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Abstract: Generating an effective theory of lower-dimensional gravity on a submanifold
within an original higher-dimensional theory can be achieved even if the reduction space
is non-compact. Localisation of gravity on such a lower-dimensional worldvolume can be
interpreted in a number of ways. The first scenario, Type I, requires a mathematically
consistent Kaluza-Klein style truncation down to a theory in the lower dimension, in which
case solutions purely within that reduced theory exist. However, that situation is not a
genuine localisation of gravity because all such solutions have higher-dimensional source
extensions according to the Kaluza-Klein ansatz. Also, there is no meaningful notion of
Newton’s constant for such Type I constructions.

Types II and III admit coupling to genuinely localised sources in the higher-dimensional
theory, with corresponding solutions involving full sets of higher-dimensional modes. Type
II puts no specific boundary conditions near the worldvolume aside from regularity away
from sources. In a case where the wave equation separated in the non-compact space
transverse to the worldvolume admits a normalisable zero mode, the Type III scenario
requires boundary conditions near the worldvolume that permit the inclusion of that zero
mode in mode expansions for gravitational wave fluctuations or potentials. In such a case,
an effective theory of lower-dimensional gravity can emerge at sufficiently large worldvolume
distance scales.

This taxonomy of brane gravity localisations is developed in detail for linearised
perturbations about a background incorporating the vacuum solution of Salam-Sezgin
theory when embedded into ten-dimensional supergravity with a hyperbolic non-compact
transverse space. Interpretations of the Newton constant for the corresponding Type III
localisation are then analysed.
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1 Introduction

A standout feature of string and supergravity theories is the fundamental rôle of higher-
dimensional spacetimes in the most mathematically natural formulations of these theories.
Relating these theories to realistic physics requires some method of producing a four-
dimensional effective theory. A standard method (cf. e.g. [1]) is Kaluza-Klein dimensional
reduction, making an ansatz in which the space transverse to the four-dimensional spacetime
is compact, thus producing a naturally discrete spectrum of transverse-space wavefunctions.
The discrete eigenvalues of such transverse wavefunctions correspond to discrete (mass)2

values for the excitations of the four-dimensional effective theory. In order for such a
model to describe four-dimensional gravity, there must exist massless graviton states, i.e.
the transverse-space problem must admit a zero eigenvalue. The existence of a gap in
the effective-theory mass spectrum then allows for a low-energy regime in which physical
phenomena are effectively four-dimensional. A mathematically attractive situation occurs
when the coupling between the four-dimensional massless sector of the theory and the
massive sector allows, at least at the classical level, for the massive modes to be set to zero
consistently with the original higher-dimensional field equations. In that case, one has a
consistent truncation, a topic which has been much studied in the Kaluza-Klein literature.
However, many physically interesting constructions derived from higher-dimensional theories
are not endowed with such massive-mode consistent truncations. The existence of a mass
gap and consequent lower-dimensional behaviour in a low-energy “grace zone” with only
small massive-mode-induced corrections is more essential.

Other ways of obtaining effectively lower-dimensional physics from a higher-dimensional
theory have also been explored. A theme in the development of supergravity theories
which has been explored but not widely applied is the existence of supergravity models
with non-compact gauge symmetries (cf. e.g. [2]). Such lower-dimensional models can be
obtained from a variant of the Kaluza-Klein idea, in which the transverse space is taken to be
non-compact, and with correspondingly non-compact symmetries. In such cases where there
is also a consistent truncation to the lower-dimensional massless sector, one may consider
that one has embedded a kind of lower-dimensional physics with non-compact symmetries
into the higher-dimensional theory. A trivial example of such a non-compact reduction
would be from higher-dimensional Minkowski space, with the consistent reduction ansatz
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requiring translational invariance in all dimensions higher than four. That trivial example,
however, illustrates a frequent problem with non-compact reductions: the massive-sector
spectrum is continuous right down to zero mass. Any small excitation of the massive modes
causes the theory to behave as originally formulated in the higher dimension, and there is
no low-energy grace zone. This can prevent the effective localisation of the effective-theory
gravity in the lower dimension, unless somehow a mass gap can be arranged below the edge
of the continuous spectrum.

In analysing transverse wave equation eigenvalue spectra, it is often convenient to
make a change of variables so as to remove first-derivative terms from the wave equation,
leaving just second-derivative terms and potential terms without derivatives. The resulting
transverse wave equation then has the form of a time-independent Schrödinger equation.
An approach to the localisation of gravity on a four-dimensional subsurface of a higher-
dimensional spacetime somewhat along such lines was given by Randall and Sundrum
in [3], reflecting segments of AdS5 with the reflection surface corresponding to an extended
delta-function source for the Einstein equations. This gives rise to a normalisable bound
state in the corresponding effective-theory Schrödinger problem and to the existence of a
low-energy grace zone. One criticism of that construction, however, has been that it is still a
kind of compactification of the transverse space, because the location of the reflection surface
near the AdS5 horizon in Poincaré patch coordinates leads to a finite normalisation integral
for the corresponding zero mode: upon reflecting, an infinite volume of AdS5 spacetime has
been excluded. The nature of the implied delta-function source also remained unmotivated.

A different construction possessing a normalisable transverse-space zero mode which is
based on physical excitations around a genuinely non-compact solution of ten-dimensional
Type IIA supergravity was explored in ref. [4]. The underlying supergravity solution is
based on the R1,3×S2 ground-state solution of the 1984 six-dimensional supergravity found
by Salam and Sezgin [5], later lifted into Type IIA supergravity by Cvetič, Gibbons and
Pope in ref. [6]. The lift of Salam-Sezgin supergravity into Type IIA supergravity is made on
the non-compact hyperbolic space H(2, 2) times a circle, and the Salam-Sezgin ground state
has a flat Minkowski4 “worldvolume” lifted to D = 10 via a transverse space incorporating
four-dimensional Eguchi-Hansen space. We shall refer to this lifted ground state solution
as the SS-CGP background. Gravitational excitations on the D = 4 worldvolume then
have a transverse-space field equation whose Schrödinger reformulation has a potential
V (ρ) = 2− (coth(2ρ))2 giving an integrable system of Pöschl-Teller type [4]. This transverse
system possesses a single normalisable zero mode, then a gap, above which is the expected
continuum of nonzero eigenvalue states. Accordingly, the D = 4 effective field theory has
a massless graviton separated from a continuum of massive states by a mass gap, so the
system is endowed with a low-energy grace zone in which gravity-wave physics is effectively
four-dimensional.

In the present paper, we shall continue further an exploration of the hyperbolic spacetime
construction of ref. [4] by considering the consequences of including a massive point source
situated on the worldvolume but fully localised in the higher-dimensional spacetime. Our
discussion will mostly be carried out at linearised level in perturbations about the SS-CGP
background and for simplicity we mostly will work in the context of a five-dimensional
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reduction of the D = 10 theory. Since we will maintain throughout the transverse-space
symmetries of the SS-CGP solution as well as spherical symmetry on the worldvolume,
the discussion could be lifted back up into a full D = 10 context. Accordingly, the key
coordinates for our analysis will mostly be just the non-compact transverse-space coordinate
ρ and the D = 4 worldvolume radius r.

The key question that we shall address is whether the response to the inclusion of a
massive point source produces a genuinely four-dimensional massless gravitational field
response at large r distances or not. We shall find that there are three different situations. We
begin in section 2 firstly by reviewing the well-known construction of sourced gravitational
solutions just in the dimensionally reduced D = 4 theory, following refs. [7–9]. Such
solutions do not have a genuinely localised massive point source from the point of view of
the higher-dimensional theory, however, since they are based upon a dimensional reduction
ansatz in which the full SS-CGP transverse space structure remains unchanged. In this
situation, a D = 4 point source is really an extended source from the higher-dimensional
point of view. In ref. [8], such sources were called “black strings”, but in order to emphasise
the radially extended nature of such sources in the D = 10 higher-dimensional theory, we
shall prefer to call them “black spokes”. We shall call this situation Type I structure.

The rest of the paper will be concerned with genuinely localised sources from a higher-
dimensional perspective. In section 3, we shall discuss how to define an effective Newton
constant in the D = 4 subspace by the study of geodesics perturbed by the effect of a massive
point source. In section 4 we shall simplify the linearised analysis of the gravitational
perturbation about the SS-CGP background, showing how one may reduce the study of the
Newtonian gravitational potential to that just of a scalar Green function on that background.

The main results of the paper then come in section 5 and section 6. In section 5, we
shall first study what might be considered the most natural context of simply putting
a massive point source on the worldvolume of the SS-CGP background and finding its
behaviour at large worldvolume radius r, while imposing Neumann boundary conditions
at ρ = 0 in the transverse coordinate. This does not turn out to reproduce an effectively
D = 4 Newtonian gravitational potential at large r, however. Instead, one finds a D = 5
Yukawa-type gravitational potential, which we will call Type II structure. This is quite
different from what one might have expected from the massless gravity-wave analysis of
ref. [4]. The reason for this hangs upon the type of transverse-space boundary conditions
that are imposed at the ρ = 0 worldvolume surface. The Pöschl-Teller zero mode of the
transverse-space Schrödinger problem has a logarithmic structure as ρ→ 0, and in order
to incorporate such modes, one needs to impose a different type of boundary condition at
ρ = 0 : a generalised Robin boundary condition. When this boundary condition is imposed
at ρ = 0, the anticipated four-dimensional 1/r behaviour of the gravitational potential at
large r worldvolume radius makes its appearance, with, however, a log(ρ) prefactor. This
we will call Type III structure. In section 6, the transition between Type II and Type
III structures will be explored using a technique due to Bender [10] which we call “long
distance mirrors”. This transition turns out to be analogous to the detailed analysis of the
Randall-Sundrum system given in ref. [11], which also hinged on consideration of boundary
conditions at the reflection surface.
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In section 7, we show how an effective-theory Newton constant may be obtained from a
variety of local averagings in position near the ρ = 0 worldvolume, one of which precisely
reproduces the effective-theory value found in ref. [4].

2 Type I: radial black spokes

2.1 Geometry of the Salam-Sezgin lift

The uplift of the Salam-Sezgin R1,3 × S2 solution into Type IIA supergravity was obtained
in ref. [6]. In Einstein frame, this uplifted solution, the SS-CGP solution, is

ds2
10 = H−1/4

(
ηµνdx

µdxν + dy2 + 1
4g2

(
dψ + sech 2ρ (dχ+ cos θ dϕ)

)2)+ 1
g2H

3/4ds2
EH ,

B(2) = 1
4g2

(
dχ+ sech 2ρ dψ

)
∧
(
dχ+ cos θ dϕ

)
, e2φ = H , H = sech 2ρ , (2.1)

where g is a constant, and ds2
EH is the metric on the four-dimensional Eguchi-Hanson space,

ds2
EH = cosh 2ρ

(
dρ2 + 1

4 (tanh 2ρ)2 (dχ+ cos θ dϕ)2 + 1
4(dθ2 + sin2 θ dϕ2)

)
. (2.2)

The coordinates take values in ranges xµ ∈ R1,3, y ∈ [0, ly), χ, ϕ ∈ [0, 2π), ψ ∈ [0, 4π),
θ ∈ [0, π] and ρ ∈ [0,∞). The fact that χ has a period of 2π as opposed to 4π means that
the boundary of the Eguchi-Hanson space at infinity is given by RP3 ∼= S3/Z2, where the
S3 is realised as a Hopf fibration over S2, with χ being the fibre coordinate. Near ρ = 0,
the geometry of the Eguchi-Hanson space is R2 × S2 for constant (θ, ϕ), with (ρ, χ) acting
as plane polar coordinates on R2.

As explained in [4], the SS-CGP solution preserves 8 supercharges, and has the form
of an NS5-brane wrapped on (y, ψ) ∈ T 2 with an effective worldvolume R1,3 that has a
singularity which is resolved by transgression. The function H, which is usually a harmonic
function on the transverse space (Eguchi-Hanson in our case), is now a particular solution
to the sourced Laplacian

∆EHH = −g
2

2 (F(2))2 , (2.3)

where ∆EH is the Laplacian on Eguchi-Hanson space, and F(2) is the field strength of the
1-form

A(1) = sech 2ρ (dχ+ cos θ dϕ) , (2.4)

and is the unique, anti-self-dual 2-form on Eguchi-Hanson space. Geometrically, this
transgression is realised as a U(1) fibration of the worldvolume over Eguchi-Hanson space
with fibre coordinate ψ and connection A(1). We will call this U(1) bundle the transgression
bundle. For generic values of ρ, this bundle is non-trivial with second Chern character∫

ch2(F(2)) = 1
2(2π)2

∫
F(2) ∧ F(2) = 1 , (2.5)

where the integral is over the Eguchi-Hanson space. There is a special limit of the SS-CGP
solution which makes the connection to NS5-branes even more manifest. As ρ → ∞,
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the field strength F(2) vanishes, so the transgression bundle trivialises. In this limit, the
solution asymptotes to the linear dilaton solution, which is the near-horizon limit of the NS5-
brane. Consequently, there is also an enhancement of supersymmetry to 16 supercharges in
this limit.

It is worth mentioning that it is possible [4] to include an additional NS5-brane into the
SS-CGP solution without breaking any more supersymmetry by adding to H a homogeneous
solution to (2.3). Explicitly, one has

H = sech 2ρ− k log tanh ρ , (2.6)

where k is a positive constant that is proportional to the tension of the NS5-brane. The
logarithmic behaviour of H for small ρ is indicative of the fact that the topology of the
Eguchi-Hanson space is R2 × S2 in this neighbourhood. In order for this to remain a
solution, the NSNS 2-form is also modified to be

B(2) = 1
4g2

(
(1 + k)dχ+ sech 2ρ dψ

)
∧
(
dχ+ cos θ dϕ

)
. (2.7)

We will not be studying this solution further in the present paper, but more information
about it can be found in ref. [4].

2.2 Ricci-flat branes and radial black spokes

For every supersymmetric brane solution, resolved or unresolved, it is possible to replace the
flat worldvolume (or effective worldvolume in the resolved case) by an arbitrary Ricci-flat
manifold. The same is also true for its transverse space. As such, the metrics of these
doubly-Ricci-flat branes are given by

ds2 = Hagµν(x)dxµdxν +HbGij(y)dyidyj , (2.8)

where a, b are appropriate constants, gµν and Gij are the Ricci-flat metrics on the effective
worldvolume and transverse space respectively, and H is a harmonic function on the
transverse space. We note that for a flat transverse space, the above is an example of
a brane with Ricci-flat worldvolume as first explored in [7], which is also a special case
of a “branes on branes” construction, where one considers a consistent truncation to a
supergravity theory on the lower-dimensional worldvolume [9]. It is not difficult to show
that the solution (2.8), along with its appropriate scalars and fluxes, is supersymmetric
provided that gµν and Gij admit covariantly constant spinors with an appropriate projection
condition. In appendix A, we will provide an explicit example of this solution realised
in a supergravity model. From [12], there are no static, irreducible Ricci-flat, Lorentzian
manifolds other than Minkowski space that admit covariantly constant spinors. For the
transverse space, on the other hand, there are many options other than Euclidean space.
In particular, depending on dimension, one can select Calabi-Yau, hyper-Kähler, G(2), or
Spin(7) manifolds. The resulting number of preserved supercharges is then determined by
the number of singlets in the decomposition of the representation of the Spin(m) spinor
with respect to the holonomy group of the transverse space, where m is the dimension of
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the transverse space. For a more detailed account of special holonomy manifolds in relation
to supersymmetry, we refer the reader to the review in ref. [13].

A compact Riemannian manifold without boundary only admits a constant solution
to the Laplace equation, so it is necessary for the transverse space to be non-compact in
order for H to be non-trivial. Due to the non-compactness of the transverse space, H will
generically have a singularity. For example, if we take the transverse space to be a conical
Calabi-Yau space with metric

ds2(CY ) = dR2 +R2ds2(SEm−1) , (2.9)

where SEm−1 is a (m− 1)-dimensional Sasaki-Einstein manifold with m even,1 and let H
only be R-dependent, then

H = 1 + k

Rm−2 . (2.10)

This has a singularity at R = 0, which for generic dimensions translates into a curvature
singularity of the solution. This is not the case for the M2 and M5-branes, however, where
the R = 0 singularity is a horizon; see [14–16] for further details.

Leaving supersymmetry aside, one enticing aspect of these doubly-Ricci-flat branes is
that they seemingly allow for localised gravitational physics on the brane worldvolume. As
an example, the Ricci-flat worldvolume can be chosen to be the Schwarzschild black hole in
isotropic coordinates,

ds2 = −
(

1− M
rn−3

1 + M
rn−3

)2

dt2 +
(

1 + M

rn−3

) 4
n−3 (

dr2 + r2ds2(Sn−2)
)
, (2.11)

where n is the worldvolume dimension. The singularity structure of the solution, ignoring
the contribution from the harmonic function H, will now be at r = 0. However, this r = 0
singularity is located everywhere in the transverse space. More precisely, in a perturbative
picture, a doubly-Ricci-flat brane with worldvolume given by (2.11) can be written as a
perturbation of a doubly-Ricci-flat brane with a R1,n−1 worldvolume,

ds2 = Ha (ηµνdxµdxν +Mhµνdx
µdxν) +HbGij(y)dyidyj +O(M2) , (2.12)

with
h00 = 4

rn−3 , hmn = 4
(n− 3)rn−3 δmn , (2.13)

where δmn is the flat metric on the Rn−1 slice of R1,n−1. This perturbation is not traceless,
and obeys the de Donder gauge

∂µhµν −
1
2∂νh

ρ
ρ = 0 . (2.14)

The stress tensor that sources this perturbed solution (2.12) has the form

TMN = MδM0δN0f(y) δ(r)
rn−2 , (2.15)

1Taking SEm−1 = Sm−1 gives the flat metric on Rm.
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where f(y) is a smooth function on the transverse space. From the delta function structure
of the stress tensor, we observe that the source of this solution is not localised in the higher
dimension, but is spread out radially like a spoke.

For the rest of this paper, we will be interested in braneworld localisation on the
SS-CGP background with a source that has a genuinely higher-dimensional origin, so that
the curvature singularity is located at a single point in the higher-dimensional space. More
precisely, we require a source that is localised at a single point in (r, ρ) space, where r
is the isotropic, spatial radius on the effective R1,3 worldvolume. We will be employing
a perturbative treatment as in (2.12), but since the source for the perturbation will be
higher-dimensional, the perturbation itself will also depend importantly on the transverse
radius ρ. As with the perturbation in (2.12), we will not assume tracelessness.

3 Inferring Newton’s constant; geodesics

Owing to the non-trivial nature of the SS-CGP background, it is difficult to solve for all
components of a gravitational perturbation that is sourced at the (r, ρ) = (0, 0) origin.
However, our goal is to understand whether brane-gravity localisation is possible, and, to
this end, we only need to compute the effective gravitational potential associated with the
perturbation and from that infer the lower-dimensional Newton constant. The problem of
defining a lower-dimensional Newton constant can be interpreted at the level of the field
theory action by reading off the coupling of matter fields to the metric. However, one
alternate method by which one might determine the Newton constant, and also determine
the dimension to which the effective gravity corresponds, would be to measure the response
of a test particle to a known source mass and so to infer the corresponding Newton constant
by the way geodesics in spacetime are distorted by the gravitational perturbation.

If one considers a weak-field limit in the neighbourhood of a source mass for a pertur-
bation caused by the source in a Minkowski spacetime, only the details of the time-time
component2 of the perturbation need be known. We will show that this is also true in the
SS-CGP background.

3.1 The SS-CGP background

In this section, we’ll consider timelike geodesics on the SS-CGP background (2.1). The
affinely parametrised geodesic equation for a path γ is given by

d2ZM

dτ2 + ΓMKL(Z)dZ
K

dτ

dZL

dτ
= 0 , (3.1)

where ZM = (Xµ, Y, P,Θ,Φ,Σ,Ψ) are the coordinates of the path γ, and τ is the proper
time. We use capital letters here in order to avoid confusion with the global coordinates

2This statement makes use of an implicit gauge. We give full details of our gauge below.
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in (2.1).3 This equation of motion gives extrema for the Lagrangian4

L = gMN (Z)dZ
M

dτ

dZN

dτ
. (3.2)

The isometry group of (2.1) is given by

Isom10 = ISO(1, 3)×U(1)3 × SO(3)2 , (3.3)

where the U(1)3 corresponds to the 3-torus parametrised by (y, ψ, χ), and the SO(3)2 is the
isometry of the S2 parametrised by (θ, ϕ). Using these isometries, we find that a solution
to the geodesic equation is

Y = 0 , Θ = π , Φ = 0 , Σ = 0 , Ψ = 0 . (3.4)

Simplifying the Lagrangian (3.2) for a solution that obeys conditions (3.4), we find

L = (cosh 2P )1/4
[
ηµν

dXµ

dτ

dXν

dτ
+ 1
g2

(
dP

dτ

)2]
. (3.5)

The equation of motion for P (τ) is then

d2P

dτ2 + 1
4 (tanh 2P )

(
dP

dτ

)2
− g2

4 (tanh 2P ) ηµν
dXµ

dτ

dXν

dτ
= 0 . (3.6)

This admits the solution
P (τ) = 0 . (3.7)

The remaining equations for Xµ are the usual geodesic equations on R1,3. Remembering
that we’re looking for a timelike geodesic, the appropriate solution is

X0 = τ , X i = 0 . (3.8)

To summarise, we find that the SS-CGP geometry admits the stable timelike geodesic

X0 = τ , X i = 0 , Y = 0 , P = 0 , Θ = π , Φ = 0 , Σ = 0 , Ψ = 0 . (3.9)

This will be the starting point for the next section, where we look for a timelike geodesic
on a perturbed SS-CGP geometry.

3.2 Perturbed SS-CGP geodesics

We consider the perturbed geometry described by a metric ĝ, with

ĝMN = (cosh 2ρ)1/4(ḡMN +HMN ) (3.10)

where ḡ is the string-frame metric on the SS-CGP background,5 and HMN is a perturbation.
3(Xµ, Y, P,Θ,Φ,Σ,Ψ) correspond to (xµ, y, ρ, θ, ϕ, χ, ψ).
4We use the form (3.2) of the particle Lagrangian in this discussion for simplicity, instead of the worldline

reparametrisation invariant proper-time action
∫
dτ(p)
dp

dp involving a square root. The Lagrangian (3.2)
can of course be obtained from the “einbein” form [17] LBdVH = 1

2 (e−1gMN (Z) dZ
M

dτ
dZN

dτ
+ m2

particlee) by
choosing the reparametrisation gauge e = 1

2 .
5The string-frame metric is related to the Einstein-frame metric by ds2

str = eφ/2ds2
Ein.
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The perturbation that we are interested in is independent of the time coordinate x0, and has
components only along the xµ and ρ directions, with H0i = 0. As such, the U(1)3 × SO(3)2

isometry of the SS-CGP background is unbroken, and we have it that

Y = 0 , Θ = π , Φ = 0 , Σ = 0 , Ψ = 0 (3.11)

solves the perturbed geodesic equations. With this choice, the perturbed particle La-
grangian is

L = ĝMN (Z) dZ
M

dτ

dZN

dτ

= (cosh 2P )1/4
[
(ηµν +Hµν) dX

µ

dτ

dXν

dτ
+ 2Aµ

dXµ

dτ

dP

dτ
+ 1
g2 (1 +B)

(
dP

dτ

)2]
,

(3.12)

where we have defined

Hµρ(Xi, P ) ≡ Aµ(Xi, P ) , Hρρ(Xi, P ) = 1
g2B(Xi, P ) . (3.13)

It is important to note that Hµν , Aµ and B are functions of Xi and P only.
The resulting equations for Xµ and P are given by

(
δµν +Hµ

ν

) d2Xν

dτ2 + 1
2η

µν (∂σHλν + ∂λHσν − ∂νHσλ) dX
σ

dτ

dXλ

dτ

+Aµ
(
d2P

dτ2 + 1
2 (tanh 2P )

(
dP

dτ

)2)
+
(
∂PA

µ − 1
2g2∂

µB

)(
dP

dτ

)2

+
(
F µ
ν + ∂PH

µ
ν + 1

2 (tanh 2P )
(
δµν +Hµ

ν

)) dXν

dτ

dP

dτ
= 0 ,

(3.14)

and

1
g2 (1+B)

(
d2P

dτ2 + 1
4 (tanh2P )

(
dP

dτ

)2)
+ 1

2g2∂PB

(
dP

dτ

)2
+Aµ

d2Xµ

dτ2

+ 1
g2∂µB

dXµ

dτ

dP

dτ
+
(
∂(µAν)−

1
2∂PHµν−

1
4 tanh2P (ηµν +Hµν)

)
dXµ

dτ

dXν

dτ
= 0 ,

(3.15)

where
∂µ ≡

∂

∂Xµ
, ∂P ≡

∂

∂P
, Fµν ≡ 2∂[µAν] (3.16)

and the µ, ν indices are raised by ηµν .
We now consider a deviation of the original timelike geodesic on the SS-CGP background

as given in (3.9). We write

X0 = τ + δX0 , X i = δX i , P = δP . (3.17)

We’ll treat δP and the τ -derivatives of these deviations as small (the Newtonian limit), and
will only consider terms of order 1 in perturbations. Here, the considered perturbations
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include Hµν , Aµ, and B, the τ -derivatives of δXµ and δP , as well as δP itself; so we’ll
neglect, for example, terms of the form

B
d2δP

dτ2 = O
(
pert2

)
. (3.18)

The resulting linearised equations for Xµ are then

d2δX0

dτ2 = 0 , d2δX i

dτ2 = 1
2

∂

∂δX i
H00 , (3.19)

where we have used that Hµν is independent of X0. The first equation allows us to set
δX0 = 0, and so X0 = τ at least in this linearised regime. Thus, we are allowed to interpret
τ as the underlying manifold’s time, which we’ll write as x0 = t. The δX i equation is then
Newton’s equation, with a gravitational potential

VN
(
δX i, δP

)
= −2mparticleH00(δX i, δP ) , (3.20)

where mparticle is the small mass of the test particle following the geodesic.
Finally, we also have the δP equation, which in our approximation reads

d2δP

dt2
+ g2

2 δP −
g2

2
∂

∂δP
H00 = 0 , (3.21)

where we have used that Aµ is independent of X0. Using the Newtonian potential defined
in (3.20), and removing the δ’s from δX i and δP for convenience, we can rewrite their
equations as

mparticle
d2Xi

dt2
= − ∂

∂X i
VN , (3.22)

mparticle

(
d2P

dt2
+ g2

2 P
)

= −g2 ∂

∂P
VN . (3.23)

In conclusion, the leading effect of perturbations about the SS-CGP background is
through VN ∝ H00.

4 Perturbations and the scalar Green function

One method of finding solutions to the perturbation problem about the SS-CGP background
is to find solutions to the perturbation problem of the 5-dimensional theory6

L5 = R∗1− 1
2dΦi ∧ ∗dΦi −

1
2e
√

2Φ1dσ ∧ ∗dσ − V ∗1 , (4.1)

obtained from Type I supergravity reduced on T 3 × S2, the details of which are presented
in appendix B. The scalar potential V is

V = 2g2e

√
2
5 Φ2− 8√

15
Φ3
(
e−
√

2Φ1 + σ2 + 1
4e
√

2Φ1
(
σ2 − 2

)2
− 4e−

√
2
5 Φ2+

√
3
5 Φ3

)
. (4.2)

6Our convention for the Hodge dual is ∗(dxm1 ∧ · · · ∧ dxmp) = 1
q!

√
|g|εm1···mp

n1···nqdx
n1 ∧ · · · ∧ dxnq ,

where εn1···nD with lowered indices is numerical, and q = D − p.
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The Salam-Sezgin solution (which lifts to the SS-CGP background) of Type I supergravity
in D = 5 is

ds2
5 = (sinh 2ρ)

2
3

(
ηµνdx

µdxν + 1
g2dρ

2
)
, e−

√
2Φ1 = (tanh 2ρ)2 ,

e
√

10Φ2 = e
√

15Φ3 = (sinh 2ρ)2 , σ =
√

2 sech 2ρ .
(4.3)

Now consider a perturbation about the background (4.3),

gMN = (sinh 2ρ)
2
3
(
gMN +HMN

)
, Φi = Φi + φi , σ = σ + Σ , (4.4)

where
ds2

5 = gMNdX
MdXN = ηµνdx

µdxν + 1
g2dρ

2 , (4.5)

and Φi and σ are the background values of the scalars. Here, we have used XM = (xµ, ρ).
For notational convenience, we will define a function A(ρ) by

e2A(ρ) = (sinh 2ρ)
2
3 , (4.6)

and also make the coordinate rescaling ρ→ z(ρ) = ρ/g. In the XM = (xµ, z) coordinate
system, gMN = ηMN , and the linearised Ricci tensor of (4.4) is given by

R
(1)
MN = 1

2
(
∂P∂MHNP + ∂P∂NHMP −�5HMN − ∂M∂NH

)
+ 3

2A
′ (∂MHNz + ∂NHMz − ∂zHMN ) (4.7)

+
(
A′
(
∂MHMz −

1
2∂zH

)
+
(
A′′ + 3

(
A′
)2)

Hzz

)
ηMN −

(
A′′ + 3

(
A′
)2)

HMN ,

where �5 = ηMN∂M∂N , and H = ηMNHMN . Using the definition of A(z) given in (4.6),
we find

R
(1)
MN = 1

2
(
∂P∂MHNP + ∂P∂NHMP −∆5HMN − ∂M∂NH

)
+ g coth (2gz) (∂MHNz + ∂NHMz)

+
(

2
3g coth(2gz)

(
∂MHMz −

1
2∂zH

)
+ 4g2

3 Hzz

)
ηMN −

4g2

3 HMN . (4.8)

The operator ∆5 in (4.8) is defined as

∆5 = �5 + 2g coth(2gz)∂z = ηµν∂µ∂ν + g2
(
∂2
ρ + 2 coth(2ρ)∂ρ

)
. (4.9)

4.1 Scalar equations

Before looking at HMN ’s field equations, we will first consider the equations for φi and Σ.
These come from the 5-dimensional field equations,

�5Φ2,3 = ∂V

∂Φ2,3
, �5Φ1 = 1√

2
e
√

2Φ1 (∂σ)2 + ∂V

∂Φ1
, ∇M

(
e
√

2Φ1∂Mσ
)

= ∂V

∂σ
. (4.10)
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We use that √
−g = e5A

(
1 + 1

2H +O
(
H2
))

(4.11)

and find after some algebra

�5Φi = e−2A∆5Φi+e−2A
(

∆5φi−
(
∂MHMz−

1
2∂zH

)
Φ′i−Hzz∆5Φi

)
, (4.12)

∇M
(
e
√

2Φ1∂Mσ
)

= e
√

2Φ1−2A∆̃5σ+e
√

2Φ1−2A
(

∆̃5Σ+
(√

2φ1−Hzz

)
∆̃5σ

−
(
∂MHMz−

1
2∂zH

)
σ′+
√

2σ′φ′1
)
, (4.13)

where the operator ∆̃5 is defined as

∆̃5 = ∆5 +
√

2 Φ′1∂z = ∆5 − 8g csch(4gz)∂z . (4.14)

For the right-hand-side of the scalar equations, we have, to first-order in perturbations,

∂V

∂Sα
= ∂V

∂Sα

∣∣∣∣∣
S

+ ∂2V

∂Sβ∂Sα

∣∣∣∣∣
S

δSβ , (4.15)

where Sα = {Φi, σ}, δSα = {φi,Σ}, and S denote the scalars, scalar perturbations, and
background scalars respectively. Note that there is no 1

2 prefactor on the second derivative
of the potential.

We also have

e
√

2Φ1
(
∂σ
)2 = e

√
2 Φ1−2A((σ′)2 + (

√
2φ1 −Hzz)(σ′)2 + 2σ′Σ′

)
. (4.16)

Now a straightforward calculation shows that

∂2V

∂Φ2,3∂Φ1

∣∣∣∣∣
S

= ∂2V

∂Φ2,3∂σ

∣∣∣∣∣
S

= 0 . (4.17)

Consequently, {φ1,Σ} and {φ2, φ3} are decoupled from each other at this order in pertur-
bations. Explicitly, the scalar equations are

φ1 :
(
∆5 − 8g2)φ1 = −4g csch(4gz)

(√
2Gz + 2 cosh(2gz)

(
∂zΣ + 2g tanh(2gz)Σ

))
, (4.18)

Σ :
(
∆̃5 − 8g2(sech(2gz))2)Σ = −2g sech(2gz) tanh(2gz)

(√
2Gz

− 2
(
∂zφ1 − 2g tanh(2gz)φ1

))
, (4.19)

φ2 : ∆5φ2 −
8g2

5 φ2 + 32
5

√
2
3g

2φ3 = 2
√

2
5g
(

coth(2gz)Gz + 2gHzz
)
, (4.20)

φ3 : ∆5φ3 −
56g2

15 φ3 + 32
5

√
2
3g

2φ2 = 4g√
15
(

coth(2gz)Gz + 2gHzz
)
, (4.21)

where for brevity, we define
Gz = ∂MHMz −

1
2∂zH . (4.22)
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We can solve one of the {φ1,Σ} equations and one of the {φ2, φ3} equations by requiring

Σ = sinh(2gz) tanh(2gz)φ1 , φ3 =
√

2
3φ2 . (4.23)

The resulting equations are

φ1 :
(
�5 + 2g csch(4gz)(3 cosh(4gz)− 1)∂z + 8g2)φ1 = −4

√
2g csch(4gz)Gz , (4.24)

φ2 : ∆5φ2 + 8g2

3 φ2 − 4
√

2
5g

2Hzz = 2
√

2
5g coth(2gz)Gz . (4.25)

The right-hand-side of the remaining scalar equations are proportional to Gz. We
recognise this to be the z-component of the de Donder combination. Since the supergravity
equations are invariant under linearised diffeomorphisms

HMN 7→ HMN + ∂(MξN) + 2A′ξzηMN , ξM := ηMNξ
N , (4.26)

with similar expressions for the transformations of φi and Σ, we can set Gz = 0 as a
gauge condition.

In this gauge, φ1 decouples from the gravity sector. So, for simplicity, we will set φ1 = 0.
The same is not true for φ2, as it couples to Hzz. For completeness, the equation for φ2 in
this gauge is

∆5φ2 + 8g2

3 φ2 − 4
√

2
5g

2Hzz = 0 . (4.27)

4.2 Einstein equations

Now, let us analyse the equations of motion for HMN . The linearised (trace-reversed) stress
tensor θ(1)

MN , where R
(1)
MN = θ

(1)
MN , is given by

θ
(1)
MN = ∂(MΦ2∂N)δΦ2 + ∂(MΦ3∂N)δΦ3

+ e2A

3

(
∂V

∂Φ2

∣∣∣
S
δΦ2 + ∂V

∂Φ3

∣∣∣
S
δΦ3

)
ηMN + e2A

3 V
∣∣∣
S
HMN

=
√

10
3 g coth (2gz) (δMz∂Nφ2 + δNz∂Mφ2) + 4

√
10

9 g2φ2 ηMN −
4g2

3 HMN , (4.28)

where we have used φ1 = Σ = 0 and the Gz = 0 gauge.
For simplicity, we now use our remaining diffeomorphism invariance to set the full de

Donder gauge
∂MHMN −

1
2∂NH = 0 . (4.29)

In this gauge, the linearised Ricci tensor given in (4.8) becomes

R
(1)
MN = −1

2∆5HMN + g coth(2gz)
(
∂MHNz + ∂NHMz

)
+ 4g2

3 HzzηMN −
4g2

3 HMN , (4.30)

and the Einstein equations now simplify to

∆5HMN − 4g coth(2gz)∂(MHN)z −
8g2

3 HzzηMN

= −4
√

10
3 g coth(2gz)δz(M∂N)φ2 −

8
√

10
9 g2φ2 ηMN . (4.31)

– 13 –



J
H
E
P
0
1
(
2
0
2
2
)
1
3
0

Firstly, we examine the zz component of (4.31). It reads

∆5Hzz −
8g2

3 Hzz + 8
√

10
9 g2φ2 = 4g coth (2gz)

(
∂zHzz −

√
10
3 ∂zφ2

)
. (4.32)

Recall that φ2 obeys (4.27). Performing the field redefinitions

Hzz = 1√
2
φ+ ϕ , φ2 = 3

2
√

5
φ , (4.33)

we find that (4.27) and (4.32) become

φ2 : ∆5φ = 8
√

2
3 g2ϕ , (4.34)

ϕ : ∆5ϕ = 0 , (4.35)

where
∆5 = �5 − 2g coth (2gz) ∂z . (4.36)

Next, we have the µz components of (4.31), which read

�5Hµz = 2g coth (2gz)
(
∂µϕ−

1√
2
∂µφ

)
. (4.37)

Since φ and ϕ are fixed, if the operator �5 is invertible (which it is in the case of time-
independent solutions), the solution to Hµz is symbolically,

Hµz = 2g 1
�5

coth (2gz)
(
∂µϕ−

1√
2
∂µφ

)
. (4.38)

Finally, the µν components of (4.31) are

∆5Hµν = 4g coth (2gz) ∂(µHν)z + 8g2

3 ϕηµν . (4.39)

Since ∆5 is a linear operator, we can split Hµν into three parts

Hµν = Hµν +Kµν + Jηµν , (4.40)

where

∆5Hµν = 0 , (4.41)
∆5Kµν = 4g coth (2gz) ∂(µHν)z , (4.42)

∆5J = 8g2

3 ϕ . (4.43)

As with the µz equation, all of the quantities on the right-hand-sides are known. In
fact, (4.43) is equivalent to (4.34) with the choice J = φ/

√
2. Thus, provided that appro-

priate boundary conditions are imposed, ∆5 can be inverted to solve (4.41)–(4.43).
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4.3 Time independent H00

For time-independent solutions, it is clear from (4.38) that H0z = 0 is a solution, and
consequently, we have K00 = 0 as a solution. Then, H00 = H00 − J = H00 − φ/

√
2, where,

for completeness, H00 and φ satisfy

∆5H00 = 0 , ∆5φ = 8
√

2
3 g2ϕ , ∆5ϕ = 0 , (4.44)

with operators ∆5 and ∆5 as defined in (4.9) and (4.36) respectively. For solutions that are
also radially symmetric in R1,3, we have, recalling that z = ρ/g,

∆5 = ∂r
2 + 2

r
∂r + g2

(
∂ρ

2 + 2 coth 2ρ ∂ρ
)
, ∆5 = ∂r

2 + 2
r
∂r + g2

(
∂ρ

2 − 2 coth 2ρ ∂ρ
)
,

(4.45)
with r the isotropic, spatial radius in R1,3. For simplicity, we will consider the case ϕ = 0.

In summary, we find that, as for Minkowski spacetime, the leading component of any
perturbative solution for H00 is given by a Green function associated with ∆5, the CPS
operator [4].

5 Types II and III: Green functions for the CPS operator

From the previous sections, the key to understanding the effective Newton potential is
understanding the behaviour of H00, which is given by a Green function of the CPS
operator ∆5. Since we are interested in computing Newton’s constant, which arises from the
interaction of a small test particle orbiting a massive source, we consider the sourced equation,

∆5G (r, ρ) = gκ̂2Mδ (r) δ (ρ)
4πr2µ (ρ) = gκ̂2Mδ (r) δ(ρ)

4πr2 sinh 2ρ , (5.1)

where κ̂2 is the five-dimensional Newton constant,M is the mass of the source, µ(ρ) = sinh 2ρ
is the appropriate measure for integrating over ρ, as seen from consideration of the H2

µν terms
in the perturbative action, and VN (r, ρ) = −2mparticleG(r, ρ) is the Newtonian potential.
Eigenfunctions of this operator have previously been studied in [4]. There, time dependent
solutions were found that localise gravity to four dimensions via a non-constant, normalisable
zero mode ξ0 of the ρ-dependent part of ∆5:(

∂2
ρ + 2 coth 2ρ ∂ρ

)
ξ0 = 0 . (5.2)

For convenience, we will call this ρ-dependent part the transverse operator ∆. The solution
to (5.2) that is normalisable (and normalised) with respect to the measure µ(ρ) is

ξ0 = ±2
√

3
π

log tanh ρ . (5.3)

The existence of this normalisable zero mode is special. In many examples of non-compact,
transverse geometries realised in supergravity, such as BPS branes, the zero modes of
the associated transverse operator are non-normalisable, and the coupling of the lower
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dimensional massless gravitational sector to all other modes in the effective field theory
consequently vanishes. This is a consequence of the extended nature of the source in the
higher dimension, as is the case with black spokes as discussed in section 2.

In this section, we will first inspect asymptotic solutions to (5.1) in order to understand
the general behaviour of the Green functions. Then, following [4], we will solve for the
Green functions by expanding in a basis of eigenfunctions of the transverse operator ∆.
There are two bases of eigenfunctions of interest which are distinguished by their boundary
conditions in ρ. We will start with a mode decomposition where the Green function G(r, ρ)
vanishes at infinity and is continuous everywhere away from the source at the (r, ρ) = (0, 0)
origin. We will find that this solution does not become effectively lower dimensional (i.e.
4D) for a massless field, but instead becomes exponentially suppressed in the worldvolume
radius r. We will secondly consider a mode decomposition that includes the zero mode (5.3)
as found in [4], and will find that the corresponding solution then does effectively become
lower-dimensional, but that it also has logarithmic structure as ρ→ 0. The relationship
between these two cases will be explained in more detail in section 6.

5.1 Asymptotic solutions

There are two main regimes where the ∆5 operator simplifies greatly. The first is when ρ� 1,
and the second is when ρ� 1. The relevant asymptotic expansions of the operator are

∆5 = ∂2
r + 2

r
∂r + g2

(
∂2
ρ + 1

ρ
∂ρ + 4

3ρ ∂ρ +O(ρ3)
)

(5.4)

when ρ is small, and

∆5 = ∂2
r + 2

r
∂r + g2

(
∂2
ρ + 2 ∂ρ + 4 exp(−2ρ)∂ρ +O(exp(−4ρ))

)
(5.5)

when ρ is large. Since we are interested in sources at r = 0 near the ρ = 0 submanifold, we
should inspect the Green function in that limit. Specifically, by substituting the coordinate
redefinition

R2 = g2r2 + ρ2 , θ = arctan
(
ρ

gr

)
, (5.6)

(5.4) becomes

∆5 = g2
(
∂2
R + 4

R
∂R + 1

R2

(
∂2
θ + (cot(θ)− 2 tan(θ)) ∂θ

))
+O(ρ) . (5.7)

For θ-independent functions, this is just the Laplacian on R5. The precise normalisation of
the radially symmetric Green function on R5 is given by(

∂2
P + 4

P
∂P

) 1
2π2P 3 = −δ5

(
XM

)
, (5.8)

where X ∈ R5 and P 2 = X ·X. Defining r2 = (X1)2+(X2)2+(X3)2 and ρ2 = (X4)2+(X5)2,
we may integrate over the angular dimensions in (5.8) to find(

∂2
P + 4

P
∂P

) 1
2π2P 3 = −δ(r)δ(ρ)

8π2r2ρ
. (5.9)
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Now, the right-hand-side of (5.1) in the ρ→ 0 limit reads

gκ̂2Mδ(r)δ(ρ)
4πr2 sinh 2ρ ∼

gκ̂2Mδ(r)δ(ρ)
8πr2ρ

+O(ρ2) . (5.10)

Consequently, we expect the leading component of the Green function in the R→ 0 limit
to be

G(r, ρ) = − g4κ̂2M

2π (g2r2 + ρ2)
3
2

+O
( 1
R2

)
. (5.11)

There are two more regimes of interest. The first is when r � 1 and ρ � 1. For r � 1,
the differential operator takes the same form as in (5.4). However, we are interested in
solutions expanded as a Laurent series about r =∞. As such, we may use separability to
find the leading term, which can be expanded in inverse integer powers of r. We have

∆5f(r, ρ) = 0 ⇒ f(r, ρ) = A

r
+ B log(ρ)

r
+O

( 1
r2

)
. (5.12)

The second regime is when ρ� 1. In this regime, the transverse operator ∆ can be
manipulated into the form of the Helmholtz operator in leading order by writing

∆5

(exp(−ρ)
r

f(gr, ρ)
)

= 0 ⇒
(
∂2
x + ∂2

ρ − 1
)
f(x, ρ) = 0 , (5.13)

for x = gr. In this regime, we will be interested in the f = exp(−ρ) solution to (5.13), since
this is the leading component of the ξ0(ρ)

r solution found in [4]:

ξ0(ρ)
r
∝ log tanh ρ

r
= −2

r
exp(−2ρ) +O (exp(−4ρ)) . (5.14)

Knowing the leading components of a Green function in asymptotic regimes, however,
does not tell us how the solution for a given source near (r, ρ) = (0, 0) evolves as it approaches
infinity in various directions. We are left with the question: does the solution with leading
behaviour (5.11) asymptote to the ξ0(ρ)

r solution at large r? And if so, what is the coefficient
of this term?

5.2 Type II: higher-dimensional black holes; Neumann boundary conditions

One method of computing the relationship between the small R =
√
g2r2 + ρ2 and large r

asymptotic limits of a Green function is to appeal to a specific basis expansion. To specify
a basis expansion, boundary conditions at ρ = 0 and ρ =∞ need to be imposed. Physically,
we expect Green functions to vanish as ρ→∞, so we select Dirichlet conditions there.

For ρ = 0, there is more freedom of choice. Since ρ is a radial coordinate, any solution
that is symmetric about the related angular coordinate — χ in ten dimensions — will be
Neumann at ρ = 0 for finite r 6= 0, at which the solution will firstly be taken to be regular.
That is, if we were to follow the value of a circularly symmetric scalar function along a path
at fixed χ through ρ = 0, we would see the value of that function mirrored around ρ = 0.
If the scalar function had a non-vanishing derivative at that point, this would appear as
a cusp and our function would not be differentiable along such a path, as illustrated in
figure 1.
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Figure 1. The value of a scalar function along a path through the origin.

Consequently, we are interested in Green functions which obey special Neumann-
Dirichlet conditions. That is GN which obey

∂ρG
N (r, ρ)

∣∣∣
ρ=0

= 0 , GN (r, ρ)
∣∣∣
ρ→∞

→ 0 . (5.15)

We suppose GN may be written in terms of a superposition of separated solutions

GN (r, ρ) =
∫
I
fω(r)ζω(ρ)dω , (5.16)

where I is the spectrum of the transverse operator, which will be discussed shortly, and,
away from r = ρ = 0 the functions are eigenfunctions of the worldvolume or transverse
differential operators,7 (

∂2
r + 2

r
∂r

)
fω(r) = g2ω2fω(r) , (5.17)(

∂2
ρ + 2 coth(2ρ)∂ρ

)
ζω(ρ) = −ω2ζω(ρ) . (5.18)

Given this separation of variables we may now restate the boundary conditions as conditions
on the eigenfunctions

∂ρG
N (r, ρ)

∣∣∣
ρ=0

=
∫
I
fω(r)∂ρζω(ρ)

∣∣∣
ρ=0

dω = 0 ⇒ ∂ρζω(ρ)
∣∣∣
ρ=0

= 0 , (5.19)

GN (r, ρ)
∣∣∣
ρ→∞

=
∫
I
fω(r)ζω(ρ)

∣∣∣
ρ→∞

dω = 0 ⇒ ζω(ρ)
∣∣∣
ρ→∞

= 0 . (5.20)

Now, in order to write a separation of variables in the first place, we require orthonor-
malisation of the transverse basis eigenfunctions. That is, we require that any bound states
ζi (with eigenvalue ωi) be Kronecker delta orthonormalised with respect to the transverse
space inner product, ∫ ∞

0
sinh(2ρ)ζi(ρ)ζj(ρ)dρ = δi,j , (5.21)

and that any scattering states ζω be Dirac delta distribution orthonormalised,∫ ∞
0

sinh(2ρ)ζω(ρ)ζτ (ρ)dρ = δ(ω − τ) . (5.22)

7The sourcing of the Green function will also be handled shortly.
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To find the orthonormalised {ζω}, we first note that they are required to be in a self-adjoint
domain of ∆, and we recall that two functions (f, g) are in a self-adjoint domain of ∆ if

0 =
∫ ∞

0
sinh(2ρ) (f∆g − g∆f) dρ = sinh(2ρ) (f∂ρg − g∂ρf)

∣∣∣ρ→∞
ρ=0

. (5.23)

From this we find the overlap integral of two solutions to the eigenvalue equation may
be simplified to∫ ∞

0
sinh(2ρ)ζω(ρ)ζτ (ρ)dρ = sinh(2ρ)

ω2 − τ2 (ζω∂ρζτ − ζτ∂ρζω)
∣∣∣ρ→∞
ρ=0

. (5.24)

We now pick boundary conditions so that these boundary terms vanish. The standard
Neumann condition at ρ = 0 is traded for a weaker generalised Neumann condition,

sinh(2ρ)∂ρζω(ρ)
∣∣∣
ρ=0

= 0 . (5.25)

For bound states we require a stronger generalised Dirichlet condition as ρ→∞√
sinh(2ρ)ζi(ρ)

∣∣∣
ρ→∞

= 0 , (5.26)

and for scattering states, we require a different, and again stronger generalised Dirichlet
condition √

sinh(2ρ)ζω(ρ)
∣∣∣
ρ→∞

<∞ . (5.27)

The difference between equality and inequality in equations (5.26) and (5.27) is due to the
requirement of bound states obeying L2((0,∞), sinh(2ρ)dρ) normalisability but scattering
states only being normalisable in the distributional sense.

The detailed derivation of eigenfunctions which obey equations (5.18), (5.25), and (5.26)
or (5.27) requires a careful study of the limiting forms of special functions, and we have
included this in appendix C. To summarise the results in appendix C: given Neumann-
Dirichlet conditions on the transverse space, there are no bound states, the scattering states
have eigenvalues ω > 1, and are given by

ζω(ρ) = Nω P
− 1

2 +
√

1−ω2
2

(cosh (2ρ)) . (5.28)

Here Pν(z) is a Legendre function of the first type defined with its branch cuts extending
from z = 1 to z = −1 and from z = −1 to z → −∞, while Nω is a normalisation constant.
Further details, including the value of Nω, are given in appendix C.

From (5.28), we see that any eigenfunction ζω which obeys our weaker general Neumann
condition, (5.25), also obeys the stronger Neumann condition (5.19). Similarly, if it obeys our
weaker Dirichlet condition (5.20), it also obeys the stronger general Dirichlet conditions (5.26)
or (5.27). This is a generic property of solutions to ordinary differential equations. For
any boundary condition we write, there are entire families of boundary conditions we
could write which do not change the set of solutions. If we consider solutions to the
worldvolume eigenvalue problem that vanish as r →∞ we find that all such solutions vanish
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at least linearly fast, since all functions that vanish more slowly simply do not solve the
differential equation.

We may now use these basis functions to give a resolution of the identity following the
analysis of appendix D: ∫ ∞

1
ζω(ρ)ζω(η)dω = δ(ρ− η)

sinh(2ρ) . (5.29)

To construct the full Green function, we recall that the solution to(
∂2
r + 2

r
∂r − g2ω2

)
fω = gκ̂2M

4πr2 δ(r) , (5.30)

is
fω = −gκ̂

2M

4π
exp(−gωr)

r
. (5.31)

Using (5.29) and (5.31), the Green function is given by

GN (r, ρ− η) = −
∫ ∞

1

gκ̂2M exp(−gωr)
4πr ζω(ρ)ζω(η)dω . (5.32)

The closed-form expression of this integral is unknown to the authors. Using approxi-
mations, however, we can find its leading behaviour in various limits. Most importantly, we
can see that the leading behaviour when η � 1 and R� 1 is

−
∫ ∞

1

gκ̂2M exp(−gωr)
4πr ζω(ρ)ζω(η)dω = − g4κ̂2M

2π (g2r2 + (ρ− η)2)
3
2

+O
( 1
R2

)
, (5.33)

which is exactly what is expected from analysis of the asymptotic operator given in (5.11).
A similar analysis using approximate forms of special functions will give us the leading

behaviour of the Green function G(r, ρ) for r � 1 and ρ� 1. However, before stating the
results in detail, we can find bounds on the leading behaviour by studying the form of the
integrand in (5.32). Specifically, if we consider the large r limit, factorise the ω independent
part of the integral, and change variables using τ = gω, we find

GN (r, ρ− η) = − κ̂
2M

4πr

∫ ∞
g

exp(−τr)ζ τ
g
(ρ)ζ τ

g
(η)dτ . (5.34)

We recognise this to be the Laplace transform in τ with respect to frequency r of some
quantity θ(τ − g)ζ τ

g
(ρ)ζ τ

g
(η), where θ is the Heaviside theta function. Since the integral

starts from τ = g, the Green function will be exponentially suppressed unless the Laplace
transform of ζ τ

g
+g(ρ)ζ τ

g
+g(η) grows exponentially in r. However, exponentially growing

functions lie outside the region of convergence for the inverse Laplace transform. Therefore,
we expect the Green function G(r, ρ− η) to be exponentially suppressed when r � 1. As
seen in appendix C, we in fact find

GN (r, ρ− η) = exp(−gr)
(
−X
r2 +O

( 1
r3

))
, (5.35)

where X is a ρ-dependent function. The 1
r2 exp(−gr) behaviour at large r in this Type

II case is more characteristic of a massive theory in five spacetime dimensions than of a
massless theory in four spacetime dimensions.
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5.3 Type III: higher-dimensional black holes; Robin boundary conditions

The exponential suppression seen in (5.35) might seem surprising, as one might expect that
the theory reduces to a massless gravitational theory in four dimensions. However, one
should note that the ζω basis expansion used above did not include the zero mode found
in [4], ξ0 ∝ log tanh ρ. Perhaps the choice of basis was at fault? We can repeat the analysis
of the previous subsection except for now requiring that the boundary condition on the
transverse modes now be the boundary condition that defines a self-adjoint domain for the
transverse operator ∆ including ξ0. Using (5.23), this gives a generalised Robin boundary
condition at ρ = 0 and a Dirichlet condition at ρ =∞:

(sinh(2ρ) log tanh ρ ∂ρ − 2) ξω(ρ)
∣∣∣
ρ=0

= 0 ,
√

sinh(2ρ) ξω(ρ)
∣∣∣
ρ→∞

<∞ . (5.36)

Given these conditions, we find that the zero mode (5.3) is the unique bound state
with zero eigenvalue. The scattering states are separated from the ω = 0 bound state by a
mass gap, with eigenvalues ω > 1, and can be written as

ξω(ρ) =MωQ
− 1

2 +
√

1−ω2
2

(cosh(2ρ)) + c.c. , (5.37)

where Qν is a Legendre function of the second type with branch cuts from z = 1 to z = −1
and from z = −1 to z → −∞, whileMω is a normalisation constant. Once again, we find
the Green function for this system, now Type III, by invoking a resolution of the identity.
It is given by

GR(r, ρ− η) = −gκ̂
2M

4πr ξ0(ρ)ξ0(η)−
∫ ∞

1

gκ̂2M exp(−gωr)
4πr ξω(ρ)ξω(η)dω , (5.38)

where we put a superscript R to distinguish it from GN , the Green function obeying a
Neumann boundary condition at ρ = 0.

Note that for any point except ρ = 0, any function in the Robin basis {ξω(ρ)} can be
re-expanded as a superposition of the Neumann basis {ζω(ρ)} introduced in the previous
subsection. However, such a re-expansion does not converge at the ρ = 0 boundary. The
key point about the {ξω(ρ)} Robin basis is that the GR expansion in it will converge at
the ρ = 0 boundary, with GR consequently inheriting the Robin boundary condition (5.36)
at ρ = 0:

(sinh(2ρ) log tanh ρ ∂ρ − 2)GR(r, ρ− η)
∣∣∣
ρ=0

= 0 , GR(r, ρ− η)
∣∣∣
ρ→∞

= 0 . (5.39)

Looking at (5.38), the leading behaviour in the large r regime is seen to be

GR(r, ρ− η) = −gκ̂
2M

4πr ξ0(ρ)ξ0(η) +O (exp(−gr)) . (5.40)

Consequently, we find that the GR Green function is effectively lower-dimensional at large
r, corresponding to three spatial dimensions, but also that it diverges logarithmically when
either ρ or η tends to zero.

The existence of a single normalisable bound state separated from a continuum of delta
function normalisable states is a consequence of the Pöschl-Teller integrable structure of
the Schrödinger reformulation of the transverse wavefunction problem [4].
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6 Type III from Type II; long distance mirrors

We have seen a variety of effective gravitational behaviours on the lower-dimensional
worldvolume. Is there a way to relate them? First, let’s recall the Green functions GN and
GR that respectively obey the Neumann and Robin boundary conditions at ρ = 0:

GN (r, ρ− η) = −
∫ ∞

1

gκ̂2M exp(−gωr)
4πr ζω(ρ)ζω(η)dω , (6.1)

and

GR(r, ρ− η) = −gκ̂
2M

4πr ξ0(ρ)ξ0(η)−
∫ ∞

1

gκ̂2M exp(−gωr)
4πr ξω(ρ)ξω(η)dω . (6.2)

Both GN and GR solve the same sourced equation (5.1). The only thing that distinguishes
them is the boundary condition imposed at ρ = 0. Since they solve the same sourced
equation, their difference solves the homogeneous equation,

∆5F = 0 , F = GR −GN . (6.3)

In particular, the interpolating function F must be regular everywhere in the (r, ρ) plane
even though GR and GN are divergent at certain points. Due to the exponential suppression
of GN as r →∞, it is clear that the leading behaviour of the homogeneous solution F at
large r is

F (r, ρ− η) ∼ −gκ̂
2M

4πr ξ0(ρ)ξ0(η) . (6.4)

Consequently, we can interpret this homogeneous solution as the localising mechanism
that takes GN , which has the expected higher-dimensional behaviour near the origin, and
“flattens” it to give GR, which exhibits lower-dimensional behaviour at large r radius. The
homogeneous solution F has lower-dimensional structure at large r radius, but remains
regular near the r origin. One may view this as akin to how a point source of light in four
dimensions sandwiched between two three-dimensional mirrors will effectively give a three-
dimensional intensity field at large distance. Another analogy might be to a sound source
at a large distance down a corridor between two plane walls — a “whispering corridor”.

In the following, we will outline a method of constructing the asymptotics of the
homogeneous solution F using the corresponding asymptotics of GN and GR, and showing
explicitly the regularity of F near the origin. We will first demonstrate this method using
a simpler example where the transverse space is a line interval I = [−l, l], where the two
boundaries correspond to the mirrors. We will then apply this technique to the case at
hand. From the analogy with light sandwiched by mirrors, we will call this method “long
distance mirrors”.8

8We learned this technique from private discussions with Carl Bender on an analogous treatment of the
heat equation with a nontrivial set of boundary conditions [10].
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6.1 Long distance mirrors and a transverse interval

Let’s consider the Green function on R3 × [−l, l], which solves(
∂2
r + 2

r
∂r + ∂2

z

)
G(r, z) = δ(r)δ(z)

4πr2 , (6.5)

where z ∈ [−l, l]. If the transverse interval is infinitely large (l → ∞), then the exact
solution, which is Dirichlet in all directions at infinity, is given by

G(4)(r, z) = − 1
4π2 (r2 + z2) . (6.6)

On a transverse interval, however, we require different boundary conditions. One possible
set of boundary conditions which trivialises this problem is

G(r,±l) = − 1
4π2 (r2 + l2) . (6.7)

We are, however, more interested in special Neumann conditions. That is,

∂zG(r, z)
∣∣∣
z=±l

= 0 . (6.8)

We may then choose to write the Green function as

G(r, z) = G(4)(r, z) + F (r, z) = − 1
4π2 (r2 + z2) + F (r, z) . (6.9)

Since both G and G(4) solve the same equation (6.5), the interpolating function F must
solve the unsourced Laplace equation,(

∂2
r + 2

r
∂r + ∂2

z

)
F (r, z) = 0 . (6.10)

Furthermore, the boundary condition (6.8) on G combined with the boundary behaviour of
G(4) allows us to deduce the following general Neumann condition on F (r, z),(

∂zF (r, z) + 2z
4π2 (r2 + z2)2

) ∣∣∣∣∣
z=±l

= 0 . (6.11)

We now invoke a basis decomposition of F with respect to a complete set of orthonormalised
eigenmodes of ∂2

z , writing

F (r, z) = 1√
2l
F 0(r) + 1√

l

∑
n 6=0

sin
(
πn

2l z + π

4 (1 + (−1)n)
)
Fn(r) . (6.12)

Equivalently, the constituent modes can be obtained from F by the following projections:

F 0(r) =
∫ l

−l

1√
2l
F (r, z)dz (6.13)

and
Fn(r) =

∫ l

−l

1√
l

sin
(
πn

2l z + π

4 (1 + (−1)n)
)
F (r, z)dz . (6.14)
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The equations of motion obeyed by F 0 and Fn can be obtained by projecting (6.10) over
the eigenmodes, giving

F 0 :
∫ l

−l

1√
2l

(
∂2
r + 2

r
∂r + ∂2

z

)
F (r, z)dz = 0 , (6.15)

and

Fn :
∫ l

−l

1√
l

sin
(
πn

2l z + π

4 (1 + (−1)n)
)(

∂2
r + 2

r
∂r + ∂2

z

)
F (r, z)dz = 0 . (6.16)

The key steps of the long distance mirrors technique involve integrating by parts in
the mode-expanded (r, z) partial differential equation so as to produce ordinary differential
equations for the various modes, in which the PDE boundary conditions give rise to ODEs
with inhomogeneous terms. To see how this works, let’s first focus on (6.15). We can
integrate by parts to give(

∂2
r + 2

r
∂r

)∫ l

−l

1√
2l
F (r, z)dz +

( 1√
2l
∂zF (r, z)− F (r, z)∂z

1√
2l

) ∣∣∣l
−l

= 0 . (6.17)

The first integral on the left simply returns F 0 as seen in (6.13), and the boundary term is
evaluated using (6.11). The F 0 zero mode equation is then

(
∂2
r + 2

r
∂r

)
F 0(r) =

√
l

2
1

π2 (r2 + l2)2 . (6.18)

The technique for deriving equations for the other modes is the same. We integrate (6.16)
by parts, giving(

∂2
r + 2

r
∂r −

π2n2

4l2

)∫ l

−l
ξn(z)F (r, z)dz+(ξn(z)∂zF (r, z)− F (r, z)∂zξn(z))

∣∣∣l
−l

= 0 , (6.19)

where we have defined ξn(z) = 1√
l
sin
(
πn
2l z + π

4 (1 + (−1)n)
)
. For the odd n modes, this is(

∂2
r + 2

r
∂r −

π2n2

4l2

)
Fn(r) = 0 , n odd , (6.20)

and for the even n modes, this is(
∂2
r + 2

r
∂r −

π2n2

4l2

)
Fn(r) = − 1√

l

4l
4π2 (r2 + l2)2 , n even . (6.21)

For regularity at r = 0 and for vanishing of F at infinity, we impose Neumann-Dirichlet
boundary conditions on the modes,

∂rF
i(r)

∣∣∣
r=0

= 0 , F i(r)
∣∣∣
r→∞

= 0 , i ∈ Z . (6.22)

Of greatest interest is the zero mode. The solution to (6.18) obeying the above boundary
conditions is

F 0(r) = −
√

2
l

tan−1( rl )
4π2r

. (6.23)
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From this, we observe that F 0 encodes a lower-dimensional behaviour. When r →∞, one
has asymptotically

F 0(r) = −
√

2
l

1
4πr +O

( 1
r2

)
. (6.24)

As r →∞, the modes Fn with n 6= 0 are exponentially suppressed, as is evident from the
mass term that appears in their equations of motion (6.20) and (6.21). Therefore, in the
large r regime, the zero mode F 0 encodes the leading behaviour of the full solution F (r, z).
Recalling the relation (6.9) between the homogeneous solution F (r, z) and the full Green
function G(r, z), we find that for large r,

G(r, z) = 1√
2l
F 0(r) +O

( 1
r2

)
= − 1

4πl
1
r

+O
( 1
r2

)
. (6.25)

We can now compare this to the Green function obtained by taking a superposition of
higher-dimensional fundamental solutions, which is another way to obtain the Green function
for the light source between mirrors:

G(r, z) =−
∞∑

k=−∞

1
4π2

(
r2 + (z − lk)2

)
=− 1

4πl
1
r

sinh
(

2πr
l

)
cosh

(
2πr
l

)
− cos

(
2πz
l

) .
(6.26)

For large r, we have
G(r, z) = − 1

4πl
1
r

+O
( 1
r2

)
, (6.27)

which agrees with the asymptotic behaviour (6.25) found by the long-distance mirrors
technique, showing complete agreement between the two methods.

6.2 Long distance mirrors and SS-CGP

As we have learned from the above example with a transverse interval, the first thing we
have to write down are the boundary conditions for GN and GR. As found in section 5,
these are

∂ρG
N (r, ρ− η)

∣∣∣
ρ=0

, ∂rG
N (r, ρ− η)

∣∣∣
r=0 and ρ 6=η

= 0 ,

GN (r, ρ− η)
∣∣∣
r→∞

= 0 , GN (r, ρ− η)
∣∣∣
ρ→∞

= 0 ,
(6.28)

and

(sinh(2ρ) log tanh ρ ∂ρ − 2)GR(r, ρ− η)
∣∣∣
ρ=0

= 0 , ∂rG
R(r, ρ− η)

∣∣∣
r=0 and ρ 6=η

= 0 ,

GR(r, ρ− η)
∣∣∣
r→∞

= 0 , GR(r, ρ− η)
∣∣∣
ρ→∞

= 0 .

(6.29)

We wish to underline that (6.28) are the boundary conditions for the Type II case, now
expressed in terms of the full Type II Green function GN , and (6.29) are the boundary
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conditions appropriate for the Type III case, now expressed in terms of the full Type III
Green function GR. It is the unusual choice of boundary conditions in (6.29) that allows
for the localisation of gravity on the brane worldvolume.

Carrying on, we now decompose GR into a sourced and an unsourced part

GR(r, ρ− η) = GN (r, ρ− η) + F (r, ρ− η) , (6.30)

where the interpolating function F solves the unsourced Laplace equation,(
∂2
r + 2

r
∂r + ∂2

ρ + 2 coth(2ρ)∂ρ
)
F (r, ρ− η) = 0 . (6.31)

From the boundary condition for GR we find the following general9 generalised10 Robin
condition for F ,

(sinh(2ρ) log tanh ρ ∂ρ − 2)F (r, ρ)
∣∣∣
ρ=0

= − (sinh(2ρ) log tanh ρ ∂ρ − 2)GN (r, ρ)
∣∣∣
ρ=0

.

(6.32)
When r � 1, this reads

− (sinh(2ρ) log tanh ρ ∂ρ − 2)GN (r, ρ)
∣∣∣
ρ=0

= 2κ̂2M

(r2 + η2)3/2 −
(

6κ̂2M(η log(ρ) + η)
(r2 + η2)5/2 ρ+O

(
ρ2
)

+O
( 1
R

)) ∣∣∣
ρ=0

= 2κ̂2M

(r2 + η2)3/2 +O
( 1
R

)
.

(6.33)

The interpolating function F can be expanded in either of the {ζω} or {ξω} bases. Choosing
the {ξω} basis for convenience, the Laplace equation (6.31) gives(

∂2
r + 2

r
∂r − ω2

)
Fω(r) = −µ(ρ) (ξω(ρ)∂ρF (r, ρ− η)− (∂ρξω)F (r, ρ− η))

∣∣∣ρ→∞
ρ=0

. (6.34)

Here, we have projected (6.31) into the {ξω} basis and have integrated by parts as in the
previous subsection. For the ω = 0 zero mode, this simplifies, in the r → 0 limit, to(

∂2
r + 2

r
∂r

)
F 0(r) = ±2

√
3

π

2κ̂2M

(η2 + r2)
3
2

+O
( 1
R

)
. (6.35)

We shall momentarily disregard the O
(

1
R

)
corrections. The solution to (6.35) is then

F 0(r) = ±2
√

3κ̂2M

π

1
η
−

sinh−1
(
r
η

)
r

+ c1
r

+ k1 , (6.36)

where c1 and k1 are integration constants. Since F 0 must be regular at r = 0, we must
have c1 = 0. Now let’s consider the O( 1

R) corrections. Since the explicit form of GN is not
9That is, the right-hand-side does not vanish, as it does for special.

10That is, there is ρ functional dependence in the coefficients of the condition.
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known, these cannot be written in closed-form. However, we do know that GN must vanish
as r →∞, at least exponentially fast. So, as r →∞, the zero mode of F must solve

(
∂2
r + 2

r
∂r

)
F 0(r) = ±A exp(−r)

r2 , (6.37)

where A is some unspecified constant given by the asymptotic form of GN . Assuming that
F 0 vanishes when r →∞, the solution to this is

F 0(r) = ±A
(exp(−r)

r
+ Ei(−r)

)
+ c2

r
, (6.38)

where Ei(−r) is the exponential integral function, and c2 is a constant. We now define

F in = ±2
√

3κ̂2M

π

1
η
−

sinh−1
(
r
η

)
r

+ k1 , F out = ±A
(exp(−r)

r
+ Ei(−r)

)
+ c2

r
,

(6.39)
for inside and outside solutions respectively. We assume some crossover point r = l where
exp(−r)
r2 becomes a better estimate of GN than 1

R3 and require continuity of the functions,

F in(r)
∣∣∣
r=l

= F out(r)
∣∣∣
r=l

, ∂rF
in(r)

∣∣∣
r=l

= ∂rF
out(r)

∣∣∣
r=l

. (6.40)

Solving these junction conditions fixes the remaining constants k1 and c2 :

k1 = ±
(

2
√

3κ̂2M

π
√
l2 + η2 −

2
√

3κ̂2M

πη
+AEi(−l)

)
,

c2 = ±

 2
√

3κ̂2Ml

π
√
l2 + η2 −

2
√

3κ̂2M sinh−1
(
l
η

)
π

−Ae−l
 .

(6.41)

The constant k1 is irrelevant to the large r behaviour, but c2 gives the lower-dimensional
behaviour at large r. Specifically, when η � 1, one has

c2 = ±2κ̂2M
√

3
π

log(η) + h(l, η) , (6.42)

where h(l, η) = O(η0). The independence of l in the first term of c2 shows that it is valid
to estimate F by matching F in and F out. Ignoring h(l, η) since it is finite as η → 0+, we
reconstruct the leading order of F (r, ρ− η) when r � 1 by multiplying our solution for F 0

by the zero mode ξ0(ρ) to find

F (r, ρ− η) = 12κ̂2M

π2 log tanh ρ log(η)1
r

+O(η0) +O
( 1
r2

)
, (6.43)

which agrees with our preliminary analysis (6.4) in the η → 0+ limit.
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6.3 Type III and mass gaps

In order for F 0 to produce a 1
r behaviour for large r, it was crucial that the leading behaviour

of GN change from a 1
R3 structure near the origin to a exp(−gr)

r2 structure for large r. If the
leading behaviour of GN stayed like 1

R3 everywhere, then F 0 would have asymptotic structure
log r
r for large r, as seen from (6.36). The reason that GN is exponentially suppressed for

large r, as we saw in the previous section, is because the scattering states of the transverse
operator ∆ have eigenvalues starting from ω > 1 rather than from ω = 0. There is a mass
gap δω = 1, and it is this mass gap that allows for the emergence of lower-dimensional
physics as r → ∞. The immediate question now is whether a mass gap is necessary for
all types of transverse geometries. Suppose we have a system with an R1,3 worldvolume
and a non-compact transverse space whose geometry factorises into Rb × {compact} near
the worldvolume. For us, the SS-CGP solution has b = 2, recalling that the geometry
of Eguchi-Hanson space is R2 × S2 near ρ = 0. Then, near the (r, ρ) = (0, 0) origin, the
corresponding asymptotic equation for the zero-mode of F is(

∂2
r + 2

r
∂r

)
F 0 = 1

(r2 + η2)
b+1

2
+ subleading , (6.44)

with the right-hand-side being the leading behaviour of the GN function for this system near
the origin. Let’s now assume that the leading behaviour of GN is unchanged as we move
towards r =∞. This is the case when there is no mass gap. Then the large r behaviour of
F 0 is given by

F 0 ∼


log r , b = 1
− log r

r , b = 2

−
√
πΓ( b−2

2 )
4ηb−2Γ( b+1

2 )
1
r , b ≥ 3 .

(6.45)

For b ≥ 3, the leading behaviour is F 0 ∝ 1/r. This suggests that for such geometries, even
in the case where there is no mass gap, as long as there is a normalisable zero mode, there
is a possibility of localisation to lower-dimensional physics at large r. On the other hand,
for b ≤ 2, it is clear that the leading behaviour of GN must be modified at large r in order
for there to be gravity localisation. In our case, GN is modified by a mass gap so that it
becomes exponentially suppressed.

6.4 Mass gaps and the Randall-Sundrum model

We will now relate the ideas we have developed so far to the Randall-Sundrum model [3],
whose underlying geometry is an orbifolded AdS5,

ds2
RS = 1

Λ2z2 (ηµνdxµdxν + dz2) , (6.46)

where z ∈ [1/k,∞), k > 0, z = 1/k is the orbifold point,11 and the Ricci tensor is
normalised to RMN = −4Λ2gMN . The relevant perturbation equation for a transverse,

11It is also common to change to the coordinate z = ek|y|/k with y ∈ [0,∞).
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traceless perturbation ηµν 7→ ηµν +Hµν is(
�4 + ∂2

z −
3
z
∂z

)
Hµν(x, z) = 0 , (6.47)

where �4 is the d’Alembertian on R1,3. We are therefore interested in time independent
Green functions associated with this differential operator:(

∂2
r + 2

r
∂r + ∂2

z −
3
z
∂z

)
G(r, z) = Λ3z3k3δ(r)δ(z − 1/k)

4πr2 , (6.48)

where µ(z) = 1/z3 is the appropriate measure for integration over z, as can be seen from
the H2

µν terms in the perturbative action, and we have chosen Λ > 0 for convenience.12 As
stated in [11], the solutions of interest are ones that obey the Neumann condition at z = 1/k,

∂zG(r, z)
∣∣∣
z=1/k

= 0 . (6.49)

The Neumann Green function GN (r, z) will be built out of eigenmodes of the transverse
operator, which in this case is

∆RS = ∂2
z −

3
z
∂z . (6.50)

The zero mode of ∆RS is given by

∆RSf(z) = 0 =⇒ f(z) = A+Bz4 = ζ0(z) + ξ0(z) . (6.51)

Applying the Neumann boundary condition, only the ζ0(z) = A mode survives. Unlike the
SS-CGP case, this constant mode is normalisable due to the fact that the transverse space
of the Randall-Sundrum geometry has finite volume; the orbifolding of AdS5 has essentially
“compactified” the transverse space. In particular, we choose A such that∫ ∞

0
µ(z)ζ0(z)2dz =

∫ ∞
1/k

A2

z3 dz = k2

2 A
2 = 1 . (6.52)

We will choose the positive root, so A =
√

2/k. The Green function is then

GN (r, z) = −Λ3k

2πr −
Λ2k3

4πr

∫
e−ωrζω(z)dω , (6.53)

where the integral is over the eigenvalues of the scattering states of ∆RS. From (6.53), it is
clear that the Green function exhibits lower-dimensional behaviour at large r.

We can use the long distance mirrors framework to understand the Randall-Sundrum
model, giving a varied perspective on the treatment of ref. [11]. As in the previous section,
we write

GN (r, z) = GAdS(r, z) + F (r, z) , (6.54)

where

GAdS(r, z) = Λ3k3
∫ ∞
−∞

dτKAdS(τ, r, z) , KAdS = 3
π2

(
ξ

2

)4
2F1

(
2, 5

2 , 3, ξ
2
)
, (6.55)

12If Λ < 0, the factor on the r.h.s. of (6.48) will just be |Λ|3, as it comes from the square-root of the
determinant of the metric.
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with KAdS the Green function on Euclidean AdS5 with unit value of Λ localised at (τ, r, z) =
(0, 0, 1/k), and

ξ = 1
k

2z
z2 + k−2 + τ2 + r2 . (6.56)

The function GAdS is the standard time-independent Green function on AdS5 which
solves (6.48), with a source at (r, z) = (0, 1/k). Near this source,

GAdS ∼ −
Λ3

2π2
1

r2 + (z − 1/k)2 , (r, z)→ (0, 1/k) , (6.57)

while as r →∞ with z → 1/k, one has

GAdS ∼ −
15Λ3

4πk7
1
r7 , (r, z)→ (∞, 1/k) . (6.58)

The function F (r, z) solves the homogeneous equation(
∂2
r + 2

r
∂r + ∂2

z −
3
z
∂z

)
F (r, z) = 0 . (6.59)

As in the previous section, we can expand F (r, z) in the {ζω} basis, and we find that the
zero-mode projection F 0(r) satisfies the equation(

∂2
r + 2

r
∂r

)
F 0(r) = 1

z3 ζ0(z)∂zGAdS(r, z)
∣∣∣
z=1/k

=
√

2k2∂zGAdS(r, z)
∣∣∣
z=1/k

. (6.60)

The closed-form solution to (6.60) is not known, but we can identify its asymptotic behaviour.
For convenience, it is easier to work with a regularised limit on the right-hand-side of (6.60),
z → 1/k + η, where η � 1, as we did for SS-CGP. Then, in the r → 0 limit, we have(

∂2
r + 2

r
∂r

)
F 0(r) =

√
2Λ3k2η

π2(r2 + η2)2 . (6.61)

The solution to (6.61) that is regular at r = 0, which we will denote by F in, is

F in(r) = − Λ3k2
√

2π2

tan−1
(
r
η

)
r

+ c1 . (6.62)

In the large r limit, the leading part of (6.60) becomes(
∂2
r + 2

r
∂r

)
F 0(r) = − 15Λ3

2
√

2k2πr7 , (6.63)

and the solution that vanishes at infinity, which we will denote by F out, is

F out = c2
r
− 3Λ3

8
√

2k2πr5 . (6.64)

Using the same junction technique as in the previous section, we consider a point r = l

where F in and F out and their first derivatives match. This fixes the constants c1 and c2
to be

c1 = Λ3

2
√

2π2

(
3π
l5

+ 2k4η

l2 + η2

)
, c2 = Λ3

8
√

2k2π2

(
15π
l4

+ 8k4lη

l2 + η2 − 8k4 tan−1
(
l

η

))
.

(6.65)

– 30 –



J
H
E
P
0
1
(
2
0
2
2
)
1
3
0

The constant c1 is irrelevant for the large r behaviour, while c2 encodes the lower-dimensional
behaviour at large r. For η � 1, we find

c2 = − Λ3k2

2
√

2π
+ h(l, η) , (6.66)

where h(l, η) = O(η0), so the leading behaviour of F (r, z) as r →∞ is given by

F (r, z) ∼
√

2
k
F 0(r) ∼ −Λ3k

2πr , (6.67)

in agreement with (6.53).

6.5 A Type III example without localisation

An example of a Type III situation without localisation is a BPS magnetic p-brane in
d-dimensions. The metric is

ds2
d = H

−dm
d−2

(
ds2(R1,p) +H ds2(Rdm+2)

)
, (6.68)

where dm = d− p− 3, and H is the radially symmetric harmonic function on Rdm+2, not to
be confused with the trace of a gravitational perturbation. For simplicity, we will consider
dm ≥ 1, and work in spherical polar coordinates on the transverse space, so

ds2(Rdm+2) = dr2 + r2ds2(Sdm+1) , H = 1 + k

rdm
, (6.69)

where ds2(Sdm+1) is the metric on the unit (dm + 1)-sphere, and k > 0. The antisymmetric
tensor that sources the brane has the field strength

F(dm+1) = dmk vol(Sdm+1) . (6.70)

For theories with d ≤ 10, there is also a dilaton φ that is given by

eφ = H−
a
2 , (6.71)

where a is the dilaton coupling constant. Considering a pure HMN gravitational perturbation
as in previous sections, we find that the equation of motion for H00 is given by

∂2H00 + 1
H

(
∂2
r + dm + 1

r
∂r

)
H00 = 0 , (6.72)

where ∂2 = ηµν∂µ∂ν . The relevant transverse eigenvalue equation for the transverse operator
∆ = ∂2

r + dm+1
r ∂r is then (

∂2
r + dm + 1

r
∂r

)
ξ(m) = −m2Hξ(m) . (6.73)

The kernel of this equation is simply the Laplace equation on Rdm+2. The measure is
given by

µ(r) = Hrdm+1 , (6.74)
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from which we observe that the zero eigenfunction of (6.73) is non-normalisable. Let
ξ(m) = r−

dm+1
2 ψ(m). Then (6.73) becomes the Schrödinger equation

− d2ψ

dr2 + d2
m − 1
4r2 ψ = m2Hψ , (6.75)

with Schrödinger potential

V (r) = d2
m − 1
4r2 . (6.76)

Case 1: dm = 1. V (r) = 0, and the Schrödinger equation reduces to ψ′′ = −m2Hψ,
where the primes indicate r derivatives. The spectrum of the eigenvalue equation is then a
continuous spectrum of scattering states.
Case 2: dm ≥ 2. At large r, the Schrödinger equation becomes ψ′′ ≈ −m2ψ, as both V (r)
and the non-constant term in H are suppressed by inverse powers of r. As with the case of
dm = 1, there are no bound state solutions.

The analysis above shows that for dm ≥ 1, the spectrum of the Schrödinger equation
in (6.75) is continuous with no bound states. Consequently, there is no localisation of
gravity to the worldvolume in such magnetic brane cases.

7 The worldvolume Newton constant

Now that we have the effective Newton potentials for the Type I to Type III cases, we
want to understand their physics. In particular, we are interested in studying whether these
potentials have a lower-dimensional (four-dimensional) behaviour, and if they do, what is the
effective, four-dimensional Newton constant. Let’s begin by analysing the Type I and II cases.
Type I solutions (black spokes), as we recall, correspond to worldvolume Ricci-flat solutions.
Although these solutions are clearly four-dimensional in nature and actually solve a full
nonlinear self-interacting equation, they do not correspond to a specific four-dimensional
Newton constant. This is because of the worldvolume ‘trombone’ symmetry that is inherent
in the Ricci-flat family of solutions — any rescaling of the worldvolume metric by any
positive constant remains a solution. More details on this are presented in appendix A.
Due to the existence of this symmetry, there is no well-defined four-dimensional Newton’s
constant, as its value can always be scaled to a different value by a trombone transformation.
The trombone symmetry, however, can be broken when we couple to external sources. In
such cases, since our transverse space is non-compact, the usual argument of ref. [2] states
that the four-dimensional Newton’s constant vanishes. What this really means is that, in
contrast to the Ricci-flat self interactions, coupling of the black spokes to external sources
would be inherently higher-dimensional instead of four-dimensional.

As for Type II solutions, they clearly do not exhibit four-dimensional behaviour.
From (5.35), we found that the large-distance behaviour of the Type II potential is of a
form corresponding to massive gravity in 5 dimensions. We will not be examining this
further, but will move on to the Type III solutions, which as we can see from (5.40), do
indeed have four-dimensional behaviour at large r worldvolume distance. However, it is not
immediately obvious what the four-dimensional Newton constant should be, as it appears
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to depend on the non-compact transverse coordinate ρ. In the following, we offer three
different approaches to identifying an appropriate four-dimensional Newton constant.

7.1 Newton’s constant or the gravitational coupling κ in Type III

All three interpretive approaches centre on the geodesic equations derived in section 3,
which we will reproduce here in radial coordinates on the worldvolume,

R′′(t)− l2W
R(t)3 = − 6gκ̂2M

π3R(t)2 log tanh (P (t)) log tanh(η) +O
( 1
R(t)3

)
, (7.1)

P ′′(t) + g2

2 P (t) = 12g3κ̂2M

π3R(t)
log tanh(η)
sinh(2P (t)) +O

( 1
R(t)2

)
, (7.2)

where 0 < η � 1 is the transverse coordinate of the mass M source, R2(t) = Xi(t)Xi(t),
and l2W is the worldvolume angular momentum. We note that although there is a sign
difference between the two equations, the potential is attractive in both the worldvolume
and transverse coordinates since for all x > 0, tanh x ∈ (0, 1), so the logarithmic terms are
negative definite.

Method 1: fixed points. Our first approach is to find fixed points of the geodesic
equation where P (t) = constant. We can then infer the four-dimensional Newton constant
by substituting this fixed point into (7.1). At first glance, however, we find that there are no
fixed points for P (t). In order to generate one, recall that our 5-dimensional system can be
embedded in 10 dimensions, where the ρ coordinate is paired with the angular coordinate
χ, forming an R2. So we may suppose that by restoring nontrivial χ dependence, there will
be an additional angular momentum term in (7.2). More precisely, we have

P ′′(t) + g2

2 P (t)− l2T
P (t)3 = 6g3κ̂2M

π3R(t)
log(η)
P (t) +O

( 1
R(t)2

)
, (7.3)

where lT is the transverse angular momentum. If we ignore the higher order corrections
involving the radius R(t) and take P (t) = P to be constant, this equation simplifies to

g2

2 P
4 − 6g3κ̂2M

π3R(t) log(η)P 2 − l2T = 0 . (7.4)

The only positive solution for this is

P = 2
1
4

√
lT
g

+ 3g
3
2 κ̂2M log(η)

21/4π3R(t)
√
lT

+O
( 1
R(t)2

)
. (7.5)

Of course, we can find the leading order of this expression by simply suppressing the
quadratic term in P in equation (7.4). This reflects the structure of the background: since
there is an attractive potential, there is a stable circular orbit where

P = 2
1
4

√
lT
g
. (7.6)

The additional attractive potential from the mass M source ‘squeezes’ this orbit, but at large
worldvolume radius this squeezing fades out. If we suppose there is some minimum non-zero
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transverse angular momentum lT , as in the Bohr-Sommerfeld quantisation condition, then
we may suppose that P takes this value. One may make a similar interpretation for the
value of the mass M source transverse coordinate η.

Substituting (7.6) into (7.1), we then find that the R(t) equation becomes

R′′(t)− l2W
R(t)3 = − 6gκ̂2M

π3R(t)2

(
log tanh

(
2

1
4

√
lT
g

))2

+O
( 1
R(t)3

)
, (7.7)

≈ −
6gκ̂2 log

(√
2 g
lT

)2
M

4π3R(t)2 . (7.8)

If we compare this to the usual radial geodesic equation in 4 dimensions

r′′(t)− l2W
r(t)3 = − κ2M

4πr(t)2 , (7.9)

we find a value for the effective four-dimensional gravitational coupling

κ =
√

6g
π

∣∣∣ log
(√

2l
g

) ∣∣∣κ̂ , (7.10)

where we recall that κ̂ is the five-dimensional gravitational coupling constant.

Method 2: quantum localisation. We can go beyond the above semiclassical picture,
if we want to consider that our geodesic equation becomes nonsingular due to quantum
effects. Specifically we may ask what the instantaneous worldvolume radial force is on a
purely quantum test particle, defined by a separable wavefunction

Ψ(xi, ρ) = ψ(xi)φ(ρ) , (7.11)

where we assume that the worldvolume wavefunction ψ is some Gaussian wave packet
with a negligible width compared to the worldvolume radius r of its centroid. To apply a
quantum mechanical analysis, we note that our geodesic equations can be obtained from
the following Lagrangian:

L = 1
2

(
d

dt
Xi(t)

)2
+ 1

2g2

(
d

dt
P (t)

)2
− 1

2P (t)2 − µ

R(t) log tanh(P (t)) , (7.12)

where µ = 12gκ̂2M
π3 log tanh(η). If we assume that the Xi are effectively constant, the

associated Hamiltonian is

H = 1
2Π(t)2 + g2

2 P (t)2 + µ

r
log tanh(P (t)) . (7.13)

Therefore, we may study functions φE(ρ) that solve the associated time independent
Schrödinger equation (TISE),

EφE(ρ) =
(
−~2

2
d2

dρ2 + g2

2 ρ
2 + µ

r
log tanh(ρ)

)
φE(ρ) , (7.14)
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and we will focus on the ground state φ0 = φ, as we are interested in small (low-energy)
quantum excitations.

The TISE (7.14) was derived with the assumption that the worldvolume motions Xi

are effectively constant. This is a good approximation when r2 = XiXi � 1. Now, if we
assume that ρ is finite, then along with the assumption r2 � 1, the TISE asymptotes to
the equation describing a quantum harmonic oscillator, with its well-known solutions. The
ground state, in particular, is13

φ(ρ) =
√

2
(
g

π~

) 1
4

exp
(
−gρ

2

2~

)
+O

(
µ

r

)
. (7.15)

For ρ� 1 on the other hand, the logarithmic term in the TISE is no longer negligible even
in the large r approximation, and the equation for the ground state at fixed r approximates
instead to (

−~2

2
d2

dρ2 + µ

r
log(ρ)

)
φ(ρ) = 0 . (7.16)

To our knowledge, the exact solution to this differential equation is unknown. However, if
we make a WKB approximation (noting that the fn(ρ) will in general be complex)

φ(ρ) = exp
(1
~
f−1(ρ) + f0(ρ) + ~f1(ρ) +O(~2)

)
, (7.17)

then, to leading order in ~, we find,(
d

dρ
f−1(ρ)

)2
= 2µ

r
log(ρ) , (7.18)

which has solutions

f±−1 = k± ± i
√

2µ
r

(
ρ
√
− log ρ−

√
π

2 Erf
(√
− log ρ

))
, (7.19)

where k± are integration constants, and Erf is the error function. Therefore in the ρ� 1
regime, φ is given by a superposition

φ(ρ) = A exp
(
i

~

√
2µ
r

(
ρ
√
− log ρ−

√
π

2 Erf
(√
− log ρ

)))

+B exp
(
− i
~

√
2µ
r

(
ρ
√
− log ρ−

√
π

2 Erf
(√
− log ρ

)))
.

(7.20)

Since φ is a ground-state quantum wavefunction, we will require that it obey the special
Neumann boundary condition at ρ = 0:

∂ρφ
∣∣
ρ=0 = 0 . (7.21)

13Since the domain is the positive real line, we are a factor of
√

2 different from the standard normalisation
of the ground state of the quantum harmonic oscillator.

– 35 –



J
H
E
P
0
1
(
2
0
2
2
)
1
3
0

This is the same condition as that obeyed by the quantum harmonic oscillator ground
state (7.15), as is appropriate for an S-wave ground state when one recalls that equa-
tion (7.14) is the radial part of a transverse two-dimensional Schrödinger problem in (ρ, χ).
Condition (7.21) relates the coefficients A and B:

A = B exp
(
i

√
2πµ
r

)
. (7.22)

We can now determine the remaining coefficient B by matching the large r limit
of (7.20) with the harmonic oscillator ground state (7.15) at ρ = 0, which gives

B =
√

g

π~
. (7.23)

In particular, since we can match (7.20) with (7.15), we can, up to corrections of order
O(µ/r), compute expectation values using just the harmonic oscillator. The expectation
value we are interested in is the transverse-space dependent part of the right-hand-side
of (7.1). This allows us to deduce the four-dimensional effective Newton constant. Explicitly,
we find

κ2 = 24gκ̂2

π2 〈log tanh(ρ)〉 log tanh(η) , (7.24)

with the expectation value for an operator f(ρ) defined as

〈f(ρ)〉 =
∫ ∞

0
2
√

g

π~
exp

(
−gρ

2

~

)
f(ρ)dρ+O

(
µ

r

)
. (7.25)

We may similarly choose to consider both the test particle and the source to be governed
by the same transverse quantum Schrödinger problem. Given that, we find the effective
four-dimensional gravitational coupling at large r distance

κ = −
√

24g κ̂
π
〈log tanh(ρ)〉 . (7.26)

We are unable to compute such expectation values analytically. But, if we set ~/g = 1, we
can give a numerical approximation:

κ = √g (1.73338 . . .) κ̂ . (7.27)

Method 3: smeared transverse expectation values. Of course, calculating expec-
tation values given some transverse profile function does not require a fully quantum
treatment. We can instead imagine measuring the instantaneous acceleration of a particle
whose transverse position is drawn from a smeared distribution of possible positions in the
transverse direction.

We may suppose that the test particles have P (0) = P and suppose that the probability
P of P taking a given value between 0 < a < b <∞ is

P(a < P < b) =
∫ b

a
fP (ρ)dρ , (7.28)
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where we define our random variable, P , by its probability density function fP . The average
instantaneous acceleration we measure for a test particle drawn from this distribution is

〈
R′′(0)

〉
−
〈

l2W
R(0)3

〉
= −

〈
6κ̂2M

π3gR(0)2 log tanh(P (0)) log tanh(η)
〉

+O
( 1
R(0)3

)
. (7.29)

Assuming R(0) and P are independent variables and our probability density function is
correctly normalised, i.e. 〈1〉 = 1, then

R′′(0)− l2W
R(0)3 = − 6gκ̂2M

π3R(0)2 〈log tanh(P )〉 log tanh(η) +O
( 1
R(0)3

)
. (7.30)

Here
〈log tanh(P )〉 =

∫ ∞
0

fP (ρ) log tanh(ρ)dρ . (7.31)

We might choose to study any number of random distributions, but, given the suggestive
form of the right-hand-side of equation (7.31) we will take

fP (ρ) = µ(ρ)ξ0(ρ)2 = 12
π2 sinh(2ρ) (log tanh(ρ))2 . (7.32)

Given this,

〈log tanh(P )〉 = 9ζ(3)
π2 , (7.33)

with ζ(x) the Riemann zeta function. This determines the four-dimensional κ to be

κ2 = −216ζ(3)gκ̂2

π4 log tanh(η) . (7.34)

We can similarly average to get an expected value for log tanh(η), to find

κ =
√

6g18ζ(3)
π3 κ̂ . (7.35)

We may compare this with the numerical value of κ given by the quantum treatment of the
geodesic equation (7.27), finding here

κ = √g (1.70932 . . .) κ̂ , (7.36)

and observe that these two approaches calculations agree to 3 parts in 100. Although
the numerical result from the quantum treatment required setting ~/g = 1, the result
will not change significantly if ~/g is set to another finite constant. This is because the
quantum expectation value is dominated by behaviour of exp(−gρ2/~) log tanh ρ near the
origin, which only deviates very slowly as a function of the ratio ~/g. The result of (7.35)
also agrees precisely with the value found in ref. [4] for the four-dimensional graviton
self-coupling κ, up to corrections arising from the compactification of higher transverse
dimensions other than ρ.
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Figure 2. Equipotential surfaces of a Type II potential.
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Figure 3. Force lines (gradient flows) of a Type II potential.

The force lines of the Newtonian potential. In order to help visualising the effect
of the source near the origin on a test particle at some distance r away, and specifically
to show how the resulting near field evolves into the far field, we have made approximate
illustrations for Type II and Type III potentials.

These images were created by taking the leading orders of the potential in the near
(R� 1) and far (r ∼ 1) field limits and interpolating. The change brought about by the
source perturbation needs to be considered in comparison to the effect of the unperturbed SS-
CGP background. The effect of the background is a uniform attraction to ρ = 0 proportional
to ρ. At small values of ρ, or for relatively massive sources, then this background effect
may be neglected. There is one additional scale of relevance, which is the ratio of g, the
SS-CGP background parameter, to η, the height above the ρ = 0 plane at which the source
is placed. In our illustrations we have chosen η

g = 0.1 . We did not take any obvious limits,
such as η

g → 0 or ∞, because the Type III solution becomes infinite or vanishes in those
limits respectively.

We can see from figures 2 and 3 that, near to the source, the Type II potential
asymptotes to a spherically symmetric potential

(
1
R3

)
. Note that the lines in the two

figures are orthogonal to each other. Arbitrarily far away, the equipotential surface shapes
asymptote to an oblate spheroid which has twice the radius in the ρ direction as in the
r direction. It is not seen from the illustration that the Type II solution is exponentially
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Figure 4. Equipotential surfaces of a Type III potential.
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Figure 5. Force lines (gradient flows) of a Type III potential.

decaying at large r. Overall, the particle is drawn towards the source with relative disregard
(in comparison to Type III) for its ρ position.

Now contrast this with the Type III potential shown in figures 4 and 5. Near to
the source on the SS-CGP background in the Type III situation, the potential behaves
asymptotically in a similar fashion as in the Type II situation. The difference occurs
for large r.

For the sake of clarity, we have regularized the ξ0 ∝ log tanh(ρ) transverse wavefunction.
The equation for the regularised ξ̃0 is(

∂2
ρ + 2 coth(2ρ)

)
ξ̃0(ρ) = 1

ε
(tanh (α (ε− ρ))− 1) . (7.37)

We have chosen to regularise ξ0 in this way so that all force lines in the illustration end on
the perturbative source at the displace point r = 0, ρ = η. When α� 1 , the right-hand
side of equation (7.37) approximates a step function, normalised so that it integrates to
one over the half open integral. In our illustration we have chosen α = 100 and ε = 0.02.

One can see in figures 4 and 5 that the Type III force lines concentrate as one approaches
ρ = 0 or, alternately, that the equipotential surfaces spread out with increasing r along the
ρ = 0 subsurface. The fact that the potential at large r is proportional to the ξ0 transverse
wavefunction is due to the Type III boundary condition (6.29), or, equivalently, to the
presence of a boundary term placed at ρ = 0 in order to enforce the boundary condition.
The ξ0 → ξ̃0 regularisation is equivalent to the smearing of that condition/source.
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Due to the ξ̃0 smearing/regularising, the effect of the boundary term can be seen near
to ρ = 0, as opposed to at ρ = 0 in our illustration. Specifically one sees the force lines on
the far right travel downwards towards ρ = 0, in response to the presence of the boundary
term. Close to ρ = 0, the force lines bend left as the r dependence of the boundary term
draws them towards the source. Then as they approach the origin they then bend back
upwards towards the source at (r, ρ) = (0, η). If one removes the ξ̃0 regularisation, almost
all force lines concentrate within the ρ = 0 subplane. That does not largely effect the
long-range potential, but the regularised ξ̃0 helps the visualisation.

Due to the boundary condition/term at ρ = 0, the force in the Type III situation falls
more slowly at large r than in Type II, i.e. it does not decay exponentially when r � 1.
Instead, the potential has an 1/r falloff as we found in the Type III Green function (5.40).
The total effect is similar to the RSII ‘brane bending’ as described by Giddings, Katz, and
Randall [11].

7.2 A comment on Type III and corresponding effective field theories

The solutions that we have presented above provide hints towards the structure of the
corresponding four-dimensional effective field theories that can be constructed about the
SS-CGP background. The Type III solution, in particular, shows that its corresponding
effective field theory contains, at the linearised level, a massless graviton. This massless
graviton is supported by a non-constant zero-mode, ξ0(ρ) ∝ log tanh ρ, on the non-compact
transverse space. A study of the dynamics of effective theories describing massless fields
supported by non-constant zero-modes, focusing on Maxwell theory and scalar QED, was
initiated in [18]. There, it was found that the existence of a non-constant zero-mode leads
to a non-linear realisation of the underlying U(1) gauge symmetry by fields arising from the
transverse component of the higher-dimensional Maxwell gauge potential. A consequence
of this is that there is an apparent symmetry breaking — called covert symmetry breaking
— appearing in the quartic vector-scalar interaction terms, where the coefficient of the
quartic interaction is not the square of the cubic interaction, as is required by a scalar QED
theory in which the U(1) symmetry is linearly realised. This suggests that the effective field
theory about the SS-CGP background associated to the Type III solution will similarly
display covert symmetry breaking as a consequence of the underlying gauge symmetry,
four-dimensional diffeomorphisms, being non-linearly realised.

8 Conclusion; review of the taxonomy

Expanding the different contexts for the embedding of lower-dimensional effective-theory
physics into a higher-dimensional theory is highly relevant for the exploitation of string
and supergravity theories. Reductions to subsurfaces of non-compact higher-dimensional
spacetimes have been of interest since early work on supergravity dimensional reductions
that generate non-compact symmetries in reduced theories [2]. From the perspective of
the present work, such reductions correspond to the Type I scenarios, which work when
there happens to be a mathematically consistent truncation to the lower dimension. In
general, however, there is a problem that was already outlined in ref. [2], that coupling to
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matter not contained within the framework of a given consistent reduction (i.e. to matter
not purely contained within a consistently reduced supergravity) is not of the structure
expected for a lower-dimensional theory. This has been summarised by saying that the
corresponding lower-dimensional Newton constant vanishes for such non-compact reductions.
A characteristic feature of such situations is the existence of a continuous higher-mode
spectrum that extends right down to zero mass eigenvalue.

Mathematically consistent reductions are highly interesting in themselves, but they are
not the only approach to developing lower-dimensional physics within a higher-dimensional
theory. More generally, one may look for embeddings that generate a lower-dimensional
effective theory that may be subject to corrections arising from higher-dimensional modes
that are, however, suppressed on appropriate scales. This happens already in more traditional
Kaluza-Klein reductions on compact spaces that do not admit strictly mathematically
consistent truncations to a lower-dimensional theory. There can be situations, such as for
Calabi-Yau reductions of pure Type II theories, where the effects of integrating out the
higher modes produce only higher-derivative corrections, suppressed by powers of a large
mass arising from the compactification [19].

Another approach to developing lower-dimensional effective theories within a higher-
dimensional origin is to look for situations involving non-compact reduction spaces where
the corrections arising from integrating out higher-dimensional modes are nonetheless
suppressed on appropriate scales. An example of a construction that went partway in
this direction was the RSII construction [3]. “Partway” because by folding AdS spacetime
and consequently excluding an infinite volume of it, it has been debated whether that
construction was a genuinely non-compact reduction.

A genuinely non-compact reduction [6] involving H(2, 2) hyperbolic space has been
developed, in which the emergence of a lower-dimensional effective theory occurs because the
higher-mode spectrum has a single zero mode, generating a massless effective theory in the
lower dimension, which is however separated from the continuous part of the higher-mode
spectrum by a mass gap [4]. To date, this is the only example that we know of such a
mass-gap-protected construction, but most likely it is not the only one — searching for
other analogous examples is clearly a promising open area for research.

In the present paper, the aim has been to explore further the nature of lower-dimensional
effective theories with non-compact reduction spaces through analysis, at the linearised level,
of the response to the inclusion of an additional mass source that is genuinely localised within
the full higher-dimensional space. What we have found is the key rôle played by boundary
conditions that are imposed as one approaches the lower-dimensional “worldvolume”. This is
analogous to the rôle of boundary conditions imposed in the RSII scenario, as laid out more
clearly in ref. [11]. Lower-dimensional gravitational behaviour emerges only when boundary
conditions are applied that permit the inclusion of the relevant transverse-space zero mode.

From our analysis, we have categorised effective theory reductions into three dis-
tinct groups:

Type I. Type I Ricci-flat reductions [7, 8] (generalisable to surviving supergravity reduc-
tions as in ref. [9]), involve solutions to which may be viewed as “black spokes”. These
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couple to sources that are actually extended into the transverse space via the reduction
ansatz. They are solutions to a consistent truncation of the higher-dimensional theory and
they are consequently known to full nonlinear order. Owing to the surviving ‘trombone’
scaling symmetry for the Ricci-flat condition, such constructions do not have a well-defined
lower-dimensional Newton constant, even though they are self-interacting solutions. In-
clusion of a separate matter source that is genuinely localised in the higher-dimensional
spacetime will excite the erstwhile-truncated higher modes, rendering the truncation to a
lower-dimensional system mathematically inconsistent. Consequently, such couplings to
external localised higher-dimensional sources will produce higher-dimensional gravitational
behaviour instead of lower-dimensional behaviour.

Type II. Type II localisations correspond to solutions that are “native” in the higher-
dimensional theory. Technically, at linear order, they may couple to a localised source in the
higher dimension and then give rise to a gravitational potential that is proportional to the
canonical Green function for the spacetime when the transverse space is replaced with its
universal cover (such as R1 for S1). No special boundary conditions aside from regularity
away from sources and falloff at spatial infinity are imposed. The leading component
of the linearised perturbative response to a higher-dimensional massive source is, in all
Type II cases which we have seen, correspondingly higher-dimensional. Such constructions,
accordingly, do not produce a lower-dimensional Newton constant.

Type III. Type III localisations modify the Green functions of Type II localisations by
the imposition of boundary conditions (given in (6.29) in the present case) on a worldvolume-
spanning submanifold that are compatible with the existence of a normalisable transverse-
space zero mode. This modifies the behaviour of coupling to higher-dimensional matter
at large distances on the lower-dimensional worldvolume. This is the only one of the
three reduction scenarios that genuinely permits the emergence of an effective theory of
lower-dimensional gravity at large worldvolume distance scales. In this case, finite Newton
constant values can be defined for various notions of source and test particle localisation
near the worldvolume.
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A Doubly-Ricci-flat branes

In this appendix, we will review the doubly-Ricci-flat brane solutions in a single scalar
supergravity model. The Lagrangian in d dimensions is

L = R∗1− 1
2dφ ∧ ∗dφ−

1
2e

aφF(p+2) ∧ ∗F(p+2) , (A.1)
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where F(p+2) = dA(p+1). The equations of motion are

�φ = a

2 (p+ 2)!e
aφ
(
F(p+2)

)2
, (A.2)

∂M
(√
−geaφFMN1···Np+1

)
= 0 , (A.3)

RMN = 1
2∂Mφ∂Nφ+ 1

2 (p+ 1)!e
aφ
(
FM ···F

···
N − p+ 1

(p+ 2)(d− 2)
(
F(p+2)

)2
gMN

)
. (A.4)

This system can be obtained as a consistent truncation of maximal supergravity in d-
dimensions, or equivalently, from M-theory reduced on T 11−d. Working within this system,
we will derive a set of doubly Ricci-flat brane solutions. These are solutions whose world-
volume and transverse space are arbitrary Ricci-flat manifolds.

A.1 Electric branes

Consider a warped product manifold Md = Mp+1 ×Bd−p−1 with metric

ds2
d = e2A(y)gµν(x)dxµdxν + e2B(y)g̃ij(y)dyidyj , (A.5)

where gµν is the Lorentzian metric on Mp+1, and g̃ij is the Riemannian metric on Bd−p−1.
Defining the constants de = p+ 1 and dm = d− p− 3, the non-zero components of the Ricci
tensor are

Rµν = Rµν − e2(A−B)
(
∇̃2A+ g̃ij∂iA

(
de∂jA+ dm∂jB

))
gµν ,

Rij = R̃ij − de∇̃i∇̃jA− dm∇̃i∇̃jB + dm∂iB∂jB − de∂iA∂jA

+ 2de∂(iA∂j)B −
(
∇̃2B + g̃ij∂iB

(
de∂jA+ dm∂jB

))
g̃ij ,

(A.6)

where Rµν and R̃ij are the Ricci tensors of gµν and g̃ij respectively, ∇̃i is the covariant
derivative with respect to g̃ij , and ∇̃2 = g̃ij∇̃i∇̃j . For electric branes, we take Mp+1 and
Bd−p−1 to be Ricci-flat, and the gauge field and scalar to be

A(p+1) = ±eC(y) vol(Mp+1) , φ = φ(y) . (A.7)

By imposing the linear relations

deA+ dmB = 0 , A = − dm
a(d− 2)φ , C = log 2√

∆
− ∆

2aφ , (A.8)

where the constant ∆ is defined as

∆ = a2 + 2dedm
d− 2 , (A.9)

the equations of motion (A.2)–(A.4) reduce to one equation given by

∇̃2φ+ ∆
2ag̃

ij∂iφ∂jφ = 0 . (A.10)

Writing H = e
∆
2aφ, (A.10) becomes

∇̃2H = 0 , (A.11)
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meaning that H is the harmonic function on Bd−p−1. To avoid confusion with the constant
∆ in (A.9), we will not use ∆B to denote the Laplacian on Bd−p−1. If Bd−p−1 is compact
and closed, then H is a constant. In that case, the metric becomes Ricci-flat, and A(p+1) is
gauge equivalent to zero, which is not particularly interesting. Consequently, we will now
assume that Bd−p−1 is non-compact.

When a = 0, we can consistently set φ = 0. In this case, instead of having A and C
being related to φ as in (A.8), we have

C = log 2√
∆

+ ∆(d− 2)
2dm

A , (A.12)

and H = e−C satisfies (A.11). In the case where dm = 0, we can consistently set A = 0,
and we then define C as

C = log 2√
∆
− ∆(d− 2)

2de
B , (A.13)

with H = e−C again satisfying (A.11).
In full, the electric brane solution for generic values of a and dm is

ds2
d = H

− 4dm
∆(d−2)ds2(Mp+1) +H

4de
∆(d−2)ds2(Bd−p−1) ,

A(p+1) = ± 2√
∆
H−1 vol(Mp+1) , eφ = H

2a
∆ , ∇̃2H = 0 .

(A.14)

This solution is a generalisation of the static brane solutions, in which both the worldvolume
and the transverse space are arbitrary Ricci-flat manifolds. In particular, this solution
allows for a consistent worldvolume truncation to general relativity in p+ 1 dimensions.

For later convenience, we will define the conserved electric charge of (A.14). The
equation of motion for the gauge field is given by

d(eaφ∗F(p+2)) = 0 . (A.15)

This defines a constant of motion, the electric charge Qel, given by

Qel =
∫
∂B
eaφ∗F(p+2) , (A.16)

where we removed the subscript from Bd−p−1 for convenience.

A.2 Magnetic branes

To derive the magnetic analogue of the above electric brane solution, we have to dualise the
theory. This is done using the standard Poincaré duality technique, and the theory in the
dualised variables is given by

L = R∗1− 1
2dφ ∧ ∗dφ−

1
2e
−aφG(d−p−2) ∧ ∗G(d−p−2) , (A.17)

where G(d−p−2) = dK(d−p−3), and is related to the original field strength F(p+2) by

F(p+2) = e−aφ∗G(d−p−2) . (A.18)
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The dualisation procedure replaces A(p+1) with K(d−p−3), both of which have the same
number of degrees of freedom, and flips the sign of the dilaton. Using our results in the
previous subsection, the theory admits the solution

ds2
d = H

− 4de
∆(d−2)ds2(Md−p−3) +H

4dm
∆(d−2)ds2(Bp+3) ,

K(d−p−3) = ± 2√
∆
H−1 vol(Md−p−3) , eφ = H−

2a
∆ , ∇̃2H = 0 ,

(A.19)

where Md−p−3 and Bp+3 are Ricci-flat. Again, we choose Bp+3 to be non-compact so that
H is not constant, and K(d−p−3) is not gauge equivalent to zero. In the original variables,
this is

F(p+2) = ± 2√
∆

√
g̃

(p+ 2)! g̃
ijεik1···kp+2∂jHdy

k1 ∧ · · · ∧ dykp+2 . (A.20)

Taking the exterior derivative, we have

dF(p+2) = ± 2√
∆
∇̃2H vol(Bp+3) = 0 , (A.21)

which follows from the fact that H is harmonic. This Bianchi identity gives rise to a
conserved magnetic charge, defined by

Qmag =
∫
∂B
F(p+2) , (A.22)

where we again removed the subscript from Bp+3 for convenience.

A.3 Dyonic branes

Dyonic solutions are charged under a self-dual or anti-self-dual field strength. These only
occur in even dimensions with p+ 2 = d/2, for odd p. In this case, the scalar field decouples,
as it is sourced by F(p+2) ∧∗F(p+2) = ±F(p+2) ∧F(p+2) = 0. So, effectively, we can set a = 0,
and the resulting solution is

ds2
d = H−

2
∆ds2(Mp+1) +H

2
∆ds2(Bp+3) ,

F±(p+2) = L(p+2) ± ∗L(p+2) , L(p+2) = ∓
√

2(d− 2)
dD

H−2dH ∧ vol(Mp+1) , ∇̃2H = 0 ,

where the ± indicates whether the field strength is self-dual or anti-self-dual. Again, Mp+1
and Bp+3 are Ricci-flat, and H is a harmonic function on Bp+3.

The conserved charge associated with the dyonic brane is both electric and magnetic.

A.4 Trombone symmetries

The doubly-Ricci-flat brane solutions presented above have three global symmetries, which
have been called ‘trombone’ symmetries [20]. The first trombone symmetry is a rescaling of
the d-dimensional fields

gMN 7→ k2
HgMN , φ 7→ φ , F(p+2) 7→ kp+1

H F(p+2) . (A.23)
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The next two trombone symmetries are individual rescalings of the worldvolume and
transverse metrics,

gµν 7→ k2
W gµν , g̃ij 7→ k2

T g̃ij , (A.24)

with no active rescaling on φ and F(p+2), though F(p+2) will, in general, be scaled through
the rescalings of gµν and g̃ij . For example, the magnetic flux (A.20) scales as kp+1

T . We
stress that kH , kW , and kT are three independent parameters.

To see that (A.24) are symmetries, we note that the doubly-Ricci-flat brane solutions
are defined by three equations,

Rµν = 0 , R̃ij = 0 , ∇̃2H = 0 . (A.25)

Rescaling the worldvolume and transverse metrics as in (A.24) do not rescale their Ricci
tensors, so they remain Ricci-flat. For the third equation, recall that

∇̃2H = 1√
g̃
∂i
(√

g̃g̃ij∂jH
)
7→ k−2

T ∇̃
2H . (A.26)

Thus, if H is harmonic with respect to g̃ij , it also harmonic with respect to k2
T g̃ij . The

first trombone symmetry (A.23) is a symmetry that is present irrespective of the particular
solution. On the other hand, the second and third trombone symmetries (A.24) only occur
within our specific doubly-Ricci-flat ansatz.

B A consistent truncation about the SS-CGP background

We will start with the bosonic sector of ten-dimensional Type I supergravity,

L̂10 = R̂∗̂1− 1
2dφ̂ ∧ ∗̂dφ̂−

1
2e
−φ̂Ĥ(3) ∧ ∗̂Ĥ(3) , (B.1)

where Ĥ(3) = dB̂(2). The solution of interest is the lifted Salam-Sezgin vacuum with an
NS5-brane inclusion. This was derived in ref. [4], and we reproduce it here:

dŝ2
10 =W (ρ)−

1
4

(
ηµνdx

µdxν +dy2 + 1
4g2

(
dψ+sech2ρ

(
dχ+cosθ dϕ

))2 + 1
g2W (ρ)ds2

EH

)
,

e2φ̂ =W (ρ) , B̂(2) = 1
4g2

(
(1+k)dχ+sech2ρdψ

)
∧
(
dχ+cosθ dϕ

)
, (B.2)

where W (ρ) = sech 2ρ− k log tanh ρ, and ds2
EH is the Eguchi-Hanson metric

ds2
EH = cosh 2ρ

(
dρ2 + 1

4(tanh 2ρ)2(dχ+ cos θ dϕ
)2 + 1

4
(
dθ2 + sin2 θ dϕ2)) . (B.3)

The coordinates ψ, y, and χ are S1 coordinates, (θ, ϕ) parametrises an S2, ρ ∈ [0,∞) is
the non-compact radius, and k is a positive constant. The 6-dimensional worldvolume of
the NS5-brane is parametrised by (xµ, ψ, y). Our goal is to reduce the Type I theory on
T 3 3 (y, ψ, χ) via the usual Kaluza-Klein methods, and S2 on the background given in (B.2)
to obtain a 5-dimensional theory.
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B.1 10→ 9: reduce on y

The background metric in (B.2) does not have a fibre over the circle parametrised by y. So,
the appropriate Kaluza-Klein ansatz is

dŝ2
10 = e

− 1
2
√

7
φ2ds2

9 + e
√

7
2 φ2dy2 , B̂(2) = B(2) , φ̂ = φ1 , (B.4)

where the un-hatted fields are 9-dimensional fields. The resulting equations of motion are
encoded in the action

L9 = R∗1− 1
2dφi ∧ ∗dφi −

1
2e
−φ1+ 1√

7
φ2H(3) ∧ ∗H(3) , (B.5)

where H(3) = dB(2), and i ∈ {1, 2}. The background solution (B.2) reduces to

ds2
9 = W−

2
7

(
ηµνdx

µdxν + dy2 + 1
4g2

(
dψ + sech 2ρ

(
dχ+ cos θ dϕ

))2
+ 1
g2W ds2

EH

)
,

e2φ1 = e−2
√

7φ2 = W , B(2) = 1
4g2

(
(1 + k)dχ+ sech 2ρ dψ

)
∧
(
dχ+ cos θ dϕ

)
. (B.6)

We observe that in the background solution, the combination φ1 +
√

7φ2 = 0. This suggests
a field redefinition, (

Φ2
Φ1

)
= 1

2
√

2

(
1
√

7
−
√

7 1

)(
φ1
φ2

)
. (B.7)

Substituting this into (B.5), and noting that the transformation matrix (B.7) is orthogonal,
we have

L9 = R∗1− 1
2dΦi ∧ ∗dΦi −

1
2e

2
√

2
7 Φ1H(3) ∧ ∗H(3) , (B.8)

and the background solution is

Φ2 = 0 , e−
√

7
2 Φ1 = W . (B.9)

From (B.8), we find that Φ2 is decoupled, so there is a consistent truncation of the 9-
dimensional theory given by Φ2 = 0, Φ1 = φ. For completeness, the truncated theory is
given by

L̂9 = R̂∗̂1− 1
2dφ̂ ∧ ∗̂dφ̂−

1
2e

2
√

2
7 φ̂Ĥ(3) ∧ ∗̂Ĥ(3) , (B.10)

where we have reintroduced hats on all 9-dimensional fields. We will take (B.10) as the
starting point for the next reduction step.

B.2 9→ 8: reduce on ψ

The background metric in (B.6) is fibred over the ψ̃ = ψ/2g coordinate. This suggests that
the appropriate Kaluza-Klein ansatz is

dŝ2
9 = e

− 1√
21
φ2ds2

8 + e
6√
21
φ2(dψ̃ +A(1)

)2
, B̂(2) = B(2) +A(1) ∧ dψ̃ , φ̂ = φ1 . (B.11)
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The resulting equations of motion are encoded in the action

L8 = R∗1− 1
2dφi ∧ ∗dφi −

1
2e
√

7
3φ2F(2) ∧ ∗F(2)

− 1
2e

2
√

2
7φ1− 5√

21
φ2F(2) ∧ ∗F(2) −

1
2e

2
√

2
7φ1+ 2√

21
φ2H(3) ∧ ∗H(3) , (B.12)

where F(2) = dA(1), F(2) = dA(1), H(3) = dB(2) − dA(1) ∧ A(1), and i ∈ {1, 2}. The
background solution in (B.6) reduces to

ds2
8 = W−

1
3
(
ηµνdx

µdxν + W

g2 ds
2
EH

)
, B(2) = 1 + k

4g2 cos θ dχ ∧ dϕ ,

A(1) = −A(1) = 1
2g sech 2ρ (dχ+ cos θ dϕ) , e−

√
7
2φ1 = e−

√
21φ2 = W . (B.13)

From this, we observe that φ1 −
√

6φ2 = 0. This suggests the field redefinition(
Φ2
Φ1

)
= 1√

7

(
1 −

√
6√

6 1

)(
φ1
φ2

)
. (B.14)

For the background solution, we have

Φ2 = 0 , e−
√

3Φ1 = W . (B.15)

Now, substituting the field redefinition into (B.12), and noting that the transformation
matrix (B.14) is orthogonal, we obtain

L8 = R∗1− 1
2dΦi ∧ ∗dΦi −

1
2e
−
√

2Φ2+ 1√
3

Φ1F(2) ∧ ∗F(2)

− 1
2e
√

2Φ2+ 1√
3

Φ1F(2) ∧ ∗F(2) −
1
2e

2√
3

Φ1H(3) ∧ ∗H(3) . (B.16)

Let us now examine the equations of motion of A(1), A(1), and Φ2:

A(1) : d

(
e
−
√

2Φ2+ 1√
3

Φ1∗dA(1)

)
− e

2√
3

Φ1dA(1) ∧ ∗H(3) = 0 ,

A(1) : d

(
e
√

2Φ2+ 1√
3

Φ1∗dA(1)

)
− e

2√
3

Φ1dA(1) ∧ ∗H(3) = 0 ,

Φ2 : d∗dΦ2 = 1
2
√

2
e

1√
3

Φ1
(
e
√

2Φ2F(2) ∧ ∗F(2) − e−
√

2Φ2F(2) ∧ ∗F(2)
)
. (B.17)

These equations admit the solution

A(1) = ±A(1) , Φ2 = 0 . (B.18)

For our background solution, we have A(1) = −A(1). Using this simplifying ansatz, we find
that the rest of the equations of motion are encoded in the action

L8 = R∗1− 1
2dφ ∧ ∗dφ− e

1√
3
φ
F(2) ∧ ∗F(2) −

1
2e

2√
3
φ
H(3) ∧ ∗H(3) , (B.19)
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where F(2) = dA(1), H(3) = dB(2) +dA(1)∧A(1), and we relabelled Φ1 = φ. To put the action
in canonical form, we have to rescale A(1) by a factor of 1/

√
2. The final 8-dimensional

theory is

L̂8 = R̂∗̂1− 1
2dφ̂ ∧ ∗̂dφ̂−

1
2e

1√
3
φ̂
F̂(2) ∧ ∗̂F̂(2) −

1
2e

2√
3
φ̂
Ĥ(3) ∧ ∗̂Ĥ(3) , (B.20)

where F̂(2) = dÂ(1), Ĥ(3) = dB̂(2) + 1
2dÂ(1) ∧ Â(1), and we have restored the hats for all

8-dimensional fields.

B.3 8→ 7: reduce on χ

The background solution (B.13) is fibred over χ̃ = χ/2g. The appropriate Kaluza-Klein
ansatz is then

dŝ2
8 = e

− 1√
15
φ2ds2

7 + e
√

5
3φ2

(
dχ̃+ Ã(1)

)2
,

B̂(2) = B(2) +B(1) ∧ dχ̃ , Â(1) = A(1) + σ dχ̃ , φ̂ = φ1 . (B.21)

The resulting equations of motion are encoded in the action

L7 =R∗1− 1
2dφi∧∗dφi−

1
2e

1√
3
φ1−

√
5
3φ2dσ∧∗dσ− 1

2e
2
√

3
5φ2F(2)∧∗F(2)

− 1
2e

1√
3
φ1+ 1√

15
φ2F(2)∧∗F(2)−

1
2e

2√
3
φ1− 4√

15
φ2H(2)∧∗H(2)−

1
2e

2√
3
φ1+ 2√

15
φ2H(3)∧∗H(3) ,

(B.22)

where F(2) = dÃ(1), F(2) = dA(1) − dσ ∧ Ã(1), H(2) = dB(1) + 1
2

(
σdA(1) − dσ ∧A(1)

)
,

H(3) = dB(2) + 1
2dA(1) ∧A(1) −H(2) ∧ Ã(1), and i ∈ {1, 2}. The background solution (B.13)

reduces to

ds2
7 = (sinh2ρ)

2
5

(W cosh2ρ)
1
5

(
ηµνdx

µdxν+W cosh2ρ
g2 dρ2+W cosh2ρ

4g2
(
dθ2+sin2 θdϕ2)) ,

σ=
√

2sech2ρ, Ã(1) = 1
2g cosθdϕ, A(1) =σÃ(1) , B(1) =−(1+k)Ã(1) ,

e−
√

3φ1 =W , e
√

5
3φ2 =W

2
3 (sinh2ρ)2 sech2ρ, B(2) = 0 . (B.23)

It is convenient to perform the field redefinition(
Φ1
Φ2

)
= 1√

6

(
1 −

√
5√

5 1

)(
φ1
φ2

)
. (B.24)

The background solution is then

e−
√

2Φ1 = W (sinh 2ρ)2 sech 2ρ , e
√

10Φ2 = W−1(sinh 2ρ)2 sech 2ρ . (B.25)

Substituting the field redefinition into (B.22), and noting that the transformation ma-
trix (B.24) is orthogonal, we find that

L̂7 = R̂∗̂1− 1
2dΦ̂i ∧ ∗̂dΦ̂i −

1
2e
√

2Φ̂1dσ̂ ∧ ∗̂dσ̂ − 1
2e
−
√

2Φ̂1+
√

2
5 Φ̂2F̂(2) ∧ ∗̂F̂(2)

− 1
2e
√

2
5 Φ̂2F̂(2) ∧ ∗̂F̂(2) −

1
2e
√

2Φ̂1+
√

2
5 Φ̂2Ĥ(2) ∧ ∗̂Ĥ(2) −

1
2e

2
√

2
5 Φ̂2Ĥ(3) ∧ ∗̂Ĥ(3) , (B.26)

where we have restored the hats to the 7-dimensional fields.
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B.4 7→ 5: reduce on S2

The reduction ansatz that is consistent with the 7-dimensional background solution (B.23) is

dŝ2
7 = e

− 2√
15

Φ3ds2
5 + 1

4g2 e
√

3
5 Φ3ds2(S2) , Φ̂1,2 = Φ1,2 , σ̂= σ ,

F̂(2) =− 1
2g vol(S2) , F̂(2) =− σ

2g vol(S2) , Ĥ(2) =−σ
2 +m

4g vol(S2) , Ĥ(3) = 0 , (B.27)

where ds2(S2) and vol(S2) are the metric and volume form on the unit 2-sphere respectively,
m is a constant, and all un-hatted fields are 5-dimensional fields. The ansatz for the field
strengths is consistent with the 7-dimensional Bianchi identities:

dF̂(2) = 0 , dF̂(2) = dσ̂ ∧ F̂(2) , dĤ(2) = dσ̂ ∧ F̂(2) , dĤ(3) = 1
2 F̂(2) ∧ F̂(2) − Ĥ(2) ∧ F̂(2) .

(B.28)
Let us first look at the 7-dimensional gauge field equations of motion:

B̂(2) : d
(
e2
√

2
5 Φ̂2 ∗̂Ĥ(3)

)
= 0 , (B.29)

B̂(1) : d
(
e
√

2Φ̂1+
√

2
5 Φ̂2 ∗̂Ĥ(2)

)
− e2

√
2
5 Φ̂2F̂(2) ∧ ∗̂Ĥ(3) = 0 , (B.30)

Â(1) : d
(
e
√

2
5 Φ̂2 ∗̂F̂(2)

)
+ e
√

2Φ̂1+
√

2
5 Φ̂2dσ̂ ∧ ∗̂Ĥ(2) + e2

√
2
5 Φ̂2F̂(2) ∧ ∗̂Ĥ(3) = 0 , (B.31)

Â(1) : d
(
e−
√

2Φ̂1+
√

2
5 Φ̂2 ∗̂F̂(2)

)
+ e

√
2
5 Φ̂2dσ̂ ∧ ∗̂F̂(2) − e2

√
2
5 Φ̂2Ĥ(2) ∧ ∗̂Ĥ(3) = 0 , (B.32)

σ̂ : d
(
e
√

2Φ̂1 ∗̂d̂σ̂
)
− e

√
2
5 Φ̂2F̂(2) ∧ ∗̂F̂(2) − e

√
2Φ̂1+

√
2
5 Φ̂2F̂(2) ∧ ∗̂Ĥ(2) = 0 . (B.33)

We note that

∗̂ vol(S2) = 4g2e
− 8√

15
Φ3 vol(M5) , ∗̂dσ̂ = 1

4g2 (∗dσ) ∧ vol(S2) , (B.34)

where vol(M5) and ∗ are the volume form and Hodge star defined with respect to the
5-dimensional metric ds2

5 in (B.27) respectively. From this, we find that ∗̂F̂(2), ∗̂F̂(2),
and ∗̂Ĥ(2) are all proportional to vol(M5), which is a top-form on M5. This means that
d(eS ∗̂F̂(2)) = d(eS ∗̂F̂(2)) = d(eS ∗̂Ĥ(2)) = 0 for any field S ∈ C∞(M5), and dσ̂ ∧ ∗̂F̂(2) =
dσ̂ ∧ ∗̂Ĥ(2) = 0. Therefore, the only non-trivial equation from the above is the σ̂ equation.
After some algebra, we find that the σ̂ equation reads

d
(
e
√

2Φ1∗dσ
)

= 2g2e

√
2
5 Φ2− 8√

15
Φ3
(
2 + e

√
2Φ1

(
σ2 +m

))
σ∗1 , (B.35)

where we used the identity ∗1 = vol(M5).
Next, we have the 7-dimensional dilaton equations,

d∗̂dΦ̂1 + 1√
2

(
e−
√

2Φ̂1+
√

2
5 Φ̂2F̂(2)∧∗̂F̂(2)−e

√
2Φ̂1dσ̂∧∗̂dσ̂−e

√
2Φ̂1+

√
2
5 Φ̂2Ĥ(2)∧∗̂Ĥ(2)

)
= 0 ,

(B.36)

d∗̂dΦ̂2−
1√
10
e
√

2
5 Φ̂2

(
e−
√

2Φ̂1F̂(2)∧∗̂F̂(2) + F̂(2)∧∗̂F̂(2) +e
√

2Φ̂1Ĥ(2)∧∗̂Ĥ(2)
)

= 0 , (B.37)
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where we have substituted the ansatz Ĥ(3) = 0. Using (B.34), we find that these equations
become

d∗dΦ1 = 1√
2
e
√

2Φ1dσ∧∗dσ+ g2
√

2
e

√
2
5 Φ2− 8√

15
Φ3
(
e
√

2Φ1
(
σ2 +m

)2
−4e−

√
2Φ1

)
∗1 , (B.38)

d∗dΦ2 = 1√
10
g2e

√
2
5 Φ2− 8√

15
Φ3
(
e
√

2Φ1
(
σ2 +m

)2
+4e−

√
2Φ1 +4σ2

)
∗1 . (B.39)

Finally, we have the 7-dimensional Einstein equation

R̂MN = 1
2∂M Φ̂i∂N Φ̂i + 1

2e
√

2Φ̂1∂M σ̂∂N σ̂

+ 1
2e
−
√

2Φ̂1+
√

2
5 Φ̂2

(
F̂MP F̂ P

N − 1
10
(
F̂(2)

)2
ĝMN

)
+ 1

2e
√

2
5 Φ̂2

(
F̂MP F̂

P
N − 1

10
(
F̂(2)

)2
ĝMN

)
+ 1

2e
√

2Φ̂1+
√

2
5 Φ̂2

(
ĤMP Ĥ

P
N − 1

10
(
Ĥ(2)

)2
ĝMN

)
, (B.40)

where i ∈ {1, 2}, and we have substituted the Ĥ(3) = 0 ansatz. We have to consider the
equations where the indices M,N lie in the 5-dimensional directions and the S2 directions
independently. Let A,B, . . . be the 5-dimensional indices, and m,n, . . . be the S2 indices.
The R̂mn equations give

d∗dΦ3 =− 4g2
√

15
e

√
2
5 Φ2− 8√

15
Φ3
(
e
√

2Φ1
(
σ2 +m

)2
+4σ2 +4e−

√
2Φ1−10e−

√
2
5 Φ2+

√
3
5 Φ3

)
∗1 .

(B.41)
The R̂Am equations give a 0 = 0 identity, and the remaining R̂AB equations read

RAB = 1
2∂AΦi∂BΦi + 1

2e
√

2Φ1∂Aσ∂Bσ

+ 2g2

3 e

√
2
5 Φ2− 8√

15
Φ3
(
e−
√

2Φ1 + σ2 + 1
4e
√

2Φ1
(
σ2 +m

)2
− 4e−

√
2
5 Φ2+

√
3
5 Φ3

)
gAB ,

(B.42)

where i ∈ {1, 2, 3}. The 5-dimensional equations (B.35), (B.38), (B.39), (B.41), and (B.42)
can be obtained from the action

L5 = R∗1− 1
2dΦi ∧ ∗dΦi −

1
2e
√

2Φ1dσ ∧ ∗dσ − V ∗1 , (B.43)

where V is the scalar potential given by

V = 2g2e

√
2
5 Φ2− 8√

15
Φ3
(
e−
√

2Φ1 + σ2 + 1
4e
√

2Φ1
(
σ2 +m

)2
− 4e−

√
2
5 Φ2+

√
3
5 Φ3

)
. (B.44)

The 5-dimensional Newton constant is related to the 10-dimensional one by

κ̂2 = g4κ̂2
10

2π3ly
. (B.45)
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The 7-dimensional background solution (B.23) is now reduced to

ds2
5 = (W cosh 2ρ)

1
3 (sinh 2ρ)

2
3

(
ηµνdx

µdxν + W cosh 2ρ
g2 dρ2

)
,

e−
√

2Φ1 = W (sinh 2ρ)2 sech 2ρ ,

e
√

10Φ2 = W−1(sinh 2ρ)2 sech 2ρ ,

e
√

15Φ3 = (W cosh 2ρ)4(sinh 2ρ)2 ,

σ =
√

2 sech 2ρ . (B.46)

The NS5-brane charge k is related to the parameter m by k = −1−m/2. Since k ≥ 0, we
find that m ≤ −2. For the purposes of the present paper, we set k = 0, so m = −2.

C Special functions and Green functions

C.1 Orthonormalised transverse wavefunctions

To eke out any higher precision than the expression given in equation (5.35), first note that
our separated solutions(

∂2
r + 2

r
∂r + g2

(
∂2
ρ + 2 coth (2ρ) ∂ρ

))
fω(r)ζω(ρ) = 0 , (C.1)

have transverse factors ζω(ρ), which, after changing variables to y = cosh(2ρ) and ζω(ρ) =
ψω(cosh(2ρ)) = ψω(y), solve(

4∂y
(
y2 − 1

)
∂y + ω2

)
ψω(y) = 0 . (C.2)

This is a known version of Legendre’s differential equation with the general solution given
by Legendre functions (since the order is in general complex),

ψω(y) = aωP
− 1

2 +
√

1−ω2
2

(y) + bωQ
− 1

2 +
√

1−ω2
2

(y) . (C.3)

The Legendre functions of the second type (Q) have a logarithmic divergence as y → 1. For
the moment we want to consider only solutions that are regular when r 6= 0 and ρ → 0
(y → 1), so we consider solutions involving only the Legendre function of the first type (P).

Returning to the ρ variables, we now investigate orthonormality. We require∫ ∞
0

sinh(2ρ)ζω(ρ)ζυ(ρ)dρ = δ(ω − υ) . (C.4)

Applying our transverse operator and integrating by parts, we find that this integral may
be given purely in terms of contact terms at infinity. We recall the identity14

lim
R→∞

1
ω2 − υ2 (ω sin(ωρ) cos(υρ)− υ cos(ωρ) sin(υρ))

∣∣∣∣
ρ=R
∝ δ(ω − υ) . (C.5)

14We ignore momentarily the numerical factors of the form
√

2,
√
π, etc.
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Our solutions do not asymptote to sinusoidal functions with frequency ω. Instead, they
asymptote with frequency σ =

√
ω2 − 1 as can be seen both from the asymptotic form

of equation (C.2), and via the properties of Legendre functions. Specifically, the large y
asymptote is

Pν(y) ∼ B
(
ν + 1

2 ,
1
2

)−1
(2y)−ν−1 , (C.6)

where B is the Euler beta function. There are actually two asymptotic regimes that we need
to consider: when Re(ν) > −1

2 and when Re(ν) < −1
2 (although they actually agree in the

present case). Furthermore, we will need the connection formula for Legendre functions, the
definition of the Euler beta function and the reflection formula for Euler gamma functions:

Pν(y) = P−1−ν(y) , B(x, y) = Γ(x)Γ(y)
Γ(x+ y) , Γ(z)Γ(1− z) = π csc(πz) . (C.7)

These allow us to derive the necessary normalisation aω so that the amplitude of our
solutions as ρ→∞ is ω independent. That is, given

ζω(ρ) ∝
√
πσ tanh

(
πσ

2

)
P− 1

2 + iσ
2

(cosh(2ρ)) , (C.8)

we have
√

sinh(2ρ)ζω(ρ) ∼ 2 sin(σρ+ δ). The shift δ is irrelevant for orthonormalisation.
These almost satisfy the equation that we require. We require one additional normalisation,
since the asymptotic frequency is given by a function of the separation constant, rather
than the separation constant we naïvely expected. That is, since σ =

√
ω2 − 1, we have∫ ∞

0
sinh(2ρ)

(√
πσ tanh

(
πσ

2

)
P− 1

2 + iσ
2

(cosh(2ρ))
)(√

πτ tanh
(
πτ

2

)
P− 1

2 + iτ
2

(cosh(2ρ))
)
dρ

= δ (σ−τ) . (C.9)

To build our Green functions we require this integral to generate a delta function distribution
with respect to ω, not σ. We use the well-known following property of delta function
distributions,

δ(f(ω)− f(τ)) = δ(ω − τ)
f ′(ω) , (C.10)

then divide by the derivative of the function of the asymptotic frequency with respect to
the separation constant, to find the correctly normalised transverse wavefunctions. At the
end, they are

ζω(ρ) =
√
π (σ2 + 1)

σ
tanh

(
πσ

2

)
P− 1

2 +iσ2
(cosh(2ρ)) , (C.11)

written in terms of σ and

ζω(ρ) =
√

πω2
√
ω2 − 1

tanh
(
π

2
√
ω2 − 1

)
P
− 1

2 +
√

1−ω2
2

(cosh(2ρ)) , (C.12)

when written in terms of ω. These now, by construction, obey the identity∫ ∞
1

ζω(ρ)ζω(η)dω = δ(ρ− η)
sinh(2ρ) . (C.13)

We set η = 0 for ease since Pν(0) = 1 for all ν.
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As for the worldvolume factors fω(η), we know the fundamental solution to the
corresponding worldvolume differential equation:(

∂r
2 + 2

r
∂r − g2ω2

) exp (−gωr)
4πr = δ(r)

4πr2 . (C.14)

We may then write the fundamental solution to the total Laplacian

G(r, ρ) =
∫ ∞

1

exp (−gωr)
4πr

(
πω2
√
ω2 − 1

tanh
(
π

2
√
ω2 − 1

))
P
− 1

2 +
√

1−ω2
2

(cosh(2ρ)) dω .

(C.15)
Alternately, we may state the integral in terms of σ

∫ ∞
0

exp
(
−g
√
σ2 + 1r

)
4πr π

√
σ2 + 1 tanh

(
πσ

2

)
P− 1

2 +iσ2
(cosh(2ρ))dσ . (C.16)

C.2 The ray trick

No general form of the integral (C.16) is known, as it involves an integral with respect to
the order of a Legendre function. However, we can find some limits of this integral. Let us
introduce the “ray trick”. If we want to consider the limit of some integral, say

I(r, ρ) =
∫ ∞

0

exp(−ωr)
4πr cos(ωρ)dω , (C.17)

we can take explicit ratios of r = xt and ρ = t as t→ 0+. Then our integral becomes

I(x, t) =
∫ ∞

0

exp(−ωxt)
4πxt cos(ωt)dω . (C.18)

Multiplying this integral by xt2, and taking the limit t→ 0+, we define

J(x) = lim
t→0+

xt2
∫ ∞

0

exp(−ωxt)
4πxt cos(ωt)dω . (C.19)

This can be rewritten as
J(x) = lim

t→0+

∫ ∞
0

tfx(ωt)dω , (C.20)

which after a variable redefinition y = ωt becomes

J(x) = lim
t→0+

∫ ∞
0

fx(y)t t−1dy = lim
t→0+

∫ ∞
0

fx(y)dy , (C.21)

where, crucially, the integrand is t independent. Thus,

J(x) = lim
t→0+

xt2
∫ ∞

0

exp(−ωxt)
4πxt cos(ωt)dω = 1

4π

∫ ∞
0

exp(−xy) cos(y)dy = 1
4π

x

1 + x2 .

(C.22)
We can now divide by the factor that we used to get the equation into the t independent
form and we find

I(x, t) =
∫ ∞

0

exp(−ωxt)
4πxt cos(ωt)dω ∼ 1

4π
1
t2x

x

1 + x2 = 1
4π

1
(1 + x2)t2 = 1

4π
1

r2 + ρ2 .

(C.23)
This gives us the expected value of the integral in the r ∼ ρ ∼ 0 region.
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C.3 The R� 1 expansion

Let us verify that the solution (C.15) is the same (or at least proportional to) the so-
lution (5.11). We begin by multiplying the total function by the SS-CGP parameter g,
redefining r̃ = gr, then dropping the ˜ tilde. That is, by rescaling r and GN by g we may
find the solution in terms of the integral when g = 1.

GN (r, ρ) = g

∫ ∞
1

exp (−ωr̃)
2πr̃

(
πω2
√
ω2 − 1

tanh
(
π

2
√
ω2 − 1

))
P
− 1

2 +
√

1−ω2
2

(cosh(2ρ)) dω

= gG̃ (gr, ρ) . (C.24)

where G̃ = GN
∣∣
g=1. We then break the dual space into low frequency and high frequency

contributions separated at a value Λ, writing the integrand as E(ω, r, ρ)

G̃(r, ρ) =
∫ Λ

1
E(ω, r, ρ)dω +

∫ ∞
Λ

E(ω, r, ρ)dω . (C.25)

Let us now focus on the large frequency integral. When ω � 1 most of the terms of the
integral simplify. We use the following asymptotic forms for square root, hyperbolic tangent,
and Legendre functions √

ω2 − 1 ∼ ω − 1
2ω +O(ω−3) ,

tanh(X) ∼ 1− 2 exp(−2X) +O (exp(−4X)) ,
P− 1

2 +iω2
(cosh(2ρ))

√
sinh 2ρ ∼

√
2ρJ0(ωρ) + subleading .

(C.26)

Given these expansions and a sufficiently large cut off, we may now write the high frequency
integral in terms of a new simpler integrand E , plus subleading corrections∫ ∞

Λ
E(ω, r, ρ)dω = π

∫ ∞
Λ

exp(−ωr)
4πr ωJ0(ωρ)

√
2ρ√

sinh(2ρ)
+O

( 1
ω

)
dω

=
∫ ∞

Λ
E(ω, r, ρ) +O

( 1
ω

)
dω .

(C.27)

This integral is still unknown. However, using the fundamental theorem of calculus, we may
approximate it in the small Λ limit:∫ ∞

Λ
E(ω, r, ρ)dω =

∫ ∞
0
E(ω, r, ρ)dω −

∫ Λ

0
E(ω, r, ρ)dω

=
√

2ρ
4
√

sinh(2ρ)

(
1
R3 + Λ2

2r −
Λ3

3 +
(
2r2 − ρ2)Λ4

r
+O

(
Λ5
))

,

(C.28)

where we recall that R2 = g2r2 + ρ2. We will address the validity of the small Λ limit
momentarily. The low frequency contribution may be done using different approximations
of these functions. First we shift ω = ω̃ + 1 so that our integral is from ω̃ = 0 to Λ̃ = Λ− 1.
Our integrand becomes∫ Λ

1
E(ω, r, ρ)dω = exp(−r)

∫ Λ̃

0

exp(−ω̃r)
4πr

(
π2

2 +
(
π2 − π4

12

)
ω̃ +O

(
ω̃2
))

×
(

1 + 1
4ρ

2
(
−ω̃2 − 2ω̃ − 1

)
+O

(
ρ4
))

dω̃ .

(C.29)
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We can expand this in the small Λ̃ and small ρ limit to find∫ Λ

1
E(ω, r, ρ)dω = πΛ̃e−r

8r − πΛ̃ρ2e−r

32r +O
(
λ̃2
)

+O
(
ρ4
)
. (C.30)

Therefore as R → 0, G → 1
R3 . We confirm that this is (proportional to) the solution

given above. All terms that contain factors of the cutoff accurately represent the forms
of corrections. However, since the cutoff is arbitrary the exact function will, of course, be
independent of the cutoff, but the actual coefficients of these corrections remain unknown.

C.4 The ρ� 1 expansion

First we set ρ = 0 when Pν(1) = 1. We shift our integrand as before to find

G̃(r, 0) = exp(−r)
∫ ∞

0

exp(−ωr)
4πr

(
π (ω + 1)2√
(ω + 1)2 − 1

tanh
(
π

2

√
(ω + 1)2 − 1

))
dω . (C.31)

This integral still escapes the domain of known integrals giving named functions, but we
can expand the integrand excluding the exp(−ωr) term in the small ω limit. This is valid
when r becomes large as all large ω terms become exponentially suppressed. This gives us
the following series

G̃(r, 0) = exp(−r)
4π

(
π2

r2 −
2π2 (π2 − 3

)
3r3 + 2π2 (15− 25π2 + 8π4)

15r4 +O
( 1
r6

))
. (C.32)

If we expand our transverse functions at small ρ, we find the following series

P
− 1

2 +
√

1−(ω+1)2
2

(cosh(2ρ)) = 1 +
(
−1

4 −
ω

2 −
ω2

4

)
ρ2

+
(

11
192 + 7ω

48 + 13ω2

96 + ω3

16 + ω4

64

)
ρ4 +O

(
ρ6
)
. (C.33)

Using these two series we can find exp(r)G̃(r, ρ) to arbitrary order in 1
r and ρ. Furthermore,

we may find the exact coefficient of the leading term in the expansion in exp(−r)
r by first

substituting ω = 0 into our transverse wavefunction. We find

P− 1
2

(cosh(2ρ)) = 2
π
K
(
− sinh2(ρ)

)
, (C.34)

where K is the complete elliptic integral of the first kind. The best estimate we have for G̃
is therefore

G̃(r, ρ) = exp(−r)
4r2 K

(
− sinh2(ρ)

)
+ exp(−r)

4πr3

(
−
(
π4

12 + π2
)

+
(
π4

48 −
π2

2

)
ρ2 +

(
25π2

192 −
11π4

2304

)
ρ4
)
,

(C.35)

up to corrections of order O
(

exp(−r)
r4

)
or O

(
ρ5). We find a similar solution when we

assume G̃ is given in an expansion in exp(−r)r−nfn(ρ) with minimum n = 2 and solve
equation (C.1) in the large r limit order by order, using the same technique as for finding the
large R expansion. Unfortunately the first sourced order (f3, the coefficient of exp(−r)r−3)
cannot be solved analytically except for the case when ρ� 1.
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C.5 The ρ� 1 expansion

When ρ� 1 we may approximate our differential equation as(
∂2
r + 2

r
∂r + ∂2

ρ + 2∂ρ
)
G̃ (r, ρ) = 0 . (C.36)

To simplify, we change variables to

G̃(r, ρ) = exp (−r − ρ)
r

U(r, ρ) . (C.37)

We can further simplify our differential equation by multiplying by r exp(r + ρ). We find f
satisfies (

∂2
r + ∂2

ρ − 1
)
U(r, ρ) = 0 . (C.38)

Unfortunately we cannot translate our boundary conditions onto any condition on this U ,
other than that it must not grow exponentially fast as ρ→∞ of r →∞. We may, however,
suppose the ansatz that it has a Laurent series in r starting with 1

r . Given that choice and
using the same technique as for small R we find

U(r, ρ) = a1ρ+ b1
r

+
−a1

3 ρ
3 − b1ρ2 + a2ρ+ b2

r2 +O
( 1
r3

)
. (C.39)

Returning to the actual solution given in integral form we may approximate the Legendre
function when ρ� 1 as above:

Pν (cosh(2ρ)) ∼ 1
2

(
B

(
ν + 1

2 ,
1
2

)−1
exp(2ρ)−1−ν +B

(
µ+ 1

2 ,
1
2

)−1
exp(2ρ)−1−µ

)
,

(C.40)
where ν and µ are complex conjugates given that the real part of ν = −1

2 . Using the mirror
symmetry of gamma functions (Γ(z∗) = Γ(z)∗), we may identify B(ν + 1

2 ,
1
2)−1 = m exp(iδ)

for some real variables m and δ. Given our ν = −1
2 + iσ2 , we have

Pν (cosh(2ρ)) ∼ exp (−ρ)m1
2 (exp(iδ) exp(−iσρ) + exp(−iδ) exp(iσρ)) . (C.41)

Simplifying, we find

P− 1
2 +iσ2

(cosh(2ρ)) ∼ exp (−ρ)m cos (ρσ − δ (σ)) . (C.42)

Since we require an expansion of this quantity in ω we may no longer ignore the frequency
shift, δ. The formulae for m and δ are

m =

√√√√√√Γ
(

1
2

)2
Γ
(
− iσ

2

)
Γ
(
iσ
2

)
Γ
(

1
2 −

iσ
2

)
Γ
(
iσ
2 + 1

2

) , δ = arctan

 Im
{
B(−iσ2 ,

1
2)
}

Re
{
B(−iσ2 ,

1
2)
}
 , (C.43)

where we may use the reflection formula for gamma functions to find an exact value for the
first and a Taylor expansion for the second:

m =
√

2π
σ tanh

(
π
2σ
) , δ = π

2 −
1
2

(
ψ0(1)− ψ0

(1
2

))
σ+ 1

48

(
ψ2(1)− ψ2

(1
2

))
+O(σ3) .

(C.44)
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Inserting (C.44) into (C.42) then into (C.15), we must then change coordinates from
σ =

√
ω2 − 1 to ω, then ω = ω̃ − 1 to ω̃. We may then expand the integrand (save

exp(−ω̃r)) as a Taylor series in ω̃. This becomes

G̃(r,ρ) = exp(−r−ρ)
4πr

∫ ∞
0

exp(−ω̃r)
(
π2 (4ρ+log(16))

4
√

2

−
π2
(
(ρ+log(2))

(
4
(
ρ(ρ+log(4))−6+log2(2)

)
+π2

)
+6ζ(3)

)
12
√

2
ω̃+O

(
ω̃2
))

dω̃ .

(C.45)

From this we approximate

G̃(r, ρ) = exp(−r − ρ)
4πr

(
π2(ρ+ log(2))√

2r

−
π2
(
(ρ+ log(2))

(
4
(
ρ(ρ+ log(4))− 6 + log2(2)

)
+ π2

)
+ 6ζ(3)

)
12
√

2r2 +O
( 1
r3

))
,

(C.46)

which we see obeys the expansion that we derived previously as the most general solution.

D Product space Green functions

In this appendix, we will derive several useful formulae for calculating Green functions.
We begin with the resolution of the identity. First, we consider the eigenvalues of some
second-order ordinary operator differential operator ∆ρ

∆ρξω =
( 1
µ(ρ)∂ρν(ρ)∂ρ

)
ω = −ω2ξω . (D.1)

These lie within a self-adjoint domain of ∆ρ, given they are orthonormal with respect to
the transverse inner product on their domain I∫

I
µξωξτdρ = ν

ω2 − τ2 (ξω∂ρξτ − ξτ∂ρξω)
∣∣∣
∂I

= 0 . (D.2)

This will be true for some solutions to our ODE which obey some boundary condition that
causes the right-hand-side of this expression to vanish. A complete set of such functions
with eigenvalues ω ∈Mω (withM+

ω explicitly excluding ω = 0) forms a basis for L2(I, µ).
This can be summarised by the identity∫

Mω

ξω(ρ)ξω(η)dω = δ(ρ− η)
µ(ρ) . (D.3)

From (D.3) we can derive that the integral over “massive” modes divided by their corre-
sponding eigenvalue is closely related to the Green function

G(ρ− η) = −
∫
M+

ω

ξω(ρ)ξω(η)
ω2 dω +K(ρ− η) . (D.4)
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Here G is the transverse Green function

∆ρG(ρ− η) = δ(ρ− η)
µ(ρ) , (D.5)

and K is the solution to the differential equation

∆ρK(ρ− η) = ξ0(ρ)ξ0(η) , (D.6)

which obeys our desired boundary condition. Note that K is zero when the spectrum omits
a zero mode.

There is a slight generalisation of this identity which we will require to identify Green
functions on the total space. Note that this now includes the zero mode in contrast to the
above discussion. It is

G−τ (ρ− η) = −
∫
Mω

ξω(ρ)ξω(η)
ω2 + τ2 dω . (D.7)

Where G−τ is the Green function for the modified differential operator15

(
∆ρ − τ2

)
G−τ (ρ− η) = δ(ρ− η)

µ(ρ) . (D.8)

This generalises even further. For instance, we may consider a separable partial
differential operator

∆ = ∆r + ∆ρ = 1
µr(r)

∂rνr(r)∂r + 1
µρ(ρ)∂ρνρ(ρ)∂ρ , (D.9)

for which we define a total space Green function

(∆r + ∆ρ)G(r − s, ρ− η) = δ(r − s)δ(ρ− η)
µr(r)µρ(ρ) . (D.10)

Then we find

G(r − s, ρ− η) = −
∫
Mτ (r)

∫
Mω(ρ)

fτ (r)fτ (s)ξω(ρ)ξω(η)
τ2 + ω2 dτdω . (D.11)

Here fτ (r),Mτ (r), ξω(ρ), andMω(ρ) are the orthonormalised eigenfunctions and spectra,
respectively of ∆r and ∆ρ, respectively. Note that unlike the case for non-product-space
Green functions, this integral does not exclude the zero modes.

(D.11) gives us two16 paths for evaluating the total Green function G. We may
either evaluate the external rather than internal integrals or the internal rather than

15Strictly taking τ → −τ would not change the differential operator as it depends only on τ2. The minus
sign therefore denotes the change of sign of the total eigenvalue.

16In general n! for n separations.
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external integrals.

−
∫
Mc(r)

∫
Mc(ρ)

fτ (r)fτ (s)ξω(ρ)ξω(η)
τ2 + ω2 dτdω

↙ ↘

=
∫
Mc(ρ)

G−ω(r − s)ξω(ρ)ξω(η)dω =
∫
Mc(r)

fτ (r)fτ (s)G−τ (ρ− η)dτ

(D.12)

↘ ↙
= G(r − s, ρ− η)

The explicit evaluation of these integrals is impossible in all but the simplest cases.
However, it is generally straightforward to find the Green function. This in turn helps us
find actual values for some novel integrals of special functions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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