurs at complex momentum. In this appendix we show more
details on pole collisions in subsections 3.1 and 3.2 when we promote the momentum to
be complex, i.e., kx = |k|eiϕ, ϕ ∈ [0, 2π) and study the behavior of complex quasi-normal
modes when we change the phase while fixing the module of kx close to the collision mo-
mentum keq.

The pole collision for α = 2 with complex momentum close the collision point is shown
in the left pole in figure 12, while for α = 0 it is shown in the right pole in figure 12.
The underlying non-hydrodynamic modes are different in these two cases, however, they
show quite similar behavior in the complex momentum space. Before the collision the
hydrodynamic mode and non-hydrodynamic mode are of topological S1 separately for a
fixed module of the complex momentum close to the collision point. The QNMs start from
the locations of the values at real k and move anticlockwise when we increase the phase
from 0 to π. When the poles collide, they connect. After the collision they become a
single closed curve. There is a topological change between S1× S1 and S1 during the pole
collision. These behaviors are quite similar to the studies in [4, 5] where the pole collisions
occur at complex momentum.
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Figure 12. Frequencies of the hydrodynamic and the first non-hydrodynamic modes by tuning the
phase of k with fixing |k| close to keq for α = 2 (left) and α = 0 (right) at low temperature.
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