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1 Introduction

The Regge limit of scattering amplitudes has been the subject of many theoretical as well
as phenomenological studies. As s/|t| → ∞, scattering amplitudes exhibit logarithmic
divergences which can be resummed to all orders at leading logarithmic (LL) [1–4] and next-
to-leading logarithmic (NLL) accuracy [5–8] in log(s/|t|). This is of great phenomenological
interest, as fixed-order calculations in the coupling constant will generally diverge in the
forward-scattering limit, which makes it difficult to predict the behaviour of scattered
particles close to the beam line. Resumming the large logarithms which appear in this limit
allows one to improve the description of the inter-jet activity in events at the Large Hadron
Collider (LHC) where large rapidity intervals are spanned [9–15]. Furthermore, in the last
decade the study of the Regge limit has deepened after realising that it is a useful kinematic
constraint for QCD and N = 4 super Yang-Mills (SYM) amplitudes in bulk kinematics,
and that in the Regge limit amplitudes in N = 4 SYM [16–18] and amplitudes [19] and
cross sections [20, 21] in QCD are endowed with a rich mathematical structure.

In the Regge limit, the squared centre-of-mass energy s is much larger than the
momentum transfer t, s � |t|, and 2 → 2 scattering amplitudes are dominated by gluon
exchange in the t channel. Contributions which do not feature gluon exchange in the t
channel are power suppressed in t/s. At tree level we can write the 2→ 2 amplitudes in a
factorised way. For example, the tree amplitude for gluon-gluon scattering g1 g2 → g3 g4
may be written as [1, 2],

M(0)
4g =

[
gs(F a3)a2cC

g(0)(p2, p3)
] s
t

[
gs(F a4)a1cC

g(0)(p1, p4)
]
, (1.1)

with s = (p1 + p2)2, q = p2 + p3 and t = q2 ' −|q⊥|2, and (F c)ab = i
√

2facb. The tree
level impact factors, Cg(0), depend on the momenta and the helicities of the outgoing
gluons [22], however in what follows their precise definition is immaterial since they will
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be factored out. As it is apparent from the colour coefficient (F a3)a2c(F a4)a1c, in eq. (1.1)
only the antisymmetric octet 8a is exchanged in the t channel.

Since u = −s− t ' −s in the Regge limit, 2→ 2 scattering amplitudes are symmetric
under s↔ u crossing, and we may consider amplitude states whose kinematic and colour
coefficients have a definite signature under s↔ u crossing,

M(±)
4 (s, t) = M4(s, t)±M4(u, t)

2 , (1.2)

such thatM(−)
4 (s, t) (M(+)

4 (s, t)) has kinematic and colour coefficients which are both odd
(even) under s↔ u crossing. Higher-order contributions to gg → gg scattering in general
involve additional colour structures, as dictated by the decomposition of the product 8a⊗8a
into irreducible representations,

8a ⊗ 8a = {1⊕ 8s ⊕ 27} ⊕ [8a ⊕ 10⊕ 10] , (1.3)

where the curly (square) brackets collect the representations which are even (odd) under
s↔ u crossing. In what follows, we shall consider only the antisymmetric octet 8a, and we
shall drop the (−) parity label under s↔ u crossing.

When loop corrections to the tree amplitude (1.1) are considered, we write the four-gluon
amplitude for the antisymmetric octet 8a exchange in the t channel as

M[8a]
4g =M[8a] fact

4g +R[8a]
4g , (1.4)

where M[8a] fact
4g is the part of the amplitude which factorises and R[8a]

4g denotes the non-
factorising part often referred to as the remainder. The factorised part can be written
as [23],

M[8a] fact
4g = s

t
[gs(F a3)a2cC

g(p2, p3)]
[(−s

τ

)α(t)
+
(
s

τ

)α(t)
]

[gs(F a4)a1cC
g(p1, p4)] , (1.5)

where τ > 0 is a Regge factorisation scale, which is of order of t (and thus much smaller
than s)1 and where the impact factors,

Cg(t) = Cg(0)(t)
(

1 +
∞∑
L=1

NL
c g̃

2L
s Cg(L)(ε)

)
, (1.6)

and the Regge trajectory,

α(t) =
∞∑
L=1

NL
c g̃

2L
s α(L)(ε) , (1.7)

with Nc the number of colours, are expanded in the strong coupling αs = g2
s/(4π) through

the rescaled coupling,

g̃2
s = αs

4π
κΓ
Sε

(
µ2

−t

)ε
, (1.8)

1The precise definition of τ is immaterial to LL accuracy, where one can suitably fix τ = −t.
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with
κΓ = (4π)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε) , Sε = (4π)εe−εγE , (1.9)

where γE denotes the Euler-Mascheroni constant. We can write the amplitude (1.4) as a
double expansion in the rescaled coupling g̃s and in log(s/τ),

M[8a]
4g =M[8a](0)

4g

(
1 +

∞∑
L=1

NL
c g̃

2L
s M

[8a](L)
4g

)
(1.10)

=M[8a](0)
4g

(
1 +

∞∑
L=1

NL
c g̃

2L
s

L∑
i=0
M(L,i)

4g logi
(
s

τ

))
, (1.11)

where we factored out the tree amplitudeM[8a](0)
4g , and where the M (L,L)[8a]

4g coefficients are
referred to as having LL accuracy, the M (L,L−1)[8a]

4g coefficients have NLL accuracy, and in
general the M (L,L−k)[8a]

4g coefficients have NkLL accuracy. The remainder term in eq. (1.4),

R[8a]
4g =

∞∑
L=2

NL
c g̃

2L
s

L−2∑
i=0
R(L,i)

4g logi
(
s

τ

)
, (1.12)

occurs first at next-to-next-to-leading logarithmic (NNLL) accuracy through the non-
logarithmic term, R(2,0)

4g .
At LL accuracy in log(s/|t|), the four-gluon amplitude is real, and the antisymmetric

octet 8a is the only colour representation exchanged in the t channel to all orders in αs [1, 2],

M4g
∣∣
LL

=M[8a] fact
4g

∣∣
LL
. (1.13)

The exponentiation of log(s/τ) in eq. (1.5) is called gluon Reggeisation, and we say that in
the Regge limit the four-gluon amplitude (1.5) features the exchange in the t channel of
one Reggeised gluon, or Reggeon. The one-loop amplitude at LL accuracy allows one to
determine the one-loop Regge trajectory,

M(1,1)
4g = α(1) . (1.14)

Here and henceforth, for the sake of brevity, we drop the explicit ε-dependence.
At NLL accuracy, the real part of the amplitude is still given only by the antisymmetric

octet 8a, through eq. (1.5) [23],

Re [M4g]NLL = Re
[
M[8a] fact

4g

]
NLL

, (1.15)

i.e. gluon Reggeisation holds at NLL accuracy [24, 25]. The real parts of the one-loop and
of the two-loop amplitudes allow one to determine the one-loop impact factor [23, 26–29]
and the two-loop Regge trajectory [30–34], respectively,

Re
[
M(1,0)

4g

]
= 2Cg(1) . (1.16)

Re
[
M(2,1)

4g

]
= α(2) + 2Cg(1)α(1) . (1.17)
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At NNLL accuracy, a three-Reggeon exchange [19, 35–37] occurs in the four-gluon
amplitude for the antisymmetric octet 8a. It reveals itself in the non-logarithmic term
of the two-loop amplitude [34] as a violation of the universality of Regge factorisation
between different parton flavours implied by eq. (1.5), which can also be analysed through
infrared factorisation [38–41]. We parametrise the violation of factorisation through the
remainder term R[8a]

4g of eq. (1.4). The two-loop impact factor Cg(2) [41] is entangled with
the remainder R(2,0)

4g in the non-logarithmic term of the two-loop amplitude,

Re
[
M(2,0)

4g

]
= 2Cg(2) +

(
Cg(1))2 − π2

4
(
α(1))2 +R(2,0)

4g . (1.18)

Likewise, the three-loop Regge trajectory α(3) is entangled with the remainder R(3,1)
4g in the

single-logarithmic term of the three-loop amplitude,

Re
[
M(3,1)

4g

]
= α(3) + 2α(2)Cg(1) + α(1)

(
2Cg(2) +

(
Cg(1))2)− π2

4
(
α(1))3 +R(3,1)

4g . (1.19)

Conversely, at NNLL accuracy the remainder does not contribute to the imaginary parts of
the amplitude [41], which can then be written in terms of the same building blocks and
provide an important consistency check of the factorisation.

Finally, at N3LL accuracy, the three-loop impact factor Cg(3) is entangled with the
remainder R(3,0)

4g in the non-logarithmic term of the three-loop amplitude,

Re
[
M(3,0)

4g

]
= 2Cg(3) + 2Cg(2)Cg(1) − π2

2
(
α(2)α(1) +

(
α(1))2)Cg(1) + Re

[
R(3,0)

4g

]
. (1.20)

Since the splitting in eq. (1.4) is not uniquely defined, fixing the remainder amounts
to a scheme choice. One such scheme introduced in ref. [41] identifies the impact factor
with the diagonal terms of the antisymmetric octet exchange and the factorisation-violating
terms with the off-diagonal ones. The scheme introduced in ref. [42] on the other hand,
dubbed the Regge-cut scheme (Rcs), identifies the non-planar part of the three-Reggeon
exchange with the remainder R[8a]

4g at three-loop accuracy, while the planar part is absorbed
into the factorising partM[8a] fact

4g of the amplitude. The Regge-cut scheme is particularly
useful, because it allows one to restrict the factorisation-violating contributions to the
non-planar part of the theory, and thus to terms which are subleading in Nc. However, not
all Nc-subleading terms belong to factorisation-violating contributions, since Nc-subleading
terms may be contained in the factorising part of the amplitude. Thus, by evaluating the
planar part of the theory, we may fix uniquely the relevant BFKL building blocks, like the
two-loop [41] and three-loop impact factors and the three-loop Regge trajectory, though we
can evaluate them only at leading colour (LC). To sum up, at three-loop accuracy we can
set the remainder term in eq. (1.4) to zero, and write

M[8a]
4g, planar

∣∣∣
Rcs

= M[8a] fact
4g

∣∣∣
LC

. (1.21)

Furthermore, in the Regge-cut scheme the three-loop Regge trajectory in N = 4 SYM [36, 43]
agrees [42] with the same quantity computed in planar N = 4 SYM [44–47]. Thus, in the
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Regge-cut scheme Nc-subleading terms are absent from the three-loop Regge trajectory in
N = 4 SYM. That is in line with the expectation that the Regge trajectory is made of
maximally non-Abelian colour structures only.

In this paper, we compute the two-loop – and three-loop impact factors and the three-
loop Regge trajectory of planar SU(Nc) Yang-Mills theory, which through the Regge-cut
scheme we may identify as the Nc-leading and nf -independent contributions to the impact
factors and the Regge trajectory in QCD. Further, it is conjectured that, like in N = 4
SYM, Nc-subleading terms are absent from the three-loop Regge trajectory. Thus, we
interpret our result for the Regge trajectory of planar SU(Nc) Yang-Mills theory as the
QCD three-loop Regge trajectory at nf = 0.

In section 2, we detail how we project the antisymmetric octet out of the three-
loop helicity amplitudes of planar SU(Nc) Yang-Mills [48]. In section 3, we present the
unrenormalised version of the two-loop impact factor, and of the three-loop Regge trajectory
and impact factor. In section 4, we present the renormalised version of the same quantities,
and we show that the infrared pole structure of the two-loop impact factor and of the three-
loop Regge trajectory agrees with the prediction of ref. [41]. In particular, we verify that the
infrared poles of the renormalised three-loop Regge trajectory are given by the scale integral
K(ᾱs) over the cusp anomalous dimension [41], eq. (4.20). If we give that for granted, the
main result of this paper is to present for the first time the finite terms of the three-loop
Regge trajectory of planar SU(Nc) Yang-Mills theory, which we conjecture to coincide with
the finite terms of the QCD three-loop Regge trajectory at nf = 0. In appendix A, we
restore the dependence of the impact factors on a generic Regge factorisation scale.

2 The antisymmetric octet at three-loop order

In ref. [48], the planar SU(Nc) Yang-Mills gg → gg amplitude was computed through three
loops in all helicity configurations. In what follows we perform the expansion in the Regge
limit detailed in the previous section in order to extract the three-loop Regge trajectory
α

(3)
YM(ε) and the three-loop impact factor Cg(3)

YM in planar Yang-Mills theory.
The planar amplitudeM4g, planar contains only leading colour contributions, and thus

it can be written in terms of colour-ordered amplitudes,

M4g, planar =
∑

σ∈S4/Z4

Tr(T aσ1T aσ2T aσ3T aσ4 )M4g, planar(σ1, σ2, σ3, σ4) , (2.1)

where the T a’s are the SU(Nc) matrices in the fundamental representation. Since only
leading colour structures are considered, the same colour decomposition is used at tree and
at loop level, which motivates why we factored the tree amplitude out in eq. (1.10).

Since our goal is to extract the building blocks appearing in the high-energy factorisation
given in eq. (1.5), we need to project the full amplitude onto the antisymmetric octet channel.
This can be achieved by contracting it with the colour projector,

P a1a4
a2a3 (8a) = 1

Nc
fa1ba4fa2ba3 ,

– 5 –
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which can be found e.g. in [49]. We find that the antisymmetric octet can be obtained as

M[8a]
4g = M(1, 2, 3, 4)−M(1, 3, 2, 4)−M(1, 4, 2, 3) +M(1, 4, 3, 2) , (2.2)

where, for the sake of brevity, here and in the next equation we drop the 4g, planar subscript
on the colour-ordered amplitudes. Focusing now on the (+ +−−) helicity component, we
can write

M[8a]
++−− = M(1+, 2+, 3−, 4−)−M(1+, 3−, 2+, 4−)

−M(1+, 4−, 2+, 3−) +M(2+, 1+, 4−, 3−) , (2.3)

where we have used the cyclic invariance of colour-ordered amplitudes to match the helicity
configuration of the last colour-ordered amplitude in eq. (2.3) to the ones given in [48].

We normalise by the tree-level amplitudeM[8a](0)
++−− as in eq. (1.10), and compute the

BFKL building blocks by extracting them from the real part of the colour-ordered amplitude
M++−− given in [48]. Further, we perform a comparison of the imaginary parts in the
antisymmetric octet channel [41], which provides an extra layer of cross checks.

Finally, we comment on the regularisation scheme implicitly used to obtain these results.
In [48], the computations are performed by making use of the conventional dimensional
regularisation scheme (CDR), where both internal and external particles are presumed to
live in a space of generic dimensionality. Helicity amplitudes are eventually obtained by
setting the gauge invariant bases [50] in terms of which the result is written to explicit
helicity configurations. That entails to project the amplitudes to two-dimensional external
polarisation states. Accordingly, the change of dimension of the polarisations of the external
gluons implies a change in the regularisation scheme used in the computation from CDR
to ’t Hooft-Veltman (HV) scheme. In fact, as detailed in section 3, the building blocks
we extract from this computation match established results which were computed in the
HV scheme, in which the external gluons are restricted to four dimensions and to two
polarisation states.

3 The BFKL building blocks

In this section, we present the extracted building blocks up to three-loop order in pure
Yang-Mills theory from the real part of the four-gluon amplitude [48]. The presented
building blocks are the coefficients of the Regge expansion in eq. (1.5) in terms of bare,
rescaled couplings g̃s as in eqs. (1.6)–(1.7).

At LL and NLL accuracy, using eqs. (1.14), (1.16) and (1.17), we obtain,

α
(1)
YM(ε) = 2

ε
, (3.1)

C
g(1)
YM (ε) = −γ

(1)
K

ε2
− β0

2ε + 2ζ2 − γ(2)
K −AD ε−

(1214
81 − 3ζ4

)
ε2 (3.2)

−
(7288

243 − ζ5

)
ε3 −

(43736
729 − 3ζ6

)
ε4 +O(ε5) ,
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α
(2)
YM(ε) = β0

ε2
+ 2γ

(2)
K

ε
+ 2AD + ε

(2428
81 − 66ζ3 − 8ζ4

)
(3.3)

+ ε2
(14576

243 − 134ζ3 − 99ζ4 + 82ζ5 + 36ζ2ζ3

)
+O(ε3) ,

where the first few orders in ε are given in terms of the nf -independent and Nc-rescaled
beta function and cusp anomalous dimension,

β0 = 11
3 , γ

(1)
K = 2 , γ

(2)
K = 67

18 − ζ2 , AD = 202
27 − ζ3 , (3.4)

which match the established results from the literature, see e.g. [51]. Note that, for the sake
of conciseness, in the impact factors (3.2), (3.5) and (3.8), we set the Regge factorisation
scale to τ = −t. We restore the τ dependence in appendix A. The O(ε) and O(ε2) of the
two-loop Regge trajectory (3.3) agree with the nf -independent terms of an unpublished
evaluation2 of the QCD two-loop Regge trajectory, based on ref. [52].

At NNLL accuracy, we find for the two-loop gluon impact factor,

C
g(2)
YM (ε) = γ

(1)
K

ε4
+ β0

2ε3 +
(49

24 − 5ζ2

) 1
ε2
−
(199

108 −
55
6 ζ2 + ζ3

)1
ε

−
(16139

648 − 335
18 ζ2 −

121
6 ζ3 + 55

4 ζ4

)
−
(8623

72 − 1037
27 ζ2 −

1865
18 ζ3 −

1199
12 ζ4 − ζ2ζ3 + 41ζ5

)
ε

−
(5382749

11664 − 6232
81 ζ2 −

9410
27 ζ3 −

10687
36 ζ4 + 209ζ2ζ3

+ 77
6 ζ5 + 95

2 ζ
2
3 + 1695

8 ζ6

)
ε2 +O(ε3) , (3.5)

where the maximal weight terms of eq. (3.5) agree through O(ε2) with the two-loop impact
factor [46, 47] of planar N = 4 SYM. The O(ε0) terms of the QCD two-loop gluon impact
factor [41] have also been previously presented in a different scheme [36]. The finite terms
of eq. (3.5) may be understood as the Nc-leading and nf -independent finite terms of the
QCD two-loop gluon impact factor in the Regge-cut scheme.

For the three-loop Regge trajectory, we obtain

α
(3)
YM(ε) = 242

27
1
ε3

+
(3254

81 − 88
9 ζ2

) 1
ε2

+
(11093

81 − 536
27 ζ2 −

88
9 ζ3 + 44

3 ζ4

)1
ε

+ 617525
1458 − 3196

81 ζ2 −
19732

27 ζ3 −
253
3 ζ4 + 40

3 ζ2ζ3 + 16ζ5 +O(ε) . (3.6)

Truncating the three-loop trajectory up to terms only of maximal weight yields

α
(3)
YM(ε)

∣∣∣∣
max weight

= 44
3
ζ4
ε

+ 40
3 ζ2ζ3 + 16ζ5 +O(ε) , (3.7)

2Bernhard Mistlberger, private communication.
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which matches the three-loop Regge trajectory in N = 4 SYM [36, 42–47]. Conjecturing
that, like in N = 4 SYM, Nc-subleading terms are absent from the three-loop Regge
trajectory, we may understand eq. (3.6) as the pure gauge, or nf -independent, part of the
QCD unrenormalised three-loop Regge trajectory.

At N3LL accuracy, using eq. (1.20), one may compute the three-loop gluon impact
factor,

C
g(3)
YM (ε) = − 4

3ε6 +
(605

162 + 4ζ2

) 1
ε4

+
(61525

3888 −
605
27 ζ2

) 1
ε3

+
(177121

3888 − 12419
648 ζ2 −

1100
27 ζ3 + 217

9 ζ4

) 1
ε2

+
(2489669

34992 + 28663
972 ζ2 −

75265
648 ζ3 −

18865
72 ζ4 −

22
9 ζ3ζ2 + 224

3 ζ5

) 1
ε

− 10881647
52488 + 1510567

5832 ζ2 + 29113
108 ζ3 −

18895
216 ζ4 −

1639
9 ζ5

+ 27269
54 ζ2ζ3 + 796

9 ζ2
3 + 211861

432 ζ6 +O(ε) , (3.8)

where again the maximal weight terms of eq. (3.8) agree through O(ε0) with the three-loop
impact factor [46, 47] of planar N = 4 SYM. As for the two-loop impact factor (3.5), eq. (3.8)
may be interpreted as the Nc-leading and nf -independent part of the QCD three-loop gluon
impact factor in the Regge-cut scheme.

4 Comparison to infrared structure

In [41] a comparison between the infrared factorisation and the Regge limit of 2 → 2
scattering amplitudes led to results on the infrared pole structure of the building blocks
we have presented in section 3 up to NNLL accuracy. It is however not straightforward to
compare to this analysis, since it was done for renormalised amplitudes so as to disentangle
the ultraviolet and infrared behaviour. On the other hand, we have expressed our building
blocks as coefficients of the bare, rescaled couplings g̃s defined in eq. (1.8). The two versions
of the building blocks can however easily be translated from one convention to the other
by renormalising the generic Regge-factorised amplitude given in eq. (1.11) and comparing
coefficients with its equivalent expansion in terms of the renormalised coupling ᾱs, implicitly
defined by

αs = ᾱsZα(ᾱs, ε) , (4.1)

with a Z-factor given by

Zα(ᾱs, ε) = 1− ᾱs
β0
ε

+ ᾱ2
s

(
β2

0
ε2
− β1

2ε

)
+ ᾱ3

s

(
−β

3
0
ε3

+ 7β0β1
6ε2 − β2

3ε

)
, (4.2)

with β0 in eq. (3.4), and where the nf -independent and Nc-rescaled higher orders of the
beta function are

β1 = 34
3 , β2 = 2857

54 . (4.3)
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For the perturbative expansion (1.11), this results in

M[8a]
4g =M[8a](0)

4g

(
1 +

∞∑
L=1

NL
c

(
Zα(ᾱs, ε)

κΓ
Sε

ᾱs
4π

)L L∑
i=0
M(L,i)

4g logi
(
s

τ

))
(4.4)

=M[8a](0)
4g

(
1 +

∞∑
L=1

NL
c

(
ᾱs
4π

)L L∑
i=0
M(L,i)

4g,R logi
(
s

τ

))
,

where we set µ2 = −t and where the coefficientsM(L,i)
4g are expressed in terms of the building

blocks as introduced in eqs. (1.14)–(1.19), while the coefficients M(L,i)
4g,R are expressed in

terms of renormalised building blocks,

M(L,i)
4g,R =M(L,i)

4g

∣∣∣∣ α(L)↔α
(L)
R

Cg(L)↔C
g(L)
R

. (4.5)

In this way, we obtain a direct translation from the bare building blocks α(L) and Cg(L) to
the renormalised building blocks α(L)

R and Cg(L)
R , which is given by

α
(1)
R = α(1)κΓ

Sε
, (4.6)

α
(2)
R = α(2)

(
κΓ
Sε

)2
−
(
α(1)β0

κΓ
Sε

) 1
ε
, (4.7)

α
(3)
R = α(3)

(
κΓ
Sε

)3
−
(

2α(2)β0

(
κΓ
Sε

)2
+ 1

2α
(1)β1

κΓ
Sε

)
1
ε

+
(
α(1)β2

0
κΓ
Sε

) 1
ε2
, (4.8)

C
g(1)
R = Cg(1)κΓ

Sε
− β0

2ε , (4.9)

C
g(2)
R = Cg(2)

(
κΓ
Sε

)2
−
(6

4β0C
g(1)κΓ

Sε
+ β1

4

) 1
ε

+ 3β2
0

8ε2 , (4.10)

C
g(3)
R = Cg(3)

(
κΓ
Sε

)3
−
(

5
2β0C

g(2)
(
κΓ
Sε

)2
+ 3

4β1C
g(1)κΓ

Sε
+ β2

6

)
1
ε

+
(15

8 β
2
0C

g(1)κΓ
Sε

+ 11β1β0
24

) 1
ε2
− 5β3

0
16ε3 . (4.11)

After inserting the bare building blocks into eqs. (4.6)–(4.10) and expanding the right-
hand side in ε to the appropriate orders, we find the following explicit results for the
renormalised BFKL building blocks,

α
(1)
R,YM = γ

(1)
K

ε
+O

(
ε0
)
, (4.12)

α
(2)
R,YM = −β0γ

(1)
K

2ε2 + 2γ(2)
K

ε
+O

(
ε0
)
, (4.13)

α
(3)
R,YM = β2

0γ
(1)
K

3ε3 −
(1

3β1γ
(1)
K + 4

3β0γ
(2)
K

) 1
ε2

+ 16γ(3)
K

3ε +O
(
ε0
)
, (4.14)

C
g(1)
R,YM = − 2

ε2
− β0

ε
+O

(
ε0
)
, (4.15)
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C
g(2)
R,YM = 2

ε4
+ 7β0

2ε3 +
(103

6 − 7 ζ2

) 1
ε2

+
(853

54 −
44
3 ζ2 −

31
3 ζ3

) 1
ε

+O
(
ε0
)
, (4.16)

C
g(3)
R,YM = − 4

3ε6 −
5β0
ε5
−
(10285

162 − 6ζ2

) 1
ε4
−
(46181

972 − 2255
54 ζ2 −

28
3 ζ3

) 1
ε3

+
(1577

486 + 5731
648 ζ2 + 2915

54 ζ3 + 661
36 ζ4

) 1
ε2

+
(2338843

17496 − 76315
486 ζ2

−11435
108 ζ3 −

1265
18 ζ4 −

400
9 ζ2ζ3 + 1492

15 ζ5

) 1
ε

+O(ε0) , (4.17)

where up to two-loop order the coefficients of the cusp anomalous dimension and beta
function are given in eqs. (3.4) and (4.3), and the three-loop cusp anomalous dimension is

γ
(3)
K = 245

48 −
67
18ζ2 + 11

12ζ3 + 11
4 ζ4 . (4.18)

Note that, up to a difference in normalisation,3 we reproduce the results for the one- and
two-loop building blocks presented in [41]. In particular, the poles of the two-loop impact
factor agree with the pure gauge, or nf -independent, poles of the QCD two-loop impact
factor [41].

Further, at each perturbative order and up to three loops, the poles of the gluon Regge
trajectory are entirely fixed by the scale integral K(ᾱs) over the cusp anomalous dimension,
whose expansion to three-loop order is

K(ᾱs) = ᾱs
4π

γ
(1)
K

ε
+
(
ᾱs
4π

)2
(

2γ(2)
K

ε
− β0γ

(1)
K

2ε2

)

+
(
ᾱs
4π

)3
(

16
3ε γ

(3)
K −

β1γ
(1)
K + 4β0γ

(2)
K

3ε2 + β2
0γ

(1)
K

3ε3

)
+O(ᾱ4

s) , (4.19)

as found in [41].4 As expected [41, 42], we find that at three-loop order all the poles of the
renormalised Regge trajectory are captured by K(ᾱs), i.e.

αR,YM = K(ᾱs) +O(ε0) (4.20)

holds at three-loop order.

5 Conclusions

In this paper we have computed the two-loop impact factor (3.5), the three-loop Regge
trajectory (3.6) and the three-loop impact factor (3.8) in pure Yang-Mills theory at leading
colour through O

(
ε0
)
. Their maximum-weight components match the three-loop Regge

trajectory [36, 42–47] and the two-loop and three-loop impact factors [46, 47] of N = 4
3Which is entirely due to expanding the amplitude in αs/(4π) as opposed to αs/π.
4The term ∼ β1 in the 1/ε2 pole differs by a factor of 4 from the result in [41] since the coefficients of the

beta function βi in this paper are extracted from an expansion in αs/(4π). By contrast, our normalisation
for the coefficients of the cusp anomalous dimension γ(i)

K is such that they are extracted from the all-order
cusp through an expansion in αs/π.
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SYM. Further, the two-loop impact factor and the three-loop Regge trajectory display the
infrared behaviour predicted in [41].

We understand eqs. (3.5) and (3.8) to be the Nc-leading and nf -independent parts of
the QCD two-loop and three-loop gluon impact factors, respectively. Conjecturing that, like
in N = 4 SYM, Nc-subleading terms are absent from the three-loop Regge trajectory, we
understand eq. (3.6) to be the pure gauge, or nf -independent, part of the QCD three-loop
gluon Regge trajectory. This is an essential ingredient in the computation of the BFKL
equation at next-to-next-to leading logarithmic accuracy.

We present both the bare and the renormalised Regge trajectories and impact factors,
and provide the dependence of the impact factor on the Regge factorisation scale for the
sake of future matching with higher-multiplicity contributions.
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A Gluon impact factors with full τ dependence

In this section we outline how to reinstate the dependence on the factorisation scale τ from
the results presented in section 3, which were given for τ = −t. The explicit dependence
on τ will be useful when combining results at different loop orders with different numbers
of external legs when applying the BFKL formalism. As τ enters only through the ratios
±s/τ in eq. (1.5), it suffices to simply rewrite the large logarithms used for the extraction
at τ = −t in section 3 as

log
(
s

−t

)
= log

(
s

τ

)
− log

(−t
τ

)
, (A.1)

and to compare the coefficients of the logarithms log(−t/τ) as we have done before. We find
the following relations between the τ -independent building blocks Cg and the τ -dependent
building blocks Cgτ ,

Cg(1)
τ = Cg(1) − 1

2α
(1) log

(−t
τ

)
, (A.2)

Cg(2)
τ = Cg(2) − 1

2(α(1)Cg(1) + α(2)) log
(−t
τ

)
+ 1

8(α(1))2 log2
(−t
τ

)
, (A.3)

Cg(3)
τ = Cg(3) − 1

2(α(2)Cg(1) + α(1)Cg(2) + α(3)) log
(−t
τ

)
+ 1

8α
(1)(α(1)Cg(1) + 2α(2)) log2

(−t
τ

)
− 1

48(α(1))3 log3
(−t
τ

)
, (A.4)

and analogously for the renormalised case. The maximum-weight components of eqs. (A.2)–
(A.4) match the τ -dependent impact factors [46, 47] of N = 4 SYM.
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