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ABSTRACT: We study dynamics of multi-soliton solutions of anti-self-dual Yang-Mills equa-
tions for G = GL(2,C) in four-dimensional spaces. The one-soliton solution can be inter-
preted as a codimension-one soliton in four-dimensional spaces because the principal peak
of action density localizes on a three-dimensional hyperplane. We call it the soliton wall.
We prove that in the asymptotic region, the n-soliton solution possesses n isolated local-
ized lumps of action density, and interpret it as n intersecting soliton walls. More precisely,
each action density lump is essentially the same as a soliton wall because it preserves its
shape and “velocity” except for a position shift of principal peak in the scattering process.
The position shift results from the nonlinear interactions of the multi-solitons and is called
the phase shift. We calculate the phase shift factors explicitly and find that the action
densities can be real-valued in three kind of signatures. Finally, we show that the gauge
group can be G = SU(2) in the Ultrahyperbolic space U (the split signature (4, +, —, —)).
This implies that the intersecting soliton walls could be realized in all region in N=2 string
theories. It is remarkable that quasideterminants dramatically simplify the calculations
and proofs.
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1 Introduction

Soliton theories and integrable systems have been studied actively and developed rapidly
in the past sixty years. Meanwhile, the applications of exact solitons, such as instantons,
monopoles, vortices, and domain walls also promote the developments in different fields of
mathematics and theoretical physics. Therefore, systematic construction of exact soliton
solutions has been one of the most attractive topic in the studies of integrable systems.
Stability of multi-soliton solutions closely relates to the existence of infinite many con-
served quantities which leads to an infinite dimensional symmetry of the integrable systems.
Among these studies, Sato’s theory of solitons is one of the most appealing result which re-
veals an infinite dimensional symmetry behind the KP equation and gives a comprehensive
viewpoint to unify the theory of lower-dimensional integrable systems [39, 40]. The key
ingredients of Sato’s theory are integrable hierarchies and tau functions. The tau functions
can be represented specifically as Wronskian determinants. This fact is crucial to demon-
strate that Hirota bilinear equations are just Pliicker relations by using Maya diagram
representations [38-40]. Combining them with the integrable hierarchies, we have infinite
Plicker relations which define an infinite dimensional Grassmann manifold as the solution
space of the KP equation. In this way, the infinite dimensional symmetry is clarified.

In four-dimensional integrable systems, the most beautiful one would be the anti-
self-dual Yang-Mills (ASDYM) equations. The essence of hidden integrability behind the
anti-self-dual Yang-Mills equations can be captured clearly under the description of the
twistor theory (e.g. [5, 27, 34, 35, 43]). On the other hand, the anti-self-dual Yang-Mills
equations can be reduced to various lower-dimensional soliton equations, such as the KdV
equation and the nonlinear Schrodinger equation, by suitable reduction procedures [27, 42].
This fact suggests that there might be a profound connection between the Sato’s theory



and the twistor theory, which perhaps leads to higher-dimensional extension of Sato’s
theory. A feasible approach to anti-self-dual Yang-Mills equations from the viewpoint of
Sato’s theory is mentioned in [41], while the description of tau-functions is still unclarified.
Another remarkable result is from the viewpoint of Bécklund transformations [2]. This
kind of exact solutions can be represented by determinants in a regular pattern, however,
not the Wronskian type determinants. Therefore, the description of tau-functions remains
to be clarified. Furthermore, several attempts were made by us to construct one-soliton
solutions from [2], and the resulting action density is TrF),, F'*” = 0 [19]. Perhaps for this
reason, only few discussions have been made (as far as the authors know) in this direction
for a long time (e.g. [1, 3, 26]).

Just last year, we had made some progress in this direction. More precisely, we con-
structed Wronskian type solutions of the anti-self-dual Yang-Mills equations successfully
by applying a Darboux transformation [29] in the noncommutative (NC) framework [10].
This Wronskian type solutions can be represented in terms of quasideterminants [9] (called
the quasi-Wronskian solutions, for short). A highly nontrivial result of quasi-Wronskian
solutions is that the action density in one-soliton case is no longer zero [19]. Moreover,
the principal peak of the action density lies on a three-dimensional hyperplane. Therefore,
our solutions can be interpreted as codimension-one solitons in four-dimensional space.
We call them the soliton walls to distinguish them from the domain walls in this paper.
Now a natural question comes: can we find the behavior of n intersecting soliton walls
from the quasi-Wronskian solution? The answer is yes and we verify this by analyzing
the asymptotic behavior of n-soliton solution (4.7) in the scattering process. This guaran-
tees the stability and integrability of the intersecting soliton walls like KP multi-solitons.
Moreover, the quasi-Wronskian descriptions are actually more essential than the ordinary
Wronskian. This would lead to analogs of the Maya-diagram representation, tau-functions,
and perhaps Sato’s formulations of the anti-self-dual Yang-Mills equations.

In this paper, we clarify the asymptotic dynamics of multi-soliton solutions of anti-self-
dual Yang-Mills equations for G = GL(2,C) in four-dimensional spaces. We prove that in
the asymptotic region, the n-soliton solution possesses n isolated localized lumps of action
density, and interpret it as n intersecting soliton walls. More precisely, each action density
lump is essentially the same as a soliton wall because it preserves the shape and “velocity”
except for a phase shifts. Furthermore, we show that in the Ultrahyperbolic space U, the
gauge group can be U(2). This result is important for physical interpretations because
the anti-self-dual Yang-Mills equations in this space are equations of motion of effective
actions for open N=2 string theories [13, 25, 31, 32]. Therefore, the intersecting soliton
walls could be realized in the N=2 string theory in all region of the space-time as new
physical objects, that is, intersecting branes. It is remarkable that the quasideterminants
play crucial roles in calculations and proofs. As we will comment in the end of section 2
and in the beginning of subsection 4.2, matrix elements of our quasi-Wronskian solutions
consist of 2 X 2 matrices rather than scalar functions. This “non-abelian treatment” is
quite important to make all proofs and discussions drastically simple and expected to be
applied to various non-abelian integrable systems.



This paper is organized as follows. In section 2, we make a brief introduction to
quasideterminants and summarize some properties of them. These are useful mathematical
tools for later sections. In section 3, we introduce the J-matrix formulation [27] of anti-
self-dual Yang-Mills equations and the quasi-Wronskian solution [10]. In subsection 4.1,
we review exact one-soliton solutions and the interpretation of soliton walls. In subsection
4.2, we study the asymptotic behavior of multi-soliton solution and give the interpretation
of intersecting soliton walls. In section 5, we prove that the intersecting soliton walls can
be embedded into G = SU(2) gauge theory on the Ultrahyperbolic space by showing that
gauge fields are all anti-hermitian. Section 6 is devoted to conclusion and discussion.

2 Brief introduction to quasideterminants

In this section, we give a brief introduction to quasideterminants defined firstly by Gelfand
and Retakh [9]. For detailed discussion, see e.g. [8, 21]. Briefly speaking, the quasidetermi-
nant of a n X n matrix X is a noncommutative generalization of the ratio of the determinant
of X to the determinant of a (n — 1) x (n — 1) submatrix. Therefore, quasideterminant is
related to the inverse matrix of X. Here we assume the existence of the invertible matrix X.

Let X = (zj;) be a n x n invertible matrix over a noncommutative ring and Y = (y;;)
be the inverse matrix of X: XY =YX = 1. Then the (i, j)-th quasideterminant of X is
defined as the inverse of an element of Y = X1

|X|U = yj_zl (21)

A convenient representation for (i, j)-th quasideterminant is

xll e xlj ... xln
X|gj = | @i - [Tag] - Tin | (2.2)
a’/‘nl DY $nj DY xnn

To expand (2.2), let us introduce the inverse matrix formula for 2 x 2 block matrix:

AB\ " Al 4+ ATIBSTICAY —AIBST!
(C d) a ( —§1CA! 51 > ’

where A is a square matrix, d is a single element and S := d — CA™!B is called the Schur
complement. We note that any invertible matrix can be decomposed into a 2 x 2 block
matrix and one of the diagonal terms is size 1 x 1. We can assign A to be X%, B to be
Xij7 C to be Xij, and d to be x;;, where X% denotes the submatrix obtained from X by
deleting i-th row and j-th column, X ij and Xl-j denote the submatrices obtained from j-th
column and i-th row of X by deleting z;;, respectively. Now the (7, j)-th quasideterminant



can be expressed as the Schur complement:
i1 o
[ X|ij = 8§ = ij — X;7(XY) 71X,

=azij— Y. w(| X)) ey, (2.3)
i (#0).7'(£9)

By using this, explicit representations of the quasideterminants can be obtained iteratively.
For example, for a 1 x 1 matrix X =z

| X| ==z,
and for a 2 x 2 matrix X = (x;5)
z11 | T12 _ T11 | T12 _
| X1 = 21 = 11 — T12Toy T21, | X |12 = [#12] = 212 — T1175] T22,
ro1 T9292 €21 T22
Tl T12 _ T11 T12 _
| X 21 = = T91 — ToaT]5 T11, | X |22 = = 9y — T2 77} 212,

and for a 3 x 3 matrix X = (z;;)

| X1

<$22 $23> <$‘21>

To1 X Toz| = 11 — (T12,713)
T32 T33 31

T31 T32 T33
-1

o Tos| | T2 @23
= T11 — T12 21 — 12 31
T32 T33 x33

—1 1
T22 T 23
—T13 To1 — 13 31,
T32 T33 32

and so on. We remark that the following expressions of quasideterminants are exactly the
same because the Schur complement are all equivalent.

iAB ‘0 _ @C‘: BA':d—C’AlB. (2.4)

cld]| " |AB| | B 4| |[dc

Now let us introduce some important properties and identities of quasideterminants,
which are relevant to discussions in this paper.

Proposition 1 ([8, 9, 21]). Let A = (a;;) be a square matriz of order n in (i) ~ (iii), while
in (iv) and (v), appropriate partitions are made so that all matrices in quasideterminants

are square.

(i) Permutation of rows and columns

The quasideterminant |Al;; does not depend on permutations of rows and columns in
the matriz A.



(ii) The common multiplication of rows and columns

For any invertible elements A; (j =1,--- ,n), we have

al,lAl “e al,jAj ce al,nAn al,l oo aLj e aLn

a1y - aigAj | aipAn | =] ain - ain [ Aj. (2.5)

analy - an A o annhy Un1 - Gnj - Ao

We note that in the left hand side of (2.5), the common elements A; must appear in
the right side of the same column. On the other hand, if the common elements appear
in the left side of the same row, one can get the rule for common multiplication of
TOWS.

(iii) The addition of rows and columns

Let the matriz N = (ni;) be obtained from the matriz A by replacing the k-th column
of A with the sum of the k-th column and l-th column, that is, n;, = a;; + a; and
nij = ai; for k# j. Then

|A‘ij = |N|ij, fO?"j 7'5 k (2.6)
(The addition of rows is similar).

(iv) Noncommutative Jacobi identity [12] (An useful and simplified version of the non-

a Rb| |aR blla Rb| |a R[b]| |a R[0]]a R b
PMQ|=|PMQ||PMQ|, |[PMQ|=|PM 0||PMQ|. (2.8)

c]s d|l |e s[d]fo]o 1] [¢s d| |eS 1|cS][d]

If we use the homological relation again on the right hand side, we can obtain the

commutative Sylvester’s Theorem [9]):
a R b

PMQ|=
65@ S@

(v) Homological relations [9, 12]

(2.7)

following inverse relation immediately:

aRb_1 a R Db CLR@_l a R 1
P MA@ =\PMQ|, |[PMQO =|PMO]|. (2.9)

[0]01 10[0] JesS1 ¢ S|o0]

We note that the definition of the quasideterminants and proposition 1 are valid even
if the matrix elements belong to noncommutative associative algebras. This means that
we can consider all elements z;; in (2.2) as N x N matrices (in this case, X is nN x nN).



For our purpose in this paper, we will just consider the case of 2 x 2 matrices because the
gauge group is G = GL(2,C). In this case, we can expand the quasideterminant as a 2 x 2
matrix and the matrix elements are four quasideterminants.

M Cy Gy Ml% M%
Ri [a] |R
- . 2.10
gl ‘C‘Z M Cy| | M Gy (2.10)
2 Ry [€]| |R2 [d]

Note that in the right hand side, each box includes a 1 x 1 scalar element. Hence they
can be represented as a ratio of ordinary determinants by virtue of the Laplace formula on
inverse matrices:

det X

X L (=)t _
| X| (=1) et X’

ij = Yji

(2.11)

where X% is a matrix obtained from X by deleting i-th row and j-th column.

3 ASDYM equations and quasi-Wronskian solutions

In this section, we review anti-self-dual Yang-Mills equations in four-dimensional flat spaces
whose real coordinates are denoted by z# (u = 0,1,2,3). To facilitate the discussion, we
set the gauge group to be G = GL(N, C) (or subgroup of GL(N, C)).

Firstly, let us consider a four-dimensional complex space with coordinates (z,z, w, W)
and define the metric to be ds? = 2(dzdz — dwdw). We can recover various real spaces from
this complex space by imposing suitable conditions on z, z, w, w. We call them the real slice
conditions in this paper. For example, the Euclidean real space E is given by z =z, w =
—w, the Minkowski real space M is by 2,2 € R, w = w, and the Ultrahyperbolic real
space U is by z,z,w,w € R. Explicit relations between z, z, w,w and z* are summarized
in table 1 in subsection 4.1.

Now we introduce an equivalent representation of the anti-self-dual Yang-Mills equa-
tions on this complex space, called Yang’s equation:

00, T - T 1) = 0x(0d - T71) =0, (3.1)

where J is an N X N complex matrix. This formulation gives a more concise way to
unify anti-self-dual Yang-Mills equations of various real spaces to one complex form and
extensively used in the field of integrable systems. Moreover, the anti-self-dual gauge fields
can be expressed explicitly by the solution J of Yang’s equation in a convenient gauge:

Ay ==0,J-J7, Ay=-0,J]-J', A:=A-=0, (3.2)

We can easily to check that (3.2) actually satisfies the anti-self-dual Yang-Mills equation
of a complex representation:

Foy=0, Fez=0, F-—F

zZz ww

=0, (3.3)



where F,,, := 0, Ay — Oy A, + [A,, Ay] and so on denote the field strengths. By taking real
slice conditions on z,z,w,w as mentioned above, (3.3) reduces to the standard anti-self-
dual Yang-Mills equations in four-dimensional real spaces in the sense of the Hodge dual
operator.

For the sake of generating exact solutions systematically, a typical technique developed
in the field of integrable systems is to find the Lax representations, and then use the
covariance of Lax equations under the Darboux transformation to generate more exact
solutions. Here we introduce a formulation, slightly different from the conventional Lax
formalism. Let us consider the following linear system [29]:

L(¢) := JOu(J'9) — (359)¢ = 0,
M(¢) = JO.(J ') — (950)¢ = 0, (3.4)

where ( is a matrix generalization of the spectral parameter. More precisely, ¢ is an N x N
constant matrix. We can show that the compatibility condition L(M (¢)) — M (L(¢)) =0
implies Yang’s equation (3.1) and the linear system (3.4) is covariant under the following
Darboux transformation [29]:

&= ¢C— 0N G, T=—0A071J, (3.5)

where 6 is an eigenfunction of the linear system (3.4) for the choice of eigenvalue ( = A.
After n iteration of the Darboux transformation, we get an exact solution J,, of Yang’s
equation from a trivial seed solution J = 1 and this kind of solution can be expressed in
terms of quasideterminant in a compact form [29]. Here we use the terminology Wronskian
type quasideterminants, or quasi-Wronskian for short. The specific form of J, is as follows:

o, - 6, 1
O1A1 - O\, O
In = f : E (3.6)
O1ATE - 0,A7 T 0
OLAT -+ 0,A7 (0]
where (0;,A;) (i = 1,2,--- ,n) are pairs of eigenfunctions and eigenvalues of the initial

linear system for J =1 in (3.4) [10, 29]:
Owbi = (0:0;)Ni,  0.6; = (0:6;) ;. (3.7)

z

We remark that in G = GL(N, C) case, all the 6; and A; are N x N matrices. Therefore,
Jp is exactly a N x N matrix if we expand it term by term as the Schur complement (2.3).

4 Multi-soliton solutions of ASDYM equation

As mentioned in previous section, we can obtain n different pairs of (6;, A;) by solving (3.7)
and use them to form exact solutions J, of Yang’s equation. One kind of n-soliton solutions



for G = GL(2,C) is given by an interesting case of .J,, which is composed of a special set
of solutions of (3.7) [10]:

oLli p.o—M; .
i = aliL< bze M; ) i = )‘l 0 s (41)
cie " d;eMi 0 w;

where i = 1,2,---,n, Li = Nifiz + ;2 + Niayw + Biw, M; = pidiz + viZ + pivyiw +
o;w, and A;, wi, aq, b;, ¢i, di, o, By Vi, 0; are complex constants. Furthermore, we confirm
that in subsection 4.2, a reduced version of solution (4.1) (cf. (4.7)) actually generates a
multi-soliton distribution because this distribution has n localized action densities in the
asymptotic region. Hence this multi-soliton is stable in the scattering process.

4.1 One-soliton solutions of ASDYM equation

In this subsection we summarize some results and properties of the one-soliton solutions in
our previous work [19]. The J-matrix is

J:‘;A 1@ — g, 9:<cff_LL b;;f) A:<32> (4.2)

The action density of this kind of solution is calculated as follows:
TrF? = 8(\ — p)?(ad — By)? (2sech2X - SSech4X) ) (4.3)
where X = M+ L+ %log(—ad/bc). (4.4)

We remark that (4.3) is a highly nontrivial result and cannot be realized in the conventional
Lax formalism. More explicitly, if the spectral parameter matrix A is a scalar matrix (i.e.
A = ), then linear system (3.4) is equivalent to the conventional one and the resulting
action density (4.3) becomes trivial: TrF? = 0.

By imposing real slice conditions on the space-time coordinates z, Z, w, w, and putting
an additional condition on J-matrix: d = @,¢c = —b and M = L, we can get one-soliton
solutions on different real spaces E, M and U:

0 1 1 ael be=l A0
GA@ = —0A0", 9_<—beL aeL>7 A—<0M>. (4.5)

The resulting action densities take real value:

J:‘

TrF,, F* = C (2sech2X _ 3sech4X) : (4.6)

where X := L + L + log|a/b| and C is a real constant depending on the signature of
different real spaces. We note that the principal peak of these action densities lie on a
three-dimensional hyperplane defined by X = L + L + log|a/b| = 0 with normal vector
I, + 1, where [, is defined by L = l,z* (cf. table 1). Therefore, we can interpret them as
codimension-one solitons in four dimensional spaces and use the terminology soliton walls
in this paper to distinguish our solution from domain walls.

Main results of [19] are summarized in table 1.



signature E M U
real slice Z2=Z w=-W z,ZER, w=w z,Z,w,w € R
NG (5 w)z <x0 +ix! —2? + ix3> (xo +ol 2% — im?’) (560 +z? !t — x3>
w z 2% 4+ i3 20 — it 2% 4+ i3 20 — 2! xt + 23 20 — 22
reality condition w=—1/x NONE =\
L=M L=(\B)z+az L= (\pa)z +az L=(\B)z+az
+(A)w — fw +(Av)w + (po)w +(Aa)w + fw
a+ A3 14+ A a+ A8
L=l | = [ e | 1A L= |P 7
V2 | B- ) V2 | m+A 2 |a—Xp
i(8+ Aa) i(m—A) B+ Aa
constant C' [8(|a*+|8]%)2(JA|* + 1)2 8|a?(X— u)|4 8 [(aﬁ—aﬁ)(/\—X)]Q
hermicity A, Ag:anti-hermitian | Ag, A1, As:anti-hermitian Ag, Ay, Ag, As:
of A, A1, Az:hermitian Agz:hermitian anti-hermitian
(when A\ = =+1i) (when A = 1) (NONE)
gauge group G =SL(2,0) G =SL(2,0) G =SU(2)

Table 1. Summary of one-soliton solutions.

4.2 Asymptotic behavior of the n-soliton solutions

Now let us put the condition: d; = @;, ¢; = —b;, M; = L; on (4.1) and discuss the
asymptotic behavior of the n-soliton solution (i = 1,2,--- ,n):
01 0, 1
01A1 --- 0,A, O oLi o—Li .
n — . n. ! ) 91 = (ile L ble T ) Al = )\’L 0 ) (47)
: —be " @eti 0

01A% -+ 6,A7 [0]
where L; = A8z + ;2 + \joyw + Bw, and ay, by, oy, B, Ai, i € C. We assume here that L;
(1 =1,2,--- ,n) are independent with each other and there is no special relation between
them. In other words, we just consider the situation of pure-soliton scattering and exclude
the case of resonance processes.

Inspired by a typical technique that was used for discussing the asymptotic behavior of
Wronskian type n-soliton solutions of the KP equation, we follow a quite similar procedure
like this to deal with quasi-Wronskian type n-soliton solutions of the anti-self-dual Yang-
Mills equations. It is actually a new attempt because the elements 6;, A; in the quasi-
Wronskian J,, are 2 x 2 matrices rather than a scalar function (cf. (2.10)). If the reader
prefer the Wronskian determinants, just consider each matrix elements in the 2 x 2 matrix
Jp, as the ratio of the Wronskian determinants (cf. (2.11)). If doing so, you will find that the
analysis becomes much more complicated than the discussion of using quasideterminants.

Firstly, let us pick an I € {1,2,...,n} and keep L; (and Lj) to be finite (this is in fact
equivalent to consider a comoving frame with the I-th soliton). If we take the asymptotic
limit 7 := (()2 + (z1)? + ()% + (2%)%)/2 = 00 on J,. Then for i # I, ReL; (= ReL;)
goes to (i) positive infinity or (ii) negative infinity, that is, |eXi| (= |eLi]) goes to (i) positive



infinity or (ii) zero. Now we can use (2.5) to eliminate common factors in each column
(i # I) of J,, and take r — oo to obtain the following asymptotic form:

cy - 0 - C, 1

CiAy -+ O1Ar -+ CpA, O
In = 1. ' I. ! . . where (i) C; = (é?) or (ii) (_01 (1)>

C1A} - G7A7 - CnAZ@
Next, our goal is to remove all the C; from the asymptotic form such that the remaining

elements are just I-th column and constant matrices A;, for i # I. The case (i) is trivial,
while the case (ii) can be done by adjusting the diagonal terms of A; to get the commutation

01\ /X0 uk 0 01
AP = i =" 4.
ot =) (0) = (130 ()

and by using (2.5) to remove all the right common factors. The explicit result is

relation:

1 e 0 - 1
L AF ea o A 0
Agi)” o OIAT - NS (0]
A
e oy | ) om0
Ao = ( 0 /\(F)> BTSS!
k ( 20 /\+)> (i) ReL; — —oco (|e%i| — 0)

where we introduce new notations: /\Z(Jr) =\, )\5_) := p; to unify various cases of (i) and
(ii) in the discussions and proofs of this subsection.

Now we need to show that the asymptotic form of J,, is essentially the same as one-
soliton solution (cf. (4.5) with § = 7). Without loss of generality, we can consider the
case of I =1 for convenience. The discussions of other cases are the same because of the
permutation property of the quasideterminants (Propositon 2.1 (i)). By applying the non-
commutative Jacobi identity (2.7) and (2.5) to the asymptotic form, .J,, can be represented

as the product of three kind of quasideterminants defined as follows:

0, 1o 11
oA A o A o

Jn = | : L= —QuMQ, Dy, (4.9)
A7~ ASEIPT L AGE g
oiAr AT A (0]

~10 -



where

0, 1 e 1 @ 1 . 1 -1
oA AP A 0 A® . A®
Qn = , Dpi=1]": :
91A’f—2 Aéﬁ:)n—2 o A%ﬁ:)n—Q 0 Agi)n_Q o A%i)n_2
g AT | A1 L Aot | AR g

In fact, @, and D,, can be expanded explicitly as the following (4.10) and (4.11), respec-
tively. The proof is made by using mathematical induction. For n > 2:

Qn = ( =25 n = A arel (a1 = A - (= A e ) (4.10)
_(Al - )\g:F)) . (}\1 _ )\7(1:':))51671’1 (///1 o )\é:F)) . (,UJI o A%:F))aleLl ’

D, = (~1)" A - ALY (4.11)

For n = 2, the statement is clearly true because we can easily check that

0, 1 -1

@ o] A

by the Schur complements (2.4). Let us assume that the statement holds for some n. By

1
=0 A — AP0, Dy = [9] = —A®

1 A

using the noncommutative Jacobi identity (2.7) and (2.5), we have

oA ALY o AGY
0,02 AST? . ASP?

Agi) Agi)l 1 ... -1 1 .- 1

QnJrl =

+)2 +)2
Ag) A;+)1 Agi) Aﬁ)l 1A, Agi) Agli)
N 1S e e B [V e
0, 11 Lo 1
PN VRN N A A -
n— +)n—1 +)n—1 n— n-
BT A A agnt - [af
| 1 ! !
ALY A A1 ASY A

- 11 -



By using homological relation (2.8), we can expand the last two factors of Q11 as

n+1
1 1 @ 1 1
AS A o || A A
= ) ) 0 . .
Ag:l:)n—l . Agl:t)n—l 1 Agi)nfl ) A;f_)lnfl

o 1 - 1 0, S |

0 AP o A® || aA AFY Al

1 Ag:l:)n—l A%:I:)n—l 91A§"1 A(:I:)n—l A(:I:)n—l

We note that the two quasideterminants involving @ element are exactly equal to each
other by Schur complements (2.4). Substituting the above equations into @,+1, and using
the fact that [A;, A;] =0, we get

QnJrl = QnAl - Argi_)lQn
( (A= A5 n = A Daaem (i = AS)) - (i = AS )b )
~(1 = AT n = A DB B (i = AT (= A arel

As for D,,, we can use the noncommutative Jacobi identity (2.7) and the homological
relation (2.8) to get

1 .- 1 1 ... -1

Ao AR ®H . AD
D, = — 2 AL A An
Ag:l:)n—Q A7(I:I:)n—2 Agi)”_z A%i)”_z
1 1 @ -1
+ +
_ | AT a5
" : : 0
Aé:l:)n—Q o A;:E)ln—Q 1

By continuing the same process n — 1 times, we can prove the statement (4.11).
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Now let us return back to the general situation that I is not specified to I = 1. So
far, we have shown that the asymptotic form of J,, can be expressed as (4.9) in terms of
Qn of (4.10) and D,, of (4.11). D, is a constant matrix and would not affect the result
of action density. Hence in the original situation for finite L;, the asymptotic form is
essentially J, ~ Q,A;Q; ! which is in a very similar form of a one-soliton solution with
Qn = 05 (cf. (4.7) and (4.10)). Under some conditions, for instance p; = \;, for all 4 (not
the unique choice), @, can be simplified in a more concise form:

a’IeLI b}e‘zf
Qn:< o |- (4.12)

3 —Lip —+
—bye "1 aje

which is exactly in the form of one-soliton solution now. This is what we want to show here.
The only difference between @, and 67 is the constants a/, b} and ar, by which relate to the
position of the principal peak of the action density (cf. (4.6)). This difference gives rise
to additional position shift, called the phase shift. Now we can conclude that the action
density calculated from the asymptotic form of J,, and @, is almost the same as (4.6)
with 6 = 67. In other word, if we consider the comoving frame with I-th one-soliton, the
asymptotic multi-soliton inherits almost the same features from the I-th one-soliton except
for the phase shift factor.

It is time for us to calculate the phase shift factor Ay, explicitly. Firstly, we take the
Ultrahyperbolic space U for example, (4.12) is obviously satisfied because u; = A;, for all 4
(cf. table 1). Then the action density becomes

_ — 2
TI‘FW,F“V =38 [(O&[ﬁ[ — a],@])(/\] — /\])] (QSeChQX[ — 3S€Ch4X[) y (4.13)

where X; = L + L; + log|a}/bj| = L; + Ly + log |as/br| + A[}{n. The phase shift factor
can be calculated by (4.4). The result is exactly real-valued

- Ar— A
A[}{n = Z e log L2k
F=102D) AL = A
where ¢}, = +1 for case (i) and ¢ = —1 for case (ii).
For the Euclidean signature, we can use (4.4) and the reality condition p; = —1/\;,

for all ¢ (cf. table 1) to calculate the phase shift, the result is also real-valued:

- Ar—A
AF = Z aklog’w .
’ k=1(21) 14+ A

For the Minkowski signature, if we don’t impose additional condition on A; and pu; as that
in one-soliton case (cf. table 1), the phase shift factor is complex-valued in general. This
shortcoming can be solved immediately, for example, we can take p; = \; or i = —1 /Xi
like that in U and E, respectively.

In summary, the asymptotic behavior of the solutions (4.7) can be interpreted as n
intersecting soliton walls with phase shifts in the scattering process. It is a well-known prop-
erty for the KP multi-solitons, but a new insight for anti-self-dual Yang-Mills multi-solitons.
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5 Unitarity of the multi-soliton solutions in U

In this section, we discuss the unitarity of multi-soliton solutions for physical purpose. Re-
call that in table 1, we get unitary one-soliton solutions (soliton walls) successfully on the
Ultrahyperbolic space U and hence they could be realized as branes of three-dimensions
in the N=2 string theory as commented in introduction. Therefore the multi-soliton solu-
tions (the intersecting soliton walls) in unitary gauge group case can be interpreted as n
intersecting branes in the N=2 string theory.

To prove the unitarity of n intersecting soliton walls, it suffices to verify the hermiticity
of gauge fields. By imposing the real slice condition (cf. table 1) of Ultrahyperbolic space
U on the gauge fields (3.2), we obtain the Ultrahyperbolic version of gauge fields:

1 1
Ay = —Ay = 5(62J TN =g T, A=Az = 5(agJ T —oT-Th. (5.1)

We will soon see that J-matrix is constant multiple of the special unitary matrix, and
hence all the gauge fields A, (u= 0, 1, 2, 3) are anti-hermitian and traceless.

In order to discuss it, let us define a class of 2 x 2 matrices. If P € GL(2,C) has the
following form,

_ﬁa

then we call P the pre-SU(2) matrix in this paper. We can easily find that the pre-SU(2)
matrix P can be represented by the product of det P and a SU(2) matrix and hence satisfies
PtP = PP! = det P. Furthermore, if two 2 x 2 matrices P and @Q are pre-SU(2), then
P+ Q, PQ, and P!, Q™! are also pre-SU(2).

By the iterative representions of quasideterminants (cf. (2.3)), the n-soliton solution

P:(O‘ ﬂ), a,BeC, (5.2)

Jn in (4.7) is found to be a polynomial of 2 x 2 matrices 6;,0; ', A;, A; ! which are all
pre-SU(2). Therefore J, is also pre-SU(2) satisfying Ji.J, = J,J! = detJ,. On the

other hand, we can prove that detJ, = [[/“, |\j? by the recursion relation: det.J, =
det(Ay,) det J,,—1 = |\y|?det J,,—1, detJy = 1 which comes from the explicit form (3.5) of
the Darboux transformation of J (k=1,--- ,n).

Now we can prove the gauge fields (5.1) are anti-hermitian and traceless because of
(Opn) It = (aujn)j,jl where J,, is a SU(2) matrix defined by J,, := R~Y/2J, in which
R := [[; |Xi|%2. Therefore we can conclude that the n intersecting soliton walls can be
embedded into G = SU(2) gauge theory on the Ultrahyperbolic space U.

6 Conclusion and discussion

In this paper, we discussed multi-soliton dynamics of anti-self-dual Yang-Mills equations
by analyzing the action density in the asymptotic region. By considering a comoving frame
with the I-th soliton, we proved that the entire multi-soliton distribution is asymptotically
equal to the I-th one-soliton distribution except for a phase shift, and we also calculated
the phase shifts explicitly. Therefore, our results can be interpreted as intersecting soliton
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walls with phase shifts in the scattering process. It is surprising that this behavior is quite
similar to the case of KP soliton scattering [28, 30], and it suggests the viability of Sato’s
formulation for anti-self-dual Yang-Mills equations. Furthermore, we proved that in the
Ultrahyperbolic space U, the J-matrix is unitary. Hence the multi-soliton solutions can be
embedded into SU(2) gauge theory. This implies that there would exist intersecting branes
of three-dimensions in the N=2 string theory.

In our current work, we focused on the pure scattering process of soliton walls and
excluded the case of resonance processes. The resonance processes describe soliton wall re-
connections. Actually, the classification of all possible soliton wall distributions (containing
the resonance processes) could be put into practice by adjusting the parameters of (4.7)
properly (cf. [30]) or by following a similar strategy of Kodama and Williams [22, 23] from
the viewpoint of positive Grassmannians.

On the other hand, the quasi-Wronskian solutions here might have a similar represen-
tations of Maya diagrams or tau functions in Sato’s theory, and relate to generalized Schur
functions (cf. [7, 37]). Perhaps after a more comprehensive study from this perspective,
the realization of Sato’s theory for the anti-self-dual Yang-Mills equation version might be
achieved even though it is still a challenging problem (cf. [38]).

The extension of integrable systems to noncommutative space-time is not our aim in
this paper, but it is still a potentially interesting topic (for reviews see, e.g. [16, 17, 24]).
In the previous work [10], we showed that on the Euclidean space E, noncommutative
multi-soliton solutions of anti-self-dual Yang-Mills equations is equivalent to the commu-
tative ones in the asymptotic region. By quite similar arguments, we can make the same
conclusion on the Ultrahyperbolic space U. This means that on U, the behavior of three-
dimensional branes (soliton walls) in the asymptotic region are not affected by the back-
ground B-field. On the other hand, the soliton equations of lower-dimensional integrable
systems can be derived from the anti-self-dual Yang-Mills equations by suitable reduction
procedure even when the space-time coordinates are noncommutative [14]. Therefore, the
techniques presented in this paper could be applied to the lower-dimensional soliton equa-
tions even in noncommutative space-time because quasideterminants are especially suitable
for the description of noncommutative integrable systems (e.g. [6, 11, 12, 36]). Furthermore,
the asymptotic behaviors of noncommutative multi-soliton solutions are proved to be the
same as the commutative ones in lower-dimensional integrable systems (e.g. [4, 15, 18, 33]),
but the physical interpretation are still uncertain.
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