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1 Introduction

Scattering amplitudes in N = 6 Chern-Simons matter theory (often termed ABJM) [1, 2],
have long been an interesting close cousin of those in four-dimensional N = 4 super Yang-
Mills (sYM), mimicking its hidden structures with modifications tailored to the unique
features of three-dimensional kinematics. For example the all multiplicity tree-amplitude
worldsheet formula of Witten-RSV [3, 4], has a mirror image in ABJM theory [5]. Similarly
the SU(4|4) dual-superconformal (and its full Yangian embedding) invariance of tree-level
amplitude and loop-level integrand of N = 4 sYM [6, 7], have their counterpart, the
OSp(6|4) of the N = 6 [8–10]. As a consequence, the Grassmannian geometry that yields
individual Yangian blocks [11], once constrained to its orthogonal subspace yields the lead-
ing singularities of ABJM theory [12]. The stratification of the geometry admits a trivalent
bi-partite graphical representation for the individual cells [13], can also be applied to ABJM
theory with the simplification of using medial graphs with quadratic vertices [14, 15].

As is apparent in the above, this hand in hand development appears to have as its
boundary the extension to momentum twistor [16]. Indeed the latter was instrumental in
the realization of amplituhedron [17, 18], where the amplitude is identified as the canonical
form on a positive geometry whose boundaries are given in momentum twistors. The
difficulty lies in the nature of dual superconformal symmetry in three dimensions, which
requires in addition to the introduction of dual variables for the conformal group Sp(4),
but also the R-symmetry SO(6). This will appear to require a new set of twistor variables
that do not have a kinematic origin.

An alternative amplituhedron definition for tree-level amplitudes of N = 4 sYM was
proposed directly in the spinor helicity kinematic space [19], motivated by [20]. This opens
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the possibility for the existence of a tree-level amplituhedron for ABJM theory directly
in the three-dimensional kinematic space. In this paper we will present precisely such a
geometric object, which we call as the orthogonal momentum amplituhedron. Consider the
image of the following map:

Y A
a =

n∑
i=1

caiΛAi , (1.1)

where a = 1, · · · , k, A = 1, · · · , k+2 and k = n
2 (n is even here). Here Y A

a lives in a subspace
of the Grassmannian G(k, k+2), that is the image of positive orthogonal Grassmannian
OG+(k, 2k) (cai is an element of OG+(k, 2k)) mapped through the bosonic twistor variables
ΛAi living on a moment curve. As we will show, the boundary of this space is given by
odd-particle planar Mandelstam variables Si,i+1,i+2,··· ,i+p (for odd number of particles, p is
even), where

Si,i+1,··· ,i+p =
∑

i≤j<l≤i+p
(−1)j+l+1〈Y jl〉2, 〈Y jl〉≡ εA1A2···A2+kY

A1
1 Y A2

2 · · ·Y
Ak
k ΛA1+k

j ΛA2+k
l .

(1.2)
Note that while all planar Mandelstam variables are non-negative, only the vanishing of
each odd-particle Mandelstam variable is co-dimension one boundary. The vanishing of
even-particle Mandelstam variables is higher co-dimensional. This reflects the fact that
the non-vanishing amplitudes in ABJM theory have an even number of particles, therefore
the amplitudes only have factorization poles of odd-particle Mandelstam variables. The
space is (n−3)-dimensional, as Y A

a given (1.1) satisfy the following conditions:
n∑
i=1

(−1)i(Y ⊥ · ΛT )αi (Y ⊥ · ΛT )βi = 0 . (1.3)

The amplitude is then identified with the volume function Ω2k,k defined through

Ω3d
2k,k ∧ d3P δ3(P ) = Ω2k,k

(
k∏
a=1
〈Y1Y2 · · ·Ykd2Ya〉

)
δ3(P ) , (1.4)

where Ω3d
2k,k is the (n−3)-dimensional canonical form on OG+(k, 2k) whose co-dimension

one boundaries, via the map in (1.1) are the planar odd-particle Mandelstam variables.
The subspace defined through the map in (1.1), can be carved out directly in Y space
via the non-negativity of 〈Y ii+1〉, and a series of sign pattern as well as the momentum
conservation:

{〈Y 12〉, 〈Y 13〉, · · · , 〈Y 1n〉}, having k sign flips ,
n∑
i=1

(−1)i〈Y ia〉〈Y ib〉 = 0, for a, b = 1, · · · , n . (1.5)

Note that this is identical to the sign flipping conditions associated with half of the mo-
mentum amplituthedron of N = 4 sYM [19]. In particular, the amplituhedron geometry
for the four-dimensional theory is given by (Y, Ỹ ) ∈ (Gr(n−k, n−k+2), Gr(k, k+2)), with
Y, Ỹ satisfying k−2 and k sign-flip patterns respectively. Thus with k = n

2 , we see that the
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orthogonal amplituhedron geometry for the ABJM theory can be identified with Ỹ , with
the additional constraint associated from momentum conservation. Thus the orthogonal
momentum amplituhedron is simply a kinematic projection of the momentum amplituhedron
geometry for four-dimensional theories.

We verify the above proposal through the BCFW construction, which identifies the
tree-level amplitude as a particular combination of cells of the orthogonal Grassman-
nian [14, 15]. We first confirm that the BCFW cells via the map in (1.1) tile the whole
space. This is checked numerically at eight points, where each point in the image for the top
cell lies only in one of the BCFW cells, vice versa. Next we identify the canonical form as

Ω3d
2k,k =

∑
σ

∫
Cσ

dk×2kC

Vol(GL(k))
M1,3,5,··· ,n−1
M1M2 · · ·Mk

δ
k(k+1)

2 (CTC)
∣∣∣∣
Y=c·Λ

, (1.6)

where the contour Cσ localizes on the various BCFW cells labelled by σ, andM1,3,5,··· ,n−1 is
a k×k involving columns {1, 3, 5, · · · , n−1}, and similarlyMi is the minor involving consec-
utive columns {i, i+1, · · · , i+k−1}. Note that the integrand is simply the original orthogo-
nal integral introduced in [12], but reduced to N = 4 SUSY, which leads to the numerator
M1,3,5,··· ,n−1. The union of these forms then gives the BCFW triangulation of the ampli-
tuhedron. Since the BCFW cells tile the space for Y , with the contour C encircling these
cells, (1.6) gives the correct canonical form that can be lifted to the volume form for the am-
plituhedron via the relation (1.4). It is intriguing that the canonical form on OG+(k, 2k) is
more naturally derived using the N = 4 formalism. Note that this is natural from the view-
point of exchanging η → dλ, similar to [20]. Indeed the n-point amplitude is degree n in η,
and thus produces the n-form which can be matched to the volume form in kinematic space.

The rest of the paper is organised as follows. In the next section, we will briefly review
basic properties of the momentum amplituhedron for four-dimensional N = 4 sYM. In sec-
tion 3, we present the construction of the orthogonal momentum amplituhedron geometry
and its definition through the sign flipping. In section 4, we discuss in detail canonical
forms of the orthogonal momentum amplituhedron, and their associated singularities and
the boundary structures of the amplituhedron geometry. In section 5, we conclude and
remark on future research directions.

2 Review of the momentum amplituhedron for N = 4 sYM

In this section, we will review the construction of the momentum amplituhedron for four-
dimensional N = 4 sYM [19].1 The momentum amplituhedron Mn,k is defined as the
image of the positive Grassmannian G+(k, n) through the map depending on the positive
kinematics. Here, positive kinematics is defined as two sets of moment curves on which the
external data lives:

(Λ⊥)Āi = iĀ−1, Λ̃Ȧi = iȦ−1 . (2.1)

1For further study on the momentum amplituhedron, see [21–23].
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From this definition, we can see easily that all ordered minors of matrices Λ̃,Λ⊥ are positive.
When we extract the amplitudes, these matrices are identified as the bosonized kinematics:

ΛAi =


λαi

φ1
I · ηIi
...

φn−kI · ηIi

 , A = 1, . . . , n− k + 2,

Λ̃Ȧi =


λ̃α̇i

φ̃1
Î
· η̃Îi
...

φ̃k
Î
· η̃Îi

 , Ȧ = 1, . . . , k + 2, (2.2)

where η, η̃, φ, φ̃ are Grassmann-odd variables. Here we use the non-chiral SUSY for de-
scribing N = 4 sYM superamplitudes, with a subgroup of R-symmetry SU(2) × SU(2)
being manifest. Therefore I = 1, 2, Î = 1̂, 2̂, and one may identify the R-symmetry index
I with the little group index α (and Î with α̇), and superamplitudes become differential
forms after the identification η → dλ, η̃ → dλ̃ [20].

The momentum amplituhedron Mn,k is defined as a pair of Grassmannian elements
(Ỹ , Y ) ∈ G(k, k + 2)×G(n− k, n− k + 2):

Ỹ Ȧ
ȧ =

n∑
i=1

cȧiΛ̃Ȧi , Y A
a =

n∑
i=1

c⊥aiΛAi , (2.3)

where cȧi are the elements of the positive Grassmannian G+(k, n) and c⊥ai are the element
of its orthogonal complement. Although the dimension of the (Ỹ , Y ) space is

dim(G(k, k + 2)) + dim(G(n− k, n− k + 2)) = 2(n− k) + 2k = 2n, (2.4)

the momentum amplituhedron (Ỹ , Y ) is satisfying the following relation:

Pαα̇ =
n∑
i=1

(
Y ⊥ · ΛT

)α
i

(
Ỹ ⊥ · Λ̃T

)α̇
i

= 0. (2.5)

Then the momentum amplituhedron has dimension 2n− 4.
The definition of the momentum amplituhedron implies particular sign patterns for Y

and Ỹ brackets

{〈Y 12〉, 〈Y 13〉, . . . , 〈Y 1n〉} has k − 2 sign flips, (2.6)
{[Ỹ 12], [Ỹ 13], . . . , [Ỹ 1n]} has k sign flips. (2.7)

Here we introduce the brackets

〈Y ij〉 = εA1A2...An−k+2Y
A1
i1
Y A2
i2

. . . Y
An−k
in−k

ΛAn−k+1
i ΛAn−k+2

j ,

[Ỹ ij] = εȦ1Ȧ2...Ȧk+2
Ỹ Ȧ1
i1
Ỹ Ȧ2
i2

. . . Ỹ Ȧk
ik

Λ̃Ȧk+1
i Λ̃Ȧk+2

j . (2.8)
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The co-dimension one boundaries are then simply

〈Y ii+ 1〉 = [Ỹ ii+1] = 0, and Si,i+1,··· ,i+p ≡
∑

i≤j1<j2≤i+p
〈Y j1j2〉[Ỹ j1j2] = 0 . (2.9)

Note that as discussed in [19] it is crucial for the external kinematics to be ordered on
the moment curve for the planar Mandelstams to be positive, and hence its zero being the
boundaries.

In order to obtain scattering amplitudes from the momentum amplituhedron, we need
to construct the canonical form Ωn,k with logarithmic singularities on all boundaries. The
momentum amplituhedronMn,k is 2n−4 dimensional and therefore its canonical form Ωn,k

has also the same degree. One then constructs the volume form

Vvol =
n−k∏
a=1
〈Y1 . . . Yn−kd

2Ya〉
k∏
ȧ=1

[Ỹ1 . . . Ỹkd
2Ỹȧ]Ωn,k , (2.10)

through the relation

Ωn,k ∧ d4Pδ4(P ) =
n−k∏
a=1
〈Y1 . . . Yn−kd

2Ya〉
k∏
ȧ=1

[Ỹ1 . . . Ỹkd
2Ỹȧ]Ωn,kδ

4(P ) . (2.11)

The amplitude is obtained from the volume function Ωn,k, where we localize (Y, Ỹ ) to
(Y ∗, Ỹ ∗):

Y ∗ =
(

02×(n−k)
1(n−k)×(n−k)

)
, Ỹ ∗ =

(
02×(k)
1(k)×(k)

)
. (2.12)

The amplitude can be obtained by integrating out the auxiliary fermionic variables φ and
φ̃ that we have introduced

Atree
n,k = δ4(p)

∫
d2φ1 . . . d2φn−k

∫
d2φ̃1 . . . d2φ̃k Ωn,k(Y ∗, Ỹ ∗,Λ, Λ̃) . (2.13)

In practice one can use the BCFW triangulation to construct the form for Ωn,k. We
write

Ωn,k =
∑
σ

∫
C{Mσ}

dn×kc

Vol(GL(k))
1

M1M2 · · ·Mn

∣∣∣∣
Y=c⊥·Λ, Ỹ=c·Λ̃

, (2.14)

where σ labels the set of BCFW cells that constitute the tree amplitude, with each cell
characterized by a set of vanishing minors {Mσ} and hence the integration contour C{Mσ}.
To obtain Ωn,k, one starts with the G+(k, n) top cell c, and solve for the set of vanishing
minors associated with each cell {Mσ}. Next, momentum conservation in (2.5) is used to
constrain the top cell c′ of G+(n−k, k). We partially solve it so that c′ = c⊥ + ∆ where ∆
would contain four unfixed parameters, which will be set to zero on the support of δ4(P ).
Matching both sides of (2.11) allows us to fix Ωn,k.

3 The orthogonal momentum amplituhedron

In this section, we will introduce the orthogonal momentum amplituhedron geometry. We
will define it in two ways. In the first way, we utilize the positive orthogonal Grassmannian
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OG+ through the definition of Y = C · Λ, with C ∈ OG+. We will also define the geom-
etry by understanding its sign flipping structures. The canonical forms of the orthogonal
momentum amplituhedron and their relations to the amplitudes in the ABJM theory will
be studied in the next section 4.

3.1 Definition of the orthogonal momentum amplituhedron

In this section, we define the Orthogonal momentum amplituhedron. Again, we first con-
sider the positive external data, where ΛAi are 2k ordered points on an k+2-dimensional
moment curve:

ΛAi = xA−1
i , (3.1)

where xis are arbitrary ordered points x1 < x2 < · · · < xn. This arrangement will be
necessary for the planar Mandelstams to be positive as we will soon see. For ABJM we
will always have 2k=n, thus from the get go the geometry is closely related to the middle
sector (split helicity) of N = 4 sYM. As a result the moment matrix ΛAi ∈ G(k+2, 2k)
will have all ordered minors being positive. This matrix will be identified as the bosonized
kinematic variables

ΛAi =
(

λαi
φaI · ηIi

)
, A = (α, a) = 1, 2, . . . , k+2, (3.2)

where we introduced k auxiliary Grassmann variables φI with I = 1, 2, which are con-
tracted.2 On the space of Λ’s we define a kinematic bracket

〈i1i2 . . . ik+2〉 = εA1A2...Ak+2ΛA1
i1

ΛA2
i2
. . .ΛAk+2

ik+2
. (3.3)

We define the Orthogonal momentum amplituhedron as a Grassmannian element Y
given by:

Y A
a =

n∑
i=1

caiΛAi , (3.4)

where a = 1, · · · , k and A = 1, · · · , k + 2. Here ΛAi is an element of the positive moment
matrix, cai is an element of positive orthogonal Grassmannian OG+(k, 2k) in the positive
branch. The definition of the positive orthogonal Grassmannian which is the moduli space
of null planes, as discussed in [14, 15]. The important point is that the positive part
of orthogonal Grassmannian is defined with respect to the split signature metric ηij =
(+,−,+, . . . ,−), and the orthogonal constraints take the form:

ηijCaiCbj = 0 . (3.5)

In this signature, the minors satisfy MI/MĪ = ±1, where Ī is the ordered complement of
I. For MI/MĪ = 1(−1), the OG+(k, 2k) is called “positive (negative)” branch.

2As we will discuss later in section 4, it is natural to work in the N = 4 formalism for the construction
of the orthogonal momentum amplituhedron, therefore I = 1, 2, instead of I = 1, 2, 3 in the case of the
N = 6 formalism. This is realized through a SUSY reduction as we will show in detail in section 4.
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The dimension of the orthogonal momentum amplituhedron is n − 3. First, since
Y ∈ G(k, k + 2), we have:

dim(G(k, k + 2)) = 2k = n . (3.6)

Indeed, the orthogonal momentum amplituhedron lives on a co-dimension 3 surface inside
G(k, k + 2) satisfying:

0 =
n∑
i=1

Pαβi =
n∑
i=1

(−1)i
(
Y ⊥ · ΛT

)α
i

(
Y ⊥ · ΛT

)β
i
. (3.7)

We can see this from the definition (3.4). Let us start from the following equation:

0 = Y ⊥ · Y T = Y ⊥ · ΛT · CT . (3.8)

Then the 2-dimensional space Y ⊥ ·ΛT is a subspace of (CT )⊥. This means that the space
Y ⊥ ·ΛT is orthogonal. Since we take the odd legs as the outgoing and even legs as ingoing,
there is a (−1)i factor. Therefore the orthogonal momentum amplituhedron has dimension
n− 3.

Defining the planar Mandelstam variables to as

Si,i+1,...,i+p =
∑

i≤j1<j2≤i+p
(−1)j1+j2+1〈Y j1j2〉2 , (3.9)

where the (−1) factor reflects the fact that the odd (even) legs as outgoing (ingoing)
momenta, the orthogonal momentum amplituhedron has two type of the boundaries:

Si, i+ 1, . . . , i+ p︸ ︷︷ ︸
odd

= 0, p = 2, 4, 6, . . . , (3.10)

Si, i+ 1, . . . , i+ p︸ ︷︷ ︸
even

= 0, p = 1, 3, 5, . . . . (3.11)

Note that since 〈Y i i+1〉2 = Si,i+1, the boundary associated with 〈Y i i+1〉 = 0 is the same
as Si,i+1. As we will see later, only “odd-particle Mandelstam variables” (3.10) are the
co-dimension one boundaries, the other “even-particle Mandelstam variables” (3.11) are
higher co-dimension boundaries. To see that these are boundaries, we need to first check
the positivity of the planar Mandelstam variables for all points in the orthogonal momentum
amplituhedron. Although this positivity is not manifest from the definition (3.4), we can
check this fact by using the explicit C-matrix parametrization. Here we have used the
“Veronese parametrization” of the C-matrix:3

C =



1 1 1 · · · 1
t1z1 t2z2 t3z3 · · · tnzn
t1z

2
1 t2z

2
2 t3z

2
3 · · · tnz

2
n

...
...

... · · ·
...

t1z
k−1
1 t2z

k−1
2 t3z

k−1
3 · · · tnzk−1

n


, (3.12)

3This is instrumental in connecting the geometry of the moduli space of punctured disk to the ampli-
tuhedron as explored recently in [25].
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where t2, . . . , tn are given as

ti = t1

√∏
j≥2,j 6=i(zj − z1)√∏
j≥2,j 6=i(zj − zi)

. (3.13)

When these parameters satisfy t1 > 0, zi > 0 and zi−zj > 0 for i > j, all ordered minors of
C are positive. By using this parametrization, we have checked numerically that Si,i+1,...,i+p
are indeed positive up to 10-points.

In the section 4, we will further show that the BCFW cells tile the space of Y , and hence
the boundaries in (3.10) and (3.11) are simply a reflection of that for the collection of cells.

3.2 Sign flip definition

The orthogonal momentum amplituhedron defined in (3.4) can also be carved out by im-
posing constraints directly on Y through a set of sign flip conditions. First note that (3.4)
is the same as the one of the ordinary amplituhedron with m = 2 [17] except the orthogonal
condition in C-matrix. Following [24], the sign flip definition of the m = 2 amplituhedron

〈Y ii+ 1〉 > 0 ,
{〈Y 12〉, 〈Y 13〉, . . . , 〈Y 1n〉} has k sign flips , (3.14)

along with positive external data (in the sense of positive ordered minors) is conjectured
to fix Y to (3.4). The additional condition is the orthogonality of the Grassmannian. We
will show that the condition

n∑
j=1

(−1)j 〈Y ja〉〈Y jb〉 = 0, for a, b = 1, · · · , n , (3.15)

is equivalent to the orthogonal condition of the C-matrix. Therefore the sign flip condi-
tions (3.14) and the condition (3.15) give the sign flip defintion of the orthogonal momentum
amplituhedron. This definition reveals the fact the geometry for Y is the same as Ỹ for
N = 4 sYM, with the extra orthogonal condition in (3.15). Thus the geometry for ABJM
amplitude lives on a subspace of the geometry for the split-helicity sector of N = 4 sYM!

To see the equivalence of (3.15) and the orthogonality of C-matrix, we rewrite the
relation (3.15) as

n∑
j=1

(−1)j〈Y ja〉〈Y jb〉 =
n∑
j=1

∑
i1<···<ik
j1<···<jk

(−1)jMi1i2...ikMj1j2...jk〈i1i2 . . . ikja〉〈j1j2 . . . jkjb〉,

(3.16)
where Mi1,...,ik is the minor of the C-matrix. Let us consider only terms that are propor-
tional to 〈a1a2 . . . akak+1a〉〈b1b2 . . . bkbk+1b〉, where j ∈ (a1, . . . , ak+1), (b1, . . . , bk+1). These
terms can be expressed as

ck′∑
j=c1

(−1)jMa1...ĵ...ak+1
Mb1...ĵ...bk+1

〈a1 . . . ĵ . . . ak+1ja〉〈b1 . . . ĵ . . . bk+1jb〉, (3.17)

– 8 –



J
H
E
P
0
1
(
2
0
2
2
)
1
4
1

where the sum of j runs only the common parts (a1, . . . , ak+1)∩(b1, . . . , bk+1) ≡ (c1, . . . , ck′)
and c1 = max{a1, b1}, ck′ = min{ak, bk}. Without loss of generality, we can fix
max{a1, b1} = a1 = bm (for some integer m) and min{ak, bk} = ak(= bk+m−1). Then the
all kinematic brackets of the right side of (3.17) become (−1)m〈a1 . . . ak+1a〉〈b1 . . . bk+1b〉.
Therefore equation (3.17) reduces to

(−1)m
 ck′∑
j=c1

(−1)jMa1...ĵ...ak+1
Mb1...ĵ...bk+1

 〈a1 . . . ak+1a〉〈b1 . . . bk+1b〉. (3.18)

Since the minors of the positive orthogonal Grassmannian satisfy MI = MĪ , where Ī is the
complement of I, therefore,

ck′∑
j=c1

(−1)jMa1...ĵ...ak+1
Mb1...ĵ...bk+1

=
ck′∑
j=c1

(−1)jMa1...ĵ...ak+1
Mb̄1...j...b̄k−1

= 0. (3.19)

Here we used the Plücker relation
k+1∑
l=1

(−1)lMi1...ik−1,jlMj1...ĵl...jk+1
= 0. (3.20)

We conclude that, since our choice of the (i1, . . . , ik, j), (j1, . . . , jk, j) is general, the rela-
tion (3.15) holds for general kinematics when the C-matrix satisfies the orthogonal condi-
tions.

We further argue that (3.19) implies orthogonality in a similar manner as appendix A
of [14]. We gauge fix the k × 2k matrix to be

C = (1, c) =


1 0 0 0 c1,k+1 · · · c1,2k
0 1 0 0 c2,k+1 · · · c2,2k

0 0 · · · 0
...

...
...

0 0 0 1 ck,k+1 · · · ck,2k

 . (3.21)

The orthogonal condition C · CT = 0 is equivalent to

c · cT = cT · c = −1 . (3.22)

While cT · c = −1 gives

1 +
k∑
j=1

c2
j,A = 0, and

k∑
j=1

cj,Acj,B = 0 , A,B = k + 1, · · · , 2k , (3.23)

which we are going to show that it is equivalent to (3.19). Let us first choose
{a1, · · · , ak+1} = {b1, · · · , bk+1}. Without loss of generality, if we choose {a1, · · · , ak+1} to
be the first k+1 columns of (3.21), it is easy to see (3.19) gives the diagonal part of orthogo-
nal constraints in (3.23). Next, we consider {a1, · · · , ak} = {b1, · · · , bk} while ak+1 6= bk+1.
With no loss of generality we set {a1, · · · , ak} to be the first k columns of (3.21), then one
can see that in such choice, (3.19) produces the off-diagonal part of (3.23).

This finishes the proof that the conditions (3.15) are equivalent to the orthogonal
conditions on the C-matrix.
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4 Canonical forms from the orthogonal Grassmannian

In the previous section we have defined the orthogonal momentum amplituhedron as a
positive kinematic map from the positive orthogonal Grassmannian. In this section we will
consider its boundaries in more detail, showing that it corresponds to the physical bound-
aries of ABJM amplitude. Note that since the four and six-point amplitude corresponds
to the top cell of OG+(2, 4) and OG+(3, 6) respectively, the boundary of the amplitude
trivially matches to the amplituhedron. For more than six points, the amplitude is associ-
ated with a sum over lower dimensional cells (BCFW cells). Thus if the BCFW cells tile
the amplituhedron, and are non-overlapping, then the boundaries of the amplitude can be
mapped to those of the amplituhedron.

Let us consider the first non-trivial example, the eight-point amplitude, which is a sum
of two BCFW cells. We begin by choosing the top-cell C-matrix and fixed positive kinemat-
ics Λ. This gives a point Y = C ·Λ inside the orthogonal momentum amplituhedron. We can
check whether or not only one of the BCFW cells contains this point. More precisely, if we
represent this point by using the BCFW C-matrices of the BCFW cells and the same posi-
tive kinematics, only one of them can reproduce this point. By checking this holds for many
points inside the eight-point space numerically, we have verified that the eight-point BCFW
cells are non-overlapping and tilling the orthogonal momentum amplituhedron space.

After confirming that the BCFW cells indeed tile the space, we can then utilize this
connection to construct the volume form. We will construct the canonical form derived
from the Grassmannian integral with reduced SUSY. We begin by discussing the N = 4
formalism of ABJM amplitudes and the corresponding orthogonal Grassmannian and on-
shell diagram constructions. We find the volume form of each on-shell diagram in the N = 4
formalism is naturally a canonical d log form. In contrast, for the case of N = 6 formalism,
one needs to introduce the so-called Jacobian factors to incorporate the mismatch of the
bosonic and fermionic delta-functions. We will then study the canonical forms in the
language of the orthogonal momentum amplituhedron.

4.1 ABJM amplitudes and the orthogonal Grassmannian in N = 4 formalism

The ABJM theory is a three-dimensional Chern-Simons matter theory with N = 6 super-
symmetry. The physical degrees of freedom consist of the 4 complex scalars XA, 4 complex
fermions ψAα and their complex conjugates X̄A, ψ̄Aα with A = 1, 2, 3, 4 and α = 1, 2.
These fields transform in the fundamental or anti-fundamental of the R-symmetry SU(4)
and in the bi-fundamental representation under the gauge group U(N)×U(N). The index
α denotes the spinor representation in the three-dimensional Lorentz group. Let us define
super-fields of the ABJM

ΦN=6 = X4 + ηAψ
A − 1

2ε
ABCηAηBXC − η1η2η3ψ

4 , (4.1)

Ψ̄N=6 = ψ̄4 + ηAX̄
A − 1

2ε
ABCηAηBψ̄C − η1η2η3X̄

4, (4.2)

here we have decomposed the fields as XA → (X4, XA) and ψA → (ψ4, ψA).
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The tree-level super-amplitudes in ABJM theory can be written as:

Atree
n = δ3

(
n∑
i=1

pi

)
δ6
(

n∑
i=1

qi

)
Fn(λi, ηi) , (4.3)

where p and q are the on-shell momentum and supermomentum

(pi)αβ = λαi λ
β
i , qαAi = λαi η

A
i . (4.4)

The function Fn is a rational function of Lorentz invariants.
In three dimensions, the on-shell variables transform under the little group Z2 as

λαi → −λαi , ηAi → −ηAi . (4.5)

There are only two states, the fermion state that obtains a minus sign under (4.5), and the
scalar state that does not. Under little group transformations (4.5) if external leg i, the
function Fn changes as

Fn →

Fn i ∈ Φ
−Fn i ∈ Ψ.

(4.6)

From this, there are only two classes of amplitudes

An(1̄23̄ . . . 2k), An(12̄3 . . . 2̄k), (4.7)

here we denote ī that leg i is Ψ̄ and use the fact that only even-multiplicity scattering
amplitudes can be non-vanishing for this ABJM theory.

As we remarked earlier, that it is vital to work in the N = 4 formalism for the construc-
tion of the orthogonal momentum amplituhedron. One may obtain the N = 4 superfields
from the more familiar N = 6 superfields through a SUSY reduction. They are defined as,

ΦN=4 := ΦN=6∣∣
η3→0 = X4 + ηIψ

I + (η)2X3 ,

Φ̄N=4 :=
∫
dη3Ψ̄N=6 = X̄3 + ηI ψ̄

I − (η)2X̄4 ,

ΨN=4 :=
∫
dη3ΦN=6 = ψ3 + ηIX

I + (η)2ψ4 ,

Ψ̄N=4 := Ψ̄N=6∣∣
η3→0 = ψ̄4 + ηIX̄

I + (η)2Ψ̄3 , (4.8)

here we have decomposed the fields as XA → (X4, X3, XI) and ψA → (ψ4, ψ3, ψI), with
I = 1, 2. The superamplitudes in the N = 4 formalism can again be obtained by the same
SUSY reduction, namely setting k of η3 → 0 and integrating out the other k of η3 for a
2k-point superamplitude.

The orthogonal Grassmannian is defined as the space of k-planes in Cn, such that
ηijCaiCbj = 0. A tree-level (n = 2k)-point scattering amplitudes of ABJM is given as a
sum of the residues of the integral over an orthogonal Grassmannian Cai ∈ OG(k, 2k)

A2k =
∫

d2k×kCai
Vol(GL(k))

Mi1,i2,...,ik

M1M2 . . .Mk
δk(k+1)/2(C · CT )

k∏
a=1

δ2|2(Ca · Λ), (4.9)

– 11 –



J
H
E
P
0
1
(
2
0
2
2
)
1
4
1

where Mi are the i-th consecutive minor

Mi ≡
∑

a1,a2,...,ak

εa1a2...akcia1ci+1a2 . . . ci+kak . (4.10)

The numerator Mi1,i2,...,ik is given by

Mi1,i2,...,ik =
∑

a1,a2,...,ak

εa1a2...akci1a1ci2a2 . . . cikak . (4.11)

It is due to the fact that we work in the N = 4 formalism, arising from the SUSY reduction
we discussed above, where i1, i2, . . . , ik are superfields of either Φ̄N=4 or ΨN=4 in (4.8).
The integration over η3 for each of these fields generates Mi1,i2,...,ik .

A few remarks are in order here. Firstly, in the N = 4 formalism, as indicated in (4.9),
the bosonic and fermionic delta-functions, δ2|2(Ca · Λ), match each other. One of the
consequences of this is that, unlike N = 6 formalism [14, 15], the so-called Jacobi are not
required for the volume forms of the on-shell diagrams in the N = 4 formalism. As we will
see shortly, they are given by products of canonical d log forms for each on-shell diagram.
Secondly, due to the fact that the geometry of orthogonal momentum amplituhedron has
the cyclic invariance, we will consider the amplitudes

A2k(Φ̄N=4
1 ,ΦN=4

2 , Φ̄N=4
3 ,ΦN=4

4 , . . . ,ΦN=4
2k ) , (4.12)

which implies the numerator in (4.9) is M1,3,...,2k−1.4 With this choice, A2k defined in (4.9)
has the cyclic invariance. Thirdly, again thanks to the match of bosonic and fermionic
variables in theN = 4 formalism, one may identify ηI by dλα. This will lead to a differential
form representation of scattering amplitudes in ABJM theory in an analogous construction
of scattering amplitudes in N = 4 sYM in four dimensions [20].

The building blocks of on-shell diagrams for ABJM theory are the four-point ampli-
tudes, which in the N = 4 formalism are given by

A4(Φ̄N=4
1 ,ΨN=4

2 , Ψ̄N=4
3 ,ΦN=4

4 ) =
∫
dCδ3(CCT )δ2|2(C · Λ) 1

(23) ,

A4(Φ̄N=4
1 ,ΦN=4

2 , Φ̄N=4
3 ,ΦN=4

4 ) =
∫
dCδ3(CCT )δ2|2(C · Λ) (13)

(12)(23) ,

A4(Φ̄N=4
1 ,ΦN=4

2 , Ψ̄N=4
3 ,ΨN=4

4 ) =
∫
dCδ3(CCT )δ2|2(C · Λ) (14)

(12)(23) . (4.13)

Using the OG+(2, 4),

C =
(

1 cos θ 0 − sin θ
0 sin θ 1 cos θ

)
, (4.14)

we find the three types of four-point amplitudes can all be expressed in d log forms, as
shown in figure 1. The incoming arrows represent the superfields Φ̄N=4 or ΨN=4, and they
are obtained by integrating out η3 as shown in (4.8); whereas the outgoing arrows represent
the superfields ΦN=4 or Ψ̄N=4, which are obtained by setting η3 → 0.

4One may also consider A2k(Ψ̄N=4
1 , ΨN=4

2 , Ψ̄N=4
3 , ΨN=4

4 , . . . , ΨN=4
2k ), for which we have M2,4,...,2k in the

numerator.
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d log tan(θ/2+π/4)

Φ̄1 Ψ2

Ψ̄3Φ4

d log tan(θ)

Φ̄1 Φ2

Φ̄3Φ4

d log tan(θ/2)

Φ̄1 Φ2

Ψ̄3Ψ4

Figure 1. The three four-point vertices of N = 4 formalism of on-shell diagram representation of
scattering amplitudes in ABJM theory.

These four-point vertices form building blocks for the on-shell diagrams of the ampli-
tudes in ABJM theory, and one may glue them together to form more general diagrams.
Generally, the n-point superamplitudes in the N = 4 formalism can be expressed as

A2k =
∫ k∏

a=1
δ2|2(Ca · Λ)ω2k , (4.15)

here n = 2k. The integrand ω2k is obtained by gluing the four-point vertices given in
figure 1 in all possible ways following the BCFW construction of tree-level amplitudes.
Each diagram is given by products of d log’s, and ω2k is a sum of these canonical d log forms.
As we anticipated, when we express cai of OG+(k, 2k) in terms of Y under the support
of Y = C · Λ, ω2k essentially becomes the canonical form of the orthogonal momentum
amplituhedron, Ω3d

2k,k, which we will study in details in the next section. It is therefore
vital to construct ω2k, as we will do below.

Let us begin with the six-point case as an example. There are two diagrams contribut-
ing to six-point amplitude, as shown in figure 2 that correspond to two different choices
of internal arrow flows. Each diagram in this formalism takes a canonical d log form. The
contribution from the diagram on the left, figure 2 (a), is given by

ω6,1 =
3∧
i=1

d log tan(θi) , (4.16)

and the contribution from the right, figure 2 (b), can be expressed as

ω6,2 =
3∧
i=1

d log tan(θi/2) = c1c2c3

3∧
i=1

d log tan(θi) . (4.17)

They are obtained by simply gluing the four-point amplitudes given in (4.13) and figure 1.
One may combine these two contributions, which lead to

ω6 = ω6,1 + ω6,2 = (1 + c1c2c3)
3∧
i=1

d log tan θi . (4.18)

This is in agreement with the result in [14, 15] using the N = 6 formalism. In the N = 6
formalism, there is a single BCFW diagram, due to the mismatch of the bosonic and
fermionic delta-functions, which leads to the prefactor (1 + c1c2c3) arising as a Jacobian.
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θ1

θ2θ3

1

6

(a)

θ1

θ2θ3

1

6

(b)

Figure 2. The two six-point diagrams correspond to different ways of arranging arrow flow of the
internal lines. Here and throughout this paper we only label the first and last external legs.

The construction applies to on-shell diagram representation of higher-point amplitudes,
both at tree and loop levels. We conclude this section by considering the eight-point
BCFW diagrams, as shown in figure 3. Here we only show explicitly one set of four BCFW
diagrams, there are four more diagrams, which can be obtained from those in figure 3 by a
cyclic shift. The contribution from each diagram in figure 3 again is given by a canonical
d log form,

ω8,1=
5∧
i=1
dlogtan(θi), (4.19)

ω8,2=
3∧
i=1
dlogtan(θi/2+π/4)

5∧
i=4
dlogtan(θi)=s1s2s3

5∧
i=1
dlogtan(θi),

ω8,3=
2∧
i=1
dlogtan(θi)

5∧
i=3
dlogtan(θi/2+π/4)=s3s4s5

5∧
i=1
dlogtan(θi),

ω8,4=
2∧
i=1
dlogtan(θi/2+π/4)∧dlogtan(θ3)

5∧
i=4
dlogtan(θi/2+π/4)=s1s2s4s5

5∧
i=1
dlogtan(θi).

Combining the above four contributions, we have

ω8 = (1 + s1s2s3 + s3s4s5 + s1s2s4s5)
5∧
i=1

d log tan θi . (4.20)

The final expression agrees with the volume form of one of the BCFW diagrams (there
are two BCFW diagrams in the N = 6 formalism) for the eight-point amplitude obtained
originally in [15] using N = 6 formalism. In particular, the prefactor (1+s1s2s3 +s3s4s5 +
s1s2s4s5) arises as a Jacobian due to the mismatch of the bosonic and fermionic delta-
functions.

4.2 The canonical forms and boundaries

In this section, we will construct the canonical forms in the Y space of the amplituhedron
for tree-level amplitudes in ABJM theory. The dimension of the orthogonal momentum
amplituhedron is (n−3), and the canonical form Ω3d

2k,k is also (n−3) dimensional. We define
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θ1 θ2

θ3

θ5 θ4

1

8

(a)

θ1 θ2

θ3

θ5 θ4

1

8

(b)

θ1 θ2

θ3

θ5 θ4

1

8

(c)

θ1 θ2

θ3

θ5 θ4

1

8

(d)

Figure 3. There are eight BCFW diagrams that contribute to the eight-point tree-level amplitudes.
Here we have only listed four diagrams corresponding to different ways of arranging arrow flow of
the internal lines, the other set of four diagrams can be obtained by a simple cyclic shift on the
external particles.

the independent expression of the volume function Ω3d
2k,k by using 1 = δ3(P )d3P as follows:

Ω3d
2k,k ∧ d3Pδ3(P ) =

k∏
a=1
〈Y1 . . . Ykd

2Ya〉δ3(P )Ω3d
2k,k . (4.21)

In the following, we demonstrate how to obtain volume function Ω3d
2k,k from the canoni-

cal form Ω3d
2k,k through the definition (4.21) for k = 2, 3 (i.e. four- and six-point amplitudes).

For k = 2, the canonical form associated with the amplitude (4.12) is given in (4.13) (or
figure 1), which is simply d log tan(θ). Using Y A

a =
∑4
i=1 caiΛAi , we can recast the result in

the Y space, which leads to

Ω3d
4,2 = d log 〈Y 12〉

〈Y 23〉 . (4.22)

Using the definition (4.21), we find that the volume function is given by

Ω3d
4,2(Y,Λ) = 〈Y 13〉

〈Y 12〉〈Y 23〉 〈1234〉2 . (4.23)

For the six-point case, the canonical form is given by (4.18). The relation between tan(θi)
and Y-bracket can be explicitly solved according to the parametrization of OG+(3, 6),

– 15 –



J
H
E
P
0
1
(
2
0
2
2
)
1
4
1

θ1

θ2θ3

1

6

S1,2,3→0−−−−−→

θ1

θ3

1

6

Figure 4. The diagram shows the factorization limit of a six-point diagram, S1,2,3 → 0, which
corresponds to taking θ2 → π/2 on the diagram (a) in figure 2, and note that diagram (b) doesn’t
develop a singularity in this limit.

recasting in the Y space we have

Ω3d
6,3 = 1

8 × d log

(A+
54

A+
36

)2

− 1

 ∧ d log

(A+
16

A+
52

)2

− 1

 ∧ d log

(A+
32

A+
14

)2

− 1


+ 1

8 × d log
[
A+

54 +A+
36

A+
54 −A

+
36

]
∧ d log

[
A+

16 +A+
52

A+
16 −A

+
52

]
∧ d log

[
A+

32 +A+
14

A+
32 −A

+
14

]
. (4.24)

where A±ab are defined as

A±ab =
∑

i=1,3,5
〈Y ia〉〈Y ib〉 ± 〈Y a+2 a−2〉〈Y b−2 b+2〉 . (4.25)

They are related to the three-particle planar Mandelstam variables as follows

A+
52A

−
52 = −S1,2,3 S1,3,5 , A+

36A
−
36 = −S2,3,4 S1,3,5 , A+

14A
−
14 = −S3,4,5 S1,3,5 . (4.26)

Plugging the above canonical form (4.24) in (4.21), we obtain the six-point volume function

Ω3d
6,3(Y,Λ) =

(
∑
i,j=1,3,5〈Y ij〉〈ij246〉+ (1, 3, 5)↔ (2, 4, 6))2S1,3,5

A+
52A

+
36A

+
14

, (4.27)

We conclude the discussions by studying the boundaries of the momentum amplituhe-
dron. As we remarked previously that the planar Mandelstam variables are all positive
for the positive Grassmannian and positive moment kinematics. The volume function at
six points develops a singularity when A52 approaches to zero, according to (4.26) and
note that A−ab never vanish in the positive region, S1,2,3 also vanishes, which corresponds
to θ2 → π/2 in figure 2. This opening up of θ2 is a co-dimension one boundary, which
corresponds to the factorization singularity of the amplitude as shown in figure 4. While
θ1 → 0 corresponds to S1,2 = 〈Y 12〉2 vanishing. This is associated with the soft singu-
larity, where leg-1 and leg-2 decouple (connecting with the rest of the diagram through a
soft a gluon), and the remaining particles form a reducible bubble as shown in figure 5.
Therefore, θ1 → 0 or S1,2 → 0 is a co-dimension two boundary. In a similar fashion, we
find the vanishing of each Si,i+1,i+2 leads to co-dimension one boundary, and the vanishing
of Si,i+1 corresponds to co-dimension two boundaries.

It is straightforward to generalize the analysis to the cases with arbitrary multiplicity.
In general, we find that all odd planar Mandelstam variables correspond to co-dimension
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6

〈Y 12〉→0−−−−−→
θ2θ3

1

6

Figure 5. The diagram shows the soft limit of a six-point diagram, 〈Y 12〉 → 0, which corresponds
to taking θ1 → π/2 on the diagrams (a) or (b) in figure 2, here we show the case for diagram (a).

θ3

1

8
S8,1,2,3→0−−−−−−→

1

8

Figure 6. The diagram shows the S8,1,2,3 → 0 limit for an eight-point diagram, where the diagram
separates into two reducible bubbles, therefore it is a co-dimension three boundaries.

→

Figure 7. The diagrams show when an even planar Mandelstam variable vanishes, the diagram
on the left separates into two parts as shown on the right, and each of them contains a reducible
bubble. Note that here we omit the external legs in the diagram, which should be attached to
external corners of triangles.

one boundaries, associated with the factorization poles of the amplitudes; whereas the two-
particle planar Mandelstam variables correspond to co-dimension two boundaries, as we
have seen in the six-point case. Let us now focus on the higher even planar Mandelstam
variables. This is easy to illustrate using the eight-point case as shown in figure 3. For this
particular case, θ3 → π/2 exposes the singularity at S8,1,2,3 → 0. In this limit, the diagrams
separate into two parts, each containing a reducible bubble as shown in figure 6. Therefore
this is a co-dimension three boundary. In figure 7, we show the same structure in an
example of twelve-point diagrams. In general, when an even planar Mandelstam variable
vanishes, the diagram separates into two parts, and each of them contains a reducible
bubble, which is a co-dimension three boundary.
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4.3 Amplitudes from the canonical form

Following [17], to extract the amplitude from the canonical form, we localize Y as follows,

Y ∗ =
(

02×k
1k×k

)
, (4.28)

and the amplitude can be obtained from the volume function Ω3d
n,k(Y,Λ) by setting Y = Y ∗

and integrating out the bosonized variables:

A3d
2k = δ3(p)

∫
d2φ1 . . . d

2φk Ω3d
n,k(Y ∗,Λ) . (4.29)

Under this projection, the Y -brackets become usual three-dimensional spinor-helicity brack-
ets, namely 〈Y ∗ij〉 = 〈ij〉. Furthermore, one can perform the integration over fermionic
variables φ in (4.29) explicitly. In the four-point case, we have,∫

d2φ1d
2φ2〈1234〉2 = δ4

(∑
i

qi

)
, (4.30)

where qi = λαi η
I
i is the supercharge. We see that when set Y to be Y ∗, Ω3d

4,2(Y,Λ) becomes

δ4
(∑

i

qi

)
〈13〉
〈12〉〈23〉 , (4.31)

which is the four-point amplitude A4(Φ̄N=4
1 ,ΦN=4

2 , Φ̄N=4
3 ,ΦN=4

4 ).
Similarly, we find that Ω3d

6,3(Y ∗,Λ) gives the six-point ABJM superamplitude. In par-
ticular, to perform the integration over the auxiliary fermionic variables φ, we the following
integration relation,∫

d2φ1d
2φ2d

2φ3

( ∑
i,j=1,3,5

〈Y ∗ij〉〈ij246〉+ (1, 3, 5)↔ (2, 4, 6)
)2

= δ4
(∑

i

qi

)
δ2
( ∑
i,j,k=1,3,5

εijk〈ij〉ηk + (1, 3, 5)↔ (2, 4, 6)
)
. (4.32)

The tree-level six-point superamplitude is then given by summing over the contributions
from both the positive and negative branches, which lead to

A6(Φ̄N=4
1 ,ΦN=4

2 , . . . , Φ̄N=4
5 ,ΦN=4

6 )

=
δ4(
∑
i qi) δ2

(∑
i,j,k=1,3,5 εijk〈ij〉ηk + (1, 3, 5)↔ (2, 4, 6)

)2
s1,3,5

A∗+
52 A∗+

36 A∗+
14

+
δ4(
∑
i qi) δ2

(∑
i,j,k=1,3,5 εijk〈ij〉ηk − (1, 3, 5)↔ (2, 4, 6)

)2
s1,3,5

A∗−52 A∗−36 A∗−14
, (4.33)

where s1,3,5 = (p1 +p3 +p5)2 is the standard Mandelstam variable, and A∗±ab are defined as

A∗±ab =
∑

i=1,3,5
〈ia〉〈ib〉 ± 〈a+2 a−2〉〈b−2 b+2〉 . (4.34)
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The expression in (4.33) is in agreement with the known six-point superamplitude (see,
e.g. [26]), after a SUSY reduction to N = 4 and translating into the normal signature.

Finally, we remark that since the BCFW forms of the positive orthogonal Grassman-
nian are known to produce tree-level amplitudes in ABJM theory [14, 15], we therefore
expect that the volume forms of the orthogonal momentum amplituhedron should also
lead to the correct tree-level amplitudes for general multiplicity since they are obtained
directly from the BCFW forms.

5 Outlook

In this paper, we have introduced the amplituhedron geometry associated with tree-level
ABJM amplitudes. Note that through the sign flipping definition, we see that the geometry
can be identified with half of the amplituhedron for four-dimensional N = 4 sYM, subject
to additional momentum conservation constraint. Thus this in a sense constitutes an
holographic relation, where the subspace of the four-dimension geometry lives the geometry
for the three-dimensional theory. It is then natural to ask how the two forms can be related.
Indeed as explored in [15] the cells of orthogonal Grassmannian, and hence the associated
forms, can be identified as subspace of positive cells for the usual positive Grassmannian.
The form for N = 4 sYM lives in the space Y and Ỹ , it is tempting to simply identify Y
and Ỹ for k = n

2 , where their dimensions are the same. However, this naive prescription
cannot be the whole story since their sign flipping conditions are different. We leave the
correct map between the two forms to future work.

This suggests that a similar projection might be applicable to the momentum twistor
amplituhedron of N = 4 sYM. The momentum twistor Grassmannian for ABJM was
studied in [27], where it was found that the orthogonal condition is defined on a kinematic
dependent metric. Our analysis motivates us to take the N = 4 amplituhedron, and require
that the four-component variables

zAi ≡ (Y ⊥ · Zi)A , (5.1)

satisfy the additional Sp(4) null constraint

zAi z
B
i ΩAB = 0 , (5.2)

where ΩAB is the Sp(4) invariant metric. We leave the exploration of this possibility to
future work as well.

In a recent work [25], it was shown that the orthogonal momentum amplituhedron
can be identified as the push forward of the canonical form on the moduli-space of n
punctured disk M+

0,n, through the Veronese map. The image has the property that the
zero of even-particle Mandelstams are higher co-dimensional boundaries. However, for the
pre-image, these are all co-dimension one boundaries. Thus it would appear that while the
push forward maps boundary to boundary, the co-dimensionality will change. It will be
interesting to understand how the Veronese map systematically achieves this and what is
the geometric mechanism behind it.
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The positive orthogonal Grassmannian geometry has very intriguing connections with
the correlation functions of planar Ising networks [28, 29], and the connections have led to
efficient tools for the computations of the correlation functions. It will be of interest to study
if the orthogonal amplituhedron geometry constructed in this paper offers new understand-
ing. In this paper, we extended the original amplituhedron geometry [17] for the scatterings
in three-dimensional ABJM theory. It was understood that the scattering amplitudes in
six-dimensional theories should be associated with the Symplectic Grassmannian [30–32], a
natural future research direction is to extend the amplituhedron geometry for the Symplec-
tic Grassmannian and study its applications for the amplitudes in six-dimensional theories.
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